RU2688945C1 - Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода - Google Patents

Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода Download PDF

Info

Publication number
RU2688945C1
RU2688945C1 RU2019100596A RU2019100596A RU2688945C1 RU 2688945 C1 RU2688945 C1 RU 2688945C1 RU 2019100596 A RU2019100596 A RU 2019100596A RU 2019100596 A RU2019100596 A RU 2019100596A RU 2688945 C1 RU2688945 C1 RU 2688945C1
Authority
RU
Russia
Prior art keywords
cerium
temperature
carbon monoxide
tin
catalytically active
Prior art date
Application number
RU2019100596A
Other languages
English (en)
Inventor
Елена Юрьевна Либерман
Татьяна Владимировна Конькова
Татьяна Николаевна Малышева
Екатерина Александровна Симакина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева (РХТУ им. Д. И. Менделеева)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева (РХТУ им. Д. И. Менделеева) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева (РХТУ им. Д. И. Менделеева)
Priority to RU2019100596A priority Critical patent/RU2688945C1/ru
Application granted granted Critical
Publication of RU2688945C1 publication Critical patent/RU2688945C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

Изобретение относится к способу получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода, заключающемуся в соосаждении гидроксидов церия, и олова, и меди при мольном соотношении Ce:Sn:Cu = 8:1:1 или гидроксидов церия, и олова, и марганца в мольном соотношении Ce:Sn:Mn = 8:1:1 гидроксидом аммония в изопропиловом спирте с последующей термической обработкой в стационарных условиях при температуре 500-600˚С. Технический результат заключается в увеличении каталитической активности в реакции окисления монооксида углерода. 7 пр.

