RU2673946C1 - Дифференцирование плюрипотентных стволовых клеток - Google Patents

Дифференцирование плюрипотентных стволовых клеток Download PDF

Info

Publication number
RU2673946C1
RU2673946C1 RU2016135361A RU2016135361A RU2673946C1 RU 2673946 C1 RU2673946 C1 RU 2673946C1 RU 2016135361 A RU2016135361 A RU 2016135361A RU 2016135361 A RU2016135361 A RU 2016135361A RU 2673946 C1 RU2673946 C1 RU 2673946C1
Authority
RU
Russia
Prior art keywords
cells
inhibitor
cell
population
pancreatic
Prior art date
Application number
RU2016135361A
Other languages
English (en)
Inventor
Алиреза РЕЗАНИА
Original Assignee
Янссен Байотек, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Янссен Байотек, Инк. filed Critical Янссен Байотек, Инк.
Application granted granted Critical
Publication of RU2673946C1 publication Critical patent/RU2673946C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0613Cells from endocrine organs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0678Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Изобретение относится к области клеточной биологии, а именно к дифференцировке популяции клеток заднего сегмента передней кишки в популяцию клеток-предшественников эндокринных клеток поджелудочной железы. Способ включает культивирование популяции клеток заднего сегмента передней кишки, полученных из линий эмбриональных стволовых клеток человека Н1, Н7, Н9 или SA002 или из неэмбриональных клеток, экспрессирующих по меньшей мере один из следующих маркеров: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, HTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60 и Tra 1-81, в средах DMEM или MCDB-131, содержащих высокую концентрацию глюкозы, дополненной ингибитором CYP26A. Изобретение позволяет повысить эффективность дифференцирования клеток заднего сегмента передней кишки в клетки-предшественники эндокринных клеток поджелудочной железы. 22 з.п. ф-лы, 5 ил., 3 пр.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка притязает на приоритет предварительной патентной заявки серийный номер 61/378480, поданной 31 августа 2010 г, которая включена в настоящий документ посредством ссылки.
Область применения изобретения
В данном изобретении описываются способы содействия дифференциации плюрипотентных стволовых клеток в клетки, вырабатывающие инсулин. В частности, настоящее изобретение представляет способ использования агента, разрушающего ретиноевую кислоту, для получения популяции клеток-предшественников эндокринных клеток поджелудочной железы.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Последние достижения в области заместительной клеточной терапии для лечения сахарного диабета 1 типа и нехватка островков Лангерганса для трансплантации заставили обратить внимание на разработку источников инсулин-продуцирующих клеток, или β-клеток, подходящих для трансплантации. Одним из подходов является формирование функциональных β-клеток из плюрипотентных стволовых клеток, таких как, например, эмбриональные стволовые клетки.
При эмбриональном развитии позвоночных плюрипотентные клетки дают начало группе клеток, формирующих три зародышевых листка (эктодерму, мезодерму и эндодерму) в ходе процесса, именуемого гаструляцией. Такие ткани, как, например, щитовидная железа, тимус, поджелудочная железа, кишечник и печень, будут развиваться из эндодермы через промежуточную стадию. Промежуточной стадией данного процесса является образование сформированной эндодермы. Клетки сформированной эндодермы экспрессируют ряд маркеров, как например, HNF3 beta, GATA4, MIXL1, CXCR4 и SOX17.
Формирование поджелудочной железы происходит при дифференцировании сформированной эндодермы в панкреатическую эндодерму. Клетки панкреатической эндодермы экспрессируют ген панкреатическо-дуоденального гомеобокса, Pdx1. При отсутствии Pdx1 развитие поджелудочной железы не идет дальше формирования вентрального и дорзального зачатков. Таким образом, экспрессия PDX1 характеризует критическую стадию органогенеза поджелудочной железы. Зрелая поджелудочная железа содержит, помимо других типов клеток, экзокринную ткань и эндокринную ткань. Экзокринная и эндокринная ткани образуются при дифференцировании панкреатической эндодермы.
Развитие клеток поджелудочной железы in vivo по меньшей мере частично зависит от надлежащей регуляции сигналов, определяющих расположение клеток-предшественников органа. Kinkel et al (PNAS May 12, 2009 vol. 106 no. 19 7864-7869) утверждают: “Путь развития клеток поджелудочной железы определяется ретиноевой кислотой (РК), а соответствующий размер и локализация ткани поджелудочной железы зависит от строгого контроля сигнальных путей с участием ретиноевой кислоты. Здесь мы показали, что ферменты Cyp26, разрушающие РК, играют решающую роль в развитии поджелудочной железы с нормальной передней границей”.
По имеющимся данным, клетки, обладающие свойствами островковых клеток, были получены из эмбриональных клеток мыши. Например, Lumelsky et al. описывает дифференцирование мышиных эмбриональных стволовых клеток в инсулин-секретирующие структуры, аналогичные островкам поджелудочной железы. Soria et al. (Diabetes 49:157, 2000) описывают инсулин-секретирующие клетки, производные мышиных эмбриональных стволовых клеток, которые нормализуют гликемию у мышей с диабетом, индуцированным стрептозотоцином.
В одном примере, Hori et al. (PNAS 99: 16105, 2002) описывают, что обработка мышиных эмбриональных стволовых клеток ингибиторами фосфоинозитид-3-киназы (LY294002) приводила к получению клеток, подобных β-клеткам.
в другом примере, Blyszczuk et al. (PNAS 100:998, 2003) сообщают о получении инсулин-продуцирующих клеток из мышиных эмбриональных стволовых клеток с конститутивной экспрессией Pax4.
В публикации Micallef et al. сообщается, что ретиноевая кислота может регулировать способность эмбриональных стволовых клеток формировать Pdx1-положительную панкреатическую эндодерму. Ретиноевая кислота с наибольшей эффективностью индуцирует экспрессию Pdx1 при добавлении в культуру на 4 день дифференцирования эмбриональных стволовых клеток в течение периода, соответствующего концу гаструляции эмбриона (Diabetes 54:301, 2005).
В публикации Miyazaki et al. сообщается о линии мышиных эмбриональных стволовых клеток со сверхэкспрессией Pdx1. Результаты показывают, что экспрессия экзогенного Pdx1 очевидно повышает экспрессию генов инсулина, соматостатина, глюкокиназы, нейрогенина 3, p48, Pax6 и HNF6 в образующихся дифференцированных клетках (Diabetes 53: 1030, 2004).
В публикации Skoudy et al. сообщается, что активин A (входящий в суперсемейство TGF-β) повышает экспрессию экзокринных панкреатических генов (p48 и амилаза) и эндокринных генов (Pdx1, инсулин и глюкагон) в эмбриональных стволовых клетках мыши. Максимальный эффект наблюдался при использовании 1 нмоль/л активина A. Кроме того, авторы отметили, что экспрессия инсулина и Pdx1 мРНК не изменялась под действием ретиноевой кислоты; однако лечение с использованием 3nM FGF7 привело к повышению уровня транскрипта для Pdx1 (Biochem. J. 379: 749, 2004).
В работе Shiraki et al. изучались эффекты факторов роста, специфически ускоряющих дифференцирование эмбриональных стволовых клеток в Pdx1-положительные клетки. Эти авторы наблюдали, что TGF-β2 приводил к воспроизводимому увеличению доли Pdx1-положительных клеток (Genes Cells. 2005 Jun; 10(6): 503-16.).
В работе Gordon et al. показана индукция образования брахиурических [положительных]/HNF3 бета [положительных] эндодермальных клеток из эмбриональных стволовых клеток мыши в отсутствие сыворотки и в присутствии активина в сочетании с ингибитором сигнального каскада Wnt (патент США № 2006/0003446A1).
Gordon et al. (PNAS, т. 103, с. 16806, 2006) утверждают: «Для образования передней первичной полоски одновременно требовались сигнальные пути Wnt и TGF-бета/nodal/активин».
Однако модель развития эмбриональных стволовых клеток на мышах может не имитировать в точности программу развития у высших млекопитающих, например, у человека.
В работе Thomson et al. эмбриональные стволовые клетки выделяли из человеческих бластоцист (Science 282:114, 1998). Параллельно, Gearhart и соавторы получили клеточные линии эмбриональных зародышевых клеток человека (hEG) из ткани половых желез эмбриона (Shamblott et al., Proc. Natl. Acad. Sci. USA 95:13726, 1998). В отличие от эмбриональных стволовых клеток мыши, воспрепятствовать дифференцированию которых можно путем простого культивирования с фактором, ингибирующим лейкемию (LIF), эмбриональные стволовые клетки человека необходимо культивировать в крайне специфических условиях (патент США № 6200806; WO 99/20741, WO 01/51616).
D’Amour et al. описывают производство обогащенных культур сформированной эндодермы, производной от человеческих эмбриональных стволовых клеток, в присутствии высокой концентрации активина и низкой концентрации сыворотки (Nature Biotechnology 2005). Трансплантация этих клеток под почечную капсулу мышей привела к их дифференцированию в более зрелые клетки, обладающие характерными особенностями некоторых эндодермальных органов. Клетки сформированной эндодермы, производные от эмбриональных стволовых клеток человека, могут подвергаться дальнейшему дифференцированию в Pdx1-положительные клетки после добавления FGF-10 (US 2005/0266554A1).
D’Amour et al. (Nature Biotechnology-24, 1392-1401 (2006)) утверждают: “Мы разработали процесс дифференцировки, преобразующий эмбриональные клетки человека (hES) в эндокринные клетки, способные синтезировать гормоны поджелудочной железы: инсулин, глюкагон, соматостатин, панкреатический полипептид и грелин. Данный процесс имитирует органогенез поджелудочной железы in vivo, проводя клетки через фазы, напоминающие образование сформированной эндодермы, эндодермы кишечной трубки, панкреатической эндодермы и превращение предшественников эндокринных клеток в клетки, экспрессирующие эндокринные гормоны”.
В другом примере, в публикации Fisk et al., сообщается о системе для производства островковых клеток поджелудочной железы из эмбриональных стволовых клеток человека (US2006/0040387A1). В данном случае процесс дифференцирования был разделен на три стадии. Человеческие эмбриональные стволовые клетки были впервые дифференцированы до эндодермы с помощью сочетания бутирата натрия и активина A. Затем клетки культивировали с антагонистами ФНО-β, например, Noggin, в сочетании с EGF или бетацеллюлином для получения PDX1-положительных клеток. Окончательное дифференцирование запускалось никотинамидом.
Таким образом, сохраняется значительная потребность в разработке лабораторных способов создания in vitro функциональной экспрессирующей инсулин клетки, которая была бы более близка к β-клетке. Настоящее изобретение представляет собой альтернативный подход к повышению эффективности дифференцирования плюрипотентных стволовых клеток в клетки, экспрессирующие инсулин, основанный на получении клеток-предшественников поджелудочной железы с помощью агента, разрушающего ретиноевую кислоту.
Краткое описание
В одном варианте осуществления настоящее изобретение представляет способ использования агента, разрушающего ретиноевую кислоту, для получения популяции клеток-предшественников эндокринных клеток поджелудочной железы.
В одном варианте осуществления формирование популяции клеток-предшественников эндокринных клеток поджелудочной железы достигается путем использования пошагового протокола дифференцирования, при этом популяция плюрипотентных стволовых клеток сначала дифференцируется в популяцию клеток, экспрессирующих маркеры, характерные для линии сформированной эндодермы. Далее, популяция клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, дифференцируется в популяцию клеток первичной кишечной трубки. Далее, популяция клеток первичной кишечной трубки дифференцируется в популяцию клеток заднего сегмента передней кишки. Затем популяция клеток заднего сегмента передней кишки дифференцируется в популяцию предшественников эндокринных клеток путем культивирования в среде с добавлением агента, расщепляющего ретиноевую кислоту.
В одном варианте осуществления изобретения популяция предшественников эндокринных клеток далее дифференцируется в популяцию клеток, экспрессирующих маркеры, характерные для линии эндокринных клеток поджелудочной железы.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 показаны результаты анализа методом ПЦР в реальном времени образцов клеток на стадиях III-IV протокола, описанного в Примере 1, на a) PAX4, b) NGN3, c) PDX1, d) NEUROD, e) NKX6.1, f) CDX2 и g) альбумин. Ось у - кратность повышения по сравнению с недифференцированными Н1-клетками. На панели показан результат иммунологического окрашивания NGN3 контроля и культур с добавлением CYP26A на стадии IV.
На фиг. 2 показаны результаты анализа методом ПЦР в реальном времени образцов клеток на стадиях III-IV протокола, описанного в Примере 2, на a) NGN3, b) NEUROD, c) CDX2, d) NKX6.1 и e) PDX1. Ось у - кратность повышения по сравнению с недифференцированными Н1-клетками.
На фиг. 3 показаны фазово-контрастные изображения клеток на стадиях I-VI протокола, описанного в Примере 3.
На фиг. 4 показаны графики экспрессии NKX6.1 в клетках на стадиях IV-VII протокола, описанного в Примере 3, по результатам флуоресцентной проточной цитометрии.
На фиг. 5 показаны результаты иммунохимического окрашивания на PDX1, NKX6.1 и CDX2 в клетках на стадиях V и VII протокола, описанного в Примере 3.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для ясности описания, а не для ограничения изобретения, подробное описание изобретения разделено на следующие подразделы, описывающие или иллюстрирующие определенные особенности, варианты осуществления или области применения настоящего изобретения.
Определения
Стволовые клетки представляют собой недифференцированные клетки, определяемые по их способности на уровне единичной клетки как самообновляться, так и дифференцироваться с образованием клеток-потомков, таких как самообновляющиеся клетки-предшественники, необновляющиеся клетки-предшественники и окончательно дифференцированные клетки. Стволовые клетки также характеризуются способностью дифференцироваться in vitro в функциональные клетки различных клеточных линий дифференцирования из нескольких зародышевых листков (эндодермы, мезодермы и эктодермы), а также после трансплантации давать начало тканям, происходящим от нескольких зародышевых листков, и вносить существенный вклад в формирование большинства, если не всех, тканей после инъекции в бластоцисты.
