WO2010069145A1 - 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法 - Google Patents

苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法 Download PDF

Info

Publication number
WO2010069145A1
WO2010069145A1 PCT/CN2009/001487 CN2009001487W WO2010069145A1 WO 2010069145 A1 WO2010069145 A1 WO 2010069145A1 CN 2009001487 W CN2009001487 W CN 2009001487W WO 2010069145 A1 WO2010069145 A1 WO 2010069145A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
styrene
phenylacetylene
weight
palladium
Prior art date
Application number
PCT/CN2009/001487
Other languages
English (en)
French (fr)
Inventor
李斯琴
刘俊涛
朱志炎
朱俊华
蒯骏
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2011129678/04A priority Critical patent/RU2492160C2/ru
Priority to JP2011541062A priority patent/JP5535236B2/ja
Priority to US13/140,645 priority patent/US8916736B2/en
Priority to KR1020117016585A priority patent/KR101458055B1/ko
Publication of WO2010069145A1 publication Critical patent/WO2010069145A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond

Definitions

  • the present invention relates to a process for the selective hydrogenation of phenylacetylene using a composite bed in the presence of styrene, and more particularly to a process for the removal of phenylacetylene from a benzene acetylene-containing hydrocarbon feed.
  • Styrene is an important monomer for producing polystyrene (PS), ABS resin, styrene-butadiene rubber, etc., and its production method is mainly ethylbenzene dehydrogenation.
  • PS polystyrene
  • ABS resin polystyrene
  • styrene-butadiene rubber etc.
  • its production method is mainly ethylbenzene dehydrogenation.
  • Pyrolysis gasoline is a by-product of the ethylene industry and produces about 60% to 70°/» of ethylene capacity, of which the C 8 fraction is rich in styrene and mixed diphenylbenzene.
  • a 1000kt/a ethylene unit can obtain 24 to 42 kt/a of styrene while recovering mixed xylene.
  • the production cost of styrene recovered from pyrolysis gasoline is about 1/2 of the styrene produced by the ethylbenzene dehydrogenation process.
  • a method for recovering styrene from pyrolysis gasoline is currently generally considered to be an extractive distillation process.
  • PA phenylacetylene
  • the chemical structure of phenylacetylene (PA) is similar to that of styrene, and the interaction between the two is similar to that of the extractive distillation solvent. Therefore, the effective separation of styrene and PA cannot be achieved by extractive distillation.
  • the presence of PA not only increases the catalyst consumption in the polymerization of styrene anion, affects the chain length and polymerization rate, but also causes deterioration of polystyrene properties such as discoloration, degradation and release of odor.
  • Patent application CN1852877A discloses a process for reducing benzene block impurities in the presence of a styrene monomer, wherein a styrene monomer stream comprising a small amount of phenylacetylene is supplied to a hydrogenation reactor, and a hydrogenation gas containing hydrogen is also supplied.
  • the styrene monomer stream and hydrogen are contacted with a catalyst bed comprising a catalyst comprising a reduced copper compound on a ruthenium alumina support.
  • the hydrogenation reactor is operated at a temperature of at least 60 and a pressure of at least 30 ps ig, and the phenylacetylene is hydrogenated to form styrene.
  • the hydrogenation gas includes a mixture of nitrogen and hydrogen.
  • the technical reaction temperature is high, the phenylacetylene hydrogenation rate is low (about 70%), the catalyst life is short, and the styrene loss rate is high (about 3% or so).
  • Patent application CN1087892A discloses a method and apparatus for purifying styrene monomer in a styrene stream by a hydrogenation process in which a hydrogen solvent is diluted with a diluent such as nitrogen, and hydrogen is dehydrogenated with ethylbenzene to provide hydrogen, with the aid of The reactor of the catalytic bed hydrogenates the phenylacetylene impurity to styrene.
  • this patent only mentions the selective benzene block method of styrene stream with low concentration such as 300ppm phenylacetylene content.