Description

Изобретение относится к области катализа и может быть использовано для получения высокодисперсных каталитически активных материалов MeOx-CeO2-SnO2, где Me – Cu, Mn, имеющих высокую удельную поверхность, которые могут быть использованы в качестве катализаторов и носителей, а также в других областях науки и техники.
Высокодисперсные каталитически активные материалы на основе кристаллической решетки диоксида церия, в состав которых помимо диоксида церия входят d- и f- элементы, получают путем твердофазного синтеза, золь-гель технологий, гидротермального синтеза и др. Выбор компонентов, как правило, обусловлен требуемыми эксплуатационными свойствами. Например, введение ионов Cu2+ и Mn3+ в кристаллическую решетку диоксида церия способствует повышению каталитической активности в низкотемпературной области. Модифицирование ионами Zr4+ позволяет увеличить термическую стойкость, что является актуальным при эксплуатации катализатора в области высоких температур. Допирование диоксида церия ионами Sn4+ приводит к повышению сероустойчивости, что необходимо для решения проблемы дезактивации катализатора очистки выбросов дизельных двигателей вследствие блокирования активных центров катализатора сернистыми соединениями.
Известен способ получения каталитически активных материалов Sn-Ce-O путем термического разложения соединений олова и церия с применением предварительной «мокрой гомогенизации» (Mihaiu S., Braleanu A., Ban M., Madarasz J., Pokol G. Sn-Ce-O advanced materials obtained by thermal decomposition of some precursors// Journal of optoelectronics and advanced materials. 2006. V. 8. N.2. P.572-575). Исходные прекурсоры SnC2O4 и (NH4)2Ce(NO3)6, смешанные в мольном соотношении Sn:Ce = 0,25 - 1, подвергают «мокрой гомогенизации» в течение 30 мин (в этаноле) в агатовой ступке и прокаливают при температуре 400˚С в течение 1 часа. Удельная поверхность синтезированных образцов составила 40 – 58 м2/г. Недостатком метода является аморфное состояние синтезированного материала, что приводит к низкой термической устойчивости катализатора, деградации удельной поверхности и, как следствие, снижению каталитической активности, что в значительной мере ограничивает область его применения.
Известен способ синтеза каталитически активных материалов CeO2/SnO2 с применением пленкообразующего раствора (ПОР) (Халипова О.С., Кузнецова С.А. Галанов С.И., Козик В.В. Синтез каталитически активных материалов CeO2/SnO2 с применением пленкообразующего раствора// Неорганические материалы. 2013. Т. 49. №.7. С.729-732). Нанесенный катализатор представляет смесь CeO2 и SnO2 на стекловолокне. Синтез данных материалов состоит из трех стадий: подготовка носителя – стекловолокна марки КС-151-ЛА (240), нанесение оксида олова (IV) и последующее импрегнирование диоксида церия. Подготовку носителя осуществляют путем предварительного отжига при температуре 500˚С с целью удаления загрязнителей с его поверхности. Раствор нитрата олова (II) наносят на стекловолокно методом пропитки, сушат при температуре 60˚С и прокаливают при температуре 500˚С. Для нанесения слоя диоксида церия применяют пленкообразующий раствор гидратированного гидроксосалицилата церия (III) спиртового раствора СеО26Н4ОНСООН, который предварительно выдерживают в течение 3 суток. Полученный ПОР наносят методом вытягивания со скоростью 100 мм/мин на устройстве с автоматическим блоком управления. Полученные образцы сушат при температуре 60˚С в течение 1 часа и прокаливают при температуре 750˚С в течение 4 часов. Недостаток данного метода - значительная трудоемкость процесса
Известен способ получения каталитической композиции оксидов церия и циркония (патент RU 2 648 072 C2) (прототип). Композиция содержит оксиды циркония, церия, олова: 1,0-15,0 масс. %., лантана: 0,1-10 масс.%, иттрия или гадолиния: 3,0 - 20,0 масс.%, празеодима или неодима: 0,0 – 10,0 масс.%. Молярное соотношение Ce/Zr может составлять от 0,10 до 4,00. Способ состоит из нескольких стадий. Предварительно приготовленные растворы нитратов церия, олова и других металлов, входящих в состав каталитической композиции тщательно перемешивают, затем добавляют концентрированный раствор гидроксида аммония. Полученный раствор помещают в автоклав из нержавеющей стали, выдерживают при температуре 150˚С в течение 2 часов при постоянном перемешивании. Затем в суспензию добавляют анионные и неионные поверхностно-активные вещества, полиэтиленгликоли, карбоновые кислоты и их соли. По истечении одного часа полученный осадок отфильтровывают, промывают водным раствором гидроксида аммония. Затем осадок прокаливают при температуре 840˚С в течение 2 часов в стационарных условиях. Синтезированный материал имеет удельную поверхность 59-64 м2/г. Недостатком данного способа является трудоемкость, многостадийность процесса, использование автоклава и образование большого количества жидких отходов.
Технической задачей предлагаемого изобретения является синтез высокодисперсного каталитически активного материала Ме2О3-CeO2-SnO2, в которых содержание СеО2 составляет – 70-90 мол.%, SnO2 - 5-20 мол.%, Ме2О3 – 0 - 10 мол.%, где Me – Cu, Mn, имеющих кристаллическую решетку диоксида церия, развитую удельную поверхность, обладающих каталитической активностью в реакции окисления монооксида углерода и который применяется для очистки газовых выбросов от монооксида углерода.
Поставленная задача решается путем соосаждения гидроксидов металлов гидроксидом аммония в водно-органической среде с последующей термической обработкой при температуре 500-600˚С в стационарных условиях. Полученный данным способом материал имеет кристаллическую решетку диоксида церия, удельную поверхность 40 – 50 м2/г, общую пористость 0,150 - 0,178 см3/г, проявляет высокую каталитическую активность в реакции окисления монооксида углерода.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Растворы хлорида олова (II), нитрата церия (III) с концентрацией 0,2 моль/л, приготовленные путем растворения солей в изопропиловом спирте. Полученные растворы смешивают в мольном соотношении 1:5. Полученную смесь тщательно перемешивают и медленно приливают концентрированный раствор гидроксида аммония (15 моль/л) до достижения рН 9-10. Процесс проводят при температуре 20-25˚С. Затем суспензию оставляют для «старения» под слоем маточного раствора в течение 30 - 60 мин. Полученный осадок отфильтровывают, тщательно отмывают от хлорид- и нитрат-ионов. Осадок сушат в течение 20 часов при температуре 80 - 90 ˚С и прокаливают при температуре 550˚С в течение 2 часов. Полученный материал Sn0,2Ce0,8O2, по данным рентгенофазового анализа, имеет кристаллическую решетку диоксида церия, удельную поверхность 47 м2/г, общий объем пор 0,158 см3/г. Температура полной конверсии в реакции окисления СО на проточной установке для газовой смеси: СО -1,2 об.%, О2 – 10 об.%, N2 –89,8 об.%, при объемной скорости 12 000 ч-, составила 115 ˚С.
Пример 2. В условиях примера 1 в качестве растворителя исходных солей применяют этиловый спирт. Исходные растворы хлорида олова (II) и нитрата церия (III) смешивали в мольном соотношении 1:9. Полученный материал Sn0,1Ce0,9O2 имеет кристаллическую решетку диоксида церия, удельную поверхность 45,7 м2/г, общий объем пор 0,161 см3/г. Температура полной конверсии в реакции окисления СО на проточной установке для модельной смеси: СО -1,2 об.%, О2 – 10 об.%, N2 – 89,2 об.%, при объемной скорости 12 000 ч- составила 292 ˚С.
Пример 3. В условиях примера 1 исходные растворы хлорида олова (II) и нитрата церия (III) смешивают в соотношении 1:4 и проводят прокаливание при температуре 600 °C в течение 2 часов. Полученный материал Sn0,2Ce0,8O2 имеет кристаллическую решетку диоксида церия, удельную поверхность 43,5 м2/г, общий объем пор 0,158 см3/г. Температура полной конверсии в реакции окисления СО на проточной установке для модельной смеси: СО -1,2 об.%, О2 – 10 об.%, N2 – 89,2 об.%, при объемной скорости 12 000 ч- составила 305 ˚С
Пример 4. В условиях примера 1 применяют исходные растворы нитрата церия (III), хлорида олова (II) и нитрата меди (II) c концентрацией 0,2 моль/л. Растворы тщательно перемешивают в мольном соотношении 1:1:8. Полученный материал, по данным рентгенофазового анализа, Cu0,1Sn0,1Ce0,8O2 имеет кристаллическую решетку диоксида церия, удельную поверхность 49 м2/г, общий объем пор 0,173 см3/г. Температура полной конверсии в реакции окисления СО на проточной установке для модельной смеси: СО -1,2 об.%, О2 – 10 об.%, N2 – 89,2 об.%, при объемной скорости 12 000 ч- составила - 120 ˚С
Пример 5. В условиях примера 1 применяют исходные растворы нитрата церия (III), хлорида олова (II) и нитрата марганца (III) c концентрацией 0,2 моль/л. Растворы тщательно перемешивают в соотношении 1:1:8. Полученный материал Mn0,1Sn0,1Ce0,8O2, по данным рентгенофазового анализа, имеет кристаллическую решетку диоксида церия, удельную поверхность 50 м2/г, общий объем пор 0,177 см3/г. Температура полной конверсии в реакции окисления СО на проточной установке для модельной смеси: СО -1,2 об.%, О2 – 10 об.%, N2 – 89,2 об.%, при объемной скорости 12 000 ч- составила - 123 ˚С
Пример 6. Растворы хлорида олова (II), нитрата церия (III) с концентрацией 0,2 моль/л, приготовленные путем растворения солей в изопропиловом спирте. Полученные растворы смешивают в мольном соотношении 1:5. Полученную смесь тщательно перемешивают и медленно приливают концентрированный раствор гидроксида аммония (15 моль/л) до достижения рН 9-10. Процесс проводят при температуре 20-25˚С. Затем суспензию оставляют для «старения» под слоем маточного раствора в течение 30 - 60 мин. Полученный осадок отфильтровывают, тщательно отмывают от хлорид- и нитрат-ионов. Осадок сушат в течение 20 часов при температуре 80 - 90 ˚С и прокаливают при температуре 400˚С в течение 2 часов. Полученный материал находится в рентгеноаморфном состоянии, что является непригодным для дальнейшего применения.
Пример 7. Растворы хлорида олова (II), нитрата церия (III) с концентрацией 0,2 моль/л, приготовленные путем растворения солей в изопропиловом спирте. Полученные растворы смешивают в мольном соотношении 1:5. Полученную смесь тщательно перемешивают и медленно приливают концентрированный раствор гидроксида аммония (15 моль/л) до достижения рН 9-10. Процесс проводят при температуре 20-25˚С. Затем суспензию оставляют для «старения» под слоем маточного раствора в течение 30 - 60 мин. Полученный осадок отфильтровывают, тщательно отмывают от хлорид- и нитрат-ионов. Осадок сушат в течение 20 часов при температуре 80 - 90 ˚С и прокаливают при температуре 700˚С в течение 2 часов. Полученный материал Sn0,2Ce0,8O2, по данным рентгенофазового анализа, имеет кристаллическую решетку диоксида церия, удельную поверхность 35 м2/г, общий объем пор 0,118 см3/г. Температура полной конверсии в реакции окисления СО на проточной установке для газовой смеси: СО -1,2 об.%, О2 – 10 об.%, N2 –89,8 об.%, при объемной скорости 12 000 ч-, составила 176 ˚С.

Claims (1)

  1. Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода, заключающийся в соосаждении гидроксидов церия, и олова, и меди при мольном соотношении Ce:Sn:Cu = 8:1:1 или гидроксидов церия, и олова, и марганца в мольном соотношении Ce:Sn:Mn = 8:1:1 гидроксидом аммония в изопропиловом спирте с последующей термической обработкой в стационарных условиях при температуре 500-600˚С.
RU2019100596A 2019-01-14 2019-01-14 Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода RU2688945C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100596A RU2688945C1 (ru) 2019-01-14 2019-01-14 Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100596A RU2688945C1 (ru) 2019-01-14 2019-01-14 Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода

Publications (1)

Publication Number Publication Date
RU2688945C1 true RU2688945C1 (ru) 2019-05-23

Family

ID=66636741

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100596A RU2688945C1 (ru) 2019-01-14 2019-01-14 Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода

Country Status (1)

Country Link
RU (1) RU2688945C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951867A (en) * 1974-10-07 1976-04-20 Corning Glass Works Coprecipitated CeO2 --SnO2 catalyst supports
RU2648072C2 (ru) * 2013-02-05 2018-03-22 Родиа Операсьон Осажденная прокаленная композиция на основе оксида циркония и оксида церия
RU2673295C2 (ru) * 2013-03-19 2018-11-23 Родиа Операсьон Композиция на основе оксидов циркония, церия, ниобия и олова, способы получения и применение для катализа

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951867A (en) * 1974-10-07 1976-04-20 Corning Glass Works Coprecipitated CeO2 --SnO2 catalyst supports
RU2648072C2 (ru) * 2013-02-05 2018-03-22 Родиа Операсьон Осажденная прокаленная композиция на основе оксида циркония и оксида церия
RU2673295C2 (ru) * 2013-03-19 2018-11-23 Родиа Операсьон Композиция на основе оксидов циркония, церия, ниобия и олова, способы получения и применение для катализа

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ЛИБЕРМАН Е.Ю. И ДР., Получение и термическая устойчивость нанодисперсных бикомпонентных материалов системы SnO2-CeO2, Стекло и керамика, 2017, 9, стр.18-21. *
ЛИБЕРМАН Е.Ю. И ДР., Получение и термическая устойчивость нанодисперсных бикомпонентных материалов системы SnO2-CeO2, Стекло и керамика, 2017, 9, стр.18-21. МАЛЫШЕВА Т.С. И ДР., Синтез нанодисперсного твердого раствора SnO2-CeO2, Успехи в химии и химической технологии, Сборник научных трудов, РХТУ им. Д.И.Менделеева, 2016, т.30, 3, стр.80-82. *
МАЛЫШЕВА Т.С. И ДР., Синтез нанодисперсного твердого раствора SnO2-CeO2, Успехи в химии и химической технологии, Сборник научных трудов, РХТУ им. Д.И.Менделеева, 2016, т.30, 3, стр.80-82. *

Similar Documents

Publication Publication Date Title
DE69409006C5 (de) Vorläuferzusammensetzung und auf cerium- und zirkoniummischoxide basierte zusammensetzung, deren herstellungsverfahren und anwendung
CN101966451B (zh) 一种选择性催化氧化氨的纳米铈锆固溶体基催化剂的制备方法及应用
KR100452573B1 (ko) 배기가스정화용촉매
CN102149462B (zh) 混合相陶瓷氧化物三用催化剂配制物以及该催化剂的制备方法
US20140274662A1 (en) Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
WO2014165803A9 (en) System and method for two and three way mixed metal oxide zpgm catalyst
CN107812516B (zh) 五氧化二铌掺杂的二氧化铈的制备方法及其产品和应用
KR20150115880A (ko) 지르코늄 산화물 및 세륨 산화물에 기반한 침전 및 하소된 조성물
MXPA06005460A (es) Catalizador para gas de escape.
CN102580719A (zh) 一种纳米铈锆固溶体及其制备方法
DE69918395T2 (de) Sol-Gel-hergestellte Metalloxide auf Aluminiumoxidbasis zur Absorption von Stickoxiden in oxidierendem Abgas
JP2004527372A (ja) 窒素酸化物の接触還元のための触媒と方法
CN110354895A (zh) 一种分子筛基Ce-Mn氧化物多孔光催化剂及其制备方法和应用
CN101244385A (zh) 一种高效光催化材料的制备方法
CN111672503A (zh) 一种负载型长效甲醛净化剂及其制备方法和应用
RU2688945C1 (ru) Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода
KR20170005719A (ko) 페로브스카이트 촉매의 제조 방법
RU2192307C1 (ru) Катализатор, носитель катализатора, способы их получения (варианты) и способ очистки отходящих газов от оксидов азота
RU2690852C2 (ru) Композиции катализаторов без благородных металлов
CN103599768A (zh) 一种加锆、镧改性γ-氧化铝催化剂涂覆材料及制备方法
CN112316934A (zh) 一种烧绿石复合氧化物碳烟消除催化剂及制备方法和应用
Ogugua et al. Advancements in low-temperature NH3-SCR of NOx using Ba-based catalysts: a critical review of preparation, mechanisms, and challenges
CZ308566B6 (cs) Způsob přípravy anorganických nanovláken, zejména pro použití jako heterogenní katalyzátory, a anorganická nanovlákna
JP4194805B2 (ja) 窒素酸化物を接触的に除去する方法とそのための触媒
CN104888801A (zh) 一种制备氧化亚铜掺杂的oms-2催化剂的方法