RU2689255C2 - Компактная нашлемная система индикации, защищенная сверхтонкой структурой - Google Patents

Компактная нашлемная система индикации, защищенная сверхтонкой структурой Download PDF

Info

Publication number
RU2689255C2
RU2689255C2 RU2017116184A RU2017116184A RU2689255C2 RU 2689255 C2 RU2689255 C2 RU 2689255C2 RU 2017116184 A RU2017116184 A RU 2017116184A RU 2017116184 A RU2017116184 A RU 2017116184A RU 2689255 C2 RU2689255 C2 RU 2689255C2
Authority
RU
Russia
Prior art keywords
substrate
optical system
optical
light waves
relief formation
Prior art date
Application number
RU2017116184A
Other languages
English (en)
Other versions
RU2017116184A3 (ru
RU2017116184A (ru
Inventor
Яаков АМИТАИ
Юваль ОФИР
Элад МОР
Original Assignee
Лумус Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лумус Лтд. filed Critical Лумус Лтд.
Publication of RU2017116184A publication Critical patent/RU2017116184A/ru
Publication of RU2017116184A3 publication Critical patent/RU2017116184A3/ru
Application granted granted Critical
Publication of RU2689255C2 publication Critical patent/RU2689255C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lenses (AREA)

Abstract

Изобретение относится к оптическим устройствам, применяемым в нашлемных системах индикации. Оптическая система включает светопроводящую подложку (20), имеющую как минимум две внешние основные поверхности и кромки, оптический элемент для ввода световых волн в подложку (20) посредством внутреннего отражения, как минимум одну частично отражающую поверхность, расположенную в подложке (20), для вывода световых волн из подложки (20), как минимум одну прозрачную пленку с воздушным зазором (110), включающую основание и сверхтонкую структуру (111), определяющую рельефное образование, установленное на основании. Пленка с воздушным зазором крепится к одной из основных поверхностей подложки (20), а рельефное образование обращено к подложке (20), определяющей плоскость стыка таким образом, чтобы световые волны соединенные внутри подложки (20) полностью отражались от плоскости стыка. Технический результат – уменьшение габаритов, повышение качества изображения. 32 з.п. ф-лы, 19 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к оптическим устройствам, расположенным на подложке, и в частности, к устройствам, содержащим множество отражающих поверхностей, удерживаемых общей светопропускающей подложкой, также называемой световодным элементом.
Уровень техники
Компактные оптические элементы широко применяются в нашлемных системах индикации НСИ (HMD), причем оптический модуль служит как в качестве изображающей линзы, так и оптического индикатора, при этом источник двухмерного изображения отображается до бесконечности и отражается в глазах пользователя. Источник отображения получают непосредственно из пространственного модулятора света ПМС (SLM), такого как электронно-лучевой трубки ЭЛТ (CRT), жидкокристаллического дисплея ЖКД (LCD), органической светодиодной матрицы ОСДМ (OLED), источника сканирования или подобных устройств, или косвенно посредством оборачивающей линзы или волоконно-оптического жгута. Источник отображения содержит ряд элементов (пикселей), отображаемых до бесконечности при помощи коллимирующей линзы, и передается в глаз пользователя посредством отражающей или частично отражающей поверхности, выступающей в качестве оптического индикатора косвенного и непосредственного применения, соответственно. Как правило, типичный оптический модуль свободного пространства используют именно для этих целей. Поскольку желаемое поле обзора ПО (FOV) системы возрастает, тем не менее, такой типичный оптический модуль становится более крупным, тяжелым и громоздким, и, таким образом, даже для устройства с умеренной производительностью, такого как данная система, он является непрактичным. Это является основным недостатком всех видов дисплеев, особенно в случае применения нашлемной индикации, причем эта система должна быть обязательно как можно более легкой и компактной.
Стремление добиться компактности привело к нескольким различным комплексным оптическим решениям, которые, с одной стороны, все еще недостаточно компактны для большинства практических применений, и, с другой стороны, имеют серьезные недостатки с точки зрения технологичности. Кроме того, блок движения глаза БДГ (ЕМВ) оптических углов обзора, предусмотренных в данных конструкциях, обычно малых размеров, как правило, менее 8 мм. Таким образом, производительность оптической системы достаточно нестабильна, даже при небольших движениях оптической системы относительно глаза пользователя, и вследствие значительного движения зрачка такие дисплеи являются некомфортными для чтения.
Принципы, описанные в публикациях WO 01/95027, WO 03/081320, WO 2005/024485, WO 2005/024491, WO 2005/024969, WO 2005/124427, WO 2006/013565, WO 2006/085309, WO 2006/085310, WO 2006/087709, WO 2007/054928, WO 2007/093983, WO 2008/023367, WO 2008/129539, WO 2008/149339, WO 2013/175465 и IL 2014/232197 от лица Заявителя включены в настоящий документ посредством ссылок.
Раскрытие изобретения
Настоящее изобретение способствует разработке очень компактного световодного оптического элемента СОЭ (LOE) для использования, помимо других применений, в НСИ. Данное изобретение предусматривает достаточное широкое ПО, а также сравнительно крупные размеры БДГ. Полученная в результате оптическая система обеспечивает масштабное высококачественное изображение, предусматривающее обширные движения глаза. Оптическая система, предлагаемая в настоящем изобретении, является невероятно эффективной, поскольку она намного более компактна, чем предложенные в новейших разработках, тем не менее, ее можно с легкостью использовать даже в системах со сложной структурой.
Таким образом, общей целью настоящего изобретения является устранение недостатков предшествующих устройств с компактным оптическим дисплеем и внедрение других оптических компонентов и систем с улучшенными характеристиками в соответствии с особыми требованиями.
Данное изобретение можно успешно реализовать во многих системах воспроизведения изображений, таких как портативных DVD, мобильных телефонах, передвижных телевизорах, видеоиграх, портативных медиаплеерах и других мобильных устройств с дисплеем.
Основным принципом работы СОЭ является то, что оптические волны попадают в подложку за счет полного внутреннего отражения от внешних поверхностей СОЭ. Тем не менее, есть ситуации, когда как минимум к одной из внешней поверхности необходимо прикрепить другой оптический элемент. В данном случае необходимо отметить, что, с одной стороны, отражение световых волн от внешних поверхностей при таком креплении другого оптического элемента не будет нарушаться, и, с другой стороны, это не повлияет на механизмы вывода и ввода световых волн из и в СОЭ. В результате, необходимо будет прикрепить угловой чувствительный отражающий механизм на внешних поверхностях, который по сути и будет отражать все световые волны, соединенные внутри СОЭ и падающие на поверхность под наклонным углом, а также будет передавать световые волны, отражающиеся на поверхности непосредственно перед нормальным падением.
В предыдущих изобретениях (таких как описанные в публикации WO 2005/024491) представлен отражающий механизм, причем на поверхность СОЭ нанесено угловое чувствительное тонкопленочное диэлектрическое покрытие. В настоящем изобретении представлен альтернативный отражающий механизм, в котором используют пленку с воздушным зазором с покрытием с эффектом "moth-eye" («глаза ночной бабочки»). Такое покрытие обладает необычным свойством: на его поверхность наносят натуральную наноструктурированную пленку, предотвращающую отражение. Это позволяет бабочке хорошо видеть в темноте без отражений, благодаря чему хищники ее не замечают. Такая структура представляет собой гексагональную решетку, каждая из ячеек которой составляет примерно 200 нм в высоту, а их центры размещены в 300 нм друг от друга. Такое противоотражающее покрытие оправдывает себя, поскольку размеры таких ячеек меньше, чем длина волны видимого света, поэтому свет "видит" поверхность как обладающую непрерывным градиентом показателя преломления между воздухом и средой, что уменьшает отражение за счет эффективного смещения поверхности воздух-линза. Практичные противоотражающие пленки были разработаны посредством использования эффекта, представляющего собой форму биомимикрии. Имитирование глаза ночной бабочки указывает на то, что отражение падающего света в обычных условиях практически полностью исключается при использовании таких структур. Оптическое моделирование и эксперименты с другими формами и размерами таких компактных неравномерных сверхтонких периодических структур доказывают, что можно подавить отражение при более широком диапазоне длины волны (от УФ до ИК) и более широких углах падения света (0±60 градусов).
В соответствии с настоящим изобретением покрытие с эффектом глаза ночной бабочки или любая другая подобная сверхтонкая структура не используются в качестве противоотражающего покрытия. Вместо этого используется специальная сверхтонкая структура в качестве необходимого углового чувствительного отражающего механизма. При необходимости фиксации оптического элемента к внешней поверхности СОЭ пленка с воздушным зазором крепится к оптическому элементу таким образом, чтобы сверхтонкая структура была обращена к СОЭ после такого крепления. Таким образом, когда соединенные световые волны внутри СОЭ падают на сверхтонкую структуру под различными наклонными углами, они "видят" только внешнюю часть периодической структуры. Таким образом, фактический показатель преломления, который "замечают" входящие оптические световые волны, близок к показателю преломления воздуха, и сохраняется общий внутренний отражающий механизм. С другой стороны, пленка с воздушным зазором снаружи достаточно прозрачна для входящих световых волн или для световых волн, которые выходят из СОЭ.
Таким образом, изобретение предусматривает оптическую систему, включающую светопроводящую подложку, содержащую как минимум две главные внешние поверхности и кромки, оптический элемент для введения световых волн в подложку за счет внутреннего отражения, как минимум одну частично отражающую поверхность, расположенную в подложке, для вывода световых волн из подложки, как минимум одну прозрачную пленку с воздушным зазором, состоящую из основания и сверхтонкой структуры, определяющей рельефное образование, расположенное на основании, причем пленка с воздушным зазором крепится к одному из основных поверхностей подложки, при этом рельефное образование обращено к подложке, определяющей плоскость стыка таким образом, чтобы световые волны, соединенные внутри подложки, практически полностью отражались от плоскости стыка.
Краткое описание чертежей
Данное изобретение представлено вместе с определенными предпочтительными вариантами, с ссылкой на следующие схематические фигуры для более полного понимания.
На конкретном примере, детально описанном в данных фигурах, подчеркивается, что описанные элементы приводятся в качестве примера и для описания предпочтительных вариантов только данного изобретения, и представлены в форме, которая считается наиболее приемлемым и понятным описанием принципов и концептуальных аспектов данного изобретения. В связи с этим, не предпринимаются попытки описания более конкретных структурных элементов изобретения, чем это необходимо для понимания принципов данного изобретения. Описание, данное в чертежах, служит руководством для специалистов в данной области, чтобы показать, как можно воплотить некоторые формы данного изобретения на практике.
На чертежах:
Фиг. 1 представляет собой вид сбоку предшествующего СОЭ, приводимый в качестве примера;
Фиг. 2 представляет собой схематический чертеж, иллюстрирующий предшествующее оптическое устройство, направляющее световые волны на входе из индикаторного источника света;
Фиг. 3 представляет собой схематический чертеж, иллюстрирующий предшествующую систему, направляющую и соединяющую световые волны на входе из индикаторного источника света в СОЭ;
Фиг. 4 представляет собой схематический чертеж, иллюстрирующий другую предшествующую систему, направляющую и соединяющую световые волны на входе из индикаторного источника света в подложке, причем коллимирующий модуль крепится к подложке;
Фиг. 5 иллюстрирует примерный вариант осуществления данного изобретения, причем в соответствии с настоящим изобретением отрицательная линза крепится к внешней поверхности световодного оптического элемента;
Фиг. 6 иллюстрирует примерный вариант осуществления данного изобретения, причем в соответствии с настоящим изобретением отрицательные и положительные линзы крепятся внешним поверхностям световодного оптического элемента;
Фиг. 7а и 7б представляют собой двух- и трехмерные схематические изображения примерного варианта пленки с воздушным зазором, причем сверхтонкая периодическая структура прозрачного диэлектрического материала, расположенного на небольшом отрезке, меньшем чем длина волн световой зоны, расположена на плоской прозрачной подложке;
Фиг. 8а и 8б, соответственно, иллюстрируют вид сбоку и вид сверху пленки с воздушным зазором, приводимой в качестве примера;
Фиг. 9а и 9б, соответственно, иллюстрируют вид сбоку и вид сверху пленки с воздушным зазором, приводимой в качестве примера, внутреннего поперечного сечения, расположенного близко к основанию;
Фиг.10а и 10б, соответственно, иллюстрируют вид сбоку и вид сверху пленки с воздушным зазором, приводимой в качестве примера, внешнего поперечного сечения, расположенного близко к воздушной среде;
Фиг. 11 иллюстрирует вид сбоку световой волны, падающей на верхнюю поверхность сверхтонкой структуры под наклонным углом, в соответствии с настоящим изобретением;
Фиг. 12 иллюстрирует пленку с воздушным зазором, которая крепится к внешней поверхности СОЭ, причем в соответствии с настоящим изобретением соединенная световая волна падает на поверхность стыка между СОЭ и пленкой;
Фиг. 13а и 13б, соответственно, иллюстрируют вид спереди системы линз и вид сверху СОЭ, расположенного между двумя оптическими линзами и установленного внутри оправы, в соответствии с настоящим изобретением;
Фиг. 14а, 14б и 14в, соответственно, иллюстрируют немонолитный оптический элемент, содержащий СОЭ, расположенный между передней положительной линзой и задней отрицательной линзой, установленных внутри оправы без использования связывающего материала, в соответствии с настоящим изобретением;
Фиг. 15а, 15б и 15в, соответственно, иллюстрируют альтернативный метод установки СОЭ между двумя оптическими линзами с использованием технологии периферийного соединения, в соответствии с настоящим изобретением;
Фиг. 16а, 16б и 16в, соответственно, иллюстрируют альтернативный метод монолитной установки СОЭ между двумя оптическими линзами, в соответствии с настоящим изобретением;
Фиг. 17а, 17б и 17в, соответственно, иллюстрируют СОЭ, расположенный между двумя плоскими подложками и установленный внутри оправы, в соответствии с настоящим изобретением;
Фиг. 18 иллюстрирует примерный вариант осуществления данного изобретения, причем элементы ввода и вывода являются дифракционными оптическими элементами, а также
Фиг. 19 иллюстрирует примерный вариант осуществления данного изобретения, причем оптический модуль расположен в системе ручной индикации.
Подробное описание предпочтительных вариантов осуществления изобретения
Фиг. 1 иллюстрирует вид в разрезе предшествующей оптической системы, состоящей из плоской подложки 20 и ее соответствующих компонентов (далее также именуемые "СОЭ"), используемые в настоящем изобретении. Оптические средства, такие как отражающая поверхность 16, освещаются световыми волнами 18, которые коллимируются от индикатора источника света (не показано на фигуре). Отражающая поверхность 16 отражает падающие световые волны от источника таким образом, что световые волны попадают внутрь плоской подложки 20 СОЭ за счет полного внутреннего отражения. После нескольких отражений главной нижней и верхней поверхностей 26, 28 подложки 20, захваченные волны достигают множества выборочных частично отражающих поверхностей 22, которые выводят свет из подложки в зрачке 25 глаза 24 пользователя. Здесь входная поверхность СОЭ рассматривается в качестве поверхности, через которую вводимые световые волны попадают в СОЭ, а выходная поверхность СОЭ рассматривается в качестве поверхности, через которую захваченные волны выходят из СОЭ. В случае СОЭ, проиллюстрированного на Фиг. 1, входная и выходная поверхности расположены на нижней поверхности 26. Тем не менее, предусмотрены другие конфигурации, в которых входные и отображающие волны могут располагаться на противоположных сторонах подложки 20, или в которых свет вводится в СОЭ через скошенный край подложки.
Как показано на Фиг. 2, s-поляризованные световые волны на входе 2 из индикаторного источника света 4 вводятся в коллимирующий модуль 6 через его нижнюю поверхность 30, модуль которой обычно состоит из материала, передающего световые волны. После завершения отражения поляризующего светоделителя 31, световые волны выводятся из подложки через поверхность 32 коллимирующего модуля 6. После этого световые волны проходят через четвертьволновую фазовую пластину 34, отраженную отражающим оптическим элементом 36, таким как плоское зеркало, затем возвращаются, чтобы снова пройти через фазовую пластину 34, и снова поступают в коллимирующий модуль 6 через поверхность 32. Теперь р-поляризованные световые волны проходят через поляризующий светоделитель 31 и выводятся из световода через поверхность 38 коллимирующего модуля 6. Затем световые волны проходят через вторую четвертьволновую фазовую пластину 40, коллимированную компонентом 42, таким как линза, на отражающей поверхности 44, затем возвращаются, чтобы снова пройти через фазовую пластину 34, и снова поступают в коллимирующий модуль 6 через поверхность 38. Теперь s-поляризованные световые волны отражаются от поляризующего светоделителя 31 и выходят из коллимирующего модуля через верхнюю поверхность 46. Отражающие поверхности 36 и 44 могут выполняться из металлического или диэлектрического покрытия.
Фиг. 3 иллюстрирует, как коллимирующий модуль 6, состоящий из компонентов, детально рассмотренных в описании к Фиг. 2, можно использовать вместе с подложкой 20 для формирования оптической системы. Световые волны 48, выходящие из коллимирующего модуля 6, попадают в подложку 20 через нижнюю поверхность 26. Световые волны, попадающие в подложку 20, отражаются от оптического элемента 16 и затем попадают в подложку, как показано на Фиг. 2. Теперь коллимирующий модуль 6, состоящий из индикаторного источника света 4, складных призм 52 и 54, поляризующего светоделителя 31, фазовых пластин 34 и 40 и отражающих оптических элементов 36 и 42, можно легко интегрировать в один механический модуль и установить отдельно от подложки, даже при неточных механических доступах. Кроме того, фазовые пластины 34 и 40 и отражающие оптические элементы 36 и 42, соответственно, можно соединить для образования единых элементов.