  • the catalyst used at the same time has a low hydrogenation rate of phenylacetylene (about 95%), and the loss of styrene is about 0. . Vk.
  • the present inventors conducted diligent research in order to overcome the problem of low phenylacetylene removal rate and high styrene loss rate existing in the prior art for hydrotreating phenylacetylene in a styrene stream.
  • the inventors have found that by using a combination of a nickel-based catalyst and a palladium-based and/or copper-based catalyst as a hydrogenation catalyst, phenylacetylene in the styrene stream can be efficiently removed, and the loss rate of styrene is low.
  • the present invention has been completed on this basis.
  • the object of the present invention is to provide a new styrene in the presence of a composite reminder A chemical bed for the selective hydrogenation of phenylacetylene.
  • This method has the advantages of high phenylacetylene removal rate and low styrene loss rate. Description of the preferred embodiment
  • the present invention relates to a process for the selective hydrogenation of phenylbenzene blocks using a composite bed in the presence of styrene, the process comprising reacting a hydrocarbon fraction feedstock comprising phenylacetylene and styrene under hydrogenation conditions
  • the raw material is sequentially contacted with the catalyst A and the catalyst B by a composite bed reactor containing a catalyst A and a catalyst B, wherein the catalyst A is a nickel-based catalyst, and the catalyst B is selected from the group consisting of a palladium-based catalyst and a copper-based catalyst.
  • the weight ratio of the catalyst A to the catalyst B is 0. 5: 1 ⁇ 5: 1.
  • catalyst A is a nickel based catalyst.
  • the carrier of the catalyst A is at least one selected from the group consisting of silica, magnesia, alumina and molecular sieves, preferably at least one of silicon oxide and aluminum oxide.
  • Catalyst A has a nickel content of 8 to 50 by weight based on the carrier. /. Preferably, the nickel content is from 10 to 40% by weight.
  • the catalyst A can be prepared by a process comprising the steps of: slowly adding an amount of a water-soluble nickel salt such as nickel nitrate to an aqueous solution of a dilute acid such as nitric acid and stirring to dissolve the nickel salt, and then A quantity of a support such as alumina is impregnated with the resulting solution, for example, for more than 8 hours, and then dried and calcined to obtain a desired nickel-based catalyst.
  • a water-soluble nickel salt such as nickel nitrate
  • a dilute acid such as nitric acid
  • the catalyst B is at least one selected from the group consisting of a palladium-based catalyst and a copper-based catalyst, preferably a palladium-based catalyst.
  • the support of the palladium-based catalyst and the copper-based catalyst is at least one selected from the group consisting of silica, magnesia, alumina, and molecular sieves, preferably at least one of silica and alumina. ⁇
  • the palladium-based catalyst having a palladium content of from 0.1 to 5 wt%, preferably from 0.2 to 3 wt%.
  • the copper-based catalyst has a copper content of from 10 to 60% by weight, preferably from 12 to 40% by weight, based on the carrier.
  • the palladium catalyst as the catalyst B can be prepared by a process comprising the steps of: pre-impregnating a quantity of a carrier such as alumina with deionized water, and then draining the water; a water-soluble palladium salt such as palladium nitrate dissolved in water, and the pH of the solution is adjusted with nitric acid
  • the solution is suitably heated to impregnate the carrier having the dried water; the impregnated carrier is dried and calcined in an air atmosphere to prepare a palladium catalyst.
  • Copper catalysts can be prepared analogously.
  • the first embodiment of the present invention is carried out under the following conditions: a reactor inlet temperature of 15 ⁇ 100, preferably 25 ⁇ 60; a weight hourly space velocity of 0. 01 ⁇ 100 hours -1 , preferably 0. 1 ⁇ 20 ⁇ - 1 , hydrogen / phenylacetylene molar ratio of 1: 1 ⁇ 30: 1, preferably 1: 1 ⁇ 10: 1; reaction pressure is -0. 08 ⁇ 5.
  • OMPa gauge pressure, the same below, preferably 0 . 1 ⁇ 3. OMPa.
  • the process of the invention can be used to remove benzene blocks from a styrene containing stream.
  • the raw material of the method of the present invention is not particularly limited as long as it contains styrene and styrene blocks.
  • the feedstock of the present invention may be recovered from the pyrolysis gasoline C 8 fraction. Such fractions may contain from 20 to 60 wt. Styrene, and 0. 03 ⁇ 2 wt% of really acetylene.
  • phenylacetylene is a typical series reaction.
  • the phenylacetylene is first hydrogenated to form styrene, and the styrene can be further hydrogenated to form ethylbenzene.
  • the added value of ethylbenzene is much lower than the added value of styrene, so hydrogenation of styrene is undesirable.
  • the presence of phenylacetylene is detrimental to subsequent separation and affects the reaction of styrene, so it is desirable to remove phenylacetylene as much as possible.
  • the nickel-based catalyst has a lower activation temperature in the hydrogenation of phenylacetylene, while the palladium-based or copper-based catalyst has a higher activation temperature than the nickel-based catalyst.
  • Hydrogenation reactions are well known as typical exothermic reactions. For the usual adiabatic hydrogenation reaction process, the temperature of the catalyst bed is continuously increased as the hydrogenation reaction proceeds. 5 ⁇ Left, if the concentration of phenylacetylene in the raw material is 1. 5 ⁇ % left Right, its adiabatic temperature rise will exceed 20. Obviously, it is difficult to ensure that the catalyst exerts good catalytic efficiency in a large temperature range by using a single catalyst.
  • the inventors made full use of the characteristics of the nickel-based, palladium-based and copper-based catalysts in the hydrogenation process, using a nickel-based catalyst in the front, a palladium-based and/or copper-based catalyst in the subsequent composite catalyst bed. Achieve better catalytic efficiency over a larger temperature range. This ensures almost complete hydrogenation of the phenylacetylene in the feedstock while minimizing the loss of styrene.
  • the process of the invention can be operated with a negative pressure.
  • the styrene content is 20 to 60% by weight
  • the phenylacetylene content is 0.03 to 2% by weight of the carbon eight fraction feedstock through a catalyst bed comprising Catalyst A and Catalyst B.
  • the raw material is sequentially contacted with the catalyst A and the catalyst B, wherein the catalyst A is a nickel-based catalyst having a nickel content of 10 to 40% by weight on a carrier, and the catalyst B is an alumina as a carrier.
  • the weight ratio of the charged catalyst A to the catalyst B is 0. 5: 1 - 5: 1, wherein the reactor inlet temperature is 25 ⁇ 60*, the palladium-based catalyst having a palladium content of 0.2 to 3% by weight.
  • the nickel catalyst used in the following examples was prepared by slowly adding a certain amount of nickel nitrate or nickel carbonate to an aqueous solution of nitric acid having a pH of 4-6, and stirring the mixture to dissolve the nickel salt. A quantity of carrier such as alumina is then impregnated with the solution for more than 8 hours. The impregnated support is dried at 100-130 and calcined at 500*C for 4 hours. The desired nickel-based catalyst is obtained.
  • the copper catalyst used in the following examples was prepared by dissolving a certain amount of copper nitrate or copper carbonate in water to prepare an immersion liquid. A quantity of a carrier such as alumina or silica is immersed in the impregnation solution for 24 hours. The impregnated support is then dried under vacuum at room temperature for 8-12 hours, then dried at 100-130 C for 8-12 hours, and calcined at 350-450" for 4-8 hours to provide the desired copper-based catalyst.
  • a carrier such as alumina or silica