Стволовые клетки классифицируют по потенциалу развития: (1) тотипотентные, то есть способные преобразоваться в любой из эмбриональных и внеэмбриональных типов клеток; (2) плюрипотентные, то есть способные преобразоваться во все типы эмбриональных клеток; (3) мультипотентные, то есть способные преобразоваться во множество клеточных линий, но в рамках одной ткани, органа или физиологической системы (например, гемопоэтические стволовые клетки (ГСК) могут порождать ГСК (самообновление), олигопотентные ограниченные клетки-предшественники крови и все типы клеток и элементов (например, тромбоциты), являющиеся стандартными составляющими крови); (4) олигопотентные, то есть способные преобразоваться в более ограниченное подмножество клеточных линий, чем мультипотентные стволовые клетки; и (5) унипотентные, то есть способные преобразоваться в единственную клеточную линию (например, сперматогенные стволовые клетки).
Дифференцирование представляет собой процесс, при помощи которого неспециализированная («некоммитированная») или менее специализированная клетка приобретает свойства специализированной клетки, например, нервной или мышечной клетки. Дифференцированная клетка или клетка с индуцированным дифференцированием представляет собой клетку, занявшую более специализированное («коммитированное») положение в линии дифференцирования клетки. Термин «коммитированная» применительно к процессу дифференцирования обозначает клетку, дошедшую в ходе процесса дифференцирования до стадии, от которой в нормальных условиях она продолжит дифференцироваться до определенного типа клеток или набора типов клеток и не сможет в нормальных условиях дифференцироваться в иной тип клеток или вернуться обратно к менее дифференцированному типу. Дедифференцированием называется процесс, в ходе которого клетка возвращается к менее специализированному (или коммитированному) положению в линии дифференцирования. Используемый в настоящей заявке термин «линия дифференцирования клетки» определяет наследственность клетки, то есть определяет, из какой клетки произошла данная клетка и каким клеткам она может дать начало. В линии дифференцирования клетка помещается в наследственную схему развития и дифференцирования. Маркером, специфичным для линии дифференцирования, называется характерная особенность, специфически ассоциированная с фенотипом клеток конкретной линии дифференцирования, которая может использоваться для оценки дифференцирования некоммитированных клеток в клетки данной линии дифференцирования.
Используемые в настоящей заявке термины «клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы», «клетки стадии 1» или «стадия 1», относятся к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-подобный гомеобоксовый белок, FGF4 CD48, эомезодермин (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99 или OTX2. К клеткам, экспрессирующим маркеры, характерные для линии сформированной эндодермы, относятся клетки-предшественники первичной полоски, клетки первичной полоски, клетки мезэндодермы и клетки сформированной эндодермы.
Используемый в настоящей заявке термин «клетки с экспрессией маркеров, характерных для линии панкреатической эндодермы» относится к клеткам с экспрессией по меньшей мере одного из следующих маркеров: PDX1, NKX6.1, HNF1-бета, PTF1-альфа, HNF6, HNF4-альфа, SOX9, HB9 или PROX1. К клеткам, экспрессирующим маркеры, характерные для линии панкреатической эндодермы, относятся клетки панкреатической эндодермы, клетки первичной кишечной трубки и клетки поздней передней кишки.
Используемый в настоящей заявке термин «сформированная эндодерма» относится к клеткам, обладающим характерными особенностями клеток, происходящих в ходе гаструляции от эпибласта, и формирующим желудочно-кишечный тракт и его производные. Клетки сформированной эндодермы экспрессируют следующие маркеры: HNF3-бета, GATA4, SOX17, Cerberus, OTX2, goosecoid, C-Kit, CD99 и MIXL1.
Используемый в настоящей заявке термин «маркеры» означает молекулы нуклеиновых кислот или полипептидов с дифференциальной экспрессией в интересующих клетках. В данном контексте под дифференциальной экспрессией подразумевается повышение уровня экспрессии для положительного маркера и понижение уровня экспрессии для отрицательного маркера. Поддающийся обнаружению уровень маркерной нуклеиновой кислоты или полипептида в интересующих клетках оказывается значительно выше или ниже по сравнению с другими клетками, что позволяет идентифицировать интересующую клетку и отличить ее от других клеток с помощью любого из множества известных в данной области способов.
Используемый в настоящей заявке термин “клетка-предшественник эндокринной клетки поджелудочной железы” относится к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: NGN3, NEUROD или NKX2.2.
Используемый в настоящей заявке термин “клетка заднего сегмента передней кишки” относится к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: PDX1 или HNF6.
Термин “Незрелые клетки поджелудочной железы, экспрессирующие гормоны” в настоящей заявке относится к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: инсулин, глюкагон, соматостатин, MAFB, PDX1, ARX, NKX6.1, NKX2.2 или NEUROD.
Используемый в настоящей заявке термин "клетка первичной кишечной трубки” относится к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: HNF1-бета или HNF4-альфа.
«Панкреатической эндокринной клеткой», «клеткой, экспрессирующей гормон поджелудочной железы» или «клеткой, экспрессирующей характеристики эндокринной линии поджелудочной железы» в настоящем документе называется клетка, способная экспрессировать по меньшей мере один из следующих гормонов: инсулин, глюкагон, соматостатин и панкреатический полипептид.
Выделение, размножение и культивирование полипотентных стволовых клеток
Характеристика плюрипотентных стволовых клеток
Плюрипотентные стволовые клетки могут экспрессировать один или более стадийно-специфичных эмбриональных антигенов (SSEA) 3 и 4, а также маркеры, определяемые антителами, обозначенными как Tra-1-60 и Tra-1-81 (Thomson et al., Science 282:1145, 1998). Дифференцирование плюрипотентных стволовых клеток in vitro приводит к потере экспрессии SSEA-4, Tra 1-60 и Tra 1-81 (при наличии) и к повышению экспрессии SSEA-1. В недифференцированных полипотентных стволовых клетках, как правило, активна щелочная фосфатаза, которая может быть обнаружена путем фиксации клеток с помощью 4% параформальдегида, с последующим обнаружением с помощью Vector Red, применяемого в качестве субстрата, в соответствии с инструкциями производителя (Vector Laboratories, Burlingame Calif.). Недифференцированные плюрипотентные стволовые клетки также, как правило, экспрессируют OCT4 и TERT, определяемые с помощью ПЦР в реальном времени.
Другим желательным фенотипическим свойством выращенных плюрипотентных стволовых клеток является потенциал дифференцирования в клетки всех трех зародышевых листков: в эндодермальные, мезодермальные и эктодермальные ткани. Полипотентность полипотентных стволовых клеток может быть подтверждена, например, путем инъекции клеток мышам с тяжелым комбинированным иммунодефицитом (SCID), фиксирования образующихся тератом с помощью 4% параформальдегида, и их гистологического исследования для получения доказательств наличия клеточных типов, происходящих от трех зародышевых листков. В качестве альтернативы плюрипотентность можно определить по созданию эмбриоидных телец и анализа их на предмет присутствия маркеров, ассоциирующихся с тремя зародышевыми листками.
Выращенные линии плюрипотентных стволовых клеток могут быть кариотипированы с применением стандартного способа окрашивания с использованием красителя Гимза (G-banding) и сравнения с опубликованными кариотипами соответствующих видов приматов. Желательно получить клетки, имеющие «нормальный кариотип», т.е. эуплоидные клетки, в которых все человеческие хромосомы присутствуют и не имеют видимых изменений.
Источники плюрипотентных стволовых клеток
К типам плюрипотентных стволовых клеток, которые можно использовать, относятся устойчивые линии плюрипотентных клеток, получаемые из формируемой после вынашивания плода ткани, в том числе из преэмбриональной ткани (такой как бластоциста), эмбриональной ткани или ткани плода, взятой в любой момент в ходе вынашивания, как правило, но не обязательно, до срока приблизительно 10-12 недель беременности. Примерами, не ограничивающими настоящее изобретение, являются стабильные линии человеческих эмбриональных стволовых клеток или человеческих эмбриональных зародышевых клеток, например, клеточные линии человеческих эмбриональных стволовых клеток H1, H7 и H9 (WiCell). Также возможно использование описываемых в настоящей заявке составов в ходе первоначального установления или стабилизации таких клеток, в этом случае исходными клетками являются первичные плюрипотентные клетки, взятые напрямую из тканей-источников. Также соответствуют целям настоящего изобретения клетки, взятые из популяции плюрипотентных стволовых клеток, уже культивированных в отсутствие питающих клеток. Также соответствуют целям настоящего изобретения клетки мутантных линий эмбриональных стволовых клеток человека, таких как, например, BG01v (BresaGen, Атенс, Джорджия, США).
В одном варианте осуществления получение человеческих эмбриональных стволовых клеток было описано Thomson et al. в патенте США № 5843780; Science 282:1145, 1998; Curr. Top. Dev. Biol. 38:133 ff., 1998; Proc. Natl. Acad. Sci. U.S.A. 92:7844, 1995).
Культивирование плюрипотентных стволовых клеток
В одном варианте осуществления плюрипотентные стволовые клетки культивируют на питающем слое клеток, которые поддерживают плюрипотентные стволовые клетки в различных отношениях. Как вариант, полипотентные стволовые клетки культивируются в культуральной системе, по существу не содержащей питающих клеток, но, тем не менее, поддерживающей пролиферацию полипотентных стволовых клеток и не допускающей существенной дифференцировки. Рост плюрипотентных стволовых клеток в свободной от питающих клеток культуральной системе без дифференцирования поддерживается путем использования среды, кондиционированной посредством предварительного культивирования клеток иного типа. В качестве альтернативы рост плюрипотентных стволовых клеток в свободной от питающих клеток культуральной системе без дифференцирования поддерживается путем использования среды с химически определенным составом.
В одном варианте осуществления плюрипотентные стволовые клетки можно культивировать на питающем слое эмбриональных фибробластов мыши в соответствии со способами, изложенными в работе Reubinoff et al (Nature Biotechnology 18: 399-404 (2000)). В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать на питающем слое эмбриональных фибробластов мыши в соответствии со способами, изложенными в работе Thompson et al (Science 6, ноябрь 1998 г: Vol. 282. no. 5391, pp. 1145-1147). В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать на любом из питающих слоев клеток, описанных в работе Richards et al, (Stem Cells 21: 546-556, 2003).
В одном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать на питающем слое клеток человека в соответствии со способами, изложенными в работе Wang et al (Stem Cells 23: 1221-1227, 2005). В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать на питающем слое клеток человека, описанных в работе Stojkovic et al (Stem Cells 2005 23: 306-314, 2005). В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать на питающем слое клеток человека, описанных в работе Miyamoto et al (Stem Cells 22: 433-440, 2004). В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать на питающем слое клеток человека, описанных в работе Amit et al (Biol. Reprod 68: 2150-2156, 2003). В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать на питающем слое клеток человека, описанных в работе Inzunza et al (Stem Cells 23: 544-549, 2005).
В одном варианте осуществления плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в патенте США № 20020072117. В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в патенте США № 6642048. В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в международной заявке WO2005014799. В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в работе Xu et al (Stem Cells 22: 972-980, 2004). В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в патенте США № 20070010011. В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в патенте США № 20050233446. В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, представленными в патенте США № 6800480. В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать в культуральной среде, полученной в соответствии со способами, описанными в международной заявке WO2005065354.
В одном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать по методам, описанным Cheon et al (BioReprod DOI:10.1095/biolreprod.105.046870, October 19, 2005). В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать в соответствии со способами, представленными в работе Levenstein et al (Stem Cells 24: 568-574, 2006). В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать в соответствии со способами, представленными в патенте США № 20050148070. В альтернативном варианте осуществления плюрипотентные стволовые клетки можно культивировать в соответствии со способами, представленными в патенте США № 20050244962. В альтернативном варианте осуществления изобретения плюрипотентные стволовые клетки можно культивировать в соответствии со способами, описанными в международной заявке WO2005086845.
Плюрипотентные стволовые клетки могут быть высеяны на соответствующий культуральный субстрат. В одном из вариантов осуществления соответствующим культуральным субстратом является компонент внеклеточного матрикса, такой как, например, компонент, полученный из базальной мембраны, или компонент, который может участвовать в лиганд-рецепторном взаимодействии с участием молекулы адгезивного слоя. В одном из вариантов осуществления подходящим культуральным субстратом является МАТРИГЕЛЬ® (Becton Dickenson). МАТРИГЕЛЬ® представляет собой растворимый препарат из клеток опухоли Энгельбрета-Холма-Суорма, который при комнатной температуре превращается в гель и образует восстановленную базальную мембрану.
В качестве альтернативы можно использовать другие компоненты внеклеточного матрикса и смеси компонентов. В зависимости от типа пролиферирующих клеток, это может быть ламинин, фибронектин, протеогликан, энтактин, гепарансульфат и т.п., по отдельности или в различных сочетаниях.
Плюрипотентные стволовые клетки могут высеиваться на субстрат с соответствующим распределением по поверхности и в присутствии среды, поддерживающей выживание, размножение и сохранение требуемых характеристик клеток. Все эти характеристики улучшаются при тщательном подходе к распределению клеток при посеве и могут быть определены специалистом в данной области.
Подходящая культуральная среда может быть изготовлена, например, из следующих компонентов модифицированная по способу Дульбекко среда Игла (DMEM), Gibco № 11965-092, нокаутная модифицированная по способу Дульбекко среда Игла (KO DMEM), Gibco № 10829-018, базовая среда Хэма F12/50% DMEM, 200 ммоль/л L-глутамина, Gibco № 15039-027; раствор неосновных аминокислот, Gibco 11140-050; β-меркаптоэтанол, Sigma № M7522; человеческий рекомбинантный основной фактор роста фибробластов (bFGF), Gibco № 13256-029.
Образование клеток-предшественников эндокринных клеток поджелудочной железы из плюрипотентных стволовых клеток
Настоящее изобретение представляет способы получения популяции клеток-предшественников клеток поджелудочной железы из популяции плюрипотентных стволовых клеток. В одном варианте осуществления настоящее изобретение представляет способы дальнейшей дифференциации клеток-предшественников эндокринных клеток поджелудочной железы в клетки, экспрессирующие маркеры линии эндокринных клеток поджелудочной железы.
В одном из вариантов осуществления настоящего изобретения предлагается способ получения клеток-предшественников панкреатических эндокринных клеток, включающий следующие этапы:
a. Культивирование популяции плюрипотентных стволовых клеток;
b. Дифференцирование популяции плюрипотентных стволовых клеток в популяцию клеток, экспрессирующих маркеры, характерные для линии сформированной эндодермы;
с. Диференцирование популяции клеток, экспрессирующих маркеры, характерные для линии сформированной эндодермы, в популяцию клеток первичной кишечной трубки;
D. Дифференцирование популяции клеток первичной кишечной трубки в популяцию клеток заднего сегмента передней кишки; и
E. Дифференцирование популяции клеток заднего сегмента передней кишки в популяцию предшественников эндокринных клеток поджелудочной железы путем использования среды с добавлением агента, расщепляющего ретиноевую кислоту.
Популяция предшественников эндокринных клеток может подвергаться дальнейшей обработке для получения популяции клеток, экспрессирующих маркеры, характерные для линии эндокринных клеток поджелудочной железы.
Эффективность дифференцирования может быть определена путем обработки популяции клеток агентом (например, антителом), специфически распознающим белковый маркер, экспрессируемый клетками, экспрессирующими маркеры, характерные для желательного вида клеток.
Способы оценки экспрессии маркеров белков и нуклеиновых кислот в культивированных или выделенных клетках являются стандартными для данной области. Сюда относятся количественная ревертазная полимеразная цепная реакция (ОТ-ПЦР), Нозерн-блот, гибридизация in situ (см., например, Current Protocols in Molecular Biology (Ausubel et al., eds. 2001, доп.)), а также способы иммунологического анализа, такие как иммуногистохимический анализ среза материала, Вестерн-блоттинг, а для маркеров, доступных в интактных клетках, - способ проточной цитометрии (FACS) (см., например, Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).
Характеристики плюрипотентных стволовых клеток хорошо известны специалистам в данной области, и продолжается выявление дополнительных характеристик плюрипотентных стволовых клеток. К маркерам плюрипотентных стволовых клеток относится, например, экспрессия одного или нескольких следующих маркеров: ABCG2, CRIPTO, FOXD3, Connexin43, Connexin45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
После обработки плюрипотентных стволовых клеток с применением способов, составляющих предмет настоящего изобретения, дифференцированные клетки могут быть выделены путем воздействия на популяцию клеток агентом (например, антителом), специфически распознающим белковый маркер, например CXCR4, экспрессируемый клетками, экспрессирующими маркеры, характерные для линии сформированной эндодермы.
К плюрипотентным стволовым клеткам, которые могут использоваться в настоящем изобретении, относятся, например, человеческие эмбриональные стволовые клетки линии H9 (код NIH: WA09), человеческие эмбриональные стволовые клетки линии H1 (код NIH: WA01), человеческие эмбриональные стволовые клетки линии H7 (код NIH: WA07) и человеческие эмбриональные стволовые клетки линии SA002 (Cellartis, Швеция). Также для использования в рамках настоящего изобретения подходят клетки, экспрессирующие по меньшей мере один из следующих маркеров, характерных для плюрипотентных клеток: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60 и Tra 1-81.
Маркеры характерные для сформированной линии эндодермы выбираются из группы, содержащей SOX17, GATA4, HNF3-бета, GSC, CER1, Nodal, FGF8, Brachyury, Mix-подобный гомеобоксовый белок, FGF4, CD48, эомезодермин (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99 и Otx2. Подходит для использования в настоящем изобретении клетка, экспрессирующая, как минимум, один из маркеров, характерных для линии сформированной эндодермы. В одном из аспектов настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии сформированной эндодермы, представляет собой клетку-предшественника первичной полоски. В другом аспекте настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии сформированной эндодермы, представляет собой мезэндодермальную клетку. В другом аспекте настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии сформированной эндодермы, представляет собой клетку сформированной эндодермы.
Маркеры, характерные для линии эндодермы поджелудочной железы (включающей клетки первичной кишечной трубки и клетки задней части передней кишки), выбираются из группы, состоящей из: PDX1, NKX6.1, HNF1-бета, PTF1-альфа, HNF6, HNF4-альфа, SOX9, HB9 и PROX1. Подходит для использования в настоящем изобретении клетка, экспрессирующая, как минимум, один из маркеров, характерных для линии панкреатической эндодермы. В одном из аспектов настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии панкреатической эндодермы, представляет собой клетку панкреатической эндодермы.
Маркеры, характерные для линии дифференцирования панкреатических эндокринных клеток, выбирают из группы, состоящей из следующих маркеров: NGN3, NEUROD, ISL1, PDX1, NKX6.1, PAX4, NGN3 и PTF-1-альфа. В одном варианте осуществления панкреатическая эндокринная клетка способна к экспрессии по меньшей мере одного из следующих гормонов: инсулин, глюкагон, соматостатин и панкреатический полипептид. Соответствующей целям настоящего изобретения является клетка, экспрессирующая по меньшей мере один из маркеров, характерных для линии панкреатических эндокринных клеток. В одном из аспектов настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии панкреатических эндокринных клеток, представляет собой панкреатическую эндокринную клетку. Панкреатическая эндокринная клетка может представлять собой панкреатическую клетку, экспрессирующую гормоны. В альтернативном варианте осуществления панкреатическая эндокринная клетка может представлять собой панкреатическую клетку, секретирующую гормоны.
В одном аспекте настоящего изобретения панкреатическая эндокринная клетка представляет собой клетку с экспрессией маркеров, характерных для линии дифференцирования β-клеток. Клетка с экспрессией маркеров, характерных для линии β-клеток, экспрессирует PDX1 и по меньшей мере один из следующих транскрипционных факторов: NGN3, NKX2.2, NKX6.1, NEUROD, ISL1, HNF3-бета, MAFA, PAX4 и PAX6. В одном аспекте настоящего изобретения клетка с экспрессией маркеров, характерных для линии дифференцирования β-клеток, представляет собой β-клетку.
Формирование клеток, экспрессирующих маркеры, характерные для линии сформированной эндодермы, из плюрипотентных стволовых клеток
Популяции клеток, экспрессирующих маркеры, характерные для линии сформированной панкреатической эндодермы, могут быть получены из популяций плюрипотентных стволовых клеток любыми известными способами.
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, в соответствии со способами, описанными в публикации D’Amour et al, Nature Biotechnology 23, 1534-1541 (2005).
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, в соответствии со способами, описанными в публикации Shinozaki et al, Development 131, 1651-1662 (2004).
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, в соответствии со способами, описанными в публикации McLean et al, Stem Cells 25, 29-38 (2007).
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, в соответствии со способами, описанными в публикации D’Amour et al, Nature Biotechnology 24, 1392-1401 (2006).
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США Сер. № 11/736908.
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США Сер. № 11/779311.
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США Сер. № 12/493741.
Например, популяции плюрипотентных стволовых клеток могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии сформированной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США Сер. № 12/494789.
Образование клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы
К клеткам, экспрессирующим маркеры, характерные для линии панкреатической эндодермы, относятся клетки панкреатической эндодермы, клетки первичной кишечной трубки и клетки поздней передней кишки. В одном варианте осуществления изобретения популяцию клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, которая была получена способами настоящего изобретения, далее дифференцируют в популяцию клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, любым известным способом.
Например, популяции клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, полученные по способам настоящего изобретения, могут быть дополнительно дифференцированы в популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, в соответствии со способами, представленными в работе D’ Amour et al., Nature Biotechnology, 24, 1392-1401 (2006)
Например, популяции клеток, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, полученные по методам настоящего изобретения, могут быть дополнительно дифференцированы в популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, в соответствии со способами, представленными в заявке на патент США Сер. № 11/736908.
Формирование популяции клеток-предшественников панкреатических эндокринных клеток
В одном из вариантов осуществления настоящего изобретения предлагается способ получения клеток-предшественников панкреатических эндокринных клеток, включающий следующие этапы:
a. Культивирование популяции плюрипотентных стволовых клеток;
b. Дифференцирование популяции плюрипотентных стволовых клеток в популяцию клеток, экспрессирующих маркеры, характерные для линии сформированной эндодермы;
с. Диференцирование популяции клеток, экспрессирующих маркеры, характерные для линии сформированной эндодермы, в популяцию клеток первичной кишечной трубки;
D. Дифференцирование популяции клеток первичной кишечной трубки в популяцию клеток заднего сегмента передней кишки; и
E. Дифференцирование популяции клеток заднего сегмента передней кишки в популяцию предшественников эндокринных клеток поджелудочной железы путем культивирования в среде с добавлением агента, расщепляющего ретиноевую кислоту.
В одном варианте осуществления изобретения агент, расщепляющий ретиноевую кислоту, представляет собой ингибитор CYP26A. Ингибитор CYP26A может применяться в концентрации от приблизительно 1 нмоль/л до приблизительно 1000 нмоль/л. Альтернативно, ингибитор CYP26A может применяться в концентрации от приблизительно 10 нмоль/л до приблизительно 100 нмоль/л.
Для использования в настоящем изобретении подходит любой ингибитор CYP26A. Например, ингибитор CYP26A может быть выбран из соединений, описанных в заявке на патент США № 7468391. Альтернативно, ингибитор CYP26A может быть выбран из соединений, описанных в патентной заявке США № 2005/0187298A1. Альтернативно, ингибитор CYP26A может быть выбран из соединений, описанных в заявке на патент США № 2004/0106216A1. Альтернативно, ингибитор CYP26A может быть выбран из соединений, описанных в международной заявке WO2005058301A1. Альтернативно, ингибитор CYP26A может быть выбран из соединений, описанных в PNAS от 12 мая 2009 г, т. 106, № 19 7864-7869. В одном варианте осуществления ингибитор CYP26A представляет собой N-{4-[2-этил-1-(1H-1, 2, 4-триазол-1-ил)бутил]фенил}-1, 3-бензотиазол-2-амин. См. Формулу 1.
Figure 00000001
ФОРМУЛА 1.
В одном варианте осуществления изобретения в среду с добавлением агента, расщепляющего ретиноевую кислоту, дополнительно добавлен по меньшей мере один фактор, выбранный из группы, состоящей из фактора, способного ингибировать BMP, ингибитора сигнального каскада рецепторов TGFβ, а также витамина А и активатора РКС.
В одном варианте фактором, способным ингибировать BMP, является Noggin. Noggin может использоваться в концентрациях от приблизительно 50 нг/мл до приблизительно 500 мкг/мл. В одном из вариантов осуществления Noggin используется в концентрации 100 нг/мл.
В одном из вариантов ингибитором сигнализации рецептора TGFβ является ингибитор ALK5. В одном из вариантов ингибитором ALK5 является ингибитор ALK5 II. Ингибитор ALK5 II может применяться в концентрации от приблизительно 0,1 мкмоль/л до приблизительно 10 мкмоль/л. В одном варианте осуществления ингибитор ALK5 II применяется в концентрации 1 мкмоль/л.
В одном варианте осуществления активатор протеинкиназы С (РКС) выбран из группы, состоящей из (2S, 5S)-(E, E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиемоиламино)бензолактама, индолактама V (ILV), форбол-12-миристат-13-ацетата (PMA) и форбол-12,13-дибутирата (PDBu). В одном из вариантов активатором протеинкиназы С является (2S, 5S)-(E, E)-8-(5-(4-(трифторметил)фенил) -2,4-пентадиемоиламин)бензолактам. (2S, 5S)-(E, E)-8-(5-(4-(трифторметил)фенил) -2,4-пентадиемоиламин)бензолактам может использоваться в концентрации приблизительно от 20 нм до 500 нм. (2S, 5S)-(E, E)-8-(5-(4-(Трифторметил)фенил)-2,4-пентадиемоиламино)бензолактам в настоящем документе называется «TPB».
Создание клеток, экспрессирующих маркеры, характерные для линии панкреатических эндокринных клеток
В одном варианте осуществления популяция клеток-предшественников эндокринных клеток поджелудочной железы, полученная методами настоящего изобретения, далее дифференцируется в популяцию клеток, экспрессирующих маркеры, характерные для линии эндокринных клеток поджелудочной железы, любым известным способом.
Например, популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, могут быть дополнительно дифференцированы в популяции клеток, экспрессирующие маркеры, характерные для линии панкреатических эндокринных клеток, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, в соответствии со способами, представленными в работе D’Amour et al., Nature Biotechnology, 2006.
Например, популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, могут быть дополнительно дифференцированы в популяции клеток, экспрессирующие маркеры, характерные для линии панкреатических эндокринных клеток, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, в соответствии со способами, представленными в работе D’Amour et al., Nature Biotechnology, 2006.
Например, популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, могут далее дифференцироваться в популяции клеток, экспрессирующие маркеры, характерные для линии эндокринных панкреатических клеток, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, в соответствии со способами, описанными в заявке на патент США Сер. № 11/736908.
Например, популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, могут далее дифференцироваться в популяции клеток, экспрессирующие маркеры, характерные для линии эндокринных панкреатических клеток, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, в соответствии со способами, описанными в заявке на патент США Сер. № 11/779311.
Например, популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, могут далее дифференцироваться в популяции клеток, экспрессирующие маркеры, характерные для линии эндокринных панкреатических клеток, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, в соответствии со способами, описанными в заявке на патент США Сер. № 60/953178.
Например, популяции клеток, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, могут далее дифференцироваться в популяции клеток, экспрессирующие маркеры, характерные для линии эндокринных панкреатических клеток, путем обработки популяции клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, в соответствии со способами, описанными в заявке на патент США Сер. № 60/990529.
Настоящее изобретение далее иллюстрируется, помимо прочих, следующими примерами.
ПРИМЕРЫ
Пример 1
Дифференциация клеток человеческой эмбриональной линии H1 в клетки-предшественники эндокринных клеток поджелудочной железы в культуральной среде без ФБС и с добавлением ингибитора CYP26A
Клетки линии человеческих эмбриональных стволовых клеток H1 (p40-p50) культивировали на чашках, покрытых субстратом МАТРИГЕЛЬ® (разведение 1:30) (BD Biosciences; Кат. № 356231) в среде MEF-CM (среда, кондиционированная мышиными эмбриональными фибробластами) в виде колоний, и дифференцировали в клетки-предшественники эндокринных клеток поджелудочной железы следующим образом:
a. Стадия I (сформированная эндодерма): Человеческие эмбриональные стволовые клетки культивировали в среде RPMI с добавлением 2% БСА без жирных кислот (кат. № 68700, Proliant, Огайо, США), 100 нг/мл активина A (R&D Systems, Миннесота, США, 20 нг/мл WNT-3a (№ по каталогу 1324-WN-002, R&D Systems, Миннесота, США) и 8 нг/мл bFGF (№ по каталогу 00-18B, PeproTech, Нью-Джерси, США) в течение суток, затем использовали среду RPMI с добавлением 2% БСА, 100 нг/мл активина A, 8 нг/мл bFGF в течение еще двух суток; затем
b. Стадия II (клетки первичной кишечной трубки): Клетки культивировали в RPMI + 2% БСА без жирных кислот и 50 нг/мл FGF7 в течение 2 суток, затем
с. Стадия III (задний отдел передней кишки): Клетки помещали в среду DMEM/с высокой концентрацией глюкозы с добавлением ITS-X в разведении 1:200 (Invitrogen, Калифорния), 0,1% БСА (богатого липидами) (Invitrogen, кат. № 11021-045), 50 нг/мл FGF7, 0,25 мкM SANT-1, 2 мкмоль/л ретиноевой кислоты (РК) (Sigma, Миссури),100 нг/мл белка Noggin (R&D Systems, Миннесота), 2,5 мкмоль/л 4-[4-(4-фторфенил)-1-(3-фенилпропил)-5-пиридин-4-ил-1H-имидазол-2-ил]бут-3-ин-1-ола (ингибитор P38, описанный в патенте США № 6521655) и активина A 20 нг/мл на пять суток, затем
D. Стадия IV (предшественник эндокринных клеток поджелудочной железы): Клетки помещали в среду DMEM/высокую концентрацию глюкозы с добавлением ITS-X в разведении ITS-X (Invitrogen, Калифорния), 0,1% БСА (Invitrogen, Калифорния), 100 нг/мл белка Noggin, 1 мкмоль/л ингибитора ALK5(SD-208, описанного в Molecular Pharmacology 2007 72:152-161), 500 нмоль/л TPB (модулятор белка-предшественника α-амилоида) (Кат. № 565740, EMD, Калифорния), 10-100 нмоль/л ингибитора CYP26A N-{4-[2-этил-1-(1H-1, 2, 4-триазол-1-ил)бутил]фенил}-1, 3-бензотиазол-2-амина и 10-100 нмоль/л витамина А (Кат. № R7632, Sigma, Миссури) в течение 4 суток, или
В некоторых культурах стадию IV продлевали до 6 суток. мРНК выделяли на стадиях III и IV для анализа генов панкреатических клеток методом ПЦР в реальном времени. Как показано на фиг. 1, добавление ингибитора CYP26A на стадии IV значительно усиливало экспрессию предшественников эндокринных клеток (NGN3, Pax4, NeuroD) вместе с маркером панкреатической эндодермы NKX6.1 в зависимости от дозы. Добавление витамина А вместе с ингибитором CYP26A значительно не изменяло экспрессию маркеров панкреатической эндодермы или предшественников эндокринных клеток. Кроме того, добавление ингибитора CYP26A на стадии IV уменьшало экспрессию CDX2 (маркера кишечных клеток) и альбумина (маркера клеток печени). Иммунохимическое окрашивание на NGN3 (Кат. № AF3444, R&D systems, MN) на стадии IV очевидно показало значительное ускорение экспрессии NGN3 в культурах с добавлением 100 нмоль/л ингибитора CYP26A.
Пример 2
Альтернативный способ дифференцирования клеток человеческой эмбриональной линии стволовых клеток H1 в клетки-предшественники эндокринных клеток поджелудочной железы в питательной среде без ФБС с ингибитором CYP26A
Стволовые клетки человеческой эмбриональной линии H1 (p40-p52) высевали по отдельности из суспензии 100000 кл./см2 на чашки, покрытие субстратом МАТРИГЕЛЬ® (разведение 1:30) (BD Biosciences; Кат. № 356231) в MEF-CM (среду, кондиционированную мышиными фибробластами) с добавлением 16 нг/мл FGF2 (Кат. № 100-18B, PeproTech, Нью Джерси) и 10 мкмоль/л Y27632 (ингибитор Rock, Кат. № Y0503, Sigma, Миссури). Через 72 ч после посева культуры дифференцировали в сформированную эндодерму (СЭ) следующим образом:
a. Стадия I (сформированная эндодерма): Человеческие эмбриональные клетки культивировали на среде MCDB-131 (Кат. № 10372-019, Invitrogen, Калифорния) с добавлением 2% БСА без жирных кислот (кат. № 68700, Proliant, Айова), 0,0025 г/мл бикарбоната натрия (Кат. № S3187, Sigma, Миссури), 1X ГлутаМакса™ (кат. № 35050-079, Invitrogen, Калифорния) и 100 нг/мл активина A (R&D Systems, MN) + 20 нг/мл WNT-3a (кат. № 1324-WN-002, R&D Systems, MN) в течение суток, затем использовали среду MCDB-131 с добавлением 2% БСА, натрия бикарбоната, Глутамакса и 100 нг/мл активина A каждый день в течение последующих трех суток, затем
b. Стадия II (клетки первичной кишечной трубки): Клетки культивировали на среде MCDB-131 + 2% БСА без жирных кислот + 50 нг/мл FGF7 в течение 3 суток, затем
с. Стадия III (задний отдел передней кишки): Клетки культивировали в среде MCDB-131/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури), 0,1% БСА (богатого липидами) (Invitrogen, Калифорния № 11021-045), 50 нг/мл FGF7, 0,25 мкмоль/л SANT-1, 2 мкмоль/л ретиноевой кислоты (РК) (Sigma, Миссури), 2,5 мкмоль/л 4-[4-(4-фторфенил)-1-(3-фенилпропил)-5-пиридин-4-ил-1H-имидазол-2-ил]бут-3-ин-1-ол (ингибитор p38, описанный в патенте США № 6521655), 100 нмоль/л LDN-193189 (ингибитор рецептора BMP, Кат. № 04-0019, Stemgent, Калифорния), 500 нмоль/л ингибитора CYP26A N-{4-[2-этил-1-(1H-1, 2, 4-триазол-1-ил)бутил]фенил}-1, 3-бензотиазол-2-амин и активин A 20 нг/мл в течение четырех суток, затем
D. Стадия IV (предшественник эндокринных клеток поджелудочной железы): Клетки культивировали в среде MCDB-131/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури) Sigma Миссури, 1 мкмоль/л ингибитора ALK5 (SD-208, описан в Molecular Pharmacology 2007 72:152-161), 500 нмоль/л PDBu (активатор PKC) (Кат. № P1269, Sigma, Миссури), 100 нмоль/л LDN-193189 (ингибитор рецептора BMP, кат. № 04-0019, Stemgent, Калифорния), 0,25 мкмоль/л SANT-1 (#S4572, Sigma, Миссури) и 500 нмоль/л ингибитора CYP26A N-{4-[2-этил-1-(1H-1, 2, 4-триазол-1-ил)бутил]фенил}-1, 3-бензотиазол-2-амина в течение 7 суток, или
E. Стадия IV (предшественник эндокринных клеток поджелудочной железы): Клетки культивировали в среде MCDB-131/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури), 1 мкмоль/л ингибитора ALK5 (SD-208, описан в Molecular Pharmacology 2007 72:152-161), 500 нмоль/л PDBu (активатор PKC) (Кат. № P1269, Sigma, Миссури), 100 нмоль/л LDN-193189 (ингибитор рецептора BMP кат. № 04-0019, Stemgent, Калифорния), 0,25 мкмоль/л SANT-1 (#S4572, Sigma, Миссури) в течение 7 суток.
мРНК для анализа генов клеток поджелудочной железы методом ПЦР в реальном времени выделяли на стадиях III и IV. Как и в описанном выше Примере 1 добавление ингибитора CYP26A на стадии IV усиливало экспрессию маркеров предшественников эндокринных клеток, например, NGN3 и NeuroD. (См. фиг. 2). Добавление ингибитора на стадиях III и IV дополнительно усиливало экспрессию NGN3 и NeuroD. Удивительно, что добавление ингибитора CYP26A на стадии III (в присутствии ретиноевой кислоты) значительно подавляло PDX-1 и NKX6.1, усиливая экспрессию CDX2. Эти результаты позволяют предположить, что оптимальной стадией для добавления ингибитора CYP26A является стадия IV.
Пример 3
Альтернативный способ дифференцирования клеток человеческой эмбриональной линии стволовых клеток H1 в эндокринные клетки поджелудочной железы в питательной среде без ФБС с ингибитором CYP26A
Стволовые клетки человеческой эмбриональной линии H1 (p40-p52) высевали отдельными клетками из суспензии 100000 кл./см2 на чашки, покрытые субстратом МАТРИГЕЛЬ® (разведение 1:30) (BD Biosciences; Кат. № 356231), в MEF-CM (среду, кондиционированную мышиными фибробластами) с добавлением 16 нг/мл FGF2 (Кат. № 100-18B, PeproTech, NJ) и 10 мкмоль/л Y27632 (ингибитор Rock, Кат. № Y0503, Sigma, Миссури). Через 72 ч после посева культуры дифференцировали в сформированную эндодерму (СЭ) следующим образом:
a. Стадия I (сформированная эндодерма): Человеческие эмбриональные стволовые клетки высевали одиночно на чашки, покрытые субстратом МАТРИГЕЛЬ, со средой MCDB-131 (Кат. № 10372-019, Invitrogen, Калифорния) с добавлением 2% БСА без жирных кислот (Кат. № 68700, Proliant, Айова), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния) и 100 нг/мл GDF-8 (R&D Systems, MN) + 2,5 мкмоль/л ингибитора GSK3B 14-проп-2-ен-1-ил-3,5,7,14,17,23,27-гептаазотетрацикло[19.3.1.1~2,6~.1~8,12~]гептакоза-1(25),2(27),3,5,8(26),9,11,21,23-нонаен-16-она в течение суток, затем использовали среду MCDB-131 с 2% БСА, натрия бикарбонатом, Глутамаксом и 100 нг/мл GDF-8 следующие трое суток, затем
b. Стадия II (клетки первичной кишечной трубки): Клетки культивировали в среде MCDB-131+2% БСА без жирных кислот +50 нг/мл FGF7 в течение 3 суток, затем
с. Стадия III (задний отдел передней кишки): Клетки культивировали в среде MCDB131 /высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната Кат. № S3187, Sigma, Миссури), 0,1% БСА (богатого липидами) (Invitrogen, Калифорния No. 11021-045), 50 нг/мл FGF7, 0,25 мкмоль/л SANT-1, 2 мкмоль/л ретиноевой кислоты (РК) (Sigma, Миссури), 2,5 мкмоль/л 4-[4-(4-фторфенил)-1-(3-фенилпропил)-5-пиридин-4-ил-1H-имидазол-2-ил]бут-3-ин-1-ола, 100 нмоль/л LDN-193189 (ингибитор рецептора BMP Кат. № 04-0019, Stemgent, Калифорния) и активина A 20 нг/мл в течение четырех суток, затем
D. Стадия IV (предшественники клеток поджелудочной железы): Клетки культивировали в среде MCDB131/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 0,5% БСА (Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури), 100 нмоль/л LDN-193189 (ингибитор рецептора BMP, кат. № 04-0019, Stemgent, Калифорния), 50 нмоль/л PDBu (активатор PKC) (кат. №P1269, Sigma, Миссури), 0,25 мкмоль/л SANT-1 (#S4572, Sigma, Миссури) и 100 нмоль/л ингибитора CYP26A N-{4-[2-этил-1-(1H-1, 2, 4-триазол-1-ил)бутил]фенил}-1, 3-бензотиазол-2-амина в течение 3 суток, затем
E. Стадия V (предшественники эндокринных клеток поджелудочной железы): Клетки культивировали в среде MCDB13/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури), 100 нмоль/л LDN-193189 (ингибитор рецептора BMP, кат. № 04-0019, Stemgent, Калифорния), 0,25 мкмоль/л SANT-1 (#S4572, Sigma, Миссури), 2 мкмоль/л ингибитора ALK5 (SD-208, описан в Molecular Pharmacology 2007 72:152-161) и 100 нмоль/л ингибитора CYP26A N-{4-[2-этил-1-(1H-1, 2, 4-триазол-1-ил)бутил]фенил}-1, 3-бензотиазол-2-амина в течение 3 суток, затем F. Стадия VI (незрелые клетки поджелудочной железы, экспрессирующие гормоны): Клетки культивировали в среде MCDB131/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 0,1% БСА (Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури) 100 нмоль/л LDN-193189 (ингибитор рецептора BMP, Кат. № 04-0019, Stemgent, Калифорния) и 2 мкмоль/л ингибитора ALK5 (SD-208, описан в Molecular Pharmacology 2007 72:152-161) в течение 3 суток, затем
G. Стадия VII (Клетки поджелудочной железы, экспрессирующие гормоны): Клетки культивировали на среде MCDB131/высокой концентрации глюкозы (25 ммоль/л глюкозы) с добавлением ITS-X в разведении 1:200 Invitrogen, Калифорния), 0,1% БСА (Invitrogen, Калифорния), 1X ГлутаМакса™ (Кат. № 35050-079, Invitrogen, Калифорния), 0,0025 г/мл натрия бикарбоната (Кат. № S3187, Sigma, Миссури) 100 нмоль/л LDN-193189 (ингибитор рецептора BMP Кат. № 04-0019, Stemgent, Калифорния), 2 мкмоль/л ингибитора ALK5 (SD-208, описан в Molecular Pharmacology 2007 72:152-161) и 100 нмоль/л витамина А (Кат. № R7632, Сигма, Миссури) в течение 3 суток.
В некоторых культурах стадию VII продлевали до 18 дней. На стадиях V, VI отбирали пробы для ПЦР в реальном времени, иммунофлуоресцентного анализа (ИФА) и флуоресцентной проточной цитометрии. И при проточной цитометрии, и при иммунофлуоресцентном анализе антитела к NKX6.1 получали из банка гибридом Университета Айовы (Кат. № F55A12), антитела к CDX2 приобретали в компании Abcam (Кат. № ab76541, Кембридж, Массачусетс), а антитела к PDX-1 приобретали в компании Abcam (Кат. № ab47267). На фиг. 3 показана морфология культур на разных стадиях дифференциации. После стадии II культуры имели однородную морфологию на стадиях III-VI. На фиг. 4 показана экспрессия NKX6.1 по результатам флуоресцентной проточной цитометрии на разных стадиях дифференциации. На этом чертеже подчеркивается, что протокол, описанный в Примере 3, позволяет сохранить высокую экспрессию NKX6.1 на поздних стадиях дифференциации. На фиг. 4 показаны результаты иммунофлуоресцентного окрашивания на PDX1, NKX6.1, и CDX2 на стадиях V и VII по протоколу. Более 90% NKX6.1-положительных клеток также положительны по PDX1, однако менее 10% клеток положительны по CDX2.
Публикации, цитируемые в настоящем документе, полностью включаются в настоящий документ посредством ссылки. Хотя различные аспекты изобретения иллюстрируются выше ссылками на примеры и предпочтительные варианты осуществления, подразумевается, что область изобретения ограничивается не упомянутым выше описанием, а следующими пунктами формулы изобретения, составленными в соответствии с принципами патентного законодательства.

Claims (23)

1. Способ дифференцирования популяции клеток заднего сегмента передней кишки в популяцию клеток-предшественников эндокринных клеток поджелудочной железы, включающий культивирование популяции клеток заднего сегмента передней кишки в среде, дополненной ингибитором CYP26A, где клетки заднего сегмента передней кишки получают из линий эмбриональных стволовых клеток человека H1, H7, H9 или SA002 или из неэмбриональных клеток, экспрессирующих по меньшей мере один из следующих маркеров, характерных для плюрипотентных клеток: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, HTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60 и Tra 1-81, и где среда представляет собой среду DMEM с высокой концентрацией глюкозы или среду MCDB-131 с высокой концентрацией глюкозы.
2. Способ по п. 1, в котором ингибитор CYP26A используют в концентрации от приблизительно 1 нмоль до приблизительно 1000 нмоль.
3. Способ по п. 1, в котором ингибитор CYP26A используют в концентрации от 10 нмоль до 100 нмоль.
4. Способ по п. 1, в котором ингибитор CYP26A представляет собой N-{4-[2-этил-1-(1H-1,2,4-триазол-1-ил)бутил]фенил}-1,3-бензотиазол-2-амин.
5. Способ по п. 1, в котором обработка повышает экспрессию маркеров предшественников эндокринных клеток NGN3, Pax4, NeuroD.
6. Способ по п. 1, в котором обработка уменьшает экспрессию CDX2 и альбумина.
7. Способ по п. 1, в котором среда, дополненная ингибитором CYP26A, дополнительно дополнена по меньшей мере одним фактором, выбранным из группы, состоящей из фактора, способного ингибировать BMP, ингибитора сигнального каскада рецепторов TGFβ и активатора РКС.
8. Способ по п. 7, в котором фактор, способный ингибировать BMP, включает Noggin.
9. Способ по п. 7, в котором ингибитор сигнального каскада рецепторов TGFβ включает ингибитор ALK5.
10. Способ по п. 9, в котором ингибитором ALK5 является ингибитор ALK5 II.
11. Способ по п. 7, в котором активатор РКС выбран из группы, состоящей из (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиемоиламино)бензолактама, индолактама V (ILV), форбол-12-миристат-13-ацетата (PMA) и форбол-12,13-дибутирата (PDBu).
12. Способ по п. 1, в котором клетки заднего сегмента передней кишки получены путем ступенчатой дифференцировки клеток из линий эмбриональных стволовых клеток человека H1, H7, H9.
13. Способ по п. 12, в котором клетки заднего сегмента передней кишки получены культивированием популяции клеток первичной кишечной трубки в среде, дополненной ретиноевой кислотой и ингибитором P38.
14. Способ по п. 1, в котором клетки заднего сегмента передней кишки получены из клеток из линии эмбриональных стволовых клеток человека H1.
15. Способ по п. 1, дополнительно включающий дифференциацию клеток-предшественников эндокринных клеток поджелудочной железы в клетки, не экспрессирующие панкреатический гормон.
16. Способ по п. 15, где клетки-предшественники эндокринных клеток поджелудочной железы дифференцируются путем культивирования клеток в среде, дополненной ингибитором рецептора BMP и ингибитором ALK5.
17. Способ по п. 16, где ингибитор BMP представляет собой LDN-193189 и/или где ингибитор ALK5 представляет собой SD-208.
18. Способ по пп. 1, 15 или 16, дополнительно включающий дифференциацию незрелых клеток, экспрессирующих панкреатический гормон, в клетки, экспрессирующие панкреатический гормон.
19. Способ по п. 18, где способ включает культивирование незрелых клеток, экспрессирующих панкреатический гормон, в среде, дополненной ингибитором BMP, ингибитором ALK5 и ретиноидом.
20. Способ по п. 19, где среда дополнена LDN-193189, SD-208 и витамином A.
21. Способ по п. 1, где плюрипотентные клетки представляют собой клетки, полученные из линий эмбриональных стволовых клеток человека H1, H7, H9 или SA002.
22. Способ по п. 1, где среда представляет собой среду DMEM с высокой концентрацией глюкозы.
23. Способ по п. 1, где среда представляет собой среду MCDB-131 с высокой концентрацией глюкозы.
RU2016135361A 2010-08-31 2011-08-17 Дифференцирование плюрипотентных стволовых клеток RU2673946C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37848010P 2010-08-31 2010-08-31
US61/378,480 2010-08-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2013114374/10A Division RU2599420C2 (ru) 2010-08-31 2011-08-17 Дифференцирование плюрипотентных стволовых клеток

Publications (1)

Publication Number Publication Date
RU2673946C1 true RU2673946C1 (ru) 2018-12-03

Family

ID=45697776

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016135361A RU2673946C1 (ru) 2010-08-31 2011-08-17 Дифференцирование плюрипотентных стволовых клеток
RU2013114374/10A RU2599420C2 (ru) 2010-08-31 2011-08-17 Дифференцирование плюрипотентных стволовых клеток

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2013114374/10A RU2599420C2 (ru) 2010-08-31 2011-08-17 Дифференцирование плюрипотентных стволовых клеток

Country Status (16)

Country Link
US (2) US9181528B2 (ru)
EP (1) EP2611907B1 (ru)
JP (2) JP6133776B2 (ru)
KR (1) KR101836855B1 (ru)
CN (1) CN103154237B (ru)
AR (1) AR082821A1 (ru)
AU (1) AU2011296383B2 (ru)
BR (1) BR112013004614A2 (ru)
CA (1) CA2809305C (ru)
ES (1) ES2585028T3 (ru)
HK (1) HK1186492A1 (ru)
MX (1) MX348537B (ru)
PL (1) PL2611907T3 (ru)
RU (2) RU2673946C1 (ru)
SG (1) SG187947A1 (ru)
WO (1) WO2012030540A2 (ru)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
CA3207103A1 (en) 2007-07-31 2009-02-05 Janssen Biotech, Inc. Differentiation of human embryonic stem cells to pancreatic endocrine
WO2009070592A2 (en) 2007-11-27 2009-06-04 Lifescan, Inc. Differentiation of human embryonic stem cells
KR20170001727A (ko) 2008-02-21 2017-01-04 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
CN102159703B (zh) 2008-06-30 2015-11-25 森托科尔奥索生物科技公司 多能干细胞的分化
US9012218B2 (en) 2008-10-31 2015-04-21 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
RU2522001C2 (ru) 2008-10-31 2014-07-10 Сентокор Орто Байотек Инк. Дифференцирование человеческих эмбриональных стволовых клеток в линию панкреатических эндокринных клеток
MX2011005289A (es) 2008-11-20 2011-06-01 Centocor Ortho Biotech Inc Metodos y composiciones para union y cultivo celular sobre sustratos planares.
KR101774546B1 (ko) 2008-11-20 2017-09-04 얀센 바이오테크 인코포레이티드 마이크로-캐리어 상의 만능 줄기 세포 배양
US10076544B2 (en) 2009-07-20 2018-09-18 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
KR101928299B1 (ko) 2010-03-01 2018-12-12 얀센 바이오테크 인코포레이티드 만능 줄기 세포로부터 유래된 세포의 정제 방법
WO2011140441A2 (en) 2010-05-06 2011-11-10 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
BR112012028855A2 (pt) 2010-05-12 2015-09-22 Janssen Biotech Inc diferenciação das células-tronco embrionárias humanas
EP3372672A1 (en) 2010-08-31 2018-09-12 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
SG10201506852VA (en) 2010-08-31 2015-10-29 Janssen Biotech Inc Differentiation of human embryonic stem cells
CN105143446B (zh) 2011-12-22 2020-11-03 詹森生物科技公司 人胚胎干细胞分化成单一激素胰岛素阳性细胞
AU2013230020B2 (en) 2012-03-07 2018-08-09 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
US20140162359A1 (en) * 2012-05-07 2014-06-12 Janssen Biotech, Inc. Differentiation of Human Embryonic Stem Cells into Pancreatic Endoderm
KR102285014B1 (ko) 2012-06-08 2021-08-03 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 췌장 내분비 세포로의 분화
BR112014031676A2 (pt) * 2012-06-26 2017-10-31 Seraxis Inc composição, e, métodos para gerar uma composição e para gerar células pancreáticas substitutas
EP2893000B1 (en) 2012-09-03 2019-04-10 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
RU2768963C2 (ru) * 2012-12-31 2022-03-25 Янссен Байотек, Инк. Культивация эмбриональных стволовых клеток человека в воздушно-жидкостной зоне взаимодействия с целью их дифференцировки в панкреатические эндокринные клетки
US10370644B2 (en) * 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
CN105705634A (zh) * 2012-12-31 2016-06-22 詹森生物科技公司 用于分化成胰腺内分泌细胞的人多能细胞的悬浮和群集
RU2684215C2 (ru) * 2012-12-31 2019-04-04 Янссен Байотек, Инк. Способ получения панкреатических эндокринных клеток (варианты) и способ увеличения выхода бета-клеток
KR102523912B1 (ko) 2013-06-11 2023-04-21 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 SC-β 세포 및 조성물 그리고 그 생성 방법
WO2015098962A1 (ja) * 2013-12-25 2015-07-02 東亞合成株式会社 多能性幹細胞から内胚葉系細胞への分化誘導方法
SG11201609473XA (en) 2014-05-16 2016-12-29 Janssen Biotech Inc Use of small molecules to enhance mafa expression in pancreatic endocrine cells
JP6687544B2 (ja) * 2014-05-28 2020-04-22 チルドレンズ ホスピタル メディカル センター 前駆細胞を指向性分化によって胃組織に変換するための方法及びシステム
US20170304369A1 (en) * 2014-10-08 2017-10-26 Agency For Science, Technology And Research Methods of differentiating stem cells into liver cell lineages
AU2015331848B2 (en) 2014-10-17 2022-03-03 Children's Hospital Medical Center, D/B/A Cincinnati Children's Hospital Medical Center In vivo model of human small intestine using pluripotent stem cells and methods of making and using same
WO2016100898A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof
CN107614678B (zh) 2014-12-18 2021-04-30 哈佛学院校长同事会 干细胞来源的β细胞的产生方法及其使用方法
EP4374863A2 (en) 2014-12-18 2024-05-29 President and Fellows of Harvard College Methods for generating stem cell-derived beta cells and uses thereof
JP6691756B2 (ja) 2015-09-29 2020-05-13 東亞合成株式会社 合成ペプチドを用いた神経幹細胞の生産方法
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
WO2017192997A1 (en) 2016-05-05 2017-11-09 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
JP7068305B2 (ja) 2016-12-05 2022-05-16 チルドレンズ ホスピタル メディカル センター 結腸オルガノイドならびにその作製方法および使用方法
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
MX2020004939A (es) * 2017-11-15 2020-11-11 Semma Therapeutics Inc Fabricacion de composiciones de celulas islote y metodos de uso de las mismas.
AU2019320072A1 (en) 2018-08-10 2021-02-25 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
US10724052B2 (en) 2018-09-07 2020-07-28 Crispr Therapeutics Ag Universal donor cells
RS63573B1 (sr) 2019-03-13 2022-10-31 Valvoline Licensing & Intellectual Property LLC Pogonski fluid sa poboljšanim osobinama na niskim temperaturama
EP3976237A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates Inc. Cell encapsulation devices with controlled oxygen diffusion distances
EP3975925A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates, Inc. A biocompatible membrane composite
US20220234006A1 (en) 2019-05-31 2022-07-28 W. L. Gore & Associates, Inc. A biocompatible membrane composite
US20220233298A1 (en) 2019-05-31 2022-07-28 W. L. Gore & Associates, Inc. A biocompatible membrane composite
JP7385244B2 (ja) * 2019-06-27 2023-11-22 国立大学法人 東京大学 膵前駆細胞の分離方法
WO2021044377A1 (en) 2019-09-05 2021-03-11 Crispr Therapeutics Ag Universal donor cells
US11104918B2 (en) 2019-09-05 2021-08-31 Crispr Therapeutics Ag Universal donor cells
JP2024503291A (ja) 2020-12-31 2024-01-25 クリスパー セラピューティクス アクチェンゲゼルシャフト ユニバーサルドナー細胞
CN113234664B (zh) * 2021-05-11 2024-05-10 澳门大学 一种胰腺祖细胞的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004117530A (ru) * 2001-11-09 2005-03-27 Артесел Сайенсиз, Инк. (Us) Дифференцировка стромальных клеток, полученных из жировой ткани, в эндокринные клетки поджелудочной железы и их использование