Целесообразно было бы прикрепить различные компоненты коллимирующего модуля 6 к подложке 20 для образования единого компактного элемента, что приведет к упрощению механического модуля. На Фиг. 4 показан такой модуль, причем верхняя поверхность 46 коллимирующего модуля 6 крепится на плоскости стыка 58 к нижней поверхности 26 подложки 20. Основной проблемой такой конфигурации является то, что такое крепление не допускает существовавший ранее воздушный зазор 50 (как показано на Фиг. 3) между подложкой 20 и коллимирующим модулем 6. Такой воздушный зазор необходим для захватывания входных световых волн 48 внутри подложки 20. Захваченные световые волны 48 должны отражаться в точках 62 и 64 плоскости стыка 58. Поэтому на этой плоскости необходимо использовать отражающий механизм, либо на главной поверхности 26 подложки 20, либо на верхней поверхности 46 коллимирующего модуля 6. Тем не менее, не так легко нанести простое отражающее покрытие, поскольку такие поверхности должны быть прозрачными для световых волн, входящих и выходящих из подложки 20 в примерных точках 66. Световые волны должны проходить через плоскость 48 в малых углах падения и отражать на больших углах падения. Как правило, проходящие углы падения составляют 0°-15°, а отражающие углы падения составляют 40°-80°.
В вышеописанных вариантах осуществления настоящего изобретения изображение, собранное в СОЭ, коллимируется в бесконечность. Тем не менее, иногда переданное изображение должно быть сфокусировано на более близком расстоянии, например, для людей, страдающих близорукостью, которые не могут четко видеть изображения на большом расстоянии. Фиг. 5 иллюстрирует оптическую систему, использующую линзу, в соответствии с настоящим изобретением. Изображение 80 из бесконечности соединяется в подложке 20 за счет отражающей поверхности 16, и затем отражается посредством множества частично отражающих поверхностей 22 в глаз 24 пользователя. (Плоско-вогнутая) линза 82 фокусирует изображение на удобном расстоянии и дополнительно корректирует другие аберрации глаза пользователя, включая астигматизм. Линзу 82 можно прикрепить к плоской поверхности 84 подложки. Как уже объяснялось в описании к Фиг. 4, между линзой и подложкой необходимо сохранить небольшой воздушный зазор для обеспечения захвата световых волн 80 изображения внутри подложки за счет полного внутреннего отражения.
Кроме того, в большинстве случаев применения данного изобретения предполагается, что наружная сторона находится в бесконечности, однако существуют случаи применения данного изобретения для профессиональных или медицинских целей, когда наружная сторона находится на более близком расстоянии. Фиг. 6 иллюстрирует оптическую систему с вариантом применения двойной линзы на основании данного изобретения. Световые волны 80 изображения из бесконечности соединяются в подложке 20 посредством отражающей поверхности 16 и затем отражаются за счет множества частично отражающих поверхностей 22 в глаз 24 пользователя. Другое изображение 86 из более близкого расстояния коллимируется в бесконечность за счет линзы 88 и затем проходит через подложку 20 в глаз 24 пользователя. Линза 82 фокусирует изображения 80 и 86 на удобном расстоянии, как правило (но не всегда), первоначальное изображение находится на наружной стороне, и при необходимости корректирует другие аберрации глаза пользователя.
Как показано на Фиг. 5 и 6, линзы 82 и 88 представляют собой обычные плоско-вогнутые и плоско-выпуклые линзы, соответственно, однако для сохранения плоской формы подложки вместо них можно использовать линзы Френеля, которые могут быть выполнены из тонких пластиковых пластин с тонкими ступенчатыми выступами. Кроме того, альтернативный метод выполнения линз 82 или 88, вместо использования фиксированных линз, как описано выше, состоит в том, чтобы использовать электронные динамические линзы. В определенных случаях пользователь не только сможет увидеть неколлимированное изображение, но и динамически контролировать фокус изображения. Было показано, что пространственный модулятор света (ПМС) с высоким разрешением можно использовать для формирования голографического элемента. В настоящее время наиболее популярными источниками для этих целей является ЖКР-устройства, однако можно использовать и другие динамические ПМС устройства. Существуют динамические линзы с высоким разрешением с разрешающей способностью в несколько сотен лин/мм. В настоящем изобретении такой вид линз с электрооптическим управлением можно использовать в качестве необходимых динамических элементов вместо фиксированных линз, рассмотренных выше в описании к Фиг. 5 и 6. Таким образом, пользователь в режиме реального времени может определить и установить точные фокальные плоскости как виртуального изображения, спроецированного подложкой, так и реального изображения внешнего вида.
Как показано на Фиг. 6, целесообразно было бы прикрепить линзы 82 и 88 к подложке 20 для образования единого компактного и упрощенного механического модуля. Очевидно, что основной проблемой, как было описано выше, является то, что такое крепление не допускает существовавший ранее воздушный зазор между подложкой 20 и линзами 82 и 88, зазоры которых необходимы для захвата световых волн 80 изображения внутри подложки 20. Захваченные световые волны 80 изображения должны отражаться в точке 90 плоскости стыка 84 и передаваться в ту же плоскость в точке 92. Таким образом, аналогичный частично отражающий механизм, как было рассмотрено выше в описании к Фиг. 4, необходимо установить на этой плоскости.
Для получения необходимого частично отражающего механизма можно нанести угловое чувствительное тонкопленочное покрытие на основные поверхности подложки, однако реализация такого варианта осуществления данного изобретения может оказаться сложным и дорогостоящим. Альтернативным способом получения необходимого частично отражающего механизма является применение прозрачной пленки 110 с воздушным зазором к основным поверхностям подложки, как показано на Фиг. 7а и 7б. Термин пленка с воздушным зазором относится к оптическому устройству, на поверхности которого размещена сверхтонкая периодическая структура 111 прозрачного диэлектрического материала, расположенного на небольшом отрезке, меньшем чем длина волн световой зоны, например, такое оптическое устройство, как покрытие с эффектом глаза ночной бабочки, имеющее компактную (неравномерную) сверхтонкую периодическую структуру 111 (далее именуемую "рельефное образование"), расположенную на плоской прозрачной подложке 112 (далее именуемой "основание" 112 или "пленочная основа" 112). Предпочтительная высота рельефного образования (но не обязательно всегда) должна быть менее 1 мкм.
Как видно из Фиг. 8а и 8б, любое поперечное сечение 121, расположенное параллельно поверхности пленки с воздушным зазором 110, имеет периодическое образование, причем пропорциональная часть диэлектрического материала 123 в рельефном образовании постепенно изменяется в зависимости от самой пленки.
Как видно из Фиг. 9а, 9б и 10а и 10б, во внутреннем поперечном сечении 124, выполненном близко к пленочной основе 112, т.е. нижней части сверхтонкой структуры 111, пропорциональная часть диэлектрического материала 125 в рельефном образовании 126 максимальна и близка к 1, а во внешнем поперечном сечении 127, близко к верхней части сверхтонкой структуры 111, пропорциональная часть диэлектрического материала 128 в рельефном образовании 129 минимальна, а именно, значительно ниже, чем в материале 125, и, по существу, равна нулю.
Как правило, когда световые волны проходят через оптическое устройство, имеющее периодическую структуру, происходит дифракция света, и значительно снижается яркость цвета нулевого порядка дифрагированного света, т.е. света, который передается через устройство без дифракции. Однако, когда отрезок сверхтонкой периодической структуры намного короче, чем длина волны входящих световых волн, дифракция не происходит. Вместо этого, могут приобретаться активные противоотражающее свойства, поскольку оптические волны "видят" среду, имеющую показатель преломления, который является средним для материалов, содержащихся в данной среде.
С другой стороны, как показано на Фиг. 11, когда световые волны 130 падают на периодическую сверхтонкую структуру 111 в верхней части структуры под наклонным углом, они "видят" только внешнюю часть периодической структуры, причем пропорциональная часть прозрачного материала очень низкая. Таким образом, фактический показатель преломления, который "видят" входящие оптические волны, близок к показателю преломления воздушного пространства 131.
В результате, как показано на Фиг. 12, когда такая пленка с воздушным зазором крепится к внешней поверхности 28 подложки 20, соединенные световые волны 130 падают на поверхность стыка 132 между подложкой и пленкой под углом выше, чем критический угол, воздушное пространство 131 между пленкой и подложкой обеспечивает оптическую изоляцию вследствие воздухоподобного показателя преломления на граничной поверхности. Поэтому будет сохраняться полное внутреннее отражение световых волн на входе из внешней поверхности, и световые волны будут находиться внутри подложки.
Геометрические характеристики сверхтонкой структуры, такие как высота, полный размах и ширина, как правило, находятся в пределах 10-800 нм. Кроме того, форма сверхтонкой структуры не обязательно должна быть в виде глаза ночной бабочки. Можно использовать любую другую форму наноструктуры, такую как пирамиды, призмы, конуса и т.д.. Более того, сверхтонкая структура не обязательно должна быть периодической, хотя, как правило, периодическую структуру легче выполнить. Тем не менее, такая сверхтонкая структура должна отвечать следующим требованиям: с одной стороны, структура должна быть достаточно прочной, чтобы не разрушиться во время крепления, и, с другой стороны, пропорциональная часть диэлектрического материала во внешнем поперечном сечении структуры должна по существу равняться нулю, чтобы сохранить общее внутреннее отражение внутри подложки. Кроме того, основные элементы сверхтонкой структуру не должны быть слишком крупными, чтобы избежать эффекта дифракции. Однако уменьшение толщины сверхтонкой структуры до размера, меньше чем 100 нм, может привести к проникновению захваченных волн через пленку с воздушным зазором и нарушению общего внутреннего отражения. Поэтому обычная толщина сверхтонкой структуры должна составлять от 200 до 300 нм.
Фиг. 13а иллюстрирует вид спереди системы линз 140, а Фиг. 13б вид сверху подложки 20, установленной между двумя оптическими линзами 141, 142 и расположенной внутри оправы 143 для линз. Как видно, кроме оптических элементов оправа должна содержать другие вспомогательные средства, такие как камеру 144, микрофон 145, наушники 146, USB-разъемы, карты памяти, инерциальный измерительный блок ИИБ (IMU) и др.
Фиг. 14а, 14б и 14в иллюстрируют немонолитный оптический элемент 150, состоящий из подложки 20, установленной между передней положительной линзой 151 и задней отрицательной линзой 152, которые размещаются внутри оправы 154 без использования связывающего материала. Пленки с воздушным зазором 110 (Фиг. 14в) размещают или крепят между подложкой 20 и линзами 151, 152, причем сверхтонкие структуры 111, соответственно обращены к внешним поверхностям 26 и 28 подложки 20. Пленки с воздушным зазором 110 можно нанести непосредственно на плоские поверхности оптических линз 151 и 152, используя самоклеящийся материал СКМ (PSA), или прикрепить к линзам посредством тиснения, литьевого прессования, литья, механической обработки, легкой литографии или другого метода непосредственного изготовления. Встроенный оптический элемент 150 устанавливают внутри оправы 154 с использованием технологии давления или цементирования.
Альтернативный метод монолитной установки подложки 20 между двумя оптическими линзами проиллюстрирован на Фиг. 15а, 15б и 15в. Подложку 20 устанавливают между оптическими линзами, используя технологию периферийного соединения. Передняя линза 151 и задняя линза 152 крепятся к наружным кромкам подложки 20 с использованием неоптического связывающего материала или другого высоковязкого адгезива 156, который соединяет все компоненты вместе. Вязкость адгезива должна быть достаточно высокой, чтобы предотвратить просачивание адгезива в воздушные карманы 131, расположенные между пленкой 110 и подложкой 20. Такое просачивание может разрушить воздушный зазор, который необходим для сохранения полного внутреннего отражения световых волн от внешних поверхностей подложки. В качестве адгезива 156 можно использовать OP-67-LS или любой другой силикон, вулканизованный при комнатной температуре ВКТ (RTV).
Другой альтернативный метод монолитной установки подложки 20 между двумя оптическими линзами проиллюстрирован на Фиг. 16а, 16б и 16в. Процедура изготовления встроенного элемента состоит в следующем: пленку с воздушным зазором 110, содержащую сверхтонкие структуры 111, размещают таким образом, чтобы она была обращена к внешним поверхностям 26 и 28 подложки 20; используют такую технику крепления, как контактная электризация; изготавливают форму 160, имеющую необходимую форму внешнего элемента; в эту форму вставляют подложку 20; полимер заливают или впрыскивают в форму, затем производят вулканизацию полимера посредством УФ-излучения или изменения температуры полимера, и наконец, извлекают встроенный элемент из формы. Как уже объяснялось выше в описании к Фиг. 15а-15в, также важно, чтобы сверхтонкие области были изолированы от инжектируемого материала при использовании способа литья под давлением для предотвращения просачивания материала в воздушные карманы 131 между подложкой 20 и пленкой с воздушным зазором 110.
Фиг. 13а-16в иллюстрируют различные методы выполнения оптического компонента, содержащего подложку, размещенную между двумя оптическими линзами, однако в некоторых случаях необходимо прикрепить плоские элементы к внешним поверхностям подложки. Пример такого варианта осуществления изобретения проиллюстрирован на Фиг. 4, причем коллимирующий элемент 6 крепится к подложке 20. Другой причиной крепления плоского элемента к подложке является механическая защита подложки для повышения безопасности для глаз пользователя, а нанесение покрытия на внешнюю поверхность плоского элементы способствует приобретению таких характеристик, как фотохромная реакция, стойкость к царапанию, супергидрофобность, тонированное (цветное) изображение, поляризация, защита от отпечатков пальцев и др.
Подложка 20, установленная между двумя плоскими подложками 162 и 164 и расположенная внутри оправ 166, 167, проиллюстрирована на Фиг. 17а, 17б и 17в. Установку подложки и плоских подложек 20 выполняют посредством механического крепления, периферийного цементирования или монолитного изготовления. Установка может производиться только в виде крепления одного элемента к одной из внешних поверхностей подложки или за счет объединения различных элементов, таких как плоские подложки и изогнутые линзы.
Во всех описанных вариантах осуществления настоящего изобретения элемент для вывода световых волн из подложки представляет собой как минимум одну плоскую частично отражающую поверхность, расположенную в данной подложке, на которую обычно наносят частично отражающее диэлектрическое покрытие, и которая расположена не параллельно основным поверхностям данной подложки. Тем не менее, специальный отражающий механизм в соответствии с настоящим изобретением можно также использовать для других технологий вывода. Фиг. 18 иллюстрирует подложку 20, причем элемент 170 ввода или элемент 172 вывода представляют собой дифракционные элементы. Кроме того, можно использовать другие элементы вывода, такие как изогнутая частично отражающая поверхность и другие стредства.
Варианты, представленные на Фиг. 13-17, являются всего лишь примерами, иллюстрирующими обычный процесс установки настоящего изобретения. Поскольку расположенный на подложке оптический элемент, составляющий ядро системы, очень компактный и легкий, его можно установить в различных конфигурациях. Возможны и другие варианты осуществления настоящего изобретения, включая шлем, складной дисплей, монокль и многое другое. Данный вариант осуществления изобретения предназначен для таких случаев использования, когда дисплей должен находиться близко к глазам; при этом его должны устанавливать на голове и таким образом использовать. Тем не менее, в некоторых случаях дисплей устанавливают иначе, например, на руке для мобильного применения в таких устройствах, как смартфон или умные часы. Основной проблемой таких интеллектуальных устройств является несоответствие малого размера и объема желаемому высокому качеству изображения.
Фиг. 19 иллюстрирует альтернативный метод на основании данного изобретения, который исключает несоответствие между небольшим размером мобильных устройств и необходимостью просматривать цифровой контент на полноформатном дисплее. Такой ручной дисплей РД (HHD) отвечает требованиям, которые ранее считались противоречивыми, что позволяет при небольших размерах мобильных устройств просматривать цифровой контент на полноформатном дисплее за счет непосредственного проецирования высококачественных изображений в глаз пользователя. Оптический модуль, включающий источник отображения 4, складную и коллимирующую оптическую систему 190 и подложку 20 встроен в корпус интеллектуального устройства 210, где подложка 20 заменяет существующую защитную крышку телефона. В частности, объем поддерживающих компонентов, включая источник 4 и оптическую систему 190, достаточно мал, чтобы вместить необходимые компоненты современного интеллектуального устройства. Для просмотра полного экрана, передаваемого устройством, окошко устройства расположено перед глазом 24 пользователя, просматривающего изображение, с широким ПО, крупным блоком движения глаза и комфортным фокусным расстоянием. Также можно просматривать все ПО на большем фокусном расстоянии, наклонив устройство для просмотра различных частей изображения. Кроме того, поскольку оптический модуль работает в прозрачной конфигурации, возможно двойное управление устройством; а именно, можно сохранить типичный дисплей 212 в неизменном состоянии. Таким образом, стандартный дисплей можно просматривать через подложку 20, когда источник 4 отображения выключен. Во втором, виртуальном режиме, предназначенного для масштабного интернет-серфинга или высококачественных видео операций, типичный дисплей 212 выключен, в то время как источник 4 отображения проецирует необходимое изображение широкого ПО в глаз пользователя через подложку 20. Как правило, в большинстве ручных интеллектуальных устройств пользователь может управлять таким устройством с помощью сенсорного экрана, установленного на переднем окне устройства. Как показано на Фиг. 19, сенсорный экран 220 можно прикрепить к интеллектуальному устройству зачет его непосредственного крепления на пленки 110 с воздушным зазором на внешней поверхности, расположенному на подложке 20.

Claims (38)

1. Оптическая система, содержащая:
светопроводящую подложку, имеющую как минимум две внешние основные поверхности и кромки;
оптический элемент для ввода световых волн в подложку за счет внутреннего отражения;
как минимум одну частично отражающую поверхность, расположенную в подложке, для вывода световых волн из подложки;
как минимум одну прозрачную пленку с воздушным зазором, включающую основание и сверхтонкую структуру, определяющую рельефное образование, расположенное на основании;
причем пленка с воздушным зазором крепится к одной из основных поверхностей подложки, а рельефное образование обращено к подложке, определяющей плоскость стыка таким образом, чтобы световые волны, введенные в подложку, по существу полностью отражались от плоскости стыка.
2. Оптическая система по п. 1, отличающаяся тем, что пленка с воздушным зазором образует воздушные карманы между рельефным образованием и подложкой.
3. Оптическая система по п. 1, отличающаяся тем, что рельефное образование включает диэлектрический материал.
4. Оптическая система по п. 1, отличающаяся тем, что пропорциональная часть рельефного образования в поперечном сечении, параллельном основанию, постепенно изменяется в зависимости от расстояния поперечного сечения от основания.
5. Оптическая система по п. 3, отличающаяся тем, что пропорциональная часть диэлектрического материала рельефного образования в поперечном сечении, расположенном близко к основанию, максимальна.
6. Оптическая система по п. 3, отличающаяся тем, что пропорциональная часть диэлектрического материала рельефного образования во внутреннем поперечном сечении, расположенном близко к основанию, по существу равна единице.
7. Оптическая система по п. 3, отличающаяся тем, что пропорциональная часть диэлектрического материала рельефного образования во внешнем поперечном сечении, расположенном близко к плоскости стыка, минимальна.
8. Оптическая система по п. 7, отличающаяся тем, что пропорциональная часть диэлектрического материала рельефного образования во внешнем поперечном сечении, расположенном близко к плоскости стыка, по существу равна нулю.
9. Оптическая система по п. 1, отличающаяся тем, что показатель преломления рельефного образования во внешнем поперечном сечении, расположенном близко к плоскости стыка, по существу равен показателю преломления воздуха.
10. Оптическая система по п. 1, отличающаяся тем, что рельефное образование является периодическим.
11. Оптическая система по п. 1, отличающаяся тем, что рельефное образование имеет конфигурацию moth-eye («глаз ночной бабочки»).
12. Оптическая система по п. 1, отличающаяся тем, что рельефное образование выбрано из группы множества призм, конусов и пирамид.
13. Оптическая система по п. 1, отличающаяся тем, что высота рельефного образования составляет менее 1 мкм.
14. Оптическая система по п. 1, дополнительно включающая как минимум один оптический элемент, имеющий по меньшей мере одну плоскую внешнюю поверхность, обращенную к подложке, причем основание оптически крепится к внешней поверхности данного элемента и рельефное образование обращено к подложке.
15. Оптическая система по п. 14, отличающаяся тем, что оптический элемент представляет собой плоскую прозрачную подложку.
16. Оптическая система по п. 14, отличающаяся тем, что оптический элемент представляет собой коллимирующий модуль.
17. Оптическая система по п. 14, отличающаяся тем, что оптический элемент представляет собой линзу.
18. Оптическая система по п. 1, дополнительно включающая вторую пленку с воздушным зазором, прикрепленную ко второй основной поверхности прозрачной подложки, при этом рельефное образование обращено к поверхности подложки.
19. Оптическая система по п. 18, дополнительно включающая две линзы, каждая из которых имеет как минимум одну плоскую поверхность, причем основания первой и второй пленки с воздушным зазором крепят к плоским поверхностям линз.
20. Оптическая система по п. 14, отличающаяся тем, что подложка и оптический элемент смонтированы внутри оправы для линз.
21. Оптическая система по п. 20, отличающаяся тем, что подложка и оптический элемент устанавливаются вместе внутри оправы без использования связывающего материала.
22. Оптическая система по п. 14, отличающаяся тем, что подложка и оптический элемент устанавливаются вместе посредством технологии периферийного соединения.
23. Оптическая система по п. 14, отличающаяся тем, что производят монолитную совместную установку подложки и оптического элемента.
24. Оптическая система по п. 1, отличающаяся тем, что частично отражающая поверхность для вывода световых волн из подложки представляет собой плоскую поверхность.
25. Оптическая система по п. 24, отличающаяся тем, что на частично отражающую поверхность для вывода световых волн из подложки наносят частично отражающее диэлектрическое покрытие.
26. Оптическая система по п. 24, отличающаяся тем, что частично отражающая поверхность для вывода световых волн из подложки не параллельна основным поверхностям данной подложки.
27. Оптическая система по п. 1, отличающаяся тем, что оптический элемент для ввода световых волн в подложку посредством внутреннего отражения представляет собой дифракционный элемент.
28. Оптическая система по п. 1, отличающаяся тем, что частично отражающая поверхность для вывода световых волн из подложки представляет собой дифракционный элемент.
29. Оптическая система по п. 1, отличающаяся тем, что частично отражающая поверхность для вывода световых волн из подложки представляет собой изогнутую поверхность.
30. Оптическая система по п. 14, отличающаяся тем, что подложка и оптический элемент установлены внутри интеллектуального устройства.
31. Оптическая система по п. 30, отличающаяся тем, что интеллектуальным устройством является смартфон.
32. Оптическая система по п. 30, отличающаяся тем, что интеллектуальным устройством являются умные часы.
33. Оптическая система по п. 30, отличающаяся тем, что оптическим элементом является сенсорный экран.
RU2017116184A 2014-11-11 2015-11-10 Компактная нашлемная система индикации, защищенная сверхтонкой структурой RU2689255C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL235642 2014-11-11
IL235642A IL235642B (en) 2014-11-11 2014-11-11 A compact head-up display system is protected by an element with a super-thin structure
PCT/IL2015/051087 WO2016075689A1 (en) 2014-11-11 2015-11-10 Compact head-mounted display system protected by a hyperfine structure

Publications (3)

Publication Number Publication Date
RU2017116184A RU2017116184A (ru) 2018-11-14
RU2017116184A3 RU2017116184A3 (ru) 2019-03-26
RU2689255C2 true RU2689255C2 (ru) 2019-05-24

Family

ID=52594870

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017116184A RU2689255C2 (ru) 2014-11-11 2015-11-10 Компактная нашлемная система индикации, защищенная сверхтонкой структурой

Country Status (11)

Country Link
US (3) US10520731B2 (ru)
EP (2) EP3218751B1 (ru)
JP (1) JP6759224B2 (ru)
KR (1) KR102323870B1 (ru)
CN (2) CN111856753A (ru)
BR (1) BR112017009652B1 (ru)
CA (1) CA2966851C (ru)
IL (1) IL235642B (ru)
RU (1) RU2689255C2 (ru)
SG (1) SG11201703507PA (ru)
WO (1) WO2016075689A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU224048U1 (ru) * 2023-11-08 2024-03-14 Александр Михайлович Новичков Устройство для отображения информации, носимое на голове

