RU2492160C2 - Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя - Google Patents

Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя Download PDF

Info

Publication number
RU2492160C2
RU2492160C2 RU2011129678/04A RU2011129678A RU2492160C2 RU 2492160 C2 RU2492160 C2 RU 2492160C2 RU 2011129678/04 A RU2011129678/04 A RU 2011129678/04A RU 2011129678 A RU2011129678 A RU 2011129678A RU 2492160 C2 RU2492160 C2 RU 2492160C2
Authority
RU
Russia
Prior art keywords
catalyst
phenylacetylene
styrene
carrier
palladium
Prior art date
Application number
RU2011129678/04A
Other languages
English (en)
Other versions
RU2011129678A (ru
Inventor
Сицинь ЛИ
Юньтао ЛЮ
Чжиянь ЧЖУ
Юньхуа ЧЖУ
Юнь КУАЙ
Original Assignee
Чайна Петролеум Энд Кемикал Корпорейшн
Шанхай Рисерч Инститьют Оф Петрокемикал Текнолоджи Синопек
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Петролеум Энд Кемикал Корпорейшн, Шанхай Рисерч Инститьют Оф Петрокемикал Текнолоджи Синопек filed Critical Чайна Петролеум Энд Кемикал Корпорейшн
Publication of RU2011129678A publication Critical patent/RU2011129678A/ru
Application granted granted Critical
Publication of RU2492160C2 publication Critical patent/RU2492160C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способу селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое. Способ включает пропускание в условиях реакции гидрирования исходного потока углеводородной фракции, содержащей фенилацетилен и стирол, через объединенный слой в реакторе, содержащий катализатор А и катализатор В, чтобы последовательно привести в контакт исходный поток с катализатором А и катализатором В. Причем катализатор А представляет собой катализатор на основе никеля, катализатор В представляет собой по меньшей мере один катализатор, выбранный из группы, состоящей из катализатора на основе палладия и катализатора на основе меди, и весовое соотношение загруженного катализатора А к загруженному катализатору В составляет от 0,5:1 до 5:1. Использование настоящего способа позволяет в высокой степени удалять фенилацетилен при низких потерях стирола. 8 з.п. ф-лы, 6 пр.

Description

Перекрестная ссылка на родственные заявки
Настоящая заявка испрашивает приоритет по заявке CN 200810044147.5, поданной 18 декабря 2008, которая включена сюда полностью в качестве ссылки и во всех целях.
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое, в частности к способу удаления фенилацетилена из фенилацетиленсодержащей C8 углеводородной фракции исходного потока.
Уровень техники
Стирол (ST) представляет собой важный мономер для получения полистирола (PS), акрилонитрил-бутадиен-стирольной ABS смолы, стирол-бутадиенового каучука и т.д., и главным образом, его получают способом дегидрирования этилбензола. В последние годы, вместе с развитием и увеличением производства этилбензола в промышленных масштабах, технологии выделения стирола из пиролизного бензина уделяют все больше внимания.
Пиролизный бензин представляет собой побочный продукт производства этилена, выход которого составляет от около 60 до 70% от выхода этилена. C8 фракция пиролизного бензина богата стиролом и смешанными ксилолами. Установка производства этилена с производительностью 1000 кт/год может произвести от 24 до 42 кт/год стирола, и в то же время смешанные ксилолы могут быть выделены. Стоимость производства стирола, выделенного из пиролизного бензина, составляет около ½ от стоимости стирола, полученного способом дегидрирования этилбензола.
Способ выделения стирола из пиролизного бензина, который широко рассматривается как возможный в настоящее время, представляет собой экстрактивно-дистилляционный способ. Однако фенилацетилен (РА) и стирол похожи по химической структуре, и они также проявляют схожее взаимодействие с экстракционно-дистилляционным растворителем, и, таким образом, невозможно достичь эффективного отделения стирола от РА экстракцией-дистилляцией. Присутствие РА будет не только увеличивать расход катализатора во время анионной полимеризации стирола и влиять на длину цепи и скорость полимеризации, но также приведет к ухудшению свойств полистирола, например обесцвечиванию, деградации, высвобождению запаха и т.п. Следовательно, необходимо удалять фенилацетилен из потока стирола, и в то же время потери стирола должны быть как можно меньше. Соответственно, разработка высоко селективного катализатора для селективного гидрирования фенилацетилена и соответствующего способа становятся ключевой позицией технологии выделения стирола из пиролизного бензина.
Заявка на патент CN 1852877A раскрывает способ уменьшения примеси фенилацетилена в присутствии мономера стирола. Поток мономера стирола, содержащий незначительное количество фенилацетилена, подают в реактор гидрирования, в котором также подают газ гидрирования, содержащий водород. Поток мономера стирола и водород приводят в контакт со слоем катализатора, содержащим катализатор, содержащий соединение восстановленной меди на носителе из θ-оксида алюминия. Реактор гидрирования работает при температуре по меньшей мере 60°C и давлении по меньшей мере 30 фунт/кв.дюйм (изб.), чтобы гидрировать фенилацетилен до стирола. Газ гидрирования содержит смесь азота и водорода. Этот способ характеризуется относительно высокой температурой реакции, низкой степенью гидрирования фенилацетилена (около 70%), короткой жизнью катализатора и высокими потерями стирола (около 3%).
Заявка на патент CN 1087892А раскрывает способ и установку для очистки мономера стирола в потоке стирола путем гидрирования, в котором разбавитель, такой как азот, используют, чтобы разбавить водород, водород подают за счет отходящего газа из дегидрирования бензола и примесь фенилацетилена гидрируют до стирола с помощью реактора с многоступенчатым слоем катализатора. Указанный патент направлен только на способ селективного удаления фенилацетилена из потока стирола, содержащего фенилацетилен с низкой концентрацией, такой как 300 ppm. С другой стороны, используемый катализатор проявляет низкую степень гидрирования фенилацетилена (около 95%) и потери стирола составляют около 0,2%.
Таким образом, по-прежнему, существует необходимость в способе селективного гидрирования фенилацетилена с высокой селективностью, полезного в технологии выделения стирола из пиролизного бензина.
Раскрытие изобретения
Для того чтобы преодолеть такие проблемы как низкая степень удаления фенилацетилена и высокие потери стирола, от которых страдают существующие способы удаления фенилацетилена из потока стирола при гидрировании, авторы изобретения провели тщательные исследования. В результате, авторы изобретения обнаружили, что при использовании комбинации катализатора на основе никеля с катализатором на основе палладия и/или с катализатором на основе меди в качестве катализатора гидрирования, фенилацетилен в потоке стирола может быть эффективно удален, и в то же время, потери стирола являются очень низкими. На этой основе было создано настоящее изобретение.
Таким образом, задача настоящего изобретения заключается в обеспечении нового способа селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое катализатора. Указанный способ обладает преимуществами, которые заключаются в высокой степени удаления фенилацетилена и низких потерях стирола.
Описание предпочтительного варианта осуществления изобретения
В одном варианте осуществления, настоящее изобретение относится к способу селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое, который включает пропускание в условиях реакции гидрирования, исходного потока углеводородной фракции, содержащей фенилацетилен и стирол, через объединенный слой в реакторе, содержащий катализатор А и катализатор В, чтобы последовательно привести в контакт исходный поток с катализатором А и катализатором В, причем катализатор А представляет собой катализатор на основе никеля, катализатор В представляет собой по меньшей мере один катализатор, выбранный из группы, состоящей из катализатора на основе палладия и катализатора на основе меди, и весовое соотношение катализатора А к загруженному катализатору В составляет от 0,5:1 до 5:1.
В способе по изобретению, катализатор А представляет собой катализатор на основе никеля. Носитель катализатора А представляет собой по меньшей мере один носитель, выбранный из группы, состоящей из оксида кремния, оксида магния, оксида алюминия и молекулярных сит, и предпочтительно по меньшей мере один из оксида кремния или оксида алюминия. Катализатор А имеет содержание никеля от 8 до 50 вес.% и, предпочтительно, от 10 до 40 вес.%, в пересчете на носитель. В одном варианте осуществления изобретения, катализатор А может быть приготовлен способом, содержащим стадии, на которых: медленно добавляют некоторое количество водорастворимой соли никеля, например нитрата никеля, в водный раствор разбавленной кислоты (например, азотной кислоты) и перемешивают, чтобы растворить соль никеля; затем пропитывают некоторое количество носителя, например оксида алюминия, полученным раствором в течение, например, более чем 8 часов; и затем сушат и кальцинируют, чтобы получить желаемый катализатор А на основе никеля.
В способе по изобретению, катализатор В представляет собой по меньшей мере один катализатор, выбранный из группы, состоящей из катализаторов на основе палладия и катализаторов на основе меди, и предпочтительно представляет собой катализатор на основе палладия. Носитель катализаторов на основе палладия и катализаторов на основе меди представляет собой по меньшей мере один носитель, выбранный из группы, состоящей из оксида кремния, оксид магния, оксида алюминия и молекулярных сит, и предпочтительно по меньшей мере один из оксида кремния или оксида алюминия. Катализаторы на основе палладия имеют содержание палладия от 0,1 до 5 вес.% и, предпочтительно, от 0,2 до 3 вес.%, в пересчете на носитель. Катализаторы на основе меди имеют содержание меди от 10 до 60 вес.%, и предпочтительно, от 12 до 40 вес.%, в пересчете на носитель. В одном из вариантов осуществления изобретения, катализатор на основе палладия в качестве катализатора В может быть приготовлен способом, содержащим стадии, на которых: некоторое количество носителя, например оксида алюминия, предварительно пропитывают деионизированной водой и затем отфильтровывают из воды; растворяют в воде некоторое количество водорастворимой соли палладия, например нитрата палладия, и доводят уровень рН раствора азотной кислотой до от около 3 до около 6; после подходящего нагревания раствора пропитывают им отфильтрованный из воды носитель; сушат пропитанный носитель и кальцинируют его в воздухе, чтобы получить катализатор на основе палладия. Катализатор на основе меди может быть приготовлен похожим способом.
В предпочтительном варианте изобретения, настоящий способ выполняют при следующих условиях: температура на входе реактора от 15 до 100°C, и предпочтительно от 25 до 60°C; объемная скорость (WHSV) от 0,01 до 100 час-1, и предпочтительно от 0,1 до 20 час-1; молярное соотношение водород/фенилацетилен составляет от 1:1 до 30:1, и предпочтительно от 1:1 до 10:1; и реакционное давление равно от -0,08 до 5,0 МПа (манометрическое, точно такое же ниже), и предпочтительно от 0,1 до 3,0 МПа.
Способ по изобретению может быть использован для удаления фенилацетилена из содержащего стирол потока. Нет конкретного ограничения для исходного потока, используемого в способе по изобретению, при условии, что поток содержит стирол и фенилацетилен. Исходный поток, используемый в способе по изобретению, может содержать С8 фракцию, выделенную из пиролизного бензина. Такая фракция может содержать от 20 до 60 вес.% стирола и от 0,03 до 2,0 вес.% фенилацетилена.
Хорошо известно, что реакция гидрирования фенилацетилена является типичной тандемной реакцией. Сначала фенилацетилен гидрируют до стирола, и затем стирол может быть дополнительно гидрирован до этилбензола. Этилбензол имеет добавленную ценность гораздо ниже, чем стоимость стирола, и, таким образом, гидрирование стирола является нежелательным. Тем не менее, присутствие фенилацетилена является невыгодным для последующего отделения и оказывает негативное воздействие на реакцию стирола, таким образом, желательно удалять фенилацетилен настолько, насколько это возможно. Таким образом, дальнейшее превращение фенилацетилена, тогда как в дальнейшем избегают потерь стирола при гидрировании, является критическим для технологии выделения стирола. После многих изучений, авторы изобретения обнаружили, что в способе гидрирования фенилацетилена в присутствии катализатора на основе никеля, палладия или меди, энергия активации реакции стадии гидрирования фенилацетилена с получением стирола, является ниже, чем энергия активации реакции на стадии гидрирования стирола, с получением этилбензола, в результате чего все катализаторы на основе палладия, на основе меди и на основе никеля имеют относительно хорошую селективность для гидрирования фенилацетилена. После дополнительных изучений, авторы изобретения обнаружили, что катализатор на основе никеля начинает проявлять каталитическую активность при более низкой температуре при гидрировании фенилацетилена, в то время как катализатор на основе палладия или катализатор на основе меди начинает проявлять каталитическую активность при более высокой температуре по сравнению с катализатором на основе никеля. Хорошо известно, что реакция гидрирования является типичной экзотермической реакцией. Для обычной адиабатической реакции гидрирования, по мере протекания реакции гидрирования, температура каталитического слоя будет расти. Если концентрация фенилацетилена в исходном потоке составляет около 1,5 вес.%, адиабатическая температура будет расти более чем на 20°C. Ясно, что если использован один катализатор, то для катализатора трудно проявлять постоянно хорошую каталитическую активность в отношении относительно широкого температурного интервала. В способе по изобретению, авторы изобретения выработали самые лучшие характеристики катализаторов на основе никеля, палладия и меди в реакции гидрирования, и объединенный слой катализатора, в котором катализатор на основе никеля расположен выше по ходу потока, а катализатор на основе палладия и/или катализатор на основе меди расположен(ы) ниже по ходу потока, используют, чтобы получить хорошую каталитическую активность в относительно широком температурном диапазоне. Таким образом, обеспечено не только почти полное гидрирование фенилацетилена в исходном потоке, но также потери стирола дополнительно снижены. Более того, способ по изобретению может быть выполнен при пониженном давлении.
В одном варианте осуществления изобретения, С8 фракцию исходного потока, содержащую от 20 до 60 вес.% стирола и от 0,03 до 2 вес.% фенилацетилена пропускают через слой катализатора, содержащий катализатор А и катализатор В, чтобы последовательно привести в контакт исходный поток с катализатором А и катализатором В, причем катализатор А представляет собой катализатор на основе никеля, содержащий оксид алюминия в качестве носителя, и никель в количестве от 10 до 40 вес.% в пересчете на носитель, катализатор В представляет собой катализатор на основе палладия, содержащий оксид алюминия в качестве носителя, и палладий в количестве от 0,2 до 3 вес.% в пересчете на носитель, и весовое соотношение загруженного катализатора А к загруженному катализатору В составляет от 0,5:1 до 5:1, и где температура на входе реактора от 25 до 60°C; WHSV от 0,1 до 20 час-1; молярное соотношение водород/фенилацетилен составляет от 1:1 до 20:1, и реакционное давление равно от 0,1 до 3,0 МПа. При таких условиях степень гидрирования фенилацетилена может быть увеличена до 100%, в то время как потери стирола могут быть почти нулевыми и даже возможна ситуация, когда количество стирола повышено (или потери стирола являются отрицательными) благодаря гидрированию фенилацетилена до стирола.
Примеры
Следующие примеры даны для дополнительной иллюстрации изобретения, но ни в коей мере не служат для ограничения изобретения.
Общая процедура получения катализаторов
Катализаторы на основе никеля, используемые в следующих примерах, были получены следующим образом.
Некоторое количество нитрата никеля или карбоната никеля медленно добавляли в водный раствор азотной кислоты, имеющей уровень pH от 4 до 6, и смесь перемешивали, чтобы растворить соль никеля. Затем некоторое количество носителя, например оксида алюминия, пропитывали полученным раствором в течение более чем 8 часов. Пропитанный носитель сушили при температуре от 100 до 130°C и затем кальцинировали при 500°C в течение 4 часов, чтобы получить желаемый катализатор на основе никеля.
Катализаторы на основе меди, используемые в следующих примерах, были получены следующим образом.
Некоторое количество нитрата меди или карбоната растворили в воде, чтобы получить раствор для пропитывания. Некоторое количество носителя, например оксида алюминия или оксида кремния, пропитывали раствором в течение 24 часов. Пропитанный носитель сушат при комнатной температуре, в вакууме, в течение от 8 до 12 часов, и дополнительно при температуре от 100 до 130°C в течение от 8 до 12 часов, и затем кальцинируют при 350 до 450°C, в течение 4 до 8 часов, чтобы получить желаемый катализатор на основе меди.
Катализаторы на основе палладия, используемые в следующих примерах, были получены следующим образом.
Некоторое количество носителя, например оксида алюминия, предварительно пропитывали деионизированной водой и затем отфильтровали от воды. Некоторое количество нитрата палладия растворили в воде, и раствор был доведен азотной кислотой до уровня pH от около 3 до около 6. Раствор нагрели от 60 до 80°C и носитель, из которого отфильтровали воду, пропитали раствором. Пропитанный носитель сушили при температуре 110°C до 130°C в течение 4 до 8 часов, затем кальцинировали в воздухе при 300 до 450°C в течение 4 до 8 часов, чтобы получить желаемый катализатор на основе палладия.
Пример 1
При использовании θ-оксида алюминия в качестве носителя, никелевый катализатор А, имеющий количество загрузки никеля 15 вес.%, и палладиевый катализатор В, имеющий загрузку палладия в количестве 0,8 вес.%, были приготовлены вышеописанными способами. Катализатор А и катализатор В были последовательно загружены в адиабатический реактор с неподвижным слоем, с весовым соотношением загруженного катализатора А к загруженному катализатору В 1:1. Как катализатор А, так и катализатор В перед использованием были восстановлены водородом при 300°C в течение 4 часов. При следующих условиях: температура на входе реактора 40°C; WHSV 2 час-1; молярное соотношение водород/фенилацетилен, равное 3:1, и реакционное давление 0,2 МПа, С8 фракцию исходного потока, содержащую 45 вес.% стирола, 42,85 вес.% ксилола, 12 вес.% этилбензола и 0,15 вес.% фенилацетилена, пропустили через реактор, чтобы последовательно привести в контакт с катализатором А и катализатором В, находящимися в реакторе. При анализе потока, выходящего из реактора, было обнаружено, что потери стирола составили 0,05 вес.% и, содержание фенилацетилена было равно 1 ppmw.
Пример 2
При использовании θ-оксида алюминия в качестве носителя, никелевый катализатор А, имеющий загрузку никеля в количестве 45 вес.% и палладиевый катализатор В, имеющий загрузку палладия в количестве 0,2 вес.%, были приготовлены вышеописанными способами. Катализатор А и катализатор В были последовательно загружены в адиабатический реактор с неподвижным слоем, с весовым соотношением загруженного катализатора А к загруженному катализатору В 3:1. Как катализатор А, так и катализатор В перед использованием были восстановлены водородом при 300°C в течение 4 часов. При следующих условиях: температура на входе реактора 35°C; WHSV 0,2 час-1; молярное соотношение водород/фенилацетилен, равное 15:1, и реакционное давление 3,5 МПа, С8 фракцию исходного потока, содержащую 38 вес.% стирола, 15 вес.% этилбензола, 0,3 вес.% фенилацетилена, и балансное количество ксилолов, пропустили через реактор, чтобы последовательно привести в контакт с катализатором А и катализатором В, находящимися в реакторе. При анализе потока, выходящего из реактора, было обнаружено, что потери стирола составили -0,1 вес.%, и содержание фенилацетилена не было обнаружено.
Пример 3
При использовании γ-оксида алюминия в качестве носителя, никелевый катализатор А, имеющий загрузку никеля в количестве 20 вес.% и палладиевый катализатор В, имеющий загрузку палладия в количестве 1,5 вес.%, были приготовлены вышеописанными способами. Катализатор А и катализатор В были последовательно загружены в адиабатический реактор с неподвижным слоем, с весовым соотношением загруженного катализатора А к загруженному катализатору В 2:1. Как катализатор А, так и катализатор В перед использованием были восстановлены водородом при 300°C в течение 4 часов. При следующих условиях: температура на входе реактора 70°C; WHSV 30 час-1; молярное соотношение водород/фенилацетилен, равное 10:1, и реакционное давление составляет -0,05 МПа, С8 фракцию исходного потока, содержащую 35 вес.% стирола, 18 вес.% этилбензол, 0,08 вес.% фенилацетилена, и балансное количество ксилолов, пропустили через реактор, чтобы последовательно привести в контакт с катализатором А и катализатором В, находящимися в реакторе. При анализе потока, выходящего из реактора, было обнаружено, что потери стирола составили 0,2 вес.% и содержание фенилацетилена было равно 10 ppmw.
Пример 4
При использовании молекулярного сита ZSM-5 в качестве носителя, никелевый катализатор А, имеющий загрузку никеля в количестве 30 вес.% и палладиевый катализатор В, имеющий загрузку палладия в количестве 3 вес.%, были приготовлены вышеописанными способами. Катализатор А и катализатор В были последовательно загружены в адиабатический реактор с неподвижным слоем, с весовым соотношением загруженного катализатора А к загруженному катализатору В 1,5:1. Как катализатор А, так и катализатор В перед использованием были восстановлены водородом при 300°C в течение 4 часов. При следующих условиях: температура на входе реактора 45°C; WHSV 10 час-1; молярное соотношение водород/фенилацетилен, равное 20:1, и реакционное давление 2,5 МПа, C8 фракцию исходного потока, содержащую 30 вес.% стирола, 8 вес.% этилбензола, 1,2 вес.% фенилацетилена, и балансное количество ксилолов, пропустили через реактор, чтобы последовательно привести в контакт с катализатором А и катализатором В, находящимися в реакторе. При анализе потока, выходящего из реактора, было обнаружено, что потери стирола составили -0,7 вес.%, и содержание фенилацетилена не было обнаружено.
Пример 5
При использовании в весовом соотношении, равном 1:1, смеси γ-оксида алюминия и α-оксида алюминия, в качестве носителя, никелевый катализатор А, имеющий загрузку никеля в количестве 10 вес.% был приготовлен вышеописанным способом. При использовании молекулярного сита ZSM-5 в качестве носителя, медный катализатор В, имеющий загрузку меди в количестве 20 вес.%, был приготовлен вышеописанным способом. Катализатор А и катализатор В были последовательно загружены в адиабатический реактор с неподвижным слоем, с весовым соотношением загруженного катализатора А к загруженному катализатору В 0,5:1. Как катализатор А, так и катализатор В перед использованием были восстановлены водородом при 300°C в течение 4 часов. При следующих условиях: температура на входе реактора 30°C; WHSV 3 час-1; молярное соотношение водород/фенилацетилен, равное 6:1, и реакционное давление 2,0 МПа, С8 фракцию исходного потока, содержащую 55 вес.% стирола, 3 вес.% этилбензола, 2 вес.% фенилацетилена, и балансное количество ксилолов, пропустили через реактор, чтобы последовательно привести в контакт с катализатором А и катализатором В, находящимися в реакторе. При анализе потока, выходящего из реактора, было обнаружено, что потери стирола составили -1,5 вес.%, и содержание фенилацетилена не было обнаружено.
Пример 6
При использовании γ-оксида алюминия в качестве носителя, никелевый катализатор А, имеющий загрузку никеля в количестве 20 вес.% и медный катализатор В, имеющий загрузку меди в количестве 50 вес.%, были приготовлены вышеописанными способами. Катализатор А и катализатор В были последовательно загружены в адиабатический реактор с неподвижным слоем, с весовым соотношением загруженного катализатора А к загруженному катализатору В 5:1. Как катализатор А, так и катализатор В перед использованием были восстановлены водородом при 300°С в течение 4 часов. При следующих условиях: температура на входе реактора 80°C; WHSV 60 час-1; молярное соотношение водород/фенилацетилен, равное 10:1, и реакционное давление 0,5 МПа, С8 фракцию исходного потока, содержащую 30 вес.% стирола, 8 вес.% этилбензола, 0,8 вес.% фенилацетилена, и балансное количество ксилолов, пропустили через реактор, чтобы последовательно привести в контакт с катализатором А и катализатором В, находящимися в реакторе. При анализе потока, выходящего из реактора, было обнаружено, что потери стирола составили 0,2 вес.%, и содержание фенилацетилена было равно 1 ppmw.
Сравнительный пример 1
Данный эксперимент был проведен в соответствии со способом, описанным в примере 1, за исключением того, что был использован слой только катализатора, катализатор В, вместо объединенного слоя катализатора А и катализатора В. При анализе потока, выходящего из реактора было обнаружено, что потери стирола были равны 3 вес.% и содержание фенилацетилена было равно 10 ppmw.
Сравнительный пример 2
Данный эксперимент был проведен в соответствии со способом, описанным в примере 5, за исключением того, что был использован слой только катализатора В, вместо объединенного слоя катализатора А и катализатора В. При анализе потока, выходящего из реактора было обнаружено, что потери стирола были равны 5 вес.% и содержание фенилацетилена было равно 20 ppmw.
Сравнительный пример 3
Данный эксперимент был проведен в соответствии со способом, описанным в примере 5, за исключением того, что был использован слой только катализатора А, вместо объединенного слоя катализатора А и катализатора В. При анализе потока, выходящего из реактора было обнаружено, что потери стирола были равны 4 вес.% и содержание фенилацетилена было равно 18 ppmw.
Патенты, заявки на патент и результаты экспериментов, процитированные в описании, включены посредством ссылки.
Несмотря на то что настоящее изобретение описано со ссылкой на конкретные варианты осуществления, для специалиста квалифицированного в данной области техники будет понятно, что различные изменения и модификации могут быть выполнены без отклонения от основной тенденции и области изобретения. Следовательно, настоящее изобретение не ограничено конкретными вариантами осуществления настоящего изобретения, раскрытыми в качестве самых лучших методов, рассмотренных для выполнения настоящего изобретения, но настоящее изобретение будет включать все варианты осуществления в объеме приложенной формулы изобретения.

Claims (9)

1. Способ селективного гидрирования фенилацетилена в присутствии стирола, проводимого в объединенном слое, который включает пропускание в условиях реакции гидрирования исходного потока углеводородной фракции, содержащей фенилацетилен и стирол, через объединенный слой в реакторе, содержащий катализатор А и катализатор В, чтобы последовательно привести в контакт исходный поток с катализатором А и катализатором В, причем катализатор А представляет собой катализатор на основе никеля, катализатор В представляет собой по меньшей мере один катализатор, выбранный из группы, состоящей из катализатора на основе палладия и катализатора на основе меди, и весовое соотношение загруженного катализатора А к загруженному катализатору В составляет от 0,5:1 до 5:1.
2. Способ по п.1, в котором условия реакции гидрирования включают: температуру на входе реактора от 15 до 100°C; объемную скорость (WHSV) от 0,01 до 100 ч-1; молярное соотношение водород/фенилацетилен от 1:1 до 30:1 и реакционное давление от -0,08 до 5МПа.
3. Способ по п.1, в котором катализатор А в качестве носителя содержит по меньшей мере один носитель, выбранный из группы, состоящей из оксида кремния, оксида магния, оксида алюминия и молекулярных сит, и содержит никель в количестве от 8 до 50 вес.% в пересчете на носитель.
4. Способ по п.3, в котором катализатор А содержит оксид кремния и/или оксид алюминия в качестве носителя и содержит никель в количестве от 10 до 40 вес.% в пересчете на носитель.
5. Способ по п.1, в котором катализатор В в качестве носителя содержит по меньшей мере один носитель, выбранный из группы, состоящей из оксида кремния, оксида магния, оксида алюминия и молекулярных сит, причем катализатор на основе палладия в качестве катализатора В содержит палладий в количестве от 0,1 до 5 вес.% в пересчете на носитель, а катализатор на основе меди, в качестве катализатора В содержит медь в количестве от 10 до 60 вес.% в пересчете на носитель.
6. Способ по п.1, в котором катализатор В представляет собой катализатор на основе палладия, который содержит оксид кремния и/или оксид алюминия в качестве носителя и содержит палладий в количестве от 0,2 до 3 вес.% в пересчете на носитель.
7. Способ по п.1, в котором условия реакции гидрирования включают: температуру на входе реактора от 25 до 60°С; WHSV от 0,1 до 20 ч-1; молярное соотношение водород/фенилацетилен от 1:1 до 20:1 и реакционное давление от 0,1 до 3,0 МПа.
8. Способ по п.1, в котором фенилацетилен- и стиролсодержащая углеводородная фракция исходного потока содержит от 20 до 60 вес.% стирола и от 0,03 до 2 вес.% фенилацетилена.
9. Способ по п.1, в котором фенилацетилен- и стиролсодержащая углеводородная фракция исходного потока представляет собой С8 фракцию, выделенную из пиролизного бензина.
RU2011129678/04A 2008-12-18 2009-12-17 Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя RU2492160C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200810044147.5 2008-12-18
CN2008100441475A CN101475439B (zh) 2008-12-18 2008-12-18 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法
PCT/CN2009/001487 WO2010069145A1 (zh) 2008-12-18 2009-12-17 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法

Publications (2)

Publication Number Publication Date
RU2011129678A RU2011129678A (ru) 2013-01-27
RU2492160C2 true RU2492160C2 (ru) 2013-09-10

Family

ID=40836230

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011129678/04A RU2492160C2 (ru) 2008-12-18 2009-12-17 Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя

Country Status (6)

Country Link
US (1) US8916736B2 (ru)
JP (1) JP5535236B2 (ru)
KR (1) KR101458055B1 (ru)
CN (1) CN101475439B (ru)
RU (1) RU2492160C2 (ru)
WO (1) WO2010069145A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561999A (zh) * 2015-12-11 2016-05-11 北京化工大学 一种Al2O3纤维负载镍基催化剂的制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845172B2 (ja) * 2005-03-30 2011-12-28 月島機械株式会社 有機化合物の断熱冷却式晶析方法及び装置
CN101475438B (zh) 2008-12-18 2012-05-23 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择加氢的方法
CN101475439B (zh) 2008-12-18 2012-05-09 中国石油化工股份有限公司 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法
EP2223987A1 (en) * 2009-02-17 2010-09-01 ISP Marl GmbH Purification of an aromatic fraction containing acetylenes by selective hydrogenation of the acetylenes
CN102649065A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 在苯乙烯存在下苯乙炔选择加氢催化剂
CN102649662B (zh) * 2011-02-25 2015-10-21 中国石油化工股份有限公司 苯乙烯存在下苯乙炔高选择加氢的方法
CN102649063B (zh) * 2011-02-25 2015-10-21 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择性加氢催化剂
CN102649663B (zh) * 2011-02-25 2015-09-09 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择性加氢的方法
CN102649680A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 苯乙烯存在下进行苯乙炔氢化的方法
CN102649678A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 在苯乙烯存在下苯乙炔高选择加氢的方法
CN102649066A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择加氢催化剂
CN102649660A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 苯乙烯存在下除苯乙炔的方法
CN103301874B (zh) * 2012-03-12 2015-03-11 中国科学院化学研究所 提高多环芳烃选择性加氢开环的方法及其催化剂组合物
CN103724153B (zh) * 2012-10-10 2015-11-25 中国石油化工股份有限公司 α-甲基苯乙烯选择加氢的方法
CN103724152B (zh) * 2012-10-10 2015-07-22 中国石油化工股份有限公司 甲基-α-甲基苯乙烯选择加氢的方法
CN107954814A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 碳八馏份中苯乙炔选择加氢的方法
CN111689826B (zh) * 2019-03-13 2021-07-06 中国科学技术大学 一种催化选择性加氢的方法
CN114181032A (zh) * 2020-09-15 2022-03-15 中国石油天然气股份有限公司 一种碳八馏分选择加氢除苯乙炔的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1057486A1 (ru) * 1981-09-04 1983-11-30 Предприятие П/Я В-8873 Способ очистки дивинила от ацетиленовых углеводородов
RU2259877C2 (ru) * 2000-04-30 2005-09-10 Чайна Петро-Кемикал Корпорейшн Катализатор селективного гидрирования, способ его получения и способ селективного гидрирования алкинов с его использованием
CN1852877A (zh) * 2003-07-31 2006-10-25 弗纳技术股份有限公司 选择性氢化苯乙炔的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508836A (en) 1982-07-27 1985-04-02 Mobil Oil Corporation Catalytic conversion process for aromatic feedstocks with hydrogen regeneration of coke-selectivated zeolite catalyst
JPS59216838A (ja) * 1983-05-25 1984-12-06 Mitsubishi Petrochem Co Ltd 選択的水素添加によるスチレン類含有物の精製法
JPH0645561B2 (ja) * 1985-02-21 1994-06-15 旭化成工業株式会社 スチレン類含有物の精製法
JPS63291643A (ja) * 1987-05-25 1988-11-29 Nippon Kayaku Co Ltd フエニルアセチレン類の選択水素添加反応用触媒
US6555073B1 (en) 1990-10-04 2003-04-29 Fina Technology, Inc. Catalytic reduction of phenylacetylene in a styrene stream
US5156816A (en) * 1990-10-04 1992-10-20 Fina Technology, Inc. System for purifying styrene monomer feedstock using ethylbenzene dehydrogenation waste gas
EP0584054A1 (en) * 1992-08-19 1994-02-23 Fina Technology, Inc. Catalytic reduction of phenylacetylene in a styrene stream
JPH07278021A (ja) 1994-04-13 1995-10-24 Asahi Chem Ind Co Ltd スチレンモノマー精製方法
NL1009014C2 (nl) 1998-04-28 1999-10-29 Dsm Nv Werkwijze voor de hydrogenering van fenylacetyleen in een styreenbevattend medium met behulp van een katalysator.
FR2795343B1 (fr) 1999-06-22 2001-08-03 Inst Francais Du Petrole Procede de pretraitement dans des conditions severes d'un catalyseur a base de zeolithe euo
CN1281720C (zh) * 2001-10-15 2006-10-25 催化蒸馏技术公司 加氢催化剂和加氢方法
US20040030207A1 (en) 2002-08-08 2004-02-12 Catalytic Distillation Technologies Selective hydrogenation of acetylenes
US6734328B1 (en) * 2002-11-08 2004-05-11 Catalytic Distillation Technologies Process for the selective hydrogenation of alkynes
US20060173224A1 (en) * 2005-02-01 2006-08-03 Catalytic Distillation Technologies Process and catalyst for selective hydrogenation of dienes and acetylenes
CN101475439B (zh) 2008-12-18 2012-05-09 中国石油化工股份有限公司 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法
CN101475438B (zh) 2008-12-18 2012-05-23 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择加氢的方法
CN101852877B (zh) * 2010-06-04 2012-02-22 清华大学 一种制作云纹光栅的方法和纳米压印设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1057486A1 (ru) * 1981-09-04 1983-11-30 Предприятие П/Я В-8873 Способ очистки дивинила от ацетиленовых углеводородов
RU2259877C2 (ru) * 2000-04-30 2005-09-10 Чайна Петро-Кемикал Корпорейшн Катализатор селективного гидрирования, способ его получения и способ селективного гидрирования алкинов с его использованием
CN1852877A (zh) * 2003-07-31 2006-10-25 弗纳技术股份有限公司 选择性氢化苯乙炔的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561999A (zh) * 2015-12-11 2016-05-11 北京化工大学 一种Al2O3纤维负载镍基催化剂的制备方法

Also Published As

Publication number Publication date
KR20110106375A (ko) 2011-09-28
US20110319684A1 (en) 2011-12-29
JP5535236B2 (ja) 2014-07-02
CN101475439A (zh) 2009-07-08
WO2010069145A1 (zh) 2010-06-24
CN101475439B (zh) 2012-05-09
JP2012512189A (ja) 2012-05-31
RU2011129678A (ru) 2013-01-27
US8916736B2 (en) 2014-12-23
KR101458055B1 (ko) 2014-11-04

Similar Documents

Publication Publication Date Title
RU2492160C2 (ru) Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя
RU2505519C2 (ru) Способ селективного гидрирования фенилацетилена в присутствии стирола
US8158837B2 (en) Method for selective hydrogenation of acetylene to ethylene
WO2017201644A1 (zh) 一种钯系负载型加氢催化剂及其制备方法与应用
JP4953817B2 (ja) エチレン及びプロピレンの製造法
WO2005026086A1 (en) Process for liquid phase hydrogenation
KR101644665B1 (ko) 알킨의 대응 알켄으로의 선택적 촉매 수소화
CN103058814B (zh) 一种由液化气生产芳烃和烯烃的方法
BRPI0913770B1 (pt) Process for the production of ethylene glycol from an oxalate
TWI457313B (zh) Study on the selective hydrogenation of phenylethylene in the presence of styrene in the presence of
RU2501606C1 (ru) Катализатор для селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов и способ селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов с его использованием
TWI486330B (zh) Selective Hydrogenation of Phenylene Acetylene in the Presence of
CN107952440B (zh) 碳八馏份中苯乙炔选择加氢的铜催化剂
EP3303269B1 (en) Process for the selective hydrogenation of acetylene to ethylene
WO2014196517A1 (ja) オレフィンの製造方法、およびこれに用いられる脱水触媒
WO2005058779A1 (ja) アダマンタンの製造方法
RU2574402C1 (ru) Способ очистки алканов от примесей
RU2238797C2 (ru) Усовершенствования в катализе дегидрирования
CN106365940B (zh) 一种通过转化提高拔头油类轻烃附加值的工艺
CN106518604B (zh) 乙苯的合成方法
RU2566751C1 (ru) Катализатор для гидроаминирования жидких ацетиленовых углеводородов и способ гидроаминирования жидких ацетиленовых углеводородов с использованием этого катализатора
JP2000191557A (ja) スチレン類の精製方法
CN102649065A (zh) 在苯乙烯存在下苯乙炔选择加氢催化剂