RU2563491C2 - Функциональная вставка со слоем питания - Google Patents

Функциональная вставка со слоем питания Download PDF

Info

Publication number
RU2563491C2
RU2563491C2 RU2013146694/05A RU2013146694A RU2563491C2 RU 2563491 C2 RU2563491 C2 RU 2563491C2 RU 2013146694/05 A RU2013146694/05 A RU 2013146694/05A RU 2013146694 A RU2013146694 A RU 2013146694A RU 2563491 C2 RU2563491 C2 RU 2563491C2
Authority
RU
Russia
Prior art keywords
ophthalmic lens
layers
thin
superimposed
lens according
Prior art date
Application number
RU2013146694/05A
Other languages
English (en)
Other versions
RU2013146694A (ru
Inventor
Рэндалл Б. ПЬЮ
Фредерик А. ФЛИТШ
Дэниел Б. ОТТС
Джеймс Дэниел РАЙЕЛЛ
Адам ТОНЕР
Original Assignee
Джонсон Энд Джонсон Вижн Кэа, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джонсон Энд Джонсон Вижн Кэа, Инк. filed Critical Джонсон Энд Джонсон Вижн Кэа, Инк.
Publication of RU2013146694A publication Critical patent/RU2013146694A/ru
Application granted granted Critical
Publication of RU2563491C2 publication Critical patent/RU2563491C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/083Electrooptic lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00807Producing lenses combined with electronics, e.g. chips
    • B29D11/00817Producing electro-active lenses or lenses with energy receptors, e.g. batteries or antennas
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Ceramic Products (AREA)

Abstract

Изобретение относится к устройству, состоящему из множества наложенных друг на друга функционализированных, слоев и к офтальмологической линзе, содержащей такое устройство. Техническим результатом заявленного изобретения является расширение терапевтического воздействия контактной линзы на глаз человека. Технический результат достигается устройством из наложенных друг на друга функционализированных слоев. При этом устройство содержит первую тонкослойную подложку, содержащую источник энергии и первую адгезивную пленку поверх первой поверхности первой тонкослойной подложки. Кроме того, устройство содержит вторую тонкослойную подложку, имеющую круговую кольцевую форму с внешним радиусом, который меньше радиуса первой тонкослойной подложки. Причем вторая тонкослойная подложка уложена на первую адгезивную пленку первой тонкослойной подложки. 2 н. и 22 з.п. ф-лы, 7 ил.

Description

СМЕЖНЫЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет по заявке на патент США № 13/401959, поданной 22 февраля 2012 г., и предварительной заявке на патент США № 61/454591, поданной 21 марта 2011 г. и озаглавленной «Способы и устройство для получения функциональной вставки со слоем питания», содержание которых включено в настоящую заявку путем ссылки.
ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
В настоящем изобретении описана функционализированная вставка для логического обрабатывающего устройства, образованная из множества наложенных друг на друга функциональных слоев, причем по меньшей мере один слой включает в себя источник энергии, а также в некоторых вариантах осуществления способы и устройство для изготовления офтальмологической линзы с функционализированной вставкой из множества наложенных друг на друга слоев.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Традиционно офтальмологическое устройство, такое как контактная линза, интраокулярная линза или пробка для слезной точки, включало в себя биосовместимое устройство с корректирующим, косметическим или терапевтическим свойством. Контактная линза, например, может обеспечить одно или более из: коррекции зрения; косметической коррекции; и терапевтических эффектов. Каждая функция обеспечивается определенной физической характеристикой линзы. Конструкция, придающая линзе светопреломляющее свойство, может обеспечивать коррекцию зрения. Внедрение в линзу пигмента может обеспечивать косметическую коррекцию. Внедрение в линзу активного агента может обеспечивать терапевтический эффект. Такие физические характеристики реализуются без запитывания линзы энергией. Традиционно пробка для слезной точки является пассивным устройством.
В последнее время высказываются предположения о возможности внедрения в контактную линзу активных компонентов. Некоторые компоненты могут включать в себя полупроводниковые устройства. Некоторые примеры продемонстрировали полупроводниковые устройства, встроенные в контактную линзу, помещенную на глаза животного. Также описана возможность запитывания энергией и активации активных компонентов несколькими способами внутри структуры самой линзы. Топология и размер пространства, образованного структурой линзы, создает новые сложные условия для определения различных функциональных возможностей. По существу, описания таких изобретений включают в себя дискретные устройства. Однако требования, предъявляемые к размеру и мощности существующих дискретных устройств, необязательно способствуют включению в устройство, используемое на глазу человека.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Соответственно, настоящее изобретение включает в себя конструкции компонентов, которые можно комбинировать для получения слоя наложенных друг на друга подложек, объединенных в дискретный блок. Наложенные друг на друга слои включают в себя один или более слоев, которые включают в себя источник энергии для по меньшей мере одного компонента, включенного в наложенные друг на друга слои. В некоторых вариантах осуществления представлена вставка, которая может быть запитана энергией и внедрена в офтальмологическое устройство. Вставка может быть образована множеством слоев, каждый из которых может иметь собственные функциональные возможности, или альтернативно может иметь смешанные функциональные возможности, но во множестве слоев. В некоторых вариантах осуществления слои могут быть предназначены для запитывания энергией изделия или активации изделия, либо для контроля функциональных компонентов внутри корпуса линзы. Кроме того, представлены способы и устройство для формирования офтальмологической линзы со вставками из наложенных друг на друга функционализированных слоев.
В некоторых вариантах осуществления вставка может содержать слой в запитываемом энергией состоянии, который способен обеспечивать энергией компонент, способный потреблять ток. Компоненты могут включать в себя, например, один или более из: элемента линзы с изменяемыми оптическими свойствами и полупроводникового устройства, которые могут быть либо размещены во вставке из наложенных друг на друга слоев, либо связаны с ним иным способом.
В другом аспекте некоторые варианты осуществления могут включать в себя литую контактную линзу из силиконового гидрогеля с жесткой или формуемой вставкой из наложенных друг на друга функционализированных слоев, содержащейся в офтальмологической линзе биосовместимым образом, причем по меньшей мере одна функционализированная линза включает в себя источник энергии.
Соответственно, настоящее изобретение включает в себя раскрытие офтальмологической линзы с частью наложенных друг на друга функционализированных слоев, устройства для формирования офтальмологической линзы с частью наложенных друг на друга функционализированных слоев и способов такого формирования. Вставка может быть образована из множества слоев разными способами, как описано в настоящем документе, и размещена в непосредственной близости от одной или обеих из первой части формы для литья и второй части формы для литья. Реакционную смесь мономера помещают между первой частью формы для литья и второй частью формы для литья. Первую часть формы для литья размещают в непосредственной близости от второй части формы для литья, тем самым образуя полость линзы со вставкой запитываемой энергией подложки и по меньшей мере частью реакционной смеси мономера в полости линзы; реакционную смесь мономера облучают актиничным излучением для формирования офтальмологической линзы. Линзы можно формировать путем контроля актиничного излучения, которым облучают реакционную смесь мономера.
ОПИСАНИЕ ФИГУР
На Фиг. 1 представлена блок-схема некоторых вариантов осуществления слоя источника энергии.
На Фиг. 2 представлены некоторые примеры осуществления формфактора для проводного источника энергии.
На Фиг. 3 представлено трехмерное изображение вставки, образованной наложенными друг на друга функциональными слоями и внедренной в часть формы для литья офтальмологической линзы.
На Фиг. 4 представлен вид в сечении части формы для литья офтальмологической линзы со вставкой.
На Фиг. 5 представлен пример осуществления вставки, содержащей множество наложенных друг на друга функциональных слоев на поддерживающей и центрирующей структуре.
На Фиг. 6 представлены разные формы и варианты осуществления компонентов, используемых для формирования слоев во вставке из наложенных друг на друга функциональных слоев.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение включает в себя устройство в виде вставки подложки, сформированное путем наложения друг на друга множества функционализированных слоев. Кроме того, настоящее изобретение включает в себя способы и устройство для производства офтальмологической линзы с такой подложкой из наложенных друг на друга функционализированных слоев в качестве вставки в сформированной линзе. Кроме того, некоторые варианты осуществления настоящего изобретения включают в себя офтальмологическую линзу со вставкой подложки из наложенных друг на друга функционализированных слоев, внедренной в офтальмологическую линзу.
В следующих разделах будет приведено подробное описание вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных вариантов осуществления являются только примерами осуществления. Предполагается, что специалистам в данной области будут понятны возможности вариаций, модификаций и изменений. Поэтому следует учитывать, что объем исходного изобретения не ограничивается указанными примерами осуществления.
СПИСОК ТЕРМИНОВ
В данном описании и пунктах формулы, относящихся к настоящему изобретению, могут использоваться различные термины, для которых будут приняты следующие определения.
Запитываемый энергией: в настоящем документе относится к состоянию, в котором может осуществляться поставка электрического тока или аккумуляция электрической энергии.
Энергия: в настоящем документе относится к способности физической системы к совершению работы. В рамках настоящего изобретения указанная способность, как правило, может относиться к способности выполнения электрических действий при совершении работы.
Источник энергии: в настоящем документе относится к устройству или слою, способному подавать энергию или переводить логическое или электрическое устройство в запитываемое энергией состояние.
Устройство сбора энергии: в настоящем документе относится к устройству, способному извлекать энергию из окружающей среды и преобразовывать ее в электрическую энергию.
Функционализированный: в настоящем документе относится к приданию слою или устройству способности выполнять некоторую функцию, включая, например, запитывание энергией, активацию или контроль.
Линза: относится к любому офтальмологическому устройству, находящемуся внутри глаза или на нем. Эти устройства могут обеспечивать оптическую коррекцию или использоваться в косметических целях. Например, термин «линза» может относиться к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или иному подобному устройству, с помощью которого корректируется или изменяется зрение или косметически улучшается физиология глаза (например, цвет радужной оболочки) без затруднения зрения. В некоторых вариантах осуществления предпочтительные линзы, составляющие предмет настоящего изобретения, представляют собой мягкие контактные линзы, изготовленные из силиконовых эластомеров или гидрогелей, которые включают, без ограничений, силиконовые гидрогели и фторгидрогели.
Линзообразующая смесь или «реакционная смесь» или «РСМ» (реакционная смесь мономера): в настоящем документе относится к мономерному или форполимерному материалу, который можно отверждать и сшить или сшить для образования офтальмологической линзы. Различные варианты осуществления могут включать в себя линзообразующие смеси с одной или более добавками, такими как: УФ-блокаторы, красители, фотоинициаторы или катализаторы и другие добавки, которые могут понадобиться в составе офтальмологических линз, таких как контактные или интраокулярные линзы.
Литий-ионный элемент: относится к электрохимическому элементу, в котором ионы лития перемещаются по элементу для генерации электрической энергии. Такой электрохимический элемент, как правило называемый батареей, в своих типичных формах может быть повторно запитан энергией или перезаряжен.
Вставка подложки: в настоящем документе относится к формуемой или жесткой подложке, способной поддерживать источник энергии в офтальмологической линзе. В некоторых вариантах осуществления вставка подложки также поддерживает один или более компонентов.
Форма для литья: относится к жесткому или полужесткому предмету, который можно использовать для формирования линз из неотвержденных составов. Некоторые предпочтительные формы для литья включают в себя две части, образующие переднюю изогнутую часть формы для литья и заднюю изогнутую часть формы для литья.
Оптическая зона: в настоящем документе относится к области офтальмологической линзы, через которую смотрит пользователь офтальмологической линзы.
Мощность: в настоящем документе относится к совершенной работе или переданной энергии за единицу времени.
Перезаряжаемый или перезапитываемый: в настоящем документе относится к возможности возврата в состояние с более высокой способностью к совершению работы. В рамках данного изобретения упомянутая способность может относиться к возможности восстановления способности поддерживать электрический ток определенной величины в течение определенного промежутка времени.
Перезапитывать или перезаряжать: возвращать в состояние с более высокой способностью к совершению работы. В рамках данного изобретения указанная способность может относиться к восстановлению способности устройства поддерживать электрический ток определенной величины в течение определенного промежутка времени.
Высвобожденный из формы для литья: означает, что линза либо полностью отделена от формы для литья, либо лишь слабо прикреплена к ней и может быть легко отсоединена легким встряхиванием или сдвинута с помощью тампона.
Наложение: в настоящем документе обозначает расположение по меньшей мере двух слоев компонентов в непосредственной близости друг от друга так, чтобы по меньшей мере часть одной поверхности одного из слоев контактировала с первой поверхностью второго слоя. В некоторых вариантах осуществления между двумя слоями может находиться пленка, обеспечивающая сцепление или выполняющая иные функции, так что слои контактируют друг с другом через указанную пленку.
Описание
Слои с электропитанием
Как показано на фиг. 1, в некоторых вариантах осуществления один или более слоев функционализированной многослойной структуры подложек может включать в себя тонкопленочный источник электрической энергии 100. Тонкопленочный источник электрической энергии можно по существу рассматривать как батарею на подложке.
Тонкопленочную батарею (иногда называемую TFB) можно разместить на подходящей подложке, такой как кремний, с использованием известных процессов осаждения. Осаждение может включать в себя, например, осаждение распылением и может использоваться для нанесения различных материалов с использованием одного или более из способов маскирования и удаления материала.
Исследован и может использоваться широкий спектр различных материалов. В некоторых приложениях, таких как, например, в многослойной структуре из кристаллов и в офтальмологическом устройстве, предпочтительная подложка включает в себя подложку, способную выдерживать температуру 800 град. C без химических изменений. В другом аспекте предпочтительная подложка может быть изолирующей. Подложка может необязательно иметь переходные отверстия, соединяющие токосъемники на верхней и нижней сторонах устройства.
TFB в соответствии с настоящим изобретением предпочтительно заключена в корпус для предотвращения проникновения в нее одного или более из: кислорода, влаги, других газов или жидкостей. Поэтому предпочтительные варианты осуществления могут включать в себя корпусирование в один или более слоев, причем корпус может включать в себя один или более из изоляционного слоя (например, парилена) и непроницаемого слоя (например, металлы: алюминий, титан и т.п.). Слои можно наносить путем осаждения поверх устройства TFB.
Предпочтительно соединительные элементы остаются доступными для электрического соединения за пределами корпуса. В некоторых вариантах осуществления электрическое соединение может включать в себя проводящую дорожку. В других вариантах осуществления электрическое соединение может включать в себя беспроводную передачу энергии, например на радиочастотах или оптических частотах.
Другие способы включают в себя нанесение органических материалов (например, эпоксидных компаундов) в сочетании с предварительно сформованными непроницаемыми материалами (например, следующий слой в многослойной структуре из кристаллов или полученный точным формованием/резкой защитный слой из стекла, окиси алюминия или кремния.
Проводной источник энергии
Как показано на фиг. 2А, пример конструкции некоторых вариантов осуществления источника энергии включает в себя батарею, сформированную вокруг проводящего провода. Такая батарея предпочтительно включает в себя проводную батарею с высоким отношением сторон.
В некоторых вариантах осуществления в качестве носителя можно использовать тонкий медный провод. Различные слои компонентов батареи можно получать с использованием процессов периодического или непрерывного нанесения покрытия на провод. Таким образом можно достичь очень высокого коэффициента заполнения (>60%) активными материалами батареи при удобном и гибком формфакторе. В некоторых вариантах осуществления для формирования малых батарей, например батареи с емкостью порядка нескольких миллиампер-часов, можно использовать тонкий провод. Максимальное напряжение можно установить приблизительно равным 1,5 вольта постоянного тока. Батареи большей емкости и с большими напряжениями также можно получить масштабированием, что включено в объем настоящего изобретения.
Как правило, проводная батарея обеспечивает значительное (~ 40-кратное или более) улучшение по сравнению с плоскими тонкопленочными 6-слойными батареями.
На фиг. 2B представлен способ формирования некоторых вариантов осуществления проводной батареи. Можно использовать провод из меди высокой чистоты, такой как коммерчески доступный, например, от компании McMaster Carr Corp., с покрытием из одного или более слоев.
В некоторых вариантах осуществления цинковое анодное покрытие можно изготовить из порошка металлического цинка, полимерных связующих, растворителей и добавок. Такое покрытие можно нанести и немедленно высушить. Для получения требуемой толщины слоя одно и то же покрытие можно наносить множество раз.
Разделительное покрытие можно изготовить из непроводящих частиц наполнителя, полимерных связующих, растворителей и добавок. Можно использовать такой же способ нанесения.
Катодное покрытие из оксида серебра можно изготовить из порошка Ag2O, графита, полимерных связующих, растворителей и добавок. Можно использовать такой же способ нанесения.
На проводную батарею можно нанести токосъемник (например, проводящий углеродный адгезив, проводящий серебряный адгезив и т.п.).
Для завершения конструкции на готовую батарею можно нанести электролит (раствор гидроксида калия с добавками).
Элемент следует оставить «открытым» (т.е. негерметичным) для свободного выхода любых образующихся газов. Для защиты батареи от механических повреждений и для удержания жидкого электролита внутри можно использовать силиконовое или фторполимерное покрытия.
Батарея может иметь напряжение при разомкнутой цепи ~1,5 В или больше.
На фиг. 3 представлено трехмерное изображение некоторых вариантов осуществления полностью сформированной офтальмологической линзы с использованием вставки подложки из наложенных друг на друга слоев; элемент 210 здесь обозначен номером 300. На фигуре показан частичный срез офтальмологической линзы, позволяющий понять расположение различных слоев внутри устройства. Элемент 320 демонстрирует материал корпуса в поперечном сечении через герметично закрывающие слои вставки подложки. Этот элемент окружает всю периферическую зону офтальмологической линзы. Специалисту в данной области будет понятно, что фактическая вставка может содержать полное кольцо или другие формы, которые тем не менее могут укладываться в пределы ограничений размера типичной офтальмологической линзы.
Номерами 330, 331 и 332 обозначены три из множества слоев, из которых может состоять вставка подложки, сформированная как многослойная структура функциональных слоев. В некоторых вариантах осуществления один слой может включать в себя одно или более из: активных и пассивных компонентов и частей со структурными, электрическими или физическими свойствами, обеспечивающими достижение определенной цели.
В некоторых вариантах осуществления слой 330 может включать в себя источник запитывания энергией, такой как, например, один или более из: батареи, конденсатора и приемника внутри слоя 330. Тогда элемент 331 в качестве неограничивающего примера может содержать в слое микросхему, которая обнаруживает возбуждающие сигналы, приложенные к офтальмологической линзе. В некоторых вариантах осуществления также может быть включен слой для регулирования питания 332, способный принимать питание от внешних источников, заряжать слой батареи 330 и управлять использованием питания батареи из слоя 330, когда линза находится вне заряжающей среды. Кроме того, регулятор питания может также управлять сигналами, поступающими к примеру активной линзы; он показан под номером 310 в центре кольцевого среза вставки подложки.
Запитываемая энергией линза со встроенной вставкой подложки может включать в себя источник энергии, такой как электрохимический элемент или батарея, в качестве средства для накопления энергии, и в некоторых вариантах осуществления материалы, содержащие источник энергии, имеют оболочку и изолированы от окружающей среды, в которую помещена офтальмологическая линза.
В некоторых вариантах осуществления вставка подложки также включает в себя набор схем, компонентов и источников энергии. Различные варианты осуществления могут включать в себя вставку подложки, в которой располагается набор схем, компонентов и источников энергии по периферии оптической зоны, через которую пользователь линзы может видеть, тогда как другие варианты осуществления могут включать в себя набор схем, компонентов и источников энергии, которые имеют достаточно малые размеры, чтобы не оказывать негативного воздействия на зрение пользователя контактной линзы, поэтому они могут располагаться во вставке подложки внутри или снаружи оптической зоны.
В целом в соответствии с ранее описанными вариантами осуществления вставку подложки 111 встраивают в офтальмологическую линзу с помощью автоматического механизма, который размещает источник энергии в необходимом месте относительно части формы для литья, использованной для формирования линзы.
На фиг. 4 показано увеличенное изображение в сечении некоторых вариантов осуществления вставки из наложенных друг на друга функциональных слоев 400. В корпус офтальмологической линзы 410 заключена функционализированная многослойная вставка 420, которая в некоторых вариантах осуществления окружает активный компонент линзы 450 и соединяется с ним. Специалистам в этой области может быть очевидно, что в этом примере показан всего один из множества вариантов осуществления функциональной вставки, которая может быть заключена в офтальмологическую линзу.
В части наложенных друг на друга слоев вставки показано множество слоев. В некоторых вариантах осуществления слои могут содержать множество полупроводниковых слоев. Например, под номером 440 в нижнем слое многослойной структуры может быть обозначен тонкий кремниевый слой, на котором образованы схемы для выполнения различных функций. В многослойной структуре может быть еще один тонкий кремниевый слой, обозначенный номером 441. В качестве неограничивающего примера такой слой может иметь функцию запитывания энергией устройства. В некоторых вариантах осуществления такие кремниевые слои могут быть электрически изолированы друг от друга промежуточным изолирующим слоем, обозначенным номером 450. Перекрывающиеся друг с другом части поверхностных слоев, обозначенных номерами 440, 450 и 441, можно приклеить друг к другу с помощью тонкой пленки адгезива. Специалистам в этой области может быть очевидно, что многочисленные адгезивы могут иметь желаемые характеристики для приклеивания и пассивации тонких кремниевых слоев к изолятору, как, например, в эпоксидном компаунде.
Множество наложенных друг на друга слоев могут включать в себя дополнительные слои 442, которые в качестве неограничивающего примера могут включать в себя тонкий кремниевый слой со схемой, способной активировать и управлять активным компонентом линзы. Как упоминалось ранее, если наложенные друг на друга слои нужно электрически изолировать друг от друга, между электрически активными слоями можно включить наложенные друг на друга слои изолятора, и в настоящем примере элемент 451 может представлять собой такой слой изолятора, составляющий часть вставки из наложенных друг на друга слоев. В некоторых описанных в настоящем документе примерах упоминаются слои, образованные из тонких слоев кремния. В целом эта область техники может быть расширена до разных вариантов осуществления, когда определения материалов тонких наложенных друг на друга слоев включают, без ограничений, другие полупроводники, металлы или композитные слои. Функция тонких слоев может включать в себя содержание электрической схемы, однако возможны и другие функции, например, в качестве нескольких примеров можно привести прием сигнала, управление энергией, хранение и прием энергии. В вариантах осуществления с разным типом материалов может потребоваться выбор разных адгезивов, инкапсулирующих и других материалов, взаимодействующих с наложенными друг на друга слоями. В примере осуществления тонкий слой эпоксидного компаунда может склеивать три кремниевых слоя, обозначенных как 440, 441 и 442, с двумя слоями оксида кремния 450 и 451.
Как упоминалось в некоторых примерах, тонкие наложенные друг на друга слои могут содержать схемы, встроенные в кремниевые слои. Существует множество способов изготовления таких слоев, однако стандартное современное оборудование для обработки полупроводников позволяет получать электронные схемы на кремниевых полупроводниковых пластинах с помощью универсальных стадий обработки. После формирования схем в определенных местах на кремниевых полупроводниковых пластинах можно использовать оборудование для обработки полупроводниковых пластин с целью уменьшения их толщины с сотен микрон до 50 микрон или менее. После уменьшения толщины кремниевые схемы можно срезать или «нарезать» с полупроводниковой пластины для придания соответствующих форм для офтальмологической линзы или других целей. В следующем разделе описаны другие примерные формы настоящего изобретения с наложенными друг на друга слоями, как показано на фиг. 6. Подробное описание будет представлено ниже, однако при выполнении «нарезки» возможно использование разных технических способов нарезки тонких слоев для получения изогнутой, круглой, кольцевой, прямолинейной и других более сложных форм.
Когда наложенные друг на друга слои выполняют функцию, относящуюся к протеканию электрического тока, в некоторых вариантах осуществления может потребоваться электрический контакт между наложенными друг на друга слоями. В общей области корпусирования полупроводников для получения такого электрического соединения между наложенными друг на друга слоями имеются стандартные решения, содержащие проводное соединение, соединение столбиковыми выводами и осаждение с помощью проволоки. В некоторых вариантах осуществления осаждения с помощью проволоки можно применять процесс печати, в котором между двумя контактными площадками наносят электропроводящие чернила. В других вариантах осуществления проводники можно создать физически с помощью источника энергии, например, лазера, взаимодействующего с газовым, жидким или твердым химическим промежуточным продуктом, приводя к получению электрического соединения там, куда источник испускает энергию. Дополнительные варианты осуществления соединений можно получить на основе фотолитографической обработки до или после осаждения металлических пленок различными способами.
В описанном изобретении, если для передачи электрических сигналов наружу необходим один или более слоев, можно использовать металлическую контактную площадку, не покрытую пассивирующим и изолирующим слоями. Во многих вариантах осуществления такие площадки расположены на периферии слоя, чтобы последующие наложенные друг на друга слои не закрывали эту область. В примере такого типа варианта осуществления, показанном на фиг. 4, соединительные проводники 430 и 431 показаны как электрически соединяющие периферические области слоев 440, 441 и 442. Специалисту в данной области может быть очевидно, что возможно множество вариантов конструкции с разным расположением электрических контактных площадок и способами электрического соединения различных площадок. Кроме того, очевидно, что конструкции схем могут быть разными в зависимости от выбора соединяемых электрических соединительных площадок и других площадок, с которыми они соединены. Кроме того, функция проводного соединения между площадками может быть разной в разных вариантах осуществления, включая, в качестве нескольких примеров, функции соединения для передачи электрического сигнала, приема электрического сигнала от внешних источников, соединения для передачи электрической энергии и механической стабилизации.
В предыдущем обсуждении указывалось, что один или более из наложенных друг на друга слоев в соответствии с настоящим изобретением могут представлять собой неполупроводниковые слои. Очевидно, что возможно огромное разнообразие примеров применения неполупроводниковых слоев. В некоторых вариантах осуществления слои могут содержать источники питания, например, батареи. Слой такого типа в некоторых случаях может иметь полупроводник, выполняющий функцию подложки для химических слоев, или в других вариантах осуществления могут использоваться металлические или изолирующие подложки. Другие слои могут быть образованы из слоев, преимущественно металлических по своей природе. Эти слои могут образовывать антенны, теплопроводящие дорожки или выполнять другие функции. Возможны многочисленные комбинации полупроводниковых и неполупроводниковых слоев, служащих определенным целям в рамках сущности описанного изобретения.
В некоторых вариантах осуществления, если между наложенными друг на друга слоями выполнено электрическое соединение, это соединение необходимо герметично изолировать после его создания. Существуют многочисленные способы, которые могут применяться в данной области. Например, возможно повторное нанесение эпоксидного компаунда или других клейких материалов, используемых для скрепления различных наложенных друг на друга слоев вместе, на области с электрическим соединением. Кроме того, в некоторых вариантах осуществления возможно осаждение пассивирующих пленок на все устройство, чтобы герметично закрыть области, использованные для соединения. Специалисту в данной области может быть понятно, что для защиты, упрочнения и герметизации устройства с наложенными друг на друга слоями, его соединений и областей соединения в рамках данной области техники можно использовать множество герметично закрывающих схем.
Сборка вставок из наложенных друг на друга функционализированных слоев
На фиг. 5, элемент 500, показано увеличенное изображение примера устройства для сборки вставок из наложенных друг на друга функционализированных слоев. В примере показана техника наложения, в которой края наложенных друг на друга слоев не центрируются друг с другом. Элементы 440, 441 и 442 могут опять же обозначать кремниевые слои. В правой части фигуры можно видеть, что правые боковые кромки элементов 440, 441 и 442 не центрируются друг с другом, как может быть в альтернативных вариантах осуществления. Такая методология наложения может позволить придать вставке трехмерную форму, аналогичную общему профилю офтальмологической линзы. Также в некоторых вариантах осуществления такая техника наложения может позволить максимально увеличить площадь поверхности слоев. В слоях, выполняющих функцию хранения энергии и размещения схемы, такое максимальное увеличение площади поверхности может иметь важное значение.
В целом на фиг. 5 можно видеть многие элементы описанных ранее многослойных вставок, включая наложенные друг на друга функциональные слои 440, 441 и 442; наложенные друг на друга изолирующие слои 450 и 451; и соединения 430 и 431. Кроме того, для поддержания вставки из наложенных друг на друга функционализированных слоев в процессе ее сборки можно использовать поддерживающий шаблон 510. Может быть очевидно, что профиль поверхности элемента 510 может быть самой различной формы, от которой будет зависеть трехмерная форма изготавливаемых на нем вставок.
В целом шаблон 510 может иметь предварительно заданную форму. На него можно нанести для ряда целей покрытие из различных слоев, элемент 520. В качестве неограничивающего примера покрытие может, во-первых, содержать полимерный слой, позволяющий легко внедрять вставку в основной материал офтальмологической линзы, и в некоторых вариантах осуществления может быть даже сформировано из поликремниевого материала. Затем на поликремниевое покрытие можно осаждать эпоксидное покрытие для приклеивания нижнего тонкого функционального слоя 440 к покрытию 520. На нижнюю поверхность следующего изолирующего слоя 450 затем можно нанести аналогичное эпоксидное покрытие и поместить затем слой в соответствующее положение на шаблоне. Очевидно, что шаблон в некоторых вариантах осуществления может выполнять функцию центрирования для правильного расположения наложенных друг на друга слоев относительно друг друга по мере сборки устройства. Оставшуюся часть вставки можно собрать путем повторения этих же действий, затем можно сформировать соединения и герметично закрыть вставку. В некоторых вариантах осуществления на герметично закрытую вставку может быть сверху нанесено поликремниевое покрытие. В некоторых вариантах осуществления, в которых используется поликремниевое покрытие для элемента 520, собранную вставку можно отделить от шаблона 510 путем гидратации поликремниевого покрытия.
Шаблон 510 можно изготовить из множества материалов. В некоторых вариантах осуществления шаблон можно сформировать и выполнить из материалов, аналогичных используемым для изготовления литых изделий при производстве стандартных контактных линз. Такое использование позволяет формирование разнообразных типов шаблонов для получения вставок разной формы и конструкции. В других вариантах осуществления шаблон можно изготовить из материалов, благодаря своим свойствам или особому покрытию не прилипающих к химическим смесям, используемым для склеивания разных слоев друг с другом. Очевидно, что возможны разные варианты конфигурации такого шаблона.
Другим аспектом шаблона, обозначенного номером 510, является тот факт, что его форма физически поддерживает расположенные на нем слои. В некоторых вариантах осуществления соединение между слоями может быть сформировано с помощью проволочных проводников. В процессе соединения проволочными проводниками к проводнику прилагается значительное усилие, чтобы гарантировать образование прочного соединения. Структурная поддержка слоев во время такого соединения может иметь большое значение и может обеспечиваться с помощью поддерживающего шаблона 510.
Еще одна функция шаблона, обозначенного номером 510, заключается в том, что шаблон может иметь на своей поверхности центрирующие элементы, позволяющие центрировать фрагменты функционализированных слоев относительно друг друга как линейно, так и радиально вдоль поверхностей. В некоторых вариантах осуществления шаблон может позволять центрирование функциональных слоев по азимутальному углу относительно друг друга вокруг центральной точки. Независимо от окончательной формы формируемой вставки может быть очевидно, что шаблон узла может использоваться с целью соответствующего центрирования фрагментов вставки для выполнения их функций и правильного соединения.
Обратимся теперь к фиг. 6 для более общего обсуждения форм вставок из наложенных друг на друга слоев. На фигуре представлен пример некоторых вариантов формы как комплекта множества форм в соответствии с областью техники. Например, под номером 610 показан вид сверху многослойной вставки, образованной из по существу круговых фрагментов слоев. В некоторых вариантах осуществления заштрихованная область 611 может представлять собой кольцевую область, из которой удален материал слоя. Однако в других вариантах осуществления может быть очевидно, что фрагменты наложенных друг на друга слоев, используемых для формирования вставки, могут представлять собой диски без кольцевой области. Хотя применение такой некольцевой формы вставки в офтальмологической сфере может быть ограниченным, сущность изложенного в настоящем документе изобретения не предполагает ограничения присутствием внутренней кольцевой зоны.
Элемент 620 в некоторых вариантах осуществления может представлять собой другие варианты осуществления вставки из наложенных друг на друга функциональных слоев. Как показано под номером 621, в некоторых вариантах осуществления фрагменты слоя могут быть дискретными не только в направлении наложения, но и вокруг азимутального направления, перпендикулярного направлению наложения. В некоторых вариантах осуществления для формирования вставки можно использовать полукруговые фрагменты. Может быть очевидно, что в формах, имеющих кольцевую область, возможно использование частичных форм для уменьшения количества материала, необходимого для «нарезки» или вырезания после формирования материала слоя в соответствии с его функцией.
Далее под номером 630 показана возможная нерадиальная, неэллиптическая и некруговая формы вставки. Как показано под номером 630, возможно формирование прямолинейных форм или, как показано под номером 640, других многоугольных форм. С помощью разных форм отдельных фрагментов слоев, используемых для формирования вставки, в трехмерной перспективе можно получить пирамиды, конусы и другие геометрические формы. В более общем смысле специалисту в данной области может быть очевидно, что возможно получение огромного разнообразия форм для формирования разных форм и изделий, которые могут выполнять соответствующие функции, использоваться для запитывания энергией, активации и т.п.
Заключение
Настоящее изобретение, как описано выше и как определено ниже в пунктах формулы изобретения, предлагает устройства и способы производства вставок из наложенных друг на друга функциональных слоев, а также устройство для реализации таких способов, а также офтальмологические линзы, сформированные из наложенных друг на друга слоев.

Claims (24)

1. Устройство из наложенных друг на друга функционализированных слоев, содержащее:
первую тонкослойную подложку, содержащую источник энергии;
первую адгезивную пленку поверх первой поверхности первой тонкослойной подложки; и
вторую тонкослойную подложку, имеющую круговую кольцевую форму с внешним радиусом, который меньше радиуса первой тонкослойной подложки, причем вторая тонкослойная подложка уложена на первую адгезивную пленку первой тонкослойной подложки.
2. Устройство по п. 1, в котором:
вторая тонкослойная подложка содержит электронную схему, образованную на второй тонкослойной подложке.
3. Устройство по п. 2, в котором:
первая тонкослойная подложка содержит слои, содержащие электрохимический питающий компонент.
4. Устройство по п. 2, дополнительно содержащее проводной источник энергии в электрическом соединении с электронной схемой.
5. Устройство по п. 4, дополнительно содержащее оболочку, содержащую парилен.
6. Устройство по п. 4, дополнительно содержащее оболочку, содержащую один или более металлов.
7. Устройство по п. 6, в котором один или более металлов содержат один или оба из: алюминия и титана.
8. Устройство по п. 1, дополнительно содержащее оболочку из полимера на основе поликремния.
9. Офтальмологическая линза, содержащая:
кремниевую вставку подложки, содержащую наложенные друг на друга электрически функциональные слои, причем по меньшей мере один из электрически функциональных слоев содержит источник электрической энергии, причем по меньшей мере один из электрически функциональных слоев имеет круговую кольцевую форму; и
полимерную форму линзы, в которую встроена кремниевая вставка подложки.
10. Офтальмологическая линза по п. 9, в которой:
источник электрической энергии содержит по меньшей мере один электрохимический элемент.
11. Офтальмологическая линза по п. 10, в которой:
по меньшей мере один из электрически функциональных слоев содержит полупроводниковый слой с электронной схемой, способной управлять потоком электрического тока из по меньшей мере одного электрохимического элемента.
12. Офтальмологическая линза по п. 11, в которой:
электронная схема электрически соединена с электроактивным компонентом линзы внутри офтальмологической линзы.
13. Офтальмологическая линза по п. 10, дополнительно содержащая электроактивную линзу.
14. Офтальмологическая линза по п. 13, дополнительно содержащая металлический слой, выполняющий функцию антенны.
15. Офтальмологическая линза по п. 9, в которой источник электрической энергии содержит по меньшей мере одно из: батарея, конденсатор и приемник.
16. Офтальмологическая линза по п. 9, в которой источник электрической энергии содержит тонкопленочную батарею.
17. Офтальмологическая линза по п. 16, в которой тонкопленочная батарея заключена в корпус для предотвращения проникновения в нее по меньшей мере одного из: кислород или влага.
18. Офтальмологическая линза по п. 17, в которой электрически функциональные слои являются доступными для электрического соединения за пределами корпуса.
19. Офтальмологическая линза по п. 9, дополнительно содержащая проводную батарею.
20. Офтальмологическая линза по п. 19, в которой проводная батарея обеспечивает максимальное напряжение по меньшей мере 1,5 вольта.
21. Офтальмологическая линза по п. 20, в которой проводная батарея содержит проводящий провод, покрытый цинковым анодным покрытием, разделительным покрытием и катодным покрытием из оксида серебра.
22. Офтальмологическая линза по п. 9, в которой другой из электрически функциональных слоев содержит слой для регулирования питания.
23. Офтальмологическая линза по п. 22, в которой слой для регулирования питания выполнен с возможностью заряжать и управлять источником электрической энергии.
24. Офтальмологическая линза по п. 9, дополнительно содержащая адгезивную пленку, склеивающую друг с другом поверхности электрически функциональных слоев.
RU2013146694/05A 2011-03-21 2012-03-20 Функциональная вставка со слоем питания RU2563491C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161454591P 2011-03-21 2011-03-21
US61/454,591 2011-03-21
US13/401,959 US9804418B2 (en) 2011-03-21 2012-02-22 Methods and apparatus for functional insert with power layer
US13/401,959 2012-02-22
PCT/US2012/029769 WO2012129210A2 (en) 2011-03-21 2012-03-20 Methods and apparatus for functional insert with power layer

Publications (2)

Publication Number Publication Date
RU2013146694A RU2013146694A (ru) 2015-04-27
RU2563491C2 true RU2563491C2 (ru) 2015-09-20

Family

ID=46877089

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013146694/05A RU2563491C2 (ru) 2011-03-21 2012-03-20 Функциональная вставка со слоем питания

Country Status (15)

Country Link
US (1) US9804418B2 (ru)
EP (1) EP2688735A2 (ru)
JP (1) JP6046109B2 (ru)
KR (1) KR101832122B1 (ru)
CN (1) CN103442884B (ru)
AR (1) AR085468A1 (ru)
AU (1) AU2012231121B2 (ru)
BR (1) BR112013024246A2 (ru)
CA (2) CA3009920A1 (ru)
HK (1) HK1190119A1 (ru)
IL (1) IL228212A (ru)
RU (1) RU2563491C2 (ru)
SG (1) SG193323A1 (ru)
TW (1) TWI637843B (ru)
WO (1) WO2012129210A2 (ru)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9110310B2 (en) * 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9233513B2 (en) 2011-03-18 2016-01-12 Johnson & Johnson Vision Care, Inc. Apparatus for manufacturing stacked integrated component media inserts for ophthalmic devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
SG2013091095A (en) * 2013-01-09 2014-08-28 Johnson & Johnson Vision Care Method of forming a multi-piece insert device with seal for ophthalmic devices
WO2014164621A1 (en) 2013-03-12 2014-10-09 Lockheed Martin Corporation Method for forming filter with uniform aperture size
US8940552B2 (en) * 2013-03-15 2015-01-27 Johnson & Johnson Vision Care, Inc. Methods and ophthalmic devices with organic semiconductor layer
US9873233B2 (en) * 2013-03-15 2018-01-23 Johnson & Johnson Vision Care, Inc. Ophthalmic lens viewing sets for three-dimensional perception of stereoscopic media
US9664916B2 (en) * 2013-03-15 2017-05-30 Johnson & Johnson Vision Care, Inc. Stereoscopic ophthalmic lens viewing sets
US9481138B2 (en) * 2013-03-15 2016-11-01 Johnson & Johnson Vision Care, Inc. Sealing and encapsulation in energized ophthalmic devices with annular inserts
US8894201B2 (en) * 2013-03-15 2014-11-25 Johnson & Johnson Vision Care, Inc. Methods and ophthalmic devices with thin film transistors
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9014639B2 (en) * 2013-07-11 2015-04-21 Johnson & Johnson Vision Care, Inc. Methods of using and smartphone event notification utilizing an energizable ophthalmic lens with a smartphone event indicator mechanism
US9801560B2 (en) * 2013-08-27 2017-10-31 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with a neural frequency detection system
US9185486B2 (en) * 2013-08-27 2015-11-10 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with micro-acoustic elements
CN105940479A (zh) 2014-01-31 2016-09-14 洛克希德马丁公司 使用宽离子场穿孔二维材料
CN106029596A (zh) 2014-01-31 2016-10-12 洛克希德马丁公司 采用多孔非牺牲性支撑层的二维材料形成复合结构的方法
CA2942496A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Separation membranes formed from perforated graphene
JP6470304B2 (ja) * 2014-04-08 2019-02-13 ノバルティス アーゲー 酸素発生素子を内蔵する眼用レンズ
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9383593B2 (en) * 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US9577259B2 (en) * 2014-08-21 2017-02-21 Johnson & Johnson Vision Care, Inc. Cathode mixture for use in a biocompatible battery
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9599842B2 (en) * 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
CA2973472A1 (en) 2014-09-02 2016-03-10 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
KR102271817B1 (ko) 2014-09-26 2021-07-01 삼성전자주식회사 증강현실을 위한 스마트 콘택렌즈와 그 제조 및 동작방법
KR101581814B1 (ko) * 2014-12-05 2016-01-04 서강대학교산학협력단 눈물로 작동하는 스마트 컨택트 렌즈
AU2016303048A1 (en) 2015-08-05 2018-03-01 Lockheed Martin Corporation Perforatable sheets of graphene-based material
JP2018530499A (ja) 2015-08-06 2018-10-18 ロッキード・マーチン・コーポレーション グラフェンのナノ粒子変性及び穿孔
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
CA3020686A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
KR20190018410A (ko) 2016-04-14 2019-02-22 록히드 마틴 코포레이션 흐름 통로들을 갖는 2차원 막 구조들
WO2017180134A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
KR20180133430A (ko) 2016-04-14 2018-12-14 록히드 마틴 코포레이션 결함 형성 또는 힐링의 인 시츄 모니터링 및 제어를 위한 방법
WO2017180141A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
KR102584727B1 (ko) * 2018-12-21 2023-10-05 삼성전자주식회사 안테나 모듈 및 이를 포함하는 전자 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760515A2 (en) * 2003-10-03 2007-03-07 Invisia Ltd. Multifocal ophthalmic lens

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291296A (en) 1964-10-26 1966-12-13 Lemkelde Russell Pipe nipple holder
US3375136A (en) 1965-05-24 1968-03-26 Army Usa Laminated thin film flexible alkaline battery
US4268132A (en) 1979-09-24 1981-05-19 Neefe Charles W Oxygen generating contact lens
US4592944A (en) 1982-05-24 1986-06-03 International Business Machines Corporation Method for providing a top seal coating on a substrate containing an electrically conductive pattern and coated article
US4601545A (en) 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
DE3727945A1 (de) 1986-08-22 1988-02-25 Ricoh Kk Fluessigkristallelement
US5219497A (en) 1987-10-30 1993-06-15 Innotech, Inc. Method for manufacturing lenses using thin coatings
US4873029A (en) 1987-10-30 1989-10-10 Blum Ronald D Method for manufacturing lenses
US4816031A (en) 1988-01-29 1989-03-28 Pfoff David S Intraocular lens system
US5227805A (en) 1989-10-26 1993-07-13 Motorola, Inc. Antenna loop/battery spring
US5112703A (en) 1990-07-03 1992-05-12 Beta Power, Inc. Electrochemical battery cell having a monolithic bipolar flat plate beta" al
US6322589B1 (en) 1995-10-06 2001-11-27 J. Stuart Cumming Intraocular lenses with fixated haptics
JPH08508826A (ja) 1993-04-07 1996-09-17 ザ テクノロジィー パートナーシップ ピーエルシー 切換可能レンズ
JPH0837190A (ja) 1994-07-22 1996-02-06 Nec Corp 半導体装置
US5478420A (en) 1994-07-28 1995-12-26 International Business Machines Corporation Process for forming open-centered multilayer ceramic substrates
US5596567A (en) 1995-03-31 1997-01-21 Motorola, Inc. Wireless battery charging system
US5682210A (en) 1995-12-08 1997-10-28 Weirich; John Eye contact lens video display system
JPH10209185A (ja) 1997-01-24 1998-08-07 Matsushita Electric Works Ltd 半導体パッケージの搬送方法
KR19980067735A (ko) * 1997-02-11 1998-10-15 문정환 반도체 패키지의 제조방법
US6217171B1 (en) 1998-05-26 2001-04-17 Novartis Ag Composite ophthamic lens
US20070285385A1 (en) 1998-11-02 2007-12-13 E Ink Corporation Broadcast system for electronic ink signs
DE19858172A1 (de) 1998-12-16 2000-06-21 Campus Micro Technologies Gmbh Implantat zur Messung des Augeninnendrucks
US6477410B1 (en) * 2000-05-31 2002-11-05 Biophoretic Therapeutic Systems, Llc Electrokinetic delivery of medicaments
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6986579B2 (en) 1999-07-02 2006-01-17 E-Vision, Llc Method of manufacturing an electro-active lens
US6851805B2 (en) 1999-07-02 2005-02-08 E-Vision, Llc Stabilized electro-active contact lens
US7404636B2 (en) 1999-07-02 2008-07-29 E-Vision, Llc Electro-active spectacle employing modal liquid crystal lenses
JP3557130B2 (ja) 1999-07-14 2004-08-25 新光電気工業株式会社 半導体装置の製造方法
US6364482B1 (en) 1999-11-03 2002-04-02 Johnson & Johnson Vision Care, Inc. Contact lens useful for avoiding dry eye
JP4172566B2 (ja) 2000-09-21 2008-10-29 Tdk株式会社 セラミック多層基板の表面電極構造及び表面電極の製造方法
US6355501B1 (en) 2000-09-21 2002-03-12 International Business Machines Corporation Three-dimensional chip stacking assembly
JP3854054B2 (ja) 2000-10-10 2006-12-06 株式会社東芝 半導体装置
US6795250B2 (en) 2000-12-29 2004-09-21 Lenticlear Lenticular Lens, Inc. Lenticular lens array
US6748994B2 (en) 2001-04-11 2004-06-15 Avery Dennison Corporation Label applicator, method and label therefor
US6769767B2 (en) 2001-04-30 2004-08-03 Qr Spex, Inc. Eyewear with exchangeable temples housing a transceiver forming ad hoc networks with other devices
US6811805B2 (en) 2001-05-30 2004-11-02 Novatis Ag Method for applying a coating
US6638304B2 (en) 2001-07-20 2003-10-28 Massachusetts Eye & Ear Infirmary Vision prosthesis
US6885818B2 (en) 2001-07-30 2005-04-26 Hewlett-Packard Development Company, L.P. System and method for controlling electronic devices
EP1304193A3 (de) 2001-10-10 2004-12-01 imt robot AG Verfahren zum automatisierten Auflegen von Objekten auf einen Träger
EP1316419A3 (en) 2001-11-30 2004-01-28 General Electric Company Weatherable multilayer articles and method for their preparation
US6599778B2 (en) 2001-12-19 2003-07-29 International Business Machines Corporation Chip and wafer integration process using vertical connections
JP2003202525A (ja) * 2002-01-09 2003-07-18 Sun-Lux Optical Co Ltd レンズ、玉型、及び眼鏡
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
KR100878519B1 (ko) 2002-01-19 2009-01-13 삼성전자주식회사 광디스크 제조 방법
ITMI20020403A1 (it) 2002-02-28 2003-08-28 Ausimont Spa Dispersioni acquose a base di ptfe
EP1747879A3 (en) 2002-03-04 2007-03-07 Johnson & Johnson Vision Care, Inc. Use of a microwave energy to disassemble, release and hydrate contact lenses
US20030164563A1 (en) 2002-03-04 2003-09-04 Olin Calvin Use of microwave energy to disassemble, release, and hydrate contact lenses
WO2003090611A1 (en) 2002-04-25 2003-11-06 E-Vision, Llc Electro-active multi-focal spectacle lens
US6852254B2 (en) 2002-06-26 2005-02-08 Johnson & Johnson Vision Care, Inc. Methods for the production of tinted contact lenses
BR0313063A (pt) 2002-08-09 2005-06-28 E Vision Llc Sistema eletroativo de lente de contato
US20040081860A1 (en) 2002-10-29 2004-04-29 Stmicroelectronics, Inc. Thin-film battery equipment
EP1590823A4 (en) * 2003-01-02 2007-05-30 Cymbet Corp BATTERY DRIVEN SOLID BODIES AND MANUFACTURING METHOD
US6906436B2 (en) 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method
CA2535905A1 (en) 2003-08-15 2005-02-24 E-Vision, Llc Enhanced electro-active lens system
US7581124B1 (en) 2003-09-19 2009-08-25 Xilinx, Inc. Method and mechanism for controlling power consumption of an integrated circuit
DE602004004415T2 (de) 2003-10-03 2007-10-18 Invisia Ltd. Multifocal-linse
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
WO2005088388A1 (en) 2004-03-05 2005-09-22 Koninklijke Philips Electronics N.V. Variable focus lens
AU2005234050A1 (en) 2004-04-13 2005-10-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Patterned electrodes for electroactive liquid-crystal ophthalmic devices
CA2467321A1 (en) 2004-05-14 2005-11-14 Paul J. Santerre Polymeric coupling agents and pharmaceutically-active polymers made therefrom
FR2871586B1 (fr) * 2004-06-11 2006-09-29 Essilor Int Verre ophtalmique a fonction electro-optique
US8766435B2 (en) * 2004-06-30 2014-07-01 Stmicroelectronics, Inc. Integrated circuit package including embedded thin-film battery
EP1622009A1 (en) 2004-07-27 2006-02-01 Texas Instruments Incorporated JSM architecture and systems
US8068500B2 (en) 2004-09-21 2011-11-29 Hitachi, Ltd. Node device, packet control device, radio communication device, and transmission control method
BRPI0518058A (pt) * 2004-11-02 2008-10-28 E-Vision Llc óculos eletroativos e métodos de fabricação dos mesmos
ES2624734T3 (es) 2004-11-02 2017-07-17 E-Vision Smart Optics Inc. Lentes intraoculares electroactivas
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
JP2008518706A (ja) 2004-11-04 2008-06-05 エル・アンド・ピー・100・リミテッド 医療デバイス
WO2006063836A1 (en) 2004-12-17 2006-06-22 Novartis Ag Colored contact lenses for enhancing a wearer’s natural eye color
WO2006073085A1 (ja) 2005-01-04 2006-07-13 I Square Reserch Co., Ltd. 固体撮像装置及びその製造方法
DE102005001148B3 (de) 2005-01-10 2006-05-18 Siemens Ag Elektronikeinheit mit EMV-Schirmung
KR101425654B1 (ko) 2005-01-20 2014-07-31 오티콘 에이/에스 충전 배터리를 구비한 보청기 및 충전 배터리
US7928591B2 (en) 2005-02-11 2011-04-19 Wintec Industries, Inc. Apparatus and method for predetermined component placement to a target platform
US7364945B2 (en) 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
JP4790297B2 (ja) 2005-04-06 2011-10-12 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7976577B2 (en) 2005-04-14 2011-07-12 Acufocus, Inc. Corneal optic formed of degradation resistant polymer
US7163839B2 (en) 2005-04-27 2007-01-16 Spansion Llc Multi-chip module and method of manufacture
JP4492432B2 (ja) * 2005-05-13 2010-06-30 株式会社デンソー 物理量センサ装置の製造方法
US7548040B2 (en) 2005-07-28 2009-06-16 Zerog Wireless, Inc. Wireless battery charging of electronic devices such as wireless headsets/headphones
DE102005038542A1 (de) 2005-08-16 2007-02-22 Forschungszentrum Karlsruhe Gmbh Künstliches Akkommodationssystem
WO2007037275A1 (ja) 2005-09-28 2007-04-05 Matsushita Electric Industrial Co., Ltd. 電子回路接続構造体およびその製造方法
US20070090869A1 (en) 2005-10-26 2007-04-26 Motorola, Inc. Combined power source and printed transistor circuit apparatus and method
US20070128420A1 (en) 2005-12-07 2007-06-07 Mariam Maghribi Hybrid composite for biological tissue interface devices
NZ569756A (en) 2005-12-12 2011-07-29 Allaccem Inc Methods and systems for preparing antimicrobial films and coatings utilising polycyclic bridged ammonium salts
US20080020874A1 (en) 2006-01-09 2008-01-24 Yao-Jen Huang Structure of softball
US20070159562A1 (en) 2006-01-10 2007-07-12 Haddock Joshua N Device and method for manufacturing an electro-active spectacle lens involving a mechanically flexible integration insert
EP1987262B1 (en) 2006-02-21 2012-11-14 BorgWarner, Inc. Segmented core plate and friction plate
US7794643B2 (en) 2006-03-24 2010-09-14 Ricoh Company, Ltd. Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
FR2899388B1 (fr) 2006-03-28 2008-12-05 Saint Gobain Substrat muni d'un element electroconducteur a fonction d'antenne
CN100456274C (zh) 2006-03-29 2009-01-28 深圳迈瑞生物医疗电子股份有限公司 易于扩展的多cpu系统
JP4171922B2 (ja) 2006-04-12 2008-10-29 船井電機株式会社 ミュート装置、液晶ディスプレイテレビ、及びミュート方法
JP4923704B2 (ja) 2006-04-28 2012-04-25 ソニー株式会社 光学素子の成形装置および成形方法
JP4918373B2 (ja) 2006-04-28 2012-04-18 オリンパス株式会社 積層実装構造体
US8197539B2 (en) 2006-05-05 2012-06-12 University Of Southern California Intraocular camera for retinal prostheses
JP5011820B2 (ja) 2006-05-24 2012-08-29 オムロン株式会社 積層デバイス、およびその製造方法
BRPI0713005A2 (pt) 2006-06-12 2012-04-17 Johnson & Johnson Vision Care método para reduzir o consumo de energia com lentes eletro-ópticas
US7878650B2 (en) 2006-06-29 2011-02-01 Fritsch Michael H Contact lens materials, designs, substances, and methods
WO2008025061A1 (en) 2006-08-28 2008-03-06 Frankie James Lagudi Online hosted customisable merchant directory with search function
CA2661914A1 (en) 2006-09-01 2008-03-06 Johnson & Johnson Vision Care, Inc. Electro-optic lenses employing resistive electrodes
US7839124B2 (en) 2006-09-29 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Wireless power storage device comprising battery, semiconductor device including battery, and method for operating the wireless power storage device
EP2078263B1 (en) 2006-10-31 2019-06-12 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
US7324287B1 (en) 2006-11-07 2008-01-29 Corning Incorporated Multi-fluid lenses and optical devices incorporating the same
TWI324380B (en) 2006-12-06 2010-05-01 Princo Corp Hybrid structure of multi-layer substrates and manufacture method thereof
AR064985A1 (es) * 2007-01-22 2009-05-06 E Vision Llc Lente electroactivo flexible
EP2115519A4 (en) 2007-02-23 2012-12-05 Pixeloptics Inc DYNAMIC OPHTHALMIC OPENING
WO2008109867A2 (en) 2007-03-07 2008-09-12 University Of Washington Active contact lens
US20090091818A1 (en) 2007-10-05 2009-04-09 Haddock Joshua N Electro-active insert
US8446341B2 (en) 2007-03-07 2013-05-21 University Of Washington Contact lens with integrated light-emitting component
US20100002190A1 (en) 2007-03-12 2010-01-07 Roger Clarke Electrical insulating layers, uv protection, and voltage spiking for electro-active diffractive optics
JP2008227068A (ja) 2007-03-12 2008-09-25 Toshiba Corp 半導体装置およびその製造方法
TWI335652B (en) 2007-04-04 2011-01-01 Unimicron Technology Corp Stacked packing module
TW200842996A (en) 2007-04-17 2008-11-01 Advanced Semiconductor Eng Method for forming bumps on under bump metallurgy
US7818698B2 (en) * 2007-06-29 2010-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Accurate parasitic capacitance extraction for ultra large scale integrated circuits
US8317321B2 (en) 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region
WO2009020648A1 (en) 2007-08-09 2009-02-12 The Regents Of The University Of California Electroactive polymer actuation of implants
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
US20090050267A1 (en) 2007-08-11 2009-02-26 Maverick Enterprises, Inc. Customizable item labeling system for use in manufacturing, packaging, product shipment-fulfillment, distribution, and on-site operations, adaptable for validation of variable-shaped items
DE102007048859A1 (de) 2007-10-11 2009-04-16 Robert Bosch Gmbh Intraokularlinse sowie System
US8608310B2 (en) * 2007-11-07 2013-12-17 University Of Washington Through Its Center For Commercialization Wireless powered contact lens with biosensor
US20090175016A1 (en) 2008-01-04 2009-07-09 Qimonda Ag Clip for attaching panels
WO2009091911A1 (en) 2008-01-15 2009-07-23 Cardiac Pacemakers, Inc. Implantable medical device with antenna
TWI511869B (zh) 2008-02-20 2015-12-11 Johnson & Johnson Vision Care 激能生醫裝置
EP2099165A1 (en) 2008-03-03 2009-09-09 Thomson Licensing Deterministic back-off method and apparatus for peer-to-peer communications
CN101971312A (zh) 2008-03-14 2011-02-09 住友电木株式会社 用于形成半导体元件粘接膜的树脂清漆、半导体元件粘接膜和半导体装置
WO2009117506A2 (en) 2008-03-18 2009-09-24 Pixeloptics, Inc. Advanced electro-active optic device
US20090243125A1 (en) 2008-03-26 2009-10-01 Pugh Randall B Methods and apparatus for ink jet provided energy receptor
US7931832B2 (en) 2008-03-31 2011-04-26 Johnson & Johnson Vision Care, Inc. Ophthalmic lens media insert
US8523354B2 (en) 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
US8361492B2 (en) 2008-04-29 2013-01-29 Ocugenics, LLC Drug delivery system and methods of use
FR2934056B1 (fr) 2008-07-21 2011-01-07 Essilor Int Procede de transfert d'une portion de film fonctionnel
JP2010034254A (ja) 2008-07-29 2010-02-12 Mitsubishi Chemicals Corp 三次元lsi
US8014166B2 (en) 2008-09-06 2011-09-06 Broadpak Corporation Stacking integrated circuits containing serializer and deserializer blocks using through silicon via
US9675443B2 (en) 2009-09-10 2017-06-13 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US20100076553A1 (en) * 2008-09-22 2010-03-25 Pugh Randall B Energized ophthalmic lens
US9296158B2 (en) 2008-09-22 2016-03-29 Johnson & Johnson Vision Care, Inc. Binder of energized components in an ophthalmic lens
JP4764942B2 (ja) 2008-09-25 2011-09-07 シャープ株式会社 光学素子、光学素子ウエハ、光学素子ウエハモジュール、光学素子モジュール、光学素子モジュールの製造方法、電子素子ウエハモジュール、電子素子モジュールの製造方法、電子素子モジュールおよび電子情報機器
US8348424B2 (en) * 2008-09-30 2013-01-08 Johnson & Johnson Vision Care, Inc. Variable focus ophthalmic device
US9427920B2 (en) 2008-09-30 2016-08-30 Johnson & Johnson Vision Care, Inc. Energized media for an ophthalmic device
US8092013B2 (en) 2008-10-28 2012-01-10 Johnson & Johnson Vision Care, Inc. Apparatus and method for activation of components of an energized ophthalmic lens
US9375886B2 (en) 2008-10-31 2016-06-28 Johnson & Johnson Vision Care Inc. Ophthalmic device with embedded microcontroller
US9375885B2 (en) * 2008-10-31 2016-06-28 Johnson & Johnson Vision Care, Inc. Processor controlled ophthalmic device
MX2011005272A (es) 2008-11-20 2011-06-21 Insight Innovations Llc Sistema de implante intraocular biocompatible biodegradable.
JP5694947B2 (ja) 2008-12-11 2015-04-01 エムシー10 インコーポレイテッドMc10,Inc. 医療用途のための伸張性電子部品を使用する装置
US8636358B2 (en) 2009-05-17 2014-01-28 Helmut Binder Lens with variable refraction power for the human eye
EP2254149B1 (en) 2009-05-22 2014-08-06 Unisantis Electronics Singapore Pte. Ltd. SRAM using vertical transistors with a diffusion layer for reducing leakage currents
US8784511B2 (en) 2009-09-28 2014-07-22 Stmicroelectronics (Tours) Sas Method for forming a thin-film lithium-ion battery
EP2306579A1 (fr) 2009-09-28 2011-04-06 STMicroelectronics (Tours) SAS Procédé de formation d'une batterie lithium-ion en couches minces
US8137148B2 (en) 2009-09-30 2012-03-20 General Electric Company Method of manufacturing monolithic parallel interconnect structure
RU2550688C2 (ru) 2010-01-05 2015-05-10 Сенсимед Са Устройство для контроля внутриглазного давления
JP5209075B2 (ja) 2010-05-21 2013-06-12 有限会社 ナプラ 電子デバイス及びその製造方法
JP2013534847A (ja) * 2010-06-20 2013-09-09 エレンザ, インコーポレイテッド 特定用途向け集積回路を備える眼科デバイスおよび方法
US8992610B2 (en) 2010-07-26 2015-03-31 Elenza, Inc. Hermetically sealed implantable ophthalmic devices and methods of making same
US8634145B2 (en) 2010-07-29 2014-01-21 Johnson & Johnson Vision Care, Inc. Liquid meniscus lens with concave torus-segment meniscus wall
US20120024295A1 (en) 2010-07-30 2012-02-02 Mihin Chiropractic Clinic, LLC Orthopedic device
KR101322695B1 (ko) 2010-08-25 2013-10-25 주식회사 엘지화학 케이블형 이차전지
EP2614036A4 (en) * 2010-09-07 2016-11-30 Elenza Inc ASSEMBLY AND SEALING OF A BATTERY ON A THIN GLASSWORK FOR SUPPLYING AN INTRAOCULAR IMMEDIATE PLANT
US8767309B2 (en) 2010-09-08 2014-07-01 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
US10052195B2 (en) * 2010-11-15 2018-08-21 Elenza, Inc. Adaptive intraocular lens
US8950862B2 (en) 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US9233513B2 (en) 2011-03-18 2016-01-12 Johnson & Johnson Vision Care, Inc. Apparatus for manufacturing stacked integrated component media inserts for ophthalmic devices
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US9110310B2 (en) 2011-03-18 2015-08-18 Johnson & Johnson Vision Care, Inc. Multiple energization elements in stacked integrated component devices
US9698129B2 (en) 2011-03-18 2017-07-04 Johnson & Johnson Vision Care, Inc. Stacked integrated component devices with energization
US9195075B2 (en) 2011-03-21 2015-11-24 Johnson & Johnson Vision Care, Inc. Full rings for a functionalized layer insert of an ophthalmic lens
US9102111B2 (en) 2011-03-21 2015-08-11 Johnson & Johnson Vision Care, Inc. Method of forming a functionalized insert with segmented ring layers for an ophthalmic lens
US9804418B2 (en) 2011-03-21 2017-10-31 Johnson & Johnson Vision Care, Inc. Methods and apparatus for functional insert with power layer
EP2508935A1 (en) 2011-04-08 2012-10-10 Nxp B.V. Flexible eye insert and glucose measuring system
US9900351B2 (en) 2011-07-20 2018-02-20 Genband Us Llc Methods, systems, and computer readable media for providing legacy devices access to a session initiation protocol (SIP) based network
US9115505B2 (en) 2011-07-22 2015-08-25 Irwin Seating Company Nosemount seating system
CA2862665A1 (en) 2012-01-26 2013-08-01 Johnson & Johnson Vision Care, Inc. Energized ophthalmic lens including stacked integrated components
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US20130215380A1 (en) 2012-02-22 2013-08-22 Randall B. Pugh Method of using full rings for a functionalized layer insert of an ophthalmic device
US9134546B2 (en) 2012-02-22 2015-09-15 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with segmented ring layers in a functionalized insert

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760515A2 (en) * 2003-10-03 2007-03-07 Invisia Ltd. Multifocal ophthalmic lens

Also Published As

Publication number Publication date
JP6046109B2 (ja) 2016-12-14
AU2012231121B2 (en) 2016-11-10
KR20140024323A (ko) 2014-02-28
CN103442884A (zh) 2013-12-11
US20120242953A1 (en) 2012-09-27
CA2830983A1 (en) 2012-09-27
TWI637843B (zh) 2018-10-11
WO2012129210A2 (en) 2012-09-27
TW201244919A (en) 2012-11-16
AR085468A1 (es) 2013-10-02
CA2830983C (en) 2018-08-14
CN103442884B (zh) 2016-01-20
BR112013024246A2 (pt) 2016-12-27
EP2688735A2 (en) 2014-01-29
JP2014516419A (ja) 2014-07-10
RU2013146694A (ru) 2015-04-27
IL228212A (en) 2017-12-31
AU2012231121A1 (en) 2013-09-26
US9804418B2 (en) 2017-10-31
SG193323A1 (en) 2013-10-30
HK1190119A1 (zh) 2014-06-27
WO2012129210A3 (en) 2013-01-03
CA3009920A1 (en) 2012-09-27
KR101832122B1 (ko) 2018-02-26

Similar Documents

Publication Publication Date Title
RU2563491C2 (ru) Функциональная вставка со слоем питания
RU2596629C2 (ru) Множество элементов питания в устройствах с наложенными друг на друга интегрированными компонентами
RU2572648C2 (ru) Способ формирования среды-подложки для офтальмологической линзы и среда-подложка для офтальмологической линзы
RU2624606C2 (ru) Многослойные интегрированные многокомпонентные устройства с подачей питания
RU2643021C2 (ru) Офтальмологические устройства с органическим полупроводниковым слоем и способы их получения
KR101965135B1 (ko) 안과용 렌즈의 기능화된 층 삽입물을 위한 완전 링

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200321