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd A compact head-up display system is protected by an element with a super-thin structure
IL299641B2 (en) * 2015-01-22 2024-02-01 Magic Leap Inc Methods and system for creating focal planes using Alvarez lenses
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov A compact head-up display system with a uniform image
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
KR102539075B1 (ko) * 2015-05-19 2023-05-31 매직 립, 인코포레이티드 조명기
US9946074B2 (en) * 2016-04-07 2018-04-17 Google Llc See-through curved eyepiece with patterned optical combiner
CN109154720A (zh) * 2016-05-18 2019-01-04 鲁姆斯有限公司 头戴式成像设备
CN107783290B (zh) * 2016-08-30 2023-12-29 北京亮亮视野科技有限公司 可以进行视网膜投影的头戴式可视设备
WO2018056111A1 (ja) * 2016-09-21 2018-03-29 日本精機株式会社 ヘッドアップディスプレイ装置用カバー透光部材及びヘッドアップディスプレイ装置
KR102482528B1 (ko) 2016-10-09 2022-12-28 루머스 리미티드 직사각형 도파관을 사용하는 개구 배율기
KR20230084335A (ko) 2016-11-08 2023-06-12 루머스 리미티드 광학 컷오프 에지를 구비한 도광 장치 및 그 제조 방법
US10650552B2 (en) 2016-12-29 2020-05-12 Magic Leap, Inc. Systems and methods for augmented reality
EP4300160A3 (en) 2016-12-30 2024-05-29 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
EP3574360A4 (en) 2017-01-28 2020-11-11 Lumus Ltd. IMAGING SYSTEM WITH EXTENDED REALITY
KR102338472B1 (ko) 2017-02-22 2021-12-14 루머스 리미티드 광 가이드 광학 어셈블리
EP3376279B1 (en) 2017-03-13 2022-08-31 Essilor International Optical device for a head-mounted display, and head-mounted device incorporating it for augmented reality
CN113341566B (zh) 2017-03-22 2023-12-15 鲁姆斯有限公司 交叠的反射面构造
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Waveguide and method of production
EP3602172A1 (en) 2017-06-06 2020-02-05 Apple Inc. Optical systems for electronic devices with displays
US11243434B2 (en) 2017-07-19 2022-02-08 Lumus Ltd. LCOS illumination via LOE
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
CN111183393B (zh) 2017-09-29 2024-03-19 鲁姆斯有限公司 增强现实显示器
KR20200077511A (ko) 2017-10-22 2020-06-30 루머스 리미티드 광학 벤치를 사용하는 헤드 장착형 증강 현실 장치
BR112020010057A2 (pt) 2017-11-21 2020-11-03 Lumus Ltd. dispositivo óptico
US11762169B2 (en) 2017-12-03 2023-09-19 Lumus Ltd. Optical device alignment methods
KR102596429B1 (ko) 2017-12-10 2023-10-30 매직 립, 인코포레이티드 광학 도파관들 상의 반사―방지 코팅들
EP3729172A4 (en) 2017-12-20 2021-02-24 Magic Leap, Inc. INSERT FOR AUGMENTED REALITY VIEWING DEVICE
TWI791728B (zh) 2018-01-02 2023-02-11 以色列商魯姆斯有限公司 具有主動對準的增強現實顯示裝置及其對準方法
US10551544B2 (en) * 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
CN112136152A (zh) 2018-03-15 2020-12-25 奇跃公司 由观看设备的部件变形导致的图像校正
CN108490611B (zh) * 2018-03-26 2020-12-08 京东方科技集团股份有限公司 增强现实设备的屈光调节方法及其装置、增强现实设备
CN112005091B (zh) 2018-04-08 2023-08-11 鲁姆斯有限公司 用于对光学材料的样品进行光学测试的设备和方法、以及操作性地连接至该设备的控制器
CN112119346B (zh) 2018-05-14 2022-08-19 鲁姆斯有限公司 用于近眼显示器的具有细分光学孔径的投影仪配置和相应的光学系统
EP3794397A4 (en) 2018-05-17 2021-07-07 Lumus Ltd. CLOSE-UP DISPLAY WITH OVERLAPPING PROJECTOR ARRANGEMENTS
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improving light field uniformity
WO2019224764A1 (en) 2018-05-23 2019-11-28 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces
JP7319303B2 (ja) 2018-05-31 2023-08-01 マジック リープ, インコーポレイテッド レーダ頭部姿勢位置特定
CN112313499A (zh) 2018-06-21 2021-02-02 鲁姆斯有限公司 光导光学元件(loe)的板之间折射率不均匀性的测量技术
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11579441B2 (en) 2018-07-02 2023-02-14 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
WO2020010226A1 (en) 2018-07-03 2020-01-09 Magic Leap, Inc. Systems and methods for virtual and augmented reality
US11409103B2 (en) 2018-07-16 2022-08-09 Lumus Ltd. Light-guide optical element employing polarized internal reflectors
US11624929B2 (en) 2018-07-24 2023-04-11 Magic Leap, Inc. Viewing device with dust seal integration
US11598651B2 (en) 2018-07-24 2023-03-07 Magic Leap, Inc. Temperature dependent calibration of movement detection devices
EP3831058A4 (en) 2018-08-02 2022-04-20 Magic Leap, Inc. VIEWING SYSTEM WITH PUPILE DISTANCE COMPENSATION BASED ON HEAD MOVEMENT
US10795458B2 (en) 2018-08-03 2020-10-06 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
AU2019335612A1 (en) 2018-09-09 2021-04-08 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
EP3853654A1 (en) * 2018-09-21 2021-07-28 Dolby Laboratories Licensing Corporation Incorporating components inside optical stacks of head-mounted devices
US10859837B2 (en) * 2018-09-21 2020-12-08 Google Llc Optical combiner lens for wearable heads-up display
US11262585B2 (en) * 2018-11-01 2022-03-01 Google Llc Optical combiner lens with spacers between lens and lightguide
TWM642752U (zh) 2018-11-08 2023-06-21 以色列商魯姆斯有限公司 用於將圖像顯示到觀察者的眼睛中的顯示器
US11947130B2 (en) 2018-11-08 2024-04-02 Lumus Ltd. Optical devices and systems with dichroic beamsplitter color combiner
JP3226277U (ja) 2018-11-11 2020-05-14 ルムス エルティーディー. 中間ウィンドウを有するニアアイディスプレイ
US11221486B2 (en) * 2018-12-10 2022-01-11 Auroratech Company AR headsets with improved pinhole mirror arrays
US20220075118A1 (en) * 2018-12-21 2022-03-10 Magic Leap, Inc. Air pocket structures for promoting total internal reflection in a waveguide
CN109445109A (zh) * 2018-12-26 2019-03-08 深圳珑璟光电技术有限公司 一种透光板
CN109459813A (zh) * 2018-12-26 2019-03-12 上海鲲游光电科技有限公司 一种基于二维光栅的平面光波导
CN110146980A (zh) * 2018-12-29 2019-08-20 深圳珑璟光电技术有限公司 一种基板引导光学器件
GB201900652D0 (en) * 2019-01-17 2019-03-06 Wave Optics Ltd Augmented reality system
KR20230096149A (ko) 2019-01-24 2023-06-29 루머스 리미티드 2차원 확장이 가능한 도광 광학 소자를 포함하는 광학 시스템
IL264551B1 (en) * 2019-01-29 2024-05-01 Oorym Optics Ltd A compact head-up display system with high efficiency and a small entry key
EP3939246A4 (en) 2019-03-12 2022-10-26 Lumus Ltd. IMAGE PROJECTOR
JP2022523852A (ja) 2019-03-12 2022-04-26 マジック リープ, インコーポレイテッド 第1および第2の拡張現実ビューア間でのローカルコンテンツの位置合わせ
US20220091420A1 (en) * 2019-04-23 2022-03-24 Directional Systems Tracking Limited Augmented reality system
CN114008512B (zh) 2019-06-23 2024-05-24 鲁姆斯有限公司 具有中央凹光学校正的显示器
CN114072717A (zh) 2019-06-27 2022-02-18 鲁姆斯有限公司 基于经由光导光学元件对眼睛成像来进行眼睛追踪的设备和方法
CN114174895A (zh) 2019-07-26 2022-03-11 奇跃公司 用于增强现实的系统和方法
WO2021097323A1 (en) 2019-11-15 2021-05-20 Magic Leap, Inc. A viewing system for use in a surgical environment
WO2021105982A1 (en) 2019-11-25 2021-06-03 Lumus Ltd. Method of polishing a surface of a waveguide
IL270991B (en) 2019-11-27 2020-07-30 Lumus Ltd A light guide with an optical element to perform polarization mixing
US11561335B2 (en) 2019-12-05 2023-01-24 Lumus Ltd. Light-guide optical element employing complementary coated partial reflectors, and light-guide optical element having reduced light scattering
KR20240059655A (ko) 2019-12-08 2024-05-07 루머스 리미티드 소형 이미지 프로젝터를 갖는 광학 시스템
JP2021184050A (ja) * 2020-05-22 2021-12-02 株式会社日立エルジーデータストレージ 映像表示装置、ヘッドマウントディスプレイ
CN111752003A (zh) * 2020-07-29 2020-10-09 中国人民解放军陆军装甲兵学院 一种集成成像三维显示系统
DE202021104723U1 (de) 2020-09-11 2021-10-18 Lumus Ltd. An ein optisches Lichtleiterelement gekoppelter Bildprojektor
KR102427239B1 (ko) * 2020-10-22 2022-08-22 (주)아덴하이진 인체무해 uv광원을 이용한 살균장치
KR20230106584A (ko) 2020-11-18 2023-07-13 루머스 리미티드 내부 패싯의 배향의 광학 기반 검증
EP4237903A4 (en) 2021-03-01 2024-04-24 Lumus Ltd COMPACT COUPLING OPTICAL SYSTEM FROM A PROJECTOR IN A WAVEGUIDE
US20220342219A1 (en) * 2021-04-26 2022-10-27 Meta Platforms Technologies, Llc Apparatus, system, and method for disposing photonic integrated circuits on surfaces
US11789264B2 (en) 2021-07-04 2023-10-17 Lumus Ltd. Display with stacked light-guide elements providing different parts of field of view
CN116413911A (zh) * 2021-12-31 2023-07-11 北京耐德佳显示技术有限公司 一种超薄型镜片、使用其的虚像成像装置和近眼显示器
CN115453678B (zh) * 2022-01-30 2023-08-29 珠海莫界科技有限公司 一种光组合器及显示装置
CN114690284A (zh) * 2022-03-31 2022-07-01 杭州逗酷软件科技有限公司 集成镜片及其制备方法、及增强现实设备
WO2024010285A1 (ko) * 2022-07-04 2024-01-11 주식회사 레티널 확장된 아이박스를 제공하는 증강 현실용 광학 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181475B1 (en) * 1995-08-21 2001-01-30 Olympus Optical Co., Ltd. Optical system and image display apparatus
US6636185B1 (en) * 1992-03-13 2003-10-21 Kopin Corporation Head-mounted display system
US7959308B2 (en) * 2005-11-21 2011-06-14 Microvision, Inc. Substrate-guided display with improved image quality

Family Cites Families (351)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748659A (en) 1951-02-26 1956-06-05 Jenaer Glaswerk Schott & Gen Light source, searchlight or the like for polarized light
US2748859A (en) 1953-04-15 1956-06-05 James A Myklebust Power groover
US2886911A (en) 1953-07-23 1959-05-19 George K C Hardesty Duo-panel edge illumination system
US2795069A (en) 1956-02-07 1957-06-11 George K C Hardesty Laminated metal-plastic illuminable panel
DE1422172B1 (de) 1961-12-07 1970-11-12 Kopperschmidt & Co Carl W Periskop
US3491245A (en) 1967-04-10 1970-01-20 George K C Hardesty Guided light display panel
DE2057827A1 (de) 1969-11-24 1971-06-03 Vickers Ltd Optische Anordnung zur Bildfeldebnung
US3626394A (en) 1970-04-09 1971-12-07 Magnavox Co Magneto-optical system
US3667621A (en) 1970-10-20 1972-06-06 Wisconsin Foundry And Machine Fluid power system for a self-contained unloading unit
US3737212A (en) 1970-12-14 1973-06-05 Gen Electric Diffraction optics head up display
GB1377627A (en) 1971-09-01 1974-12-18 Rank Organisation Ltd Beam splitting prisms
US3857109A (en) 1973-11-21 1974-12-24 Us Navy Longitudinally-pumped two-wavelength lasers
US3873209A (en) 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
FR2295436A1 (fr) 1974-12-16 1976-07-16 Radiotechnique Compelec Dispositif coupleur directif pour fibres optiques multimodes
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
US3969023A (en) 1975-03-06 1976-07-13 American Optical Corporation Method and apparatus for detecting layers of stress in lenses
GB1514977A (en) 1975-12-02 1978-06-21 Standard Telephones Cables Ltd Detecting oil in water
US4084883A (en) 1977-02-28 1978-04-18 The University Of Rochester Reflective polarization retarder and laser apparatus utilizing same
DE3000402A1 (de) 1979-01-19 1980-07-31 Smiths Industries Ltd Anzeigevorrichtung
US4355864A (en) 1980-03-26 1982-10-26 Sperry Corporation Magnetooptic switching devices
US4331387A (en) 1980-07-03 1982-05-25 Westinghouse Electric Corp. Electro-optical modulator for randomly polarized light
FR2496905A1 (fr) 1980-12-24 1982-06-25 France Etat Episcope a reflexions multimodes
DE3266408D1 (en) 1981-10-14 1985-10-24 Gec Avionics Optical arrangements for head-up displays and night vision goggles
US4516828A (en) 1982-05-03 1985-05-14 General Motors Corporation Duplex communication on a single optical fiber
FR2562273B1 (fr) 1984-03-27 1986-08-08 France Etat Armement Dispositif d'observation a travers une paroi dans deux directions opposees
US4715684A (en) 1984-06-20 1987-12-29 Hughes Aircraft Company Optical system for three color liquid crystal light valve image projection system
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
US4805988A (en) 1987-07-24 1989-02-21 Nelson Dones Personal video viewing device
US4798448A (en) 1988-02-16 1989-01-17 General Electric Company High efficiency illumination system for display devices
US4932743A (en) 1988-04-18 1990-06-12 Ricoh Company, Ltd. Optical waveguide device
GB2220081A (en) 1988-06-21 1989-12-28 Hall & Watts Defence Optics Lt Periscope apparatus
DE68909553T2 (de) 1988-10-21 1994-01-27 Thomson Csf Optisches Kollimationssystem für eine Helmsichtanzeige.
FR2638242B1 (fr) 1988-10-21 1991-09-20 Thomson Csf Systeme optique de collimation, notamment pour visuel de casque
CN1043203A (zh) 1988-12-02 1990-06-20 三井石油化学工业株式会社 光输出控制方法及其装置
JPH02182447A (ja) 1989-01-09 1990-07-17 Mitsubishi Electric Corp 誘電体多層反射膜
US5880888A (en) 1989-01-23 1999-03-09 Hughes Aircraft Company Helmet mounted display system
US4978952A (en) 1989-02-24 1990-12-18 Collimated Displays Incorporated Flat screen color video display
FR2647556B1 (fr) 1989-05-23 1993-10-29 Thomson Csf Dispositif optique pour l'introduction d'une image collimatee dans le champ visuel d'un observateur et casque comportant au moins un tel dispositif
JPH04219657A (ja) 1990-04-13 1992-08-10 Ricoh Co Ltd 光磁気情報記録再生装置及びモードスプリッタ
JPH04289531A (ja) 1990-05-21 1992-10-14 Ricoh Co Ltd 光情報記録再生装置及びプリズム結合器
US5157526A (en) 1990-07-06 1992-10-20 Hitachi, Ltd. Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
JPH04159503A (ja) 1990-10-24 1992-06-02 Ricoh Co Ltd プリズムカプラー
US5751480A (en) 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
FR2683918B1 (fr) 1991-11-19 1994-09-09 Thomson Csf Materiau constitutif d'une lunette de visee et arme utilisant cette lunette.
US5367399A (en) 1992-02-13 1994-11-22 Holotek Ltd. Rotationally symmetric dual reflection optical beam scanner and system using same
US5383053A (en) 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
US5301067A (en) 1992-05-06 1994-04-05 Plx Inc. High accuracy periscope assembly
US5231642A (en) 1992-05-08 1993-07-27 Spectra Diode Laboratories, Inc. Semiconductor ring and folded cavity lasers
US5369415A (en) 1992-06-29 1994-11-29 Motorola, Inc. Direct retinal scan display with planar imager
EP0655128B1 (de) 1992-08-13 1998-03-18 Hewlett-Packard Company Spektroskopische systeme zur analyse von kleinen und kleinsten substanzmengen
US6144347A (en) 1992-10-09 2000-11-07 Sony Corporation Head-mounted image display apparatus
US5537173A (en) 1992-10-23 1996-07-16 Olympus Optical Co., Ltd. Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film
IL103900A (en) 1992-11-26 1998-06-15 Electro Optics Ind Ltd Optical system
JP2777041B2 (ja) 1993-02-12 1998-07-16 京セラ株式会社 時計用カバーガラス
DE69434719T2 (de) 1993-02-26 2007-02-08 Yeda Research And Development Co., Ltd. Optische holographische Vorrichtungen
GB2278222A (en) 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
US5284417A (en) 1993-06-07 1994-02-08 Ford Motor Company Automotive fuel pump with regenerative turbine and long curved vapor channel
JPH09503594A (ja) 1993-10-07 1997-04-08 バーチャル ビジョン,インコーポレイティド 双眼鏡用ヘッド装着ディスプレーシステム
US5555329A (en) 1993-11-05 1996-09-10 Alliesignal Inc. Light directing optical structure
JPH07199236A (ja) 1993-12-28 1995-08-04 Fujitsu Ltd 光スイッチ及び光分配器
US7262919B1 (en) 1994-06-13 2007-08-28 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
FR2721872B1 (fr) 1994-07-01 1996-08-02 Renault Dispositif d'amelioration de la vision d'une scene routiere
JPH0870782A (ja) 1994-09-08 1996-03-19 Kanebo Foods Ltd 冷菓及びその製法
JP3219943B2 (ja) 1994-09-16 2001-10-15 株式会社東芝 平面直視型表示装置
JPH08114765A (ja) 1994-10-15 1996-05-07 Fujitsu Ltd 偏光分離・変換素子並びにこれを用いた偏光照明装置及び投射型表示装置
US5650873A (en) 1995-01-30 1997-07-22 Lockheed Missiles & Space Company, Inc. Micropolarization apparatus
GB9521210D0 (en) 1995-10-17 1996-08-28 Barr & Stroud Ltd Display system
GB2306741A (en) 1995-10-24 1997-05-07 Sharp Kk Illuminator
JP3200007B2 (ja) 1996-03-26 2001-08-20 シャープ株式会社 光結合器及びその製造方法
US6404550B1 (en) 1996-07-25 2002-06-11 Seiko Epson Corporation Optical element suitable for projection display apparatus
US5829854A (en) 1996-09-26 1998-11-03 Raychem Corporation Angled color dispersement and recombination prism
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
JPH10133055A (ja) 1996-10-31 1998-05-22 Sharp Corp 光結合器及びその製造方法
US5724163A (en) 1996-11-12 1998-03-03 Yariv Ben-Yehuda Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
US5919601A (en) 1996-11-12 1999-07-06 Kodak Polychrome Graphics, Llc Radiation-sensitive compositions and printing plates
JP4155343B2 (ja) 1996-11-12 2008-09-24 ミラージュ イノベーションズ リミテッド 二つの光景からの光を観察者の眼へ代替的に、あるいは同時に導くための光学系
JPH10160961A (ja) 1996-12-03 1998-06-19 Mitsubishi Gas Chem Co Inc 光学素子
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
IL121067A0 (en) 1997-06-12 1997-11-20 Yeda Res & Dev Compact planar optical correlator
DE19725262C2 (de) 1997-06-13 1999-08-05 Vitaly Dr Lissotschenko Optische Strahltransformationsvorrichtung
DE69834539D1 (de) 1997-06-16 2006-06-22 Koninkl Philips Electronics Nv Projektionsgerät
US5883684A (en) 1997-06-19 1999-03-16 Three-Five Systems, Inc. Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield
US5896232A (en) 1997-08-07 1999-04-20 International Business Machines Corporation Highly efficient and compact frontlighting for polarization-based reflection light valves
RU2124746C1 (ru) 1997-08-11 1999-01-10 Закрытое акционерное общество "Кванта Инвест" Дихроичный поляризатор
GB2329901A (en) 1997-09-30 1999-04-07 Reckitt & Colman Inc Acidic hard surface cleaning and disinfecting compositions
US6091548A (en) 1997-10-01 2000-07-18 Raytheon Company Optical system with two-stage aberration correction
CA2307877C (en) 1997-10-30 2005-08-30 The Microoptical Corporation Eyeglass interface system
US6580529B1 (en) 1998-04-02 2003-06-17 Elop Electro -Optics Industries Ltd. Holographic optical devices
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6231992B1 (en) 1998-09-04 2001-05-15 Yazaki Corporation Partial reflector
US6785447B2 (en) 1998-10-09 2004-08-31 Fujitsu Limited Single and multilayer waveguides and fabrication process
JP2000155234A (ja) 1998-11-24 2000-06-06 Nippon Electric Glass Co Ltd 光ファイバ用毛細管
JP2000187177A (ja) 1998-12-22 2000-07-04 Olympus Optical Co Ltd 画像表示装置
US20050024849A1 (en) 1999-02-23 2005-02-03 Parker Jeffery R. Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides
US6222677B1 (en) 1999-04-12 2001-04-24 International Business Machines Corporation Compact optical system for use in virtual display applications
EP1930764A1 (en) 1999-04-21 2008-06-11 3M Innovative Properties Company Optical systems for reflective LCD's
US6798579B2 (en) 1999-04-27 2004-09-28 Optical Products Development Corp. Real imaging system with reduced ghost imaging
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
JP3913407B2 (ja) 1999-07-09 2007-05-09 株式会社リコー 屈折率分布の測定装置及び方法
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
AU1084601A (en) 1999-10-14 2001-04-23 Stratos Product Development Company Virtual imaging system
US6570710B1 (en) * 1999-11-12 2003-05-27 Reflexite Corporation Subwavelength optical microstructure light collimating films
JP2001141924A (ja) 1999-11-16 2001-05-25 Matsushita Electric Ind Co Ltd 分波素子及び分波受光素子
JP3828328B2 (ja) 1999-12-28 2006-10-04 ローム株式会社 ヘッドマウントディスプレー
US6421148B2 (en) 2000-01-07 2002-07-16 Honeywell International Inc. Volume holographic diffusers
EP1180711A4 (en) 2000-01-28 2005-10-12 Seiko Epson Corp OPTICAL REFLECTION POLARIZER AND PROJECTOR COMPRISING THIS POLARIZER
US6789910B2 (en) 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
US6362861B1 (en) 2000-05-02 2002-03-26 Agilent Technologies, Inc. Microdisplay system
IL136248A (en) 2000-05-21 2004-08-31 Elop Electrooptics Ind Ltd System and method for changing light transmission through a substrate
JP2001343608A (ja) 2000-05-31 2001-12-14 Canon Inc 画像表示装置および画像表示システム
PL209571B1 (pl) * 2000-06-05 2011-09-30 Lumus Ltd Urządzenie optyczne z materiałem o całkowitym wewnętrznym odbiciu światła
US6307612B1 (en) 2000-06-08 2001-10-23 Three-Five Systems, Inc. Liquid crystal display element having a precisely controlled cell gap and method of making same
US6324330B1 (en) 2000-07-10 2001-11-27 Ultratech Stepper, Inc. Folded light tunnel apparatus and method
DE60036733T2 (de) * 2000-07-24 2008-07-17 Mitsubishi Rayon Co., Ltd. Oberflächenbeleuchtungseinrichtung
KR100388819B1 (ko) 2000-07-31 2003-06-25 주식회사 대양이앤씨 헤드 마운트 디스플레이용 광학 시스템
US6490104B1 (en) 2000-09-15 2002-12-03 Three-Five Systems, Inc. Illumination system for a micro display
US6542307B2 (en) 2000-10-20 2003-04-01 Three-Five Systems, Inc. Compact near-eye illumination system
GB0108838D0 (en) 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
JP4772204B2 (ja) 2001-04-13 2011-09-14 オリンパス株式会社 観察光学系
KR100813943B1 (ko) 2001-04-30 2008-03-14 삼성전자주식회사 복합 반사프리즘 및 이를 채용한 광픽업장치
GB2375188B (en) 2001-04-30 2004-07-21 Samsung Electronics Co Ltd Wearable Display Apparatus with Waveguide Having Diagonally Cut End Face
GB0112871D0 (en) 2001-05-26 2001-07-18 Thales Optics Ltd Improved optical device
US6690513B2 (en) 2001-07-03 2004-02-10 Jds Uniphase Corporation Rhomb interleaver
US6791760B2 (en) 2001-07-24 2004-09-14 Itt Manufacturing Enterprises, Inc. Planar diffractive relay
US6556282B2 (en) 2001-09-04 2003-04-29 Rosemount Aerospace, Inc. Combined LOAS and LIDAR system
EP1433160A1 (en) 2001-09-07 2004-06-30 The Microoptical Corporation Light weight, compact, remountable face-supported electronic display
DE10150656C2 (de) 2001-10-13 2003-10-02 Schott Glas Reflektor für eine Hochdruck-Gasentladungslampe
US6775432B2 (en) 2001-10-19 2004-08-10 Santanu Basu Method and apparatus for optical wavelength demultiplexing, multiplexing and routing
JP2003140081A (ja) 2001-11-06 2003-05-14 Nikon Corp ホログラムコンバイナ光学系
JP2003149643A (ja) 2001-11-16 2003-05-21 Goyo Paper Working Co Ltd 液晶表示用フロントライト
FR2834799B1 (fr) 2002-01-11 2004-04-16 Essilor Int Lentille ophtalmique presentant un insert de projection
HRP20020044B1 (en) 2002-01-16 2008-11-30 Mara-Institut D.O.O. Indirectly prestressed, concrete, roof-ceiling construction with flat soffit
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
DE10216169A1 (de) 2002-04-12 2003-10-30 Zeiss Carl Jena Gmbh Anordnung zur Polarisation von Licht
JP4029662B2 (ja) 2002-05-17 2008-01-09 ソニー株式会社 画像表示装置
US7010212B2 (en) * 2002-05-28 2006-03-07 3M Innovative Properties Company Multifunctional optical assembly
US20070165192A1 (en) 2006-01-13 2007-07-19 Silicon Optix Inc. Reduced field angle projection display system
ITTO20020625A1 (it) 2002-07-17 2004-01-19 Fiat Ricerche Guida di luce per dispositivi di visualizzazione di tipo "head-mounted" o "head-up"
EP1418459A1 (en) 2002-11-08 2004-05-12 3M Innovative Properties Company Optical device comprising cubo-octahedral polyhedron as light flux splitter or light diffusing element
US20050174641A1 (en) 2002-11-26 2005-08-11 Jds Uniphase Corporation Polarization conversion light integrator
US20090190890A1 (en) 2002-12-19 2009-07-30 Freeland Riley S Fiber optic cable having a dry insert and methods of making the same
US7175304B2 (en) 2003-01-30 2007-02-13 Touchsensor Technologies, Llc Integrated low profile display
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
EP1465047A1 (en) 2003-04-03 2004-10-06 Deutsche Thomson-Brandt Gmbh Method for presenting menu buttons
US7196849B2 (en) 2003-05-22 2007-03-27 Optical Research Associates Apparatus and methods for illuminating optical systems
EP1639394A2 (en) 2003-06-10 2006-03-29 Elop Electro-Optics Industries Ltd. Method and system for displaying an informative image against a background image
JP4845336B2 (ja) 2003-07-16 2011-12-28 株式会社半導体エネルギー研究所 撮像機能付き表示装置、及び双方向コミュニケーションシステム
JP2005084522A (ja) 2003-09-10 2005-03-31 Nikon Corp コンバイナ光学系
IL157837A (en) * 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
IL157838A (en) 2003-09-10 2013-05-30 Yaakov Amitai High-brightness optical device
KR20050037085A (ko) 2003-10-17 2005-04-21 삼성전자주식회사 광터널, 균일광 조명장치 및 이를 채용한 프로젝터
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US7101063B2 (en) 2004-02-05 2006-09-05 Hewlett-Packard Development Company, L.P. Systems and methods for integrating light
US20060110090A1 (en) * 2004-02-12 2006-05-25 Panorama Flat Ltd. Apparatus, method, and computer program product for substrated/componentized waveguided goggle system
JP4605152B2 (ja) 2004-03-12 2011-01-05 株式会社ニコン 画像表示光学系及び画像表示装置
JP2005308717A (ja) 2004-03-23 2005-11-04 Shin Etsu Chem Co Ltd 光ファイバ母材のコア部非円率の測定方法及びその装置
EP3462227A3 (en) 2004-03-29 2019-06-19 Sony Corporation Optical device, and virtual image display device
JP4609160B2 (ja) * 2004-05-17 2011-01-12 株式会社ニコン 光学素子、コンバイナ光学系、及び情報表示装置
EP1748305A4 (en) 2004-05-17 2009-01-14 Nikon Corp OPTICAL ELEMENT, COMBINER OPTICAL SYSTEM, AND IMAGE DISPLAY UNIT
TWI282017B (en) 2004-05-28 2007-06-01 Epistar Corp Planar light device
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Optical component in a large key conductive substrate
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
WO2006001254A1 (ja) 2004-06-29 2006-01-05 Nikon Corporation イメージコンバイナ及び画像表示装置
IL163361A (en) * 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
EP2302388A1 (en) 2004-10-14 2011-03-30 Genentech, Inc. COP1 molecules and uses thereof
JP2006145644A (ja) 2004-11-17 2006-06-08 Hitachi Ltd 偏光分離装置及びそれを用いた投射型表示装置
WO2006061927A1 (ja) 2004-12-06 2006-06-15 Nikon Corporation 画像表示光学系、画像表示装置、照明光学系、及び液晶表示装置
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
EP1825306B1 (en) * 2004-12-13 2012-04-04 Nokia Corporation System and method for beam expansion with near focus in a display device
EP1849033B1 (en) 2005-02-10 2019-06-19 Lumus Ltd Substrate-guided optical device utilizing thin transparent layer
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
EP1846796A1 (en) 2005-02-10 2007-10-24 Lumus Ltd Substrate-guided optical device particularly for vision enhanced optical systems
WO2006087709A1 (en) 2005-02-17 2006-08-24 Lumus Ltd. Personal navigation system
WO2006098097A1 (ja) 2005-03-14 2006-09-21 Nikon Corporation 画像表示光学系及び画像表示装置
CA2603332C (en) 2005-03-31 2013-09-10 Conor Medsystems, Inc. System and method for loading a beneficial agent into a medical device
US8187481B1 (en) 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
US7405881B2 (en) 2005-05-30 2008-07-29 Konica Minolta Holdings, Inc. Image display apparatus and head mount display
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US7364306B2 (en) 2005-06-20 2008-04-29 Digital Display Innovations, Llc Field sequential light source modulation for a digital display system
JP5030134B2 (ja) 2005-08-18 2012-09-19 株式会社リコー 偏光変換素子、偏光変換光学系および画像投影装置
WO2007029032A1 (en) 2005-09-07 2007-03-15 Bae Systems Plc A projection display with two plate-like, co-planar waveguides including gratings
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd A polarizing optical component for light coupling within a conductive substrate
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
JP2007219106A (ja) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
CN200941530Y (zh) 2006-08-08 2007-08-29 牛建民 一种半导体激光散斑发生装置
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Optical component in conductive substrate
JP2008058404A (ja) 2006-08-29 2008-03-13 Matsushita Electric Ind Co Ltd 音楽再生装置および音楽再生端末
US20080151375A1 (en) 2006-12-26 2008-06-26 Ching-Bin Lin Light guide means as dually effected by light concentrating and light diffusing
US8160411B2 (en) * 2006-12-28 2012-04-17 Nokia Corporation Device for expanding an exit pupil in two dimensions
KR20090104077A (ko) * 2006-12-29 2009-10-05 오와이 모디네스 리미티드 조명 애플리케이션들을 위한 인커플링 구조물
JP5191771B2 (ja) 2007-04-04 2013-05-08 パナソニック株式会社 面状照明装置とそれを用いた液晶表示装置
US8643948B2 (en) 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
US8139944B2 (en) 2007-05-08 2012-03-20 The Boeing Company Method and apparatus for clearing an optical channel
IL183637A (en) 2007-06-04 2013-06-27 Zvi Lapidot Head display system
WO2009006640A1 (en) 2007-07-05 2009-01-08 I2Ic Corporation Light source having transparent layers
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
US8434909B2 (en) * 2007-10-09 2013-05-07 Flex Lighting Ii, Llc Light emitting display with light mixing within a film
JP2009128565A (ja) 2007-11-22 2009-06-11 Toshiba Corp 表示装置、表示方法及びヘッドアップディスプレイ
FR2925171B1 (fr) 2007-12-13 2010-04-16 Optinvent Guide optique et systeme optique de vision oculaire
GB2456170B (en) 2008-01-07 2012-11-21 Light Blue Optics Ltd Holographic image display systems
US20100149073A1 (en) * 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
WO2009127849A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Improvements in or relating to waveguides
JP2010039086A (ja) 2008-08-01 2010-02-18 Sony Corp 照明光学装置及び虚像表示装置
WO2010022101A2 (en) 2008-08-19 2010-02-25 Plextronics, Inc. Organic light emitting diode lighting devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
JP2010060770A (ja) 2008-09-03 2010-03-18 Epson Toyocom Corp 光学物品及び光学物品の製造方法
US8493662B2 (en) 2008-09-16 2013-07-23 Bae Systems Plc Waveguides
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
US8317352B2 (en) 2008-12-11 2012-11-27 Robert Saccomanno Non-invasive injection of light into a transparent substrate, such as a window pane through its face
US8654420B2 (en) * 2008-12-12 2014-02-18 Bae Systems Plc Waveguides
US8965152B2 (en) 2008-12-12 2015-02-24 Bae Systems Plc Waveguides
JP2010170606A (ja) 2009-01-21 2010-08-05 Fujinon Corp プリズムアセンブリの製造方法
JP5389492B2 (ja) * 2009-03-25 2014-01-15 オリンパス株式会社 頭部装着型映像表示装置
JP5133925B2 (ja) 2009-03-25 2013-01-30 オリンパス株式会社 頭部装着型画像表示装置
WO2010116291A2 (en) 2009-04-08 2010-10-14 International Business Machines Corporation Optical waveguide with embedded light-reflecting feature and method for fabricating the same
US9256007B2 (en) 2009-04-21 2016-02-09 Svv Technology Innovations, Inc. Light collection and illumination systems employing planar waveguide
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US8094377B2 (en) * 2009-05-13 2012-01-10 Nvis, Inc. Head-mounted optical apparatus using an OLED display
US20100291489A1 (en) 2009-05-15 2010-11-18 Api Nanofabrication And Research Corp. Exposure methods for forming patterned layers and apparatus for performing the same
TW201115231A (en) 2009-10-28 2011-05-01 Coretronic Corp Backlight module
JP2011199672A (ja) 2010-03-19 2011-10-06 Seiko Instruments Inc ガラス基板の接合方法、ガラス接合体、パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計
JP5499854B2 (ja) 2010-04-08 2014-05-21 ソニー株式会社 頭部装着型ディスプレイにおける光学的位置調整方法
MX2012012034A (es) 2010-04-16 2013-05-30 Flex Lighting Ii Llc Dispositivo de iluminacion frontal que comprende una guia de luz a base de pelicula.
US9028123B2 (en) 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
JP2010217906A (ja) 2010-04-20 2010-09-30 Panasonic Corp 液晶表示装置
US8842239B2 (en) * 2010-07-23 2014-09-23 Entire Technology Co., Ltd. Light-guide apparatus with micro-structure, and backlight module and LCD device having the same
JP5471986B2 (ja) 2010-09-07 2014-04-16 株式会社島津製作所 光学部品及びそれを用いた表示装置
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US8582206B2 (en) 2010-09-15 2013-11-12 Microsoft Corporation Laser-scanning virtual image display
US8743464B1 (en) 2010-11-03 2014-06-03 Google Inc. Waveguide with embedded mirrors
US8666208B1 (en) 2010-11-05 2014-03-04 Google Inc. Moldable waveguide with embedded micro structures
JP2012123936A (ja) 2010-12-06 2012-06-28 Omron Corp 面光源装置及び立体表示装置
JP5645631B2 (ja) 2010-12-13 2014-12-24 三菱電機株式会社 波長モニタ、光モジュールおよび波長モニタ方法
BR112013014975A2 (pt) 2010-12-16 2020-08-11 Lockheed Martin Corporation exibição de colimação com lentes de pixel
KR101997852B1 (ko) 2010-12-24 2019-10-01 매직 립, 인코포레이티드 인체공학적 머리 장착식 디스플레이 장치 및 광학 시스템
US8531773B2 (en) 2011-01-10 2013-09-10 Microvision, Inc. Substrate guided relay having a homogenizing layer
US8939579B2 (en) 2011-01-28 2015-01-27 Light Prescriptions Innovators, Llc Autofocusing eyewear, especially for presbyopia correction
JP5742263B2 (ja) 2011-02-04 2015-07-01 セイコーエプソン株式会社 虚像表示装置
JP5747538B2 (ja) 2011-02-04 2015-07-15 セイコーエプソン株式会社 虚像表示装置
JP5703876B2 (ja) 2011-03-18 2015-04-22 セイコーエプソン株式会社 導光板及びこれを備える虚像表示装置並びに導光板の製造方法
JP2012238552A (ja) * 2011-05-13 2012-12-06 Konica Minolta Advanced Layers Inc 照明付き鏡
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
US8471967B2 (en) 2011-07-15 2013-06-25 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
US8639073B2 (en) 2011-07-19 2014-01-28 Teraxion Inc. Fiber coupling technique on a waveguide
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
US9096236B2 (en) 2011-08-18 2015-08-04 Wfk & Associates, Llc Transitional mode high speed rail systems
JP6119091B2 (ja) 2011-09-30 2017-04-26 セイコーエプソン株式会社 虚像表示装置
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
JP5826597B2 (ja) * 2011-10-31 2015-12-02 シャープ株式会社 擬似太陽光照射装置
US9311883B2 (en) 2011-11-11 2016-04-12 Microsoft Technology Licensing, Llc Recalibration of a flexible mixed reality device
JP5879973B2 (ja) 2011-11-30 2016-03-08 ソニー株式会社 光反射部材、光ビーム伸長装置、画像表示装置及び光学装置
US8873148B1 (en) 2011-12-12 2014-10-28 Google Inc. Eyepiece having total internal reflection based light folding
FR2983976B1 (fr) 2011-12-13 2017-10-20 Optinvent Guide optique a elements de guidage superposes et procede de fabrication
US10030846B2 (en) 2012-02-14 2018-07-24 Svv Technology Innovations, Inc. Face-lit waveguide illumination systems
US8665178B1 (en) 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
IL219907A (en) 2012-05-21 2017-08-31 Lumus Ltd Integrated head display system with eye tracking
BR112014029904A2 (pt) 2012-05-29 2017-06-27 Nlt Spine Ltd implante lateralmente defletível , conjunto e método para a implantação num corpo
US20130321432A1 (en) 2012-06-01 2013-12-05 QUALCOMM MEMES Technologies, Inc. Light guide with embedded fresnel reflectors
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
CN115494654A (zh) 2012-06-11 2022-12-20 奇跃公司 使用波导反射器阵列投射器的多深度平面三维显示器
TWI522690B (zh) 2012-07-26 2016-02-21 揚昇照明股份有限公司 複合式導光板與顯示裝置
US8913324B2 (en) 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US20150301336A1 (en) * 2012-11-21 2015-10-22 Laster Augmented-reality optical module
FR2999301B1 (fr) 2012-12-12 2015-01-09 Thales Sa Guide optique d'images collimatees a dedoubleur de faisceaux optiques et dispositif optique associe
CN105074518B (zh) 2012-12-20 2019-01-11 平蛙实验室股份公司 基于tir的投影型光学触摸系统中的改善
US8947783B2 (en) 2013-01-02 2015-02-03 Google Inc. Optical combiner for near-eye display
JP6065630B2 (ja) 2013-02-13 2017-01-25 セイコーエプソン株式会社 虚像表示装置
JP6244631B2 (ja) 2013-02-19 2017-12-13 セイコーエプソン株式会社 虚像表示装置
US9392129B2 (en) * 2013-03-15 2016-07-12 John Castle Simmons Light management for image and data control
DE102013106392B4 (de) 2013-06-19 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Entspiegelungsschicht
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
US10222535B2 (en) 2013-07-02 2019-03-05 3M Innovative Properties Company Flat light guide
US20150081313A1 (en) 2013-09-16 2015-03-19 Sunedison Llc Methods and systems for photovoltaic site installation, commissioining, and provisioning
DE102013219625B3 (de) 2013-09-27 2015-01-22 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung sowie Anzeigevorrichtung mit einem solchen Brillenglas
DE102013219626B4 (de) * 2013-09-27 2015-05-21 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung und Anzeigevorrichtung mit einem solchen Brillenglas
JP6225657B2 (ja) 2013-11-15 2017-11-08 セイコーエプソン株式会社 光学素子および画像表示装置並びにこれらの製造方法
CN107315249B (zh) 2013-11-27 2021-08-17 奇跃公司 虚拟和增强现实系统与方法
JP6287131B2 (ja) 2013-12-02 2018-03-07 セイコーエプソン株式会社 虚像表示装置
JP6323743B2 (ja) 2013-12-13 2018-05-16 大日本印刷株式会社 光走査装置、照明装置、投射装置および光学素子
US9474902B2 (en) 2013-12-31 2016-10-25 Nano Retina Ltd. Wearable apparatus for delivery of power to a retinal prosthesis
US10120088B2 (en) 2014-02-12 2018-11-06 Cgg Services Sas Cableless seismic sensors and methods for recharging
US9423552B2 (en) 2014-02-24 2016-08-23 Google Inc. Lightguide device with outcoupling structures
AU2015227092B2 (en) 2014-03-05 2019-07-04 Arizona Board Of Regents On Behalf Of The University Of Arizona Wearable 3D augmented reality display
CN103837988B (zh) 2014-03-05 2017-01-18 杭州科汀光学技术有限公司 一种微型近眼显示光学系统
US9311525B2 (en) 2014-03-19 2016-04-12 Qualcomm Incorporated Method and apparatus for establishing connection between electronic devices
JP6442149B2 (ja) 2014-03-27 2018-12-19 オリンパス株式会社 画像表示装置
CN104950437B (zh) 2014-03-31 2018-04-27 联想(北京)有限公司 显示装置和电子设备
DE102014207490B3 (de) 2014-04-17 2015-07-02 Carl Zeiss Ag Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung und Anzeigevorrichtung mit einem solchen Brillenglas
US9213178B1 (en) * 2014-04-21 2015-12-15 Google Inc. Lens with lightguide insert for head wearable display
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
US9766459B2 (en) 2014-04-25 2017-09-19 Microsoft Technology Licensing, Llc Display devices with dimming panels
JP6746282B2 (ja) 2014-07-09 2020-08-26 恵和株式会社 光学シート、エッジライト型のバックライトユニット及び光学シートの製造方法
US10198865B2 (en) 2014-07-10 2019-02-05 Seiko Epson Corporation HMD calibration with direct geometric modeling
US9606354B2 (en) 2014-07-17 2017-03-28 Google Inc. Heads-up display with integrated display and imaging system
JP2016033867A (ja) 2014-07-31 2016-03-10 ソニー株式会社 光学部材、照明ユニット、ウェアラブルディスプレイ及び画像表示装置
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd A compact head-up display system is protected by an element with a super-thin structure
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for manufacturing an optical component in a conductive substrate
IL236490B (en) 2014-12-25 2021-10-31 Lumus Ltd Optical component on a conductive substrate
WO2016120669A1 (fr) 2015-01-30 2016-08-04 Arcelormittal Procédé de préparation d'une tôle revêtue comprenant l'application d'une solution aqueuse comprenant un aminoacide et utilisation associée pour améliorer la résistance à la corrosion
US20160234485A1 (en) 2015-02-09 2016-08-11 Steven John Robbins Display System
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov A compact head-up display system with a uniform image
AU2016258618B2 (en) 2015-05-04 2021-05-06 Magic Leap, Inc. Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same
JPWO2016181459A1 (ja) 2015-05-11 2018-03-01 オリンパス株式会社 プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
TWI587004B (zh) 2015-06-18 2017-06-11 中強光電股份有限公司 顯示裝置
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10007115B2 (en) 2015-08-12 2018-06-26 Daqri, Llc Placement of a computer generated display with focal plane at finite distance using optical devices and a see-through head-mounted display incorporating the same
US10007117B2 (en) 2015-09-10 2018-06-26 Vuzix Corporation Imaging light guide with reflective turning array
US11016298B2 (en) 2015-10-05 2021-05-25 Magic Leap, Inc. Microlens collimator for scanning optical fiber in virtual/augmented reality system
JP7210280B2 (ja) 2015-11-04 2023-01-23 マジック リープ, インコーポレイテッド ライトフィールドディスプレイの計測
US10345594B2 (en) 2015-12-18 2019-07-09 Ostendo Technologies, Inc. Systems and methods for augmented near-eye wearable displays
US9927614B2 (en) 2015-12-29 2018-03-27 Microsoft Technology Licensing, Llc Augmented reality display system with variable focus
IL244181B (en) 2016-02-18 2020-06-30 Amitai Yaakov Compact head-up display system
US10473933B2 (en) 2016-02-19 2019-11-12 Microsoft Technology Licensing, Llc Waveguide pupil relay
TW201732373A (zh) 2016-02-24 2017-09-16 Omron Tateisi Electronics Co 顯示裝置
CA3014496A1 (en) 2016-02-24 2017-08-31 Magic Leap, Inc. Polarizing beam splitter with low light leakage
US20170255012A1 (en) 2016-03-04 2017-09-07 Sharp Kabushiki Kaisha Head mounted display using spatial light modulator to move the viewing zone
KR102530558B1 (ko) 2016-03-16 2023-05-09 삼성전자주식회사 투시형 디스플레이 장치
JP6677036B2 (ja) 2016-03-23 2020-04-08 セイコーエプソン株式会社 画像表示装置及び光学素子
US20170343810A1 (en) 2016-05-24 2017-11-30 Osterhout Group, Inc. Pre-assembled solid optical assembly for head worn computers
CN109154720A (zh) 2016-05-18 2019-01-04 鲁姆斯有限公司 头戴式成像设备
WO2018013307A1 (en) 2016-06-21 2018-01-18 Ntt Docomo, Inc. An illuminator for a wearable display
WO2017221993A1 (ja) 2016-06-22 2017-12-28 富士フイルム株式会社 導光部材および液晶表示装置
TWI614527B (zh) 2016-08-18 2018-02-11 盧姆斯有限公司 具有一致影像之小型頭戴式顯示系統
US10466479B2 (en) 2016-10-07 2019-11-05 Coretronic Corporation Head-mounted display apparatus and optical system
KR102482528B1 (ko) 2016-10-09 2022-12-28 루머스 리미티드 직사각형 도파관을 사용하는 개구 배율기
KR20230084335A (ko) 2016-11-08 2023-06-12 루머스 리미티드 광학 컷오프 에지를 구비한 도광 장치 및 그 제조 방법
EP3371642A4 (en) 2016-12-02 2018-11-07 Lumus Ltd. Optical system with compact collimating image projector
WO2018122859A1 (en) 2016-12-31 2018-07-05 Lumus Ltd. Eye tracker based on retinal imaging via light-guide optical element
EP3566092B1 (en) 2017-01-04 2022-10-05 Lumus Ltd. Optical system for near-eye displays
KR102338472B1 (ko) 2017-02-22 2021-12-14 루머스 리미티드 광 가이드 광학 어셈블리
CN113341566B (zh) 2017-03-22 2023-12-15 鲁姆斯有限公司 交叠的反射面构造
JP2018165740A (ja) 2017-03-28 2018-10-25 セイコーエプソン株式会社 表示装置
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Waveguide and method of production
CN107238928B (zh) 2017-06-09 2020-03-06 京东方科技集团股份有限公司 一种阵列波导
US10951867B2 (en) 2017-07-12 2021-03-16 Facebook Technologies, Llc Light emitter architecture for scanning display device
US20190170327A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical illuminator device
US10310233B1 (en) 2017-12-18 2019-06-04 AAC Technologies Pte. Ltd. Camera optical lens
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
CN112119346B (zh) 2018-05-14 2022-08-19 鲁姆斯有限公司 用于近眼显示器的具有细分光学孔径的投影仪配置和相应的光学系统
CN210323582U (zh) 2018-05-27 2020-04-14 鲁姆斯有限公司 具有场曲率影响减轻的基于基板引导的光学系统
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636185B1 (en) * 1992-03-13 2003-10-21 Kopin Corporation Head-mounted display system
US6181475B1 (en) * 1995-08-21 2001-01-30 Olympus Optical Co., Ltd. Optical system and image display apparatus
US7959308B2 (en) * 2005-11-21 2011-06-14 Microvision, Inc. Substrate-guided display with improved image quality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU224048U1 (ru) * 2023-11-08 2024-03-14 Александр Михайлович Новичков Устройство для отображения информации, носимое на голове

Also Published As

Publication number Publication date
EP3654085A1 (en) 2020-05-20
WO2016075689A1 (en) 2016-05-19
JP6759224B2 (ja) 2020-09-23
BR112017009652B1 (pt) 2022-06-07
KR20170080695A (ko) 2017-07-10
US20210003849A1 (en) 2021-01-07
RU2017116184A3 (ru) 2019-03-26
EP3218751B1 (en) 2020-03-25
CA2966851C (en) 2021-09-14
US20200089001A1 (en) 2020-03-19
EP3654085B1 (en) 2021-08-04
KR102323870B1 (ko) 2021-11-09
CN107111132A (zh) 2017-08-29
JP2017535825A (ja) 2017-11-30
EP3218751A1 (en) 2017-09-20
CN111856753A (zh) 2020-10-30
US10520731B2 (en) 2019-12-31
US20170336636A1 (en) 2017-11-23
US10782532B2 (en) 2020-09-22
CN107111132B (zh) 2020-07-28
SG11201703507PA (en) 2017-05-30
IL235642A0 (en) 2015-02-26
US11543661B2 (en) 2023-01-03
RU2017116184A (ru) 2018-11-14
CA2966851A1 (en) 2016-05-19
BR112017009652A2 (pt) 2018-01-23
IL235642B (en) 2021-08-31

Similar Documents

Publication Publication Date Title
RU2689255C2 (ru) Компактная нашлемная система индикации, защищенная сверхтонкой структурой
TWI712821B (zh) 光學系統、擴增實境系統、抬頭顯示系統、電子裝置以及光學模組
US20200326545A1 (en) Substrate-guided optical device
US6474809B2 (en) Image display apparatus
JP5698297B2 (ja) 基板によって誘導される光学ビーム拡大器
US20080151379A1 (en) Substrate-Guide Optical Device Utilizing Polarization Beam Splitters
Sarayeddline et al. Monolithic light guide optics enabling new user experience for see-through AR glasses