  • the palladium catalyst used in the following examples was prepared by pre-impregnating a certain amount of a support such as alumina with deionized water, and then draining the water. A certain amount of palladium nitrate was dissolved in water, and the pH of the solution was adjusted to about 3-6 with nitric acid. The solution was heated to 60-80 V and the solution was used to impregnate the dried water carrier. The impregnated support is dried at 110 to 130 for 4 to 8 hours, and calcined in air at 300 to 450 Torr for 4 to 8 hours to obtain a desired palladium-based catalyst.
  • the nickel catalyst of a nickel loading of 15 wt% and the palladium catalyst B having a palladium loading of 0.8 wt% were prepared by the above method.
  • Catalyst A and Catalyst B were sequentially charged in a fixed bed adiabatic reactor, and the loading weight ratio of Catalyst A and Catalyst B was 1:1.
  • Catalyst A and Catalyst B were hydrogenated at a temperature of 3001 C for 4 hours before use. The temperature at which the reactor inlet is 40, the weight hourly space velocity is 2 hours - the hydrogen / benzene block molar ratio is 3:1, the reaction pressure is 0.
  • the content is 45% by weight of styrene, 42.85% by weight
  • the xylene, 12 wt% ethylbenzene and 0.15 wt% phenylacetylene carbon eight distillate feedstock were passed through a reactor to sequentially contact catalyst A and catalyst B in the reactor.
  • 05wt°/ ⁇ The effluent loss of styrene was found to be 0. 05wt ° /.
  • the content of phenylacetylene is 1 ppmw.
  • a nickel loading of 45 wt was prepared by the above method. /. 2wt ⁇
  • the loading weight ratio of catalyst A and catalyst B, catalyst A and catalyst B were sequentially charged in a fixed bed adiabatic reactor.
  • the example is 3: 1.
  • Catalyst A and Catalyst B were both reduced by hydrogen at a temperature of 300 C for 4 hours before use.
  • the temperature at the inlet of the reactor is 35 ⁇
  • the weight hourly space velocity is 0.2 hr to 1
  • the hydrogen/phenylacetylene molar ratio is 15:1
  • the reaction pressure is 3.
  • the carbon eight fraction feedstock of weight % ethylbenzene, 0.3 wt% phenylacetylene and the balance dinonylbenzene was passed through a reactor to sequentially contact catalyst A and catalyst B in the reactor.
  • the reactor effluent was analyzed and found to have a loss of styrene of -0.1% by weight, and phenylacetylene was not detected.
  • the nickel catalyst A having a nickel loading of 20 wt% and a palladium loading of 1. 5 wt%.
  • Catalyst A and Catalyst B were sequentially charged in a fixed bed adiabatic reactor, and the loading weight ratio of Catalyst A and Catalyst B was 2:1.
  • Catalyst A and Catalyst B were both reduced by hydrogen at a temperature of 300 C for 4 hours before use.
  • a reactor inlet temperature of 70 a weight hourly space velocity of 30 hr -1 , a hydrogen / benzene b block molar ratio of 10: 1, a reaction pressure of -0.
  • a nickel catalyst A having a nickel loading of 30% by weight and a palladium loading of 3 wt e / were prepared by the above method.
  • Catalyst A and Catalyst B were reduced by hydrogen at a temperature of 300 ° C for 4 hours before use.
  • the reactor inlet temperature was 45 ° C
  • the weight hourly space velocity was 10 hours
  • the hydrogen/phenylacetylene molar ratio was 20:1.
  • Styrene, 8 wt% ethylbenzene, 1. 2 wt% phenylacetylene and the balance of xylene carbon eight feedstock were passed through a reactor to sequentially contact catalyst A and catalyst B in the reactor. Analysis The reactor effluent was found to have a loss of styrene of -0.7 Wt%, and the benzene block was not detected.
  • a nickel loading of l Owty was prepared by the above method using a mixture of ⁇ and ⁇ alumina in a weight ratio of 1:1.
  • Nickel catalyst A Copper catalyst B having a copper loading of 20 wt% was prepared by the above method using ZSM-5 molecular sieve as a carrier. The ratio of the loading weight of the catalyst A to the catalyst B is 0.5.
  • Catalyst A and Catalyst B were reduced by hydrogen at a temperature of 300" for 4 hours before use.
  • the reactor inlet temperature was 30 t:, the weight hourly space velocity was 3 hours, and the hydrogen/phenylacetylene molar ratio was 6:1.
  • the reaction pressure was 2 Under the condition of OMPa, the carbon eight fraction feedstock containing 55 wt% styrene, 3% wt% ethylbenzene, 2 wt% phenylacetylene and the balance xylene was passed through a reactor to sequentially react with the catalyst A and the catalyst B in the reactor. The reactor effluent was analyzed and found to have a loss of styrene of -1.5 wt%, and the benzene block was not detected.
  • the nickel loading was 20 wt e / by the above method.
  • Catalyst A and Catalyst B were sequentially charged in a fixed bed adiabatic reactor, and the loading ratio of Catalyst A and Catalyst B was 5:1.
  • Catalyst A and Catalyst B were reduced by hydrogen at a temperature of 300* for 4 hours before use.
  • a weight hourly space velocity of 60 hours - a hydrogen / phenylacetylene molar ratio of 10: 1 1, a reaction pressure of 0.
  • Example 2 The test was carried out in accordance with the procedure of Example 1, except that a single bed of catalyst B was used. Instead of the composite bed of catalyst A and catalyst B.
  • the reactor effluent was analyzed and found to have a styrene loss of 3 wt% and a phenylacetylene content of 10 ppmw.
  • the test was carried out in accordance with the procedure of Example 5 except that a single bed of Catalyst B was used in place of the composite bed of Catalyst A and Catalyst B.
  • the reactor effluent was analyzed and found to have a styrene loss of 5 wt% and a phenylacetylene content of 20 ppmw.
  • Example 5 The test was carried out in accordance with the procedure of Example 5 except that a single bed of catalyst A was used in place of the composite bed of catalyst A and catalyst B.
  • the reactor effluent was analyzed and found to have a styrene loss of 4 wt% and a phenylacetylene content of 18 ppmw.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法 相关申请的交叉参考
本申请要求 2008年 12月 18 日提交的 CN200810044147. 5的优 先权, 通过引用并且为了所有的目的将所述文件整体结合在本申请 中。 技术领域
本发明涉及一种苯乙烯存在下采用复合床进行苯乙炔选择加氢 的方法, 特别是涉及一种脱除含苯乙炔的 烃类馏分原料中的苯乙 炔的方法。 背景技术
苯乙烯(ST)是生产聚苯乙烯 (PS)、 ABS树脂以及丁苯橡胶等的重 要单体, 其生产方法以乙苯脱氢法为主。 近年来, 随着乙烯工业的 发展及规模的大型化, 使得从裂解汽油中回收苯乙烯的技术备受关 注。
裂解汽油是乙烯工业的副产, 产量约为乙烯产能的 60% ~ 70°/», 其中的 C8馏份富含苯乙烯和混合二曱苯。一套 1000kt/a乙烯装置可 获取 24 ~ 42 kt/a的苯乙烯, 同时可回收混合二甲苯。 从裂解汽油 中回收的苯乙烯的生产成本约为乙苯脱氢法生产的苯乙烯的 1/2。
从裂解汽油中回收苯乙烯的方法目前普遍认为可行的是萃取蒸 馏法。 但是, 苯乙炔 (PA)与苯乙烯的化学结构相似, 两者与萃取蒸 馏溶剂之间的相互作用也相似, 因此通过萃取蒸馏不能实现苯乙烯 与 PA的有效分离。 而 PA的存在不仅会增加苯乙烯阴离子聚合时的 催化剂消耗量, 影响链长和聚合速度, 而且会导致聚苯乙烯性能变 坏, 如变色、 降解和释放出气味等。 因此, 需要从苯乙烯物流中脱 除苯乙炔, 并且要求尽可能减少苯乙烯的损失。 这样, 开发高选择 性苯乙炔选择性加氢催化剂及工艺成为裂解汽油回收苯乙烯技术的 关键。
专利申请 CN1852877A公开一种在苯乙烯单体存在下还原苯乙块 杂质的方法, 其中将包含少量苯乙炔的苯乙烯单体物流供给氢化反 应器, 还供给含氢的氢化气体。 使苯乙烯单体物流和氢与包含催化 剂的催化剂床层接触, 所述催化剂包含在 Θ氧化铝载体上的还原的 铜化合物。 氢化反应器在至少 60 温度和至少 30ps ig压力下操作, 氢化苯乙炔生成苯乙烯。 氢化气体包括氮气和氢气的混合物。 该技 术反应温度较高, 苯乙炔加氢率低(约 70%), 催化剂寿命较短, 且 苯乙烯损失率高(约 3%左右)。
专利申请 CN1087892A公开了一种采用氢化法来纯化苯乙烯流 中的苯乙烯单体的方法和设备,其中使用稀幹剂如氮气来稀释氢气, 用乙苯脱氢排出气来提供氢气, 借助多级催化床的反应器使苯乙炔 杂质氢化为苯乙烯。该专利一方面仅谈到低浓度如 300ppm苯乙炔含 量的苯乙烯物流的选择性除苯乙块方法, 同时使用的催化剂对苯乙 炔加氢率低(95%左右), 苯乙烯的损失约 0. Vk。
因此, 仍然需要用于从裂解汽油回收苯乙烯的技术的高选择性 苯乙炔选择加氢方法。 发明概述
为了克服加氢脱除苯乙烯物流中的苯乙炔的现有技术中存在的 苯乙炔脱除率低和苯乙烯损失率高的问题, 本发明人进行了勤勉的 研究。 结果本发明人发现,通过使用镍基催化剂与钯基和 /或铜基催 化剂的组合作为加氢催化剂, 可以高效地脱除苯乙烯物流中的苯乙 炔, 同时苯乙烯的损失率很低。 在此基 上完成了本发明。
因此, 本发明的目的是提供一种新的苯乙烯存在下采用复合催 化剂床进行苯乙炔选择加氢的方法。 该方法具有苯乙炔脱除率高和 苯乙烯损失率低的优点。 优选实施方案的描述
在一个实施方案中, 本发明涉及一种苯乙烯存在下采用复合床 进行苯乙块选择加氢的方法, 该方法包括在加氢反应条件下, 使含 有苯乙炔和苯乙烯的烃类馏分原料通过装有催化剂 A和催化剂 B的 复合床反应器,以使所述原料依次与所述催化剂 A和催化剂 B接触, 其中催化剂 A是镍基催化剂, 催化剂 B选自钯基催化剂和铜基催化 剂中的至少一种, 并且催化剂 A和催化剂 B的重量比为 0. 5: 1 ~ 5: 1。
在本发明方法中, 催化剂 A是镍基催化剂。 催化剂 A的载体是 选自氧化硅、 氧化镁、 氧化铝和分子筛中的至少一种, 优选是氧化 硅和氧化铝中的至少一种。催化剂 A以载体计镍含量为 8 ~ 50重量。/。, 优选镍含量为 10 ~ 40重量%。 在一个实施方案中, 可以通过包括如 下步骤的方法制备所述催化剂 A: 将一定量的水溶性镍盐如硝酸镍 緩慢加入稀酸(如硝酸)水溶液中并搅拌以溶解该镍盐, 然后将一 定量的载体如氧化铝用得到的溶液浸渍例如 8小时以上, 然后烘干 并焙烧, 制得所需的镍基催化剂 。
在本发明方法中,催化剂 B是选自钯基催化剂和铜基催化剂中的 至少一种, 优选是钯基催化剂。 所述钯基催化剂和铜基催化剂的载 体是选自氧化硅、 氧化镁、 氧化铝和分子筛中的至少一种, 优选是 氧化硅和氧化铝中的至少一种。 所述钯基催化剂以载体计钯含量为 0. 1 ~ 5重量%, 优选 0. 2 ~ 3重量%。 所述铜基催化剂以载体计铜含 量为 10 ~ 60重量%, 优选 12 ~ 40重量%。 在一个实施方案中, 可以 通过包括如下步骤的方法制备作为所述催化剂 B的钯催化剂: 将一 定量的载体如氧化铝用去离子水预浸渍, 然后滤干水份; 将一定量 的水溶性钯盐如硝酸钯溶解于水中, 并用硝酸调节溶液的 pH值为
3-6 左右; 将此溶液适当加热后用于浸渍已滤干水份的载体; 将浸 渍后的栽体干燥并在空气氛围中焙烧, 即可制得钯催化剂。 铜催化 剂可以类似地制备。
在一个优选的实施方案中, 本发明的方法在如下条件下进行: 反应器入口温度为 15 ~ 100 , 优选 25 ~ 60 ; 重时空速为 0. 01 ~ 100小时一1, 优选 0. 1 ~ 20小时―1, 氢气 /苯乙炔摩尔比为 1 : 1 ~ 30: 1, 优选 1 : 1 ~ 10: 1 ; 反应压力为 -0. 08 ~ 5. OMPa (表压, 下同), 优选 0. 1 ~ 3. OMPa.
本发明的方法可用于从含苯乙烯的物流中脱除苯乙块。 对本发 明方法的原料没有特殊的限制, 只要其含有苯乙烯和苯乙块。 本发 明方法的原料可以是从裂解汽油中回收的 C8馏分。 这样的馏分可以 含有 20 ~ 60wt°/。的苯乙烯, 和 0. 03 ~ 2 wt %的笨乙炔。
众所周知, 苯乙炔的加氢反应是一典型的串联反应。 苯乙炔首 先加氢生成苯乙烯, 并且所述苯乙烯可以进一步加氢生成乙苯。 乙 苯的附加值远低于苯乙烯的附加值,因此不希望发生苯乙烯的氢化。 同时, 苯乙炔的存在对后续分离不利, 并且影响苯乙烯的反应, 因 此希望尽可能除去苯乙炔。 为此, 最大程度地转化苯乙炔同时最大 限度地避免苯乙烯的加氢损失是回收苯乙烯的技术的关键。 我们在 大量研究中发现, 采用镍基、 钯基或铜基催化剂进行苯乙块加氢反 应过程中, 苯乙炔加氢生成苯乙烯步骤的反应活化能低于苯乙烯加 氢生成乙苯反应步骤的活化能, 因此钯基催化剂、 铜基催化剂和镍 基催化剂均具有较好的苯乙炔加氢选择性。通过进一步的研究发现, 镍基催化剂在苯乙炔加氢过程中起活温度较低, 而钯基或铜基催化 剂相对于镍基催化剂而言起活温度高。 众所周知, 加氢反应是典型 的放热反应。 对于通常的绝热加氢反应过程而言, 催化剂床层的温 度随着加氢反应的进行不断升高。 若原料中苯乙炔浓度在 1. 5^%左 右, 其绝热温升会超过 20 。 显然, 采用单一的催化剂较难保障催 化剂在较大的温度区间内均发挥良好的催化效率。在本发明方法中, 发明人充分利用了镍基、 钯基及铜基催化剂在加氢过程中的特性, 采用镍基催化剂在前,钯基和 /或铜基催化剂在后的复合催化剂床来 实现较大温度区间内的较好催化效率。 这既保证了原料中苯乙炔的 几乎完全的加氢, 同时又最大限度降低了苯乙烯的损失。 另外, 本 发明方法也可采用负压进行操作。
在本发明的一个实施方案中, 使苯乙烯含量为 20 ~ 60重量%, 苯乙炔的含量为 0. 03 ~ 2重量%的碳八馏分原料通过包含催化剂 A和 催化剂 B的催化剂床, 以使所述原料依次与催化剂 A和催化剂 B接 触, 其中所述催化剂 A是以氧化铝为载体、 以载体计镍含量为 10 ~ 40重量%的镍基催化剂, 所述催化剂 B是以氧化铝为载体、 以载体 计钯含量为 0. 2 ~ 3重量%的钯基催化剂, 装填的催化剂 A和催化剂 B的重量比为 0. 5: 1 - 5: 1, 其中反应器入口温度为 25 ~ 60*C, 重 时空速为 0. 1 ~ 20小时— 氢气 /苯乙块摩尔比为 1 : 1 ~ 20: 1, 反 应压力为 0. 1 ~ 3. 0MPa。 在这样的条件下, 苯乙炔的加氢率最高可 达到 100%, 而苯乙烯几乎无损失, 甚至由于苯乙炔加氢为苯乙烯而 出现苯乙烯的含量增加 (或苯乙婦损失为负值)的情况。 具体实施方式
下面通过实施例对本发明作进一步的阐述,但本发明不仅限于这 些实施例。
催化剂制备的通用程序
以下实施例中使用的镍催化剂如下制备:将一定量的硝酸镍或碳 酸镍緩慢加入 ρΗ值为 4-6的硝酸水溶液中,并搅拌该混合物以溶解 所述镍盐。 然后将一定量的载体如氧化铝用所述溶液浸渍 8小时以 上。将所述浸渍过的载体在 100- 130 烘干,并在 500*C焙烧 4小时, 得到希望的镍基催化剂。
以下实施例中使用的铜催化剂如下制备:将一定量的硝酸铜或碳 酸铜溶解在水中制成浸渍液。 将一定量的载体如氧化铝或氧化硅在 所述浸渍液中浸渍 24小时。然后将所述浸渍过的载体在室温下真空 干燥 8-12小时, 然后在 100-130 C下干燥 8-12小时, 并在 350-450 " 焙烧 4-8小时, 得到希望的铜基催化剂。
以下实施例中使用的钯催化剂如下制备:将一定量的载体如氧化 铝用去离子水预浸渍, 然后滤干水份。 将一定量的硝酸钯溶解于水 中, 并用硝酸调节溶液的 pH值为 3-6左右。 将此溶液加热到 60-80 V, 并用此溶液浸渍已滤干水份的载体。 浸渍后的载体在 110 ~ 130 干燥 4 ~ 8小时, 并在 300 ~ 450Χ在空气中焙烧 4 ~ 8小时, 得到 希望的钯基催化剂。
【实施例 U
用 Θ氧化铝为载体, 用上述方法制备镍负载量为 15wt%的镍催 化剂 A和钯负载量为 0. 8wt%的钯催化剂 B。 在固定床绝热反应器中 依次装入催化剂 A和催化剂 B, 催化剂 A和催化剂 B的装填重量比 例是 1: 1。 催化剂 A和催化剂 B在使用前均用氢气在温度 3001C还 原 4小时。 在反应器入口温度为 40 , 重时空速为 2小时— 氢气 / 苯乙块摩尔比为 3: 1 , 反应压力为 0. 2MPa的条件下, 使含 45重量 %苯乙烯, 42. 85重量%的二甲苯, 12重量%乙苯和 0. 15重量%苯乙 炔的碳八馏分原料通过反应器以依次与反应器中的催化剂 A和催化 剂 B接触。 分析反应器流出物, 发现苯乙烯的损失率为 0. 05wt°/。, 苯乙炔的含量为 lppmw。
【实施例 2】
用 Θ氧化铝为载体, 用上述方法制备镍负载量为 45wt。/。的镍催 化剂 A和钯负载量为 0. 2wt。/。的钯催化剂 B。 在固定床绝热反应器中 依次装入催化剂 A和催化剂 B, 催化剂 A和催化剂 B的装填重量比 例是 3: 1。 催化剂 A和催化剂 B在使用前均经过温度 300 C的氢气 还原 4小时。 在反应器入口温度为 35 Ό , 重时空速为 0. 2小时一1, 氢气 /苯乙炔摩尔比为 15: 1, 反应压力为 3. 5MPa的条件下, 使含 38重量%苯乙烯, 15重量%乙苯, 0. 3重量%苯乙炔和余量二曱苯的 碳八馏分原料通过反应器以依次与反应器中的催化剂 A和催化剂 B 接触。 分析反应器流出物, 发现苯乙烯的损失率为 -0. lwt%, 并且苯 乙炔检不出。
【实施例 31
用 γ氧化铝为载体, 用上述方法制备镍负载量为 20wt%的镍催 化剂 A和钯负栽量为 1. 5wt%的钯催化剂 B。 在固定床绝热反应器中 依次装入催化剂 A和催化剂 B, 催化剂 A和催化剂 B的装填重量比 例是 2: 1。 催化剂 A和催化剂 B在使用前均经过温度 300 C的氢气 还原 4小时。 在反应器入口温度为 70 , 重时空速为 30小时 -1, 氢 气 /苯乙块摩尔比为 10: 1, 反应压力为 - 0. 05MPa 的条件下, 使含 35重量%苯乙烯, 18重量%乙苯, 0. 08重量%苯乙炔和余量二甲苯的 碳八镏分原料通过反应器以依次与反应器中的催化剂 A和催化剂 B 接触。 分析反应器流出物, 发现苯乙烯的损失率为 0. 2重量%, 和苯 乙炔的含量为 10ppmw。
【实施例 41
用 ZSM-5分子筛为栽体, 用上述方法制备镍负载量为 30^^%的 镍催化剂 A和钯负载量为 3wte/。的钯催化剂 B。 在固定床绝热反应器 中依次装入催化剂 A和催化剂 B, 催化剂 A和催化剂 B的装填重量 比例是 1. 5: 1。 催化剂 A和催化剂 B在使用前均经过温度 300"C的 氢气还原 4小时。在反应器入口温度为 45 "C,重时空速为 10小时一 氢气 /苯乙炔摩尔比为 20: 1, 反应压力为 2. 5MPa的条件下, 使含 30wte/。苯乙烯, 8wt%乙苯, 1. 2wt%苯乙炔和余量二甲苯的碳八馏分原 料通过反应器以依次与反应器中的催化剂 A和催化剂 B接触。 分析 反应器流出物, 发现苯乙烯的损失率为- 0. 7 Wt %, 并且苯乙块检不 出。
【实施例 51
用 γ和 α氧化铝的重量比为 1 : 1的混合物为载体, 用上述方法 制备镍负载量为 l Owty。的镍催化剂 A。用 ZSM-5分子筛为载体, 用上 述方法制备铜负载量为 20 wt %的铜催化剂 B。 在固定床绝热反应器 中依次装入催化剂 A和催化剂 B, 催化剂 A和催化剂 B的装填重量 比例是 0. 5: 1。 催化剂 A和催化剂 B在使用前均经过温度 300" 的 氢气还原 4小时。 在反应器入口温度为 30t:, 重时空速为 3小时一 氢气 /苯乙炔摩尔比为 6: 1, 反应压力为 2. OMPa的条件下, 使含 55 重量%苯乙烯, 3重量%乙苯, 2重量%苯乙炔和余量二甲苯的碳八餾 分原料通过反应器以依次与反应器中的催化剂 A和催化剂 B接触。 分析反应器流出物, 发现苯乙烯的损失率为 -1. 5 wt %, 并且苯乙块 检不出。
【实施例 6】
用 γ氧化铝为载体, 用上述方法制备镍负载量为 20wte/。的镍催 化剂 A和铜负载量为 50wt%的铜催化剂 B。在固定床绝热反应器中依 次装入催化剂 A和催化剂 B, 催化剂 A和催化剂 B的装填重量比例 是 5: 1。 催化剂 A和催化剂 B在使用前均经过温度 300* 的氢气还 原 4小时。 在反应器入口温度为 80 , 重时空速为 60小时— 氢气 /苯乙炔摩尔比为 10: 1, 反应压力为 0. 5MPa的条件下, 使含 30 wt %苯乙烯, 8 wt %乙苯, 0. 8 wt %苯乙炔和余量二甲苯的碳八馏分原 料通过反应器以依次与反应器中的催化剂 A和催化剂 B接触。 分析 反应器流出物, 发现苯乙烯的损失率为 0. 2 wt %, 和苯乙炔的含量 为 l pmWo
【比较例 1】
按照实施例 1的程序进行试验, 只是采用催化剂 B的单一床层 代替所述催化剂 A和催化剂 B的复合床。 分析反应器流出物, 发现 苯乙烯的损失率为 3wt%, 苯乙炔的含量为 10ppmw。
【比较例 2】
按照实施例 5的程序进行试验, 只是采用催化剂 B的单一床层 代替所述催化剂 A和催化剂 B的复合床。 分析反应器流出物, 发现 苯乙烯的损失率为 5 wt %, 苯乙炔的含量为 20ppmw。
【比较例 3】
按照实施例 5的程序进行试验, 只是采用催化剂 A的单一床层 代替所述催化剂 A和催化剂 B的复合床。 分析反应器流出物, 发现 苯乙烯的损失率为 4 wt % , 苯乙炔的含量为 18ppmw。
本申请说明书中提到的专利、 专利申请、 测试方法通过引用 结合在本文。
虽然参考示例性实施方案描述了本发明, 但本领域技术人员 将理解, 在不偏离本发明的精神和范围的情况下, 可以做出各种 改变和修改。 因此, 本发明不限于作为实施本发明的最佳方式公 开的特定实施方案, 而是包括落入所附权利要求书范围内的所有 实施方案。

Claims

权 利 要 求
1. 一种苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法, 该方法包括在加氢反应条件下, 使含有苯乙炔和苯乙烯的烃类馏分 原料通过装有催化剂 A和催化剂 B的复合床反应器, 以使所述原料 依次与所述催化剂 A和催化剂 B接触,其中催化剂 A是镍基催化剂, 催化剂 B选自钯基催化剂和铜基催化剂中的至少一种, 并且装填的 催化剂 A和催化剂 B的重量比为 0.5: 1 ~5: 1。
2. 权利要求 1的方法, 其中所述加氢反应条件包括: 反应器入 口温度为 15~100 , 重时空速为 0.01 ~ 100小时— 氢气 /苯乙块 摩尔比为 1 ~ 30: 1, 反应压力为- 0.08~5.0MPa。
3. 权利要求 1的方法,其中催化剂 A包含选自氧化硅、氧化镁、 氧化铝和分子筛中的至少一种作为载体, 催化剂 A以载体计镍含量 为 8~50重量%。
4. 权利要求 3的方法, 其中催化剂 A包含氧化硅和 /或氧化铝 作为载体, 催化剂 A以载体计镍含量为 10 - 40重量%。
5. 权利要求 1的方法,其中催化剂 B包含选自氧化硅、氧化镁、 氧化铝和分子筛中的至少一种作为载体, 作为催化剂 B的钯基催化 剂以载体计钯含量为 0.1 ~ 5重量。 /。, 作为催化剂 B的铜基催化剂以 载体计铜含量为 10 ~ 60重量%。
6. 权利要求 1的方法, 其中催化剂 B是钯基催化剂, 其载体是 氧化硅和 /或氧化铝, 以载体计钯含量为 0.2 ~ 3重量%。
7. 权利要求 1的方法, 其中所述加氢反应条件包括: 反应器入 口温度为 25~60 , 重时空速为 0.1~20小时— 氢气 /苯乙块摩尔 比为 1 ~20: 1, 反应压力为 0.1~ 3.0MPa。
8. 权利要求 1的方法, 其中所述含有苯乙炔和苯乙烯的烃类馏 分原料含有 20 ~ 60重量%的苯乙烯和 0.03 ~ 2重量%的苯乙炔。
9. 权利要求 1的方法, 其中所述含有苯乙炔和苯乙烯的烃类馏 分原料是从裂解汽油中回收的 C8馏分。
PCT/CN2009/001487 2008-12-18 2009-12-17 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法 WO2010069145A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2011129678/04A RU2492160C2 (ru) 2008-12-18 2009-12-17 Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя
JP2011541062A JP5535236B2 (ja) 2008-12-18 2009-12-17 スチレンの存在下で複合床を用いてフェニルアセチレンに選択的に水素を付加する方法
US13/140,645 US8916736B2 (en) 2008-12-18 2009-12-17 Method for selective hydrogenation of phenylacetylene using composite bed in the presence of styrene
KR1020117016585A KR101458055B1 (ko) 2008-12-18 2009-12-17 스티렌의 존재 하에 복합 베드를 이용한 페닐아세틸렌의 선택적 수소첨가 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100441475A CN101475439B (zh) 2008-12-18 2008-12-18 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法
CN200810044147.5 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010069145A1 true WO2010069145A1 (zh) 2010-06-24

Family

ID=40836230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001487 WO2010069145A1 (zh) 2008-12-18 2009-12-17 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法

Country Status (6)

Country Link
US (1) US8916736B2 (zh)
JP (1) JP5535236B2 (zh)
KR (1) KR101458055B1 (zh)
CN (1) CN101475439B (zh)
RU (1) RU2492160C2 (zh)
WO (1) WO2010069145A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181032A (zh) * 2020-09-15 2022-03-15 中国石油天然气股份有限公司 一种碳八馏分选择加氢除苯乙炔的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845172B2 (ja) * 2005-03-30 2011-12-28 月島機械株式会社 有機化合物の断熱冷却式晶析方法及び装置
CN101475439B (zh) 2008-12-18 2012-05-09 中国石油化工股份有限公司 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法
CN101475438B (zh) 2008-12-18 2012-05-23 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择加氢的方法
EP2223987A1 (en) * 2009-02-17 2010-09-01 ISP Marl GmbH Purification of an aromatic fraction containing acetylenes by selective hydrogenation of the acetylenes
CN102649663B (zh) * 2011-02-25 2015-09-09 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择性加氢的方法
CN102649065A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 在苯乙烯存在下苯乙炔选择加氢催化剂
CN102649660A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 苯乙烯存在下除苯乙炔的方法
CN102649678A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 在苯乙烯存在下苯乙炔高选择加氢的方法
CN102649066A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择加氢催化剂
CN102649063B (zh) * 2011-02-25 2015-10-21 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择性加氢催化剂
CN102649680A (zh) * 2011-02-25 2012-08-29 中国石油化工股份有限公司 苯乙烯存在下进行苯乙炔氢化的方法
CN102649662B (zh) * 2011-02-25 2015-10-21 中国石油化工股份有限公司 苯乙烯存在下苯乙炔高选择加氢的方法
CN103301874B (zh) * 2012-03-12 2015-03-11 中国科学院化学研究所 提高多环芳烃选择性加氢开环的方法及其催化剂组合物
CN103724153B (zh) * 2012-10-10 2015-11-25 中国石油化工股份有限公司 α-甲基苯乙烯选择加氢的方法
CN103724152B (zh) * 2012-10-10 2015-07-22 中国石油化工股份有限公司 甲基-α-甲基苯乙烯选择加氢的方法
CN105561999A (zh) * 2015-12-11 2016-05-11 北京化工大学 一种Al2O3纤维负载镍基催化剂的制备方法
CN107954814A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 碳八馏份中苯乙炔选择加氢的方法
CN111689826B (zh) * 2019-03-13 2021-07-06 中国科学技术大学 一种催化选择性加氢的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852877A (zh) * 2003-07-31 2006-10-25 弗纳技术股份有限公司 选择性氢化苯乙炔的方法
CN101475439A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1057486A1 (ru) * 1981-09-04 1983-11-30 Предприятие П/Я В-8873 Способ очистки дивинила от ацетиленовых углеводородов
US4508836A (en) 1982-07-27 1985-04-02 Mobil Oil Corporation Catalytic conversion process for aromatic feedstocks with hydrogen regeneration of coke-selectivated zeolite catalyst
JPS59216838A (ja) * 1983-05-25 1984-12-06 Mitsubishi Petrochem Co Ltd 選択的水素添加によるスチレン類含有物の精製法
JPH0645561B2 (ja) * 1985-02-21 1994-06-15 旭化成工業株式会社 スチレン類含有物の精製法
JPS63291643A (ja) * 1987-05-25 1988-11-29 Nippon Kayaku Co Ltd フエニルアセチレン類の選択水素添加反応用触媒
US5156816A (en) * 1990-10-04 1992-10-20 Fina Technology, Inc. System for purifying styrene monomer feedstock using ethylbenzene dehydrogenation waste gas
US6555073B1 (en) 1990-10-04 2003-04-29 Fina Technology, Inc. Catalytic reduction of phenylacetylene in a styrene stream
EP0584054A1 (en) * 1992-08-19 1994-02-23 Fina Technology, Inc. Catalytic reduction of phenylacetylene in a styrene stream
JPH07278021A (ja) * 1994-04-13 1995-10-24 Asahi Chem Ind Co Ltd スチレンモノマー精製方法
NL1009014C2 (nl) * 1998-04-28 1999-10-29 Dsm Nv Werkwijze voor de hydrogenering van fenylacetyleen in een styreenbevattend medium met behulp van een katalysator.
FR2795343B1 (fr) 1999-06-22 2001-08-03 Inst Francais Du Petrole Procede de pretraitement dans des conditions severes d'un catalyseur a base de zeolithe euo
CN1090997C (zh) * 2000-04-30 2002-09-18 中国石油化工集团公司 一种选择加氢除炔多金属催化剂
AU2002341704A1 (en) * 2001-10-15 2003-04-28 Catalytic Distillation Technologies Hydrogenation catalyst and hydrogenation process
US20040030207A1 (en) * 2002-08-08 2004-02-12 Catalytic Distillation Technologies Selective hydrogenation of acetylenes
US6734328B1 (en) * 2002-11-08 2004-05-11 Catalytic Distillation Technologies Process for the selective hydrogenation of alkynes
US20060173224A1 (en) * 2005-02-01 2006-08-03 Catalytic Distillation Technologies Process and catalyst for selective hydrogenation of dienes and acetylenes
CN101475438B (zh) 2008-12-18 2012-05-23 中国石油化工股份有限公司 苯乙烯存在下苯乙炔选择加氢的方法
CN101852877B (zh) * 2010-06-04 2012-02-22 清华大学 一种制作云纹光栅的方法和纳米压印设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852877A (zh) * 2003-07-31 2006-10-25 弗纳技术股份有限公司 选择性氢化苯乙炔的方法
CN101475439A (zh) * 2008-12-18 2009-07-08 中国石油化工股份有限公司 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181032A (zh) * 2020-09-15 2022-03-15 中国石油天然气股份有限公司 一种碳八馏分选择加氢除苯乙炔的方法

Also Published As

Publication number Publication date
RU2492160C2 (ru) 2013-09-10
JP2012512189A (ja) 2012-05-31
JP5535236B2 (ja) 2014-07-02
RU2011129678A (ru) 2013-01-27
KR20110106375A (ko) 2011-09-28
CN101475439B (zh) 2012-05-09
KR101458055B1 (ko) 2014-11-04
US20110319684A1 (en) 2011-12-29
US8916736B2 (en) 2014-12-23
CN101475439A (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2010069145A1 (zh) 苯乙烯存在下采用复合床进行苯乙炔选择加氢的方法
JP5702299B2 (ja) スチレンの存在下でフェニルアセチレンに選択的に水素を付加する方法
US8158837B2 (en) Method for selective hydrogenation of acetylene to ethylene
JP6636162B2 (ja) パラジウム系担持型水素化触媒及びその製造方法、並びにその利用
JP4339681B2 (ja) 不飽和オレフィンの選択的水素化のための選択的水素化触媒、及びその使用
JP2004524151A (ja) エチレン精製プロセスにおけるアセチレンの選択的水素化方法
KR101644665B1 (ko) 알킨의 대응 알켄으로의 선택적 촉매 수소화
MX2012008334A (es) Procesos de produccion de estireno y catalizadores para uso en los mismos.
JP2006116439A (ja) エチレン製造用触媒およびこの触媒を用いるエチレンの製造方法
BRPI0913770B1 (pt) Process for the production of ethylene glycol from an oxalate
TWI457313B (zh) Study on the selective hydrogenation of phenylethylene in the presence of styrene in the presence of
WO2010070031A1 (en) Catalyst and process for hydrogenation of hydrocarbon feedstocks
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
CN102649678A (zh) 在苯乙烯存在下苯乙炔高选择加氢的方法
TWI486330B (zh) Selective Hydrogenation of Phenylene Acetylene in the Presence of
CN107952440B (zh) 碳八馏份中苯乙炔选择加氢的铜催化剂
CN109364945B (zh) 一种全馏分裂解汽油选择性加氢的方法
CN109289868B (zh) 裂解汽油选择性加氢催化剂及制备方法
WO2006006480A1 (ja) 低級炭化水素の芳香族化触媒及びそれを用いて低級炭化水素から芳香族炭化水素と水素とを製造する方法
CN107954814A (zh) 碳八馏份中苯乙炔选择加氢的方法
TW200535128A (en) Process for producing adamantane
JP2000191557A (ja) スチレン類の精製方法
CN106365940B (zh) 一种通过转化提高拔头油类轻烃附加值的工艺
CN102649065A (zh) 在苯乙烯存在下苯乙炔选择加氢催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011541062

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2750/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117016585

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011129678

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13140645

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09832827

Country of ref document: EP

Kind code of ref document: A1