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5804178A (en) 1986-11-20 1998-09-08 Massachusetts Institute Of Technology Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (ru) 1993-11-19 1995-09-21 Ciba Geigy
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
CN1075387C (zh) 1994-12-29 2001-11-28 中外制药株式会社 含有il-6拮抗剂的抗肿瘤剂的作用增强剂
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
HUP0002842A3 (en) 1997-04-24 2002-01-28 Ortho Mcneil Pharm Inc Substituted imidazoles, process for producing them, pharmaceutical compositions containing them, their use and their intermediates
DE69837491T2 (de) 1997-07-03 2008-01-17 Osiris Therapeutics, Inc. Menschliche mesenchymale stammzellen aus peripherem blut
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
WO1999014318A1 (en) 1997-09-16 1999-03-25 Board Of Regents, The University Of Texas System Method for the complete chemical synthesis and assembly of genes and genomes
WO1999020741A1 (en) 1997-10-23 1999-04-29 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells
CO4980885A1 (es) 1997-12-29 2000-11-27 Ortho Mcneil Pharm Inc Compuestos de trifenilpropanamida utiles en el tratamiento de inflamaciones y metodos para preparar dicho compuesto
EP1066052B1 (en) 1998-03-18 2006-02-01 Osiris Therapeutics, Inc. Mesenchymal stem cells for prevention and treatment of immune responses in transplantation
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
EP1144597A2 (en) 1999-01-21 2001-10-17 Vitro Diagnostics, Inc. Immortalized cell lines and methods of making the same
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
EP1224259A4 (en) 1999-09-27 2005-04-27 Univ Florida INVERSION OF INSULIN DEPENDENT DIABETES BY ISOLATED STEM CELLS, PROGENITOR ISLANDIC CELLS, AND INSULAR TYPE STRUCTURES
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
AU778155B2 (en) 1999-12-13 2004-11-18 Scripps Research Institute, The Markers for identification and isolation of pancreatic islet alpha and beta cell progenitors
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
WO2002000849A1 (fr) 2000-06-26 2002-01-03 Renomedix Institute Inc. Fraction cellulaire contenant des cellules capables de se differencier en cellules du systeme nerveux
IL155367A0 (en) 2000-10-23 2003-12-23 Smithkline Beecham Corp NOVEL 2,4,8-TRISUBSTITUTED-8h-PYRIDO[2,3,-d]PYRIMIDIN-7-ONE COMPOUNDS, PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME, PROCESSES FOR THE PREPARATION THEREOF, AND USE THEREOF IN THE PREPARATION OF MEDICAMENTS FOR TREATING CSBP/p38 KINASE MEDIATED DISEASES
EP1345946B1 (en) 2000-12-08 2005-08-10 Ortho-McNeil Pharmaceutical, Inc. Macroheterocylic compounds useful as kinase inhibitors
ES2263681T3 (es) 2000-12-08 2006-12-16 Ortho-Mcneil Pharmaceutical, Inc. Compuestos de pirrolina indazolil-substituidos como inhibidores de la kinasa.
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
WO2002059278A2 (en) 2001-01-24 2002-08-01 The Government Of The United States Of America, As Represented By The Secretary Of Department Of Health & Human Services Differentiation of stem cells to pancreatic endocrine cells
JP4162491B2 (ja) 2001-01-25 2008-10-08 アメリカ合衆国 ボロン酸化合物製剤
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
WO2002086107A2 (en) 2001-04-19 2002-10-31 DeveloGen Aktiengesellschaft für entwicklungsbiologische Forschung A method for differentiating stem cells into insulin-producing cells
EP1391505B1 (en) 2001-04-24 2009-01-28 Ajinomoto Co., Inc. Stem cells and method of separating the same
JP2004531262A (ja) 2001-05-15 2004-10-14 ラッパポート ファミリー インスチチュート フォア リサーチ イン ザ メディカル サイエンシズ ヒト胚性幹細胞由来インスリン産生細胞
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
AU2002319780A1 (en) 2001-08-06 2003-02-24 Bresagen, Ltd. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
JP2005506074A (ja) 2001-10-18 2005-03-03 イクシオン・バイオテクノロジー・インコーポレーテッド 肝臓の幹細胞および前駆細胞の膵臓機能細胞への転換
JP4330995B2 (ja) 2001-11-15 2009-09-16 チルドレンズ メディカル センター コーポレーション 絨毛膜絨毛、羊水、および胎盤からの胎児性幹細胞を単離、増殖、および分化させる方法、ならびにその治療的使用方法
GB2399823B (en) 2001-12-07 2006-02-15 Geron Corp Islet cells from primate pluripotent stem cells
BR0214772A (pt) 2001-12-07 2007-01-09 Macropore Biosurgery Inc sistemas e métodos para o tratamento de pacientes com células lipoaspiradas processadas
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
AU2002367091A1 (en) 2001-12-28 2003-07-15 Cellartis Ab A method for the establishment of a pluripotent human blastocyst-derived stem cell line
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
AU2003231358A1 (en) 2002-04-17 2003-10-27 Otsuka Pharmaceutical Co., Ltd. METHOD OF FORMING PANCREATIC Beta CELLS FROM MESENCHYMAL CELLS
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
WO2003095452A1 (en) 2002-05-08 2003-11-20 Janssen Pharmaceutica N.V. Substituted pyrroline kinase inhibitors
US20060003446A1 (en) 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
WO2003102171A1 (en) 2002-05-28 2003-12-11 Becton, Dickinson And Company Expansion and transdifferentiation of human acinar cells
JP2005531609A (ja) 2002-06-05 2005-10-20 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ キナーゼ阻害剤としてのシスインドリル−マレイミド誘導体
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
US20040106216A1 (en) 2002-07-02 2004-06-03 Toyo Boseki Kabushiki Kaisha Method of measuring drug-metabolizing enzyme activity, method of evaluating inhibition of drug-metabolizing enzyme activity, and composition for these methods
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
US20040110287A1 (en) 2002-07-29 2004-06-10 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose responsive cells
AU2003262628A1 (en) 2002-08-14 2004-03-03 University Of Florida Bone marrow cell differentiation
EP1539928A4 (en) 2002-09-06 2006-09-06 Amcyte Inc POSIOTIVE PANCREATIC ENDOCRINE PROGENITOR CELLS CD56 IN ADULT HUMAN BEINGS
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
AU2003285172A1 (en) 2002-11-08 2004-06-03 The Johns Hopkins University Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
WO2004050827A2 (en) 2002-12-05 2004-06-17 Technion Research & Development Foundation Ltd. Cultured human pancreatic islets, and uses thereof
DK2457999T3 (en) 2002-12-16 2019-02-11 Technion Res & Dev Foundation CULTIVATION MEDIUM FOR PLURIPOTENT STEM CELLS
WO2005045001A2 (en) 2003-02-14 2005-05-19 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
US20070155661A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Standord Junior University Methods and compositions for modulating the development of stem cells
WO2004087885A2 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
AU2004252570C1 (en) 2003-06-27 2012-03-01 Ethicon, Incorporated Soft tissue repair and regeneration using postpartum-derived cells
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
WO2005017117A2 (en) 2003-08-14 2005-02-24 Martin Haas Multipotent amniotic fetal stem cells (mafsc) and banking of same
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
AU2004269395A1 (en) 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
JP2007515433A (ja) 2003-12-17 2007-06-14 アラーガン インコーポレイテッド Cyp26aおよびcyp26bの選択的阻害剤を使用するレチノイド反応性障害の処置方法
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
CN109628371B (zh) 2003-12-23 2021-02-19 维亚希特公司 定形内胚层
CN103898045B (zh) 2003-12-23 2019-02-01 维亚希特公司 定形内胚层
WO2005065354A2 (en) 2003-12-31 2005-07-21 The Burnham Institute Defined media for pluripotent stem cell culture
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
US20070298453A1 (en) 2004-02-12 2007-12-27 University Of Newcastle Upon Tyne Stem Cells
WO2005080598A1 (ja) 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
WO2005086860A2 (en) 2004-03-09 2005-09-22 Gang Xu Methods for generating insulin-producing cells
WO2005086845A2 (en) 2004-03-10 2005-09-22 Regents Of The University Of California Compositions and methods for growth of embryonic stem cells
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
KR20070029681A (ko) 2004-04-01 2007-03-14 위스콘신 얼럼나이 리서어치 화운데이션 줄기 세포의 내배엽 및 이자 혈통으로의 분화
CN103103158B (zh) 2004-04-27 2016-08-03 韦尔赛特公司 细胞培养基
WO2006016999A1 (en) 2004-07-09 2006-02-16 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
CA2576872C (en) 2004-08-13 2013-11-12 University Of Georgia Research Foundation, Inc. Compositions and methods for self-renewal and differentiation in human embryonic stem cells
US20080268533A1 (en) 2004-08-25 2008-10-30 University Of Georgia Research Foundation, Inc. Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
JP5420837B2 (ja) 2004-09-08 2014-02-19 ウィスコンシン アラムニ リサーチ ファンデーション 胚幹細胞の培地及び培養
CA2579652A1 (en) 2004-09-08 2006-03-16 Wisconsin Alumni Research Foundation Culturing human embryonic stem cells
WO2006083782A2 (en) 2005-01-31 2006-08-10 Es Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
EP1860950B1 (en) 2005-03-04 2017-04-19 Lifescan, Inc. Adult pancreatic derived stromal cells
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
US7998938B2 (en) 2005-04-15 2011-08-16 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
CN100425694C (zh) 2005-04-15 2008-10-15 北京大学 诱导胚胎干细胞向胰腺细胞分化的方法
EP1874367B1 (en) 2005-04-26 2011-07-06 Arhus Universitet Biocompatible material for surgical implants and cell guiding tissue culture surfaces
EP1899344A1 (en) 2005-06-10 2008-03-19 Irm, Llc Compounds that maintain pluripotency of embryonic stem cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
US20080199959A1 (en) 2005-06-21 2008-08-21 Ge Healthcare Bio-Sciences Ab Method For Cell Culture
CN101233226B (zh) 2005-06-22 2017-08-11 阿斯特利亚斯生物治疗股份公司 人胚胎干细胞的悬浮培养物
WO2007003525A2 (en) 2005-06-30 2007-01-11 Janssen Pharmaceutica N.V. Cyclic anilino-pyridinotriazines as gsk-3 inhibitors
US20090087907A1 (en) 2005-07-29 2009-04-02 Alice Pebay Compositions and Methods for Growth of Pluripotent Cells
WO2007016485A2 (en) 2005-07-29 2007-02-08 Athersys, Inc. Use of a gsk-3 inhibitor to maintain potency of cultured cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
WO2007027157A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving progenitor cell line
AU2006292021B2 (en) 2005-09-12 2012-05-31 Es Cell International Pte Ltd. Cardiomyocyte production
WO2008048671A1 (en) 2006-10-18 2008-04-24 University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
WO2007047509A2 (en) 2005-10-14 2007-04-26 Regents Of The University Of Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
CN101351547A (zh) 2005-10-27 2009-01-21 赛瑟拉公司 表达pdx1的背侧和腹侧前肠内胚层
PT1970446E (pt) 2005-12-13 2011-09-01 Univ Kyoto Factor de reprogramação nuclear
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
DK2420565T3 (en) 2006-02-23 2017-12-04 Viacyte Inc APPLICABLE COMPOSITIONS AND METHODS FOR CULTIVATING DIFFERENTIBLE CELLS
US8129182B2 (en) 2006-03-02 2012-03-06 Viacyte, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
EP2021462B1 (en) 2006-04-28 2019-01-09 Lifescan, Inc. Differentiation of human embryonic stem cells
AU2007248609B2 (en) 2006-05-02 2012-11-01 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
US7964402B2 (en) 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
CN101541953A (zh) 2006-06-02 2009-09-23 佐治亚大学研究基金会 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织
WO2007143193A1 (en) 2006-06-02 2007-12-13 University Of Georgia Research Foundation, Inc. Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
US8415153B2 (en) 2006-06-19 2013-04-09 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
PL2046946T3 (pl) 2006-06-26 2017-04-28 Lifescan, Inc. Hodowla pluripotencjalnych komórek macierzystych
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
US8968994B2 (en) 2006-07-06 2015-03-03 Jeremy Micah Crook Method for stem cell culture and cells derived therefrom
AU2007277364B2 (en) 2006-07-26 2010-08-12 Viacyte, Inc. Methods of producing pancreatic hormones
KR101331510B1 (ko) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
US20080091234A1 (en) 2006-09-26 2008-04-17 Kladakis Stephanie M Method for modifying a medical implant surface for promoting tissue growth
AU2007311026B2 (en) * 2006-10-17 2012-05-17 Stiefel Laboratories, Inc. Talarazole metabolites
WO2008048647A1 (en) 2006-10-17 2008-04-24 Cythera, Inc. Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
WO2008086005A1 (en) 2007-01-09 2008-07-17 University Of South Florida Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
WO2008094597A2 (en) 2007-01-30 2008-08-07 University Of Georgia Research Foundation, Inc. Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (mmc)
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
JP5738591B2 (ja) 2007-07-18 2015-06-24 ライフスキャン・インコーポレイテッドLifescan,Inc. ヒト胚幹細胞の分化
CA3207103A1 (en) 2007-07-31 2009-02-05 Janssen Biotech, Inc. Differentiation of human embryonic stem cells to pancreatic endocrine
EP2185691B1 (en) 2007-07-31 2018-03-14 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells
AU2008291930B2 (en) 2007-08-24 2014-04-17 Slotervaart Participaties Bv Compositions for the treatment of neoplastic diseases
WO2009061442A1 (en) 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
WO2009070592A2 (en) 2007-11-27 2009-06-04 Lifescan, Inc. Differentiation of human embryonic stem cells
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (ja) 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
US20100330677A1 (en) 2008-02-11 2010-12-30 Cambridge Enterprise Limited Improved Reprogramming of Mammalian Cells, and Cells Obtained
KR20170001727A (ko) 2008-02-21 2017-01-04 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
EP2479260B1 (en) 2008-03-17 2016-01-06 Agency For Science, Technology And Research Microcarriers for stem cell culture
DK2727998T3 (da) 2008-04-21 2019-08-26 Viacyte Inc Fremgangsmåder til oprensning af pancreatiske endodermceller afledt fra humane embryoniske stamceller
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
WO2009132083A2 (en) 2008-04-22 2009-10-29 President And Fellows Of Harvard College Compositions and methods for promoting the generation of pdx1+ pancreatic cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
WO2009154606A1 (en) 2008-06-03 2009-12-23 Cythera, Inc. Growth factors for production of definitive endoderm
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
CN102159703B (zh) 2008-06-30 2015-11-25 森托科尔奥索生物科技公司 多能干细胞的分化
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
RU2522001C2 (ru) 2008-10-31 2014-07-10 Сентокор Орто Байотек Инк. Дифференцирование человеческих эмбриональных стволовых клеток в линию панкреатических эндокринных клеток
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
JP5390624B2 (ja) 2008-11-04 2014-01-15 バイアサイト インク 幹細胞集合体懸濁液組成物、その分化方法
ES2667493T3 (es) 2008-11-14 2018-05-11 Viacyte, Inc. Encapsulación de células pancreáticas derivadas de células madre humanas pluripotentes
KR101774546B1 (ko) 2008-11-20 2017-09-04 얀센 바이오테크 인코포레이티드 마이크로-캐리어 상의 만능 줄기 세포 배양
ES2633935T3 (es) 2008-12-05 2017-09-26 Inserm - Institut National De La Santé Et De La Recherche Médicale Método y medio para la diferenciación neural de células pluripotentes
EP2456859A4 (en) 2009-07-20 2015-03-18 Janssen Biotech Inc DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS
US10076544B2 (en) 2009-07-20 2018-09-18 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US20120322152A1 (en) 2010-03-02 2012-12-20 Michael Raghunath Culture Additives To Boost Stem Cell Proliferation And Differentiation Response
BR112013002811A8 (pt) 2010-08-05 2020-01-28 Wisconsin Alumni Res Found meios básicos simplificados para cultura celular pluripotente de humano

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004117530A (ru) * 2001-11-09 2005-03-27 Артесел Сайенсиз, Инк. (Us) Дифференцировка стромальных клеток, полученных из жировой ткани, в эндокринные клетки поджелудочной железы и их использование

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KROON E. et al., Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo, Nature Biotechnology, 2008, Vol.26, No.4, pp.443-452. GILTAIRE S. et al., The CYP26 inhibitor R115866 potentiates the effects of all-trans retinoic acid on cultured human epidermal keratinocytes, British Journal of Dermatology, 2009, Vol.160, pp.505-513. KINKEL M.D. et al., Cyp26 enzymes Function in endoderm to regulate pancreatic field size, Proc Natl Acad Sci U S A, 2009, Vol. 106, N.19, pp. 7864-7869. LAVON N. et al., The Effect of Overexpression of Pdxl and Foxa2 on the Differentiation of Human Embryonic Stem Cells into Pancreatic Cells, STEM CELLS, 2006, Vol. 24, pp. 1923-1930. *

Also Published As

Publication number Publication date
JP6133776B2 (ja) 2017-05-24
EP2611907B1 (en) 2016-05-04
US9458430B2 (en) 2016-10-04
BR112013004614A2 (pt) 2024-01-16
AU2011296383A1 (en) 2013-03-07
MX2013002407A (es) 2013-04-05
WO2012030540A3 (en) 2012-05-31
HK1186492A1 (zh) 2014-03-14
EP2611907A4 (en) 2014-01-22
ES2585028T3 (es) 2016-10-03
US20120052576A1 (en) 2012-03-01
JP6353951B2 (ja) 2018-07-04
CN103154237A (zh) 2013-06-12
AR082821A1 (es) 2013-01-09
PL2611907T3 (pl) 2016-11-30
US20160040130A1 (en) 2016-02-11
CN103154237B (zh) 2016-03-16
JP2013536687A (ja) 2013-09-26
CA2809305A1 (en) 2012-03-08
RU2013114374A (ru) 2014-10-10
RU2599420C2 (ru) 2016-10-10
CA2809305C (en) 2019-06-11
WO2012030540A2 (en) 2012-03-08
JP2017163988A (ja) 2017-09-21
SG187947A1 (en) 2013-03-28
KR101836855B1 (ko) 2018-04-19
EP2611907A2 (en) 2013-07-10
US9181528B2 (en) 2015-11-10
MX348537B (es) 2017-06-07
AU2011296383B2 (en) 2016-03-10
KR20130101029A (ko) 2013-09-12

Similar Documents

Publication Publication Date Title
RU2673946C1 (ru) Дифференцирование плюрипотентных стволовых клеток
US20170327793A1 (en) Differentiation of human embryonic stem cells
US20170081634A1 (en) Differentiation of human embryonic stem cells
US9951314B2 (en) Differentiation of human embryonic stem cells