RU2454400C2 - Способ синтеза первичных диаминов и/или триаминов высокой степени чистоты - Google Patents

Способ синтеза первичных диаминов и/или триаминов высокой степени чистоты Download PDF

Info

Publication number
RU2454400C2
RU2454400C2 RU2009119997/04A RU2009119997A RU2454400C2 RU 2454400 C2 RU2454400 C2 RU 2454400C2 RU 2009119997/04 A RU2009119997/04 A RU 2009119997/04A RU 2009119997 A RU2009119997 A RU 2009119997A RU 2454400 C2 RU2454400 C2 RU 2454400C2
Authority
RU
Russia
Prior art keywords
functional groups
ammonia
nitrile
hydrogenation catalyst
mpa
Prior art date
Application number
RU2009119997/04A
Other languages
English (en)
Other versions
RU2009119997A (ru
Inventor
Тьерри БЕЙОН (FR)
Тьерри БЕЙОН
Жан-Филипп ЖИЛЛЕ (FR)
Жан-Филипп Жилле
Original Assignee
Сека С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0654595A external-priority patent/FR2907780B1/fr
Application filed by Сека С.А. filed Critical Сека С.А.
Publication of RU2009119997A publication Critical patent/RU2009119997A/ru
Application granted granted Critical
Publication of RU2454400C2 publication Critical patent/RU2454400C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/22Preparation of carboxylic acid nitriles by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к улучшенному способу получения первичных ди- и/или триаминов из ди- и/или тринитрилов, которые, в свою очередь, могут быть получены из димерных и/или тримерных кислот. Способ заключается в конверсии нитрильных функциональных групп в первичные аминные функциональные группы гидрированием в присутствии катализатора гидрирования и водорода. При этом после контактирования нитрилов и катализатора гидрирования при обычной температуре вводят аммиак и реакционную среду начинают перемешивать перед введением водорода, температуру взаимодействия поддерживают в интервале от 110°С до 170°С и предпочтительно от 130°С до 150°С, количество использованного катализатора гидрирования составляет от 0,1% масс. до 15% масс. от загрузки нитрила, молярное отношение аммиак/нитрильные функциональные группы равно от 0,2 до 1,3. К реакционной среде прибавляют по меньшей мере одно сильное основание, которое представляет собой сильное неорганическое основание, выбранное из гидроксидов щелочного металла или щелочноземельного металла, предпочтительно в водной форме, в пропорции от 0,07 до 1 мол.% в расчете на нитрильные функциональные группы. Способ позволяет получать целевой продукт с высокой селективностью по отношению к первичным аминам. 2 н. и 6 з.п. ф-лы, 1 табл., 17 пр.

Description

Данное изобретение относится к способу синтеза первичных диаминов и/или триаминов из димерных и/или тримерных нитрилов; при котором для получения самих указанных нитрилов можно исходить из димерных и/или тримерных жирных кислот.
Указанные амины имеют многочисленные применения в качестве ингибиторов коррозии, в моющих средствах, в качестве добавок к битумам, флотационных реагентов, агентов против слеживания, противопыльных агентов, сшивающих агентов, присадок к маслам, замасливателей, добавок при обработке воды или добавок к бетону.
СОСТОЯНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
Диамины и триамины из димерных и тримерных жирных кислот известны с 1950-х, имеют номер EINECS и описаны, например, в Kirk-Othmer Encyclopedia, 4-е издание, том 8, глава Dimer Acids (страницы с 223 по 237).
Димерные и тримерные кислоты получают полимеризацией ненасыщенных жирных кислот при высоких температурах и под давлением. Указанные ненасыщенные жирные кислоты, предпочтительно олеиновая (С:18-1) или линолевая (С:18-2) кислоты, в основном получают из таллового масла, которое само является результатом обработки бумажной массы типа крафта. Указанный источник кислоты предпочтителен по причине стоимости (в указанной области расходуют 85% указанных кислот), но в общем возможно использование ненасыщенных жирных кислот, получаемых из других растительных источников.
После полимеризации указанных кислот получают смесь, которая состоит, в среднем, из 30-35% монокарбоновых кислот, часто изомеризованных по отношению к исходным кислотам, 60-65% дикарбоновых кислот (димерных кислот) с двойным количеством атомов углерода по отношению к исходным кислотам и 5-10% трикарбоновых кислот (тримерных кислот) с тройным количеством атомов углерода по отношению к исходным кислотам. Очисткой указанной смеси получают различные коммерческие сорта димерных кислот или тримерных кислот, которые могут существовать в гидрированной или негидрированный форме.
К тому же можно сослаться на ряд Pripol, разработанный Unichema. Указанные продукты представляют собой соединения, пригодные для выбора в многочисленных применениях в силу их свойств, таких как высокая гидрофобность, хорошая устойчивость по отношению к нагреванию, УФ-лучам и кислороду и хорошая совместимость с материалами.
Основное преимущество дикислот и трикислот заключается в том, что указанные соединения остаются жидкими при обычной температуре, имея низкую вязкость, несмотря на количество атомов углерода 36 или 54. Это обусловлено смесью многочисленных изомеров, из которых состоит продукт, а также присутствием циклоалифатических колец и ненасыщенности. Более того, большинство дикислот и трикислот происходит из растительного сырья и поэтому может обновляться.
Синтез указанных аминов из жирных кислот, которые сначала ди- или тримеризованы, происходит в две стадии: конверсия карбоксильных функциональных групп в нитрильные функциональные группы взаимодействием с аммиаком в присутствии катализатора и затем конверсия нитрильных функциональных групп в аминные функциональные группы в присутствии катализатора гидрирования для получения аминов. Например, в патенте США 2526044 описано (колонка 4, строка 62), что полинитрилы, полученные из жирных кислот касторового масла, дегидратированные в присутствии фосфора, могут быть прогидрированы до полиаминов в присутствии никелевого или платинового катализатора. Однако, полинитрилы должны быть заранее перегнаны, несмотря на очень высокую температуру кипения.
В патенте США 3010782 (колонка 1, строка 40) описан синтез полинитрилов из октадекадиеновой кислоты и аммиака, который затем может быть прогидрирован с образованием полиаминов, но без уточнения степени их чистоты.
В патенте США 3231545 (колонка 2, строка 61) раскрыто, что димерные жирные кислоты могут быть превращены в соответствующие нитрилы и затем прогидрированы с образованием диаминов. Более того, указано, что для получения димеров хорошей степени чистоты, позволяющей использовать их в области полимеров, на каждой стадии необходима очистка.
Такие же указания даны в патентах США 3242141 и 3483237, в последнем патенте дополнительно отмечено (колонка 5, строка 74), что, как описано, гидрирование дает диамины с высоким содержанием вторичных и третичных аминов.
Необходимость очищать продукты, получаемые на каждой стадии, также упомянута в патенте США 3475406, где уточнено, что указанные диамины должны быть очищены перегонкой, чтобы количество примесей было менее 10% и предпочтительно менее 5% (колонка 5, строка 35).
Указания всех этих патентов таковы, что необходимо очищать нитрилы перед конверсией их в амины и/или что необходимо очищать амины при завершении двухстадийного процесса перегонкой, которая затруднительна, в частности, из-за температуры кипения указанных продуктов.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Данное изобретение, прежде всего, предусматривает способ синтеза ди- и/или триаминов высокой степени чистоты из ди- или тринитрилов (далее называемых "нитрилами") путем гидрирования.
Использованные ди- или тринитрилы, в частности, могут представлять собой смеси продуктов димеризации и/или тримеризации мононитрилов, обычно содержащих от 8 до 30 атомов углерода и одну или более ненасыщенностей, главным образом в форме двойной(ых) связи(ей), которые обеспечивают указанную димеризацию и/или тримеризацию.
Указанную стадию гидрирования нитрилов с образованием первичных аминов проводят в реакторе под давлением, например в автоклаве, в присутствии катализатора гидрирования, аммиака и, возможно, по меньшей мере одного сильного основания. Нитрилы и катализатор гидрирования, такой как, например, никель Ренея, кобальт Ренея, палладий, нанесенный на уголь или оксид алюминия, или родий, нанесенный на уголь или оксид алюминия, загружают в реактор, который затем продувают азотом.
Затем при обычной температуре вводят аммиак таким образом, чтобы создать парциальное давление аммиака, и реакционную среду перед подачей водорода при перемешивании доводят до температуры от 100°С до 130°С. Обычно температура реакции находится в широком интервале, от 110°С до 170°С и предпочтительно от 130°С до 150°С.
Количество использованного катализатора гидрирования составляет от 0,1% масс. до 15% масс., предпочтительно от 3% масс. до 10% масс. в расчете на нитрилы и более предпочтительно от 4% масс. до 8% масс.
Общее давление в реакторе во время указанной стадии обычно равно от 2 МПа до 4 МПа, но без ущерба и без выхода за рамки изобретения можно работать при более высоком давлении (15 МПа).
Реакция может быть проведена в среде, содержащей растворитель, растворитель выбирают из обычных растворителей, используемых в реакциях указанного типа.
Согласно преимущественному варианту осуществления реакцию проводят в отсутствие растворителя, в частности, в том случае, когда исходные полинитрилы существуют в жидком виде.
Реакцию продолжают указанным путем до прекращения потребления водорода и до тех пор, пока не перестает меняться число основности.
В контексте данного изобретения молярное отношение аммиак/функциональные нитрильные группы составляет от 0,2 до 3.
Термин "молярное отношение аммиак/функциональные нитрильные группы" понимают как обозначающий отношение количества молей введенного аммиака к количеству нитрильных функциональных групп, присутствующих в реакционной среде.
Количество нитрильных функциональных групп, присутствующих в реакционной среде, может быть определено любым количественным методом анализа, известным специалисту в данной области, например, количественным анализом методом инфракрасной спектрометрии.
Если полинитрил, введенный в реакцию гидрирования, получают из смеси жирных кислот, как определено выше, можно предусматривать количественное определение числа кислотных функциональных групп согласно методике, известной специалисту в данной области. Количество нитрильных функциональных групп, генерированных в процессе описанной далее реакции насыщения аммиаком, следует понимать как равное числу превращенных кислотных функциональных групп.
Неожиданно обнаружено и является одним из аспектов данного изобретения, что прибавление относительно небольшого количества основания к реакционной среде для гидрирования нитрильных функциональных групп с образованием аминных функциональных групп дает возможность существенного уменьшения количества введенного аммиака при сохранении селективности, которая иначе должна бы быть получена с большим количеством аммиака.
Основание, которое может быть прибавлено к реакционной среде, может быть любого типа, и в частности сильным органическим или неорганическим основанием, предпочтительно сильным неорганическим основанием, в частности, выбранным из гидроксидов щелочного металла или щелочноземельного металла, например гидроксида натрия или гидроксида калия. В частности, предпочтительно использование гидроксида натрия. Также может быть использована смесь двух или более оснований.
Таким образом, если молярное отношение аммиак/нитрильные функциональные группы равно от 0,2 до 1,3 и предпочтительно от 0,5 до 1, то к реакционной смеси прибавляют по меньшей мере одно сильное основание, такое как гидроксид натрия и/или гидроксид калия, в пропорции от 0,07 до 1 мол.% и предпочтительно от 0,35 до 0,75 мол.% относительно числа нитрильных функциональных групп, присутствующих в реакционной среде, как определено выше. Предпочтительно по меньшей мере одно сильное основание прибавляют в гидратированной форме. Следует понимать, что если молярное отношение аммиак/нитрильные функциональные группы равно от 1,3 до 3 и предпочтительно от 1,5 до 2,6, можно обойтись без присутствия сильного основания.
Стадия гидрирования способа согласно изобретению дает возможность 100% превращения нитрильных функциональных групп в первичные аминные функциональные группы с селективностью для первичных аминов более 97%, что дает возможность использования диаминов и триаминов непосредственно и без очистки в таких применениях, где требуется очень высокая степень чистоты.
Полинитрилы, в частности ди- и тринитрилы, использованные в способе получения первичных аминов, главным образом в виде диаминов и триаминов, с успехом могут быть получены из ди- и/или тримерных жирных кислот в соответствии с обычными методиками насыщения аммиаком, известными специалисту в данной области.
Реакция насыщения аммиаком, например, обычно может быть проведена в присутствии катализатора введения аммиака, предпочтительно выбранного из оксидов металлов, предпочтительно оксида цинка, при массовом отношении катализатор/дикислота и/или трикислота от 0,01% масс. до 0,15% масс. и предпочтительно от 0,03% масс. до 0,1% масс. Реакционную среду начинают перемешивать и доводят до температуры в интервале от 150°С до 170°С, затем в реактор вводят газообразный аммиак, используя, например, погружную трубку, и температуру повышают, предпочтительно постепенно, до температуры обычно в интервале от 250°С до 320°С, предпочтительно от 290°С до 310°С. Обычно давление равно от 0,05 МПа до 0,4 МПа, предпочтительно атмосферное давление (0,1 МПа). Образовавшаяся вода и избыток аммиака могут быть отобраны в сифон через дефлегматор, поддерживаемый при 130°С. Реакцию продолжают до тех пор, пока кислотное число реакционной среды не станет меньше или равным 0,1 мг КОН/г, то есть время реакции равно от 12 до 17 часов. Масс-спектроскопия и инфракрасный анализ показывают, что кислотные функциональные группы превращены в нитрильные фактически количественно.
Как описано выше для реакции гидрирования, реакция насыщения аммиаком может быть проведена в среде, содержащей растворитель. Однако предпочтительно проводить конверсию кислотных функциональных групп в нитрильные функциональные группы в отсутствие растворителя, в частности, если соединения, несущие кислотные функциональные группы, используют в жидком состоянии.
Полученные таким образом нитрилы могут быть использованы как таковые, то есть без промежуточной очистки, в описанной выше реакции гидрирования для образования ди- и триаминов.
Согласно другому аспекту в данном изобретении предложен способ синтеза ди- и/или триаминов высокой степени чистоты из ди- и/или тримерных жирных кислот в две стадии, которые не требуют стадии очистки, предусматривающий следующие стадии:
А) конверсия кислотных функциональных групп димерных и/или тримерных кислот в нитрильные функциональные группы в реакторе с перемешиванием, чтобы получить ди- и тринитрилы, в присутствии катализатора введения аммиака, предпочтительно выбранного из оксидов металлов, предпочтительно оксида цинка, при массовом отношении катализатор/дикислоты и/или трикислоты от 0,01% до 0,15%, с последующим введением в реактор газообразного аммиака,
В) конверсия нитрильных функциональных групп продукта, образующегося на стадии А), в первичные аминные функциональные группы в реакторе под давлением, применяя описанный выше способ, то есть гидрирование в присутствии катализатора гидрирования и водорода, причем при указанной конверсии
• после контактирования нитрилов и катализатора гидрирования при обычной температуре вводят аммиак и реакционную среду перемешивают до подачи водорода, поддерживая температуру в интервале от 110°С до 170°С, и предпочтительно от 130°С до 150°С,
• количество использованного катализатора гидрирования равно от 0,1% масс. до 15% масс. от загрузки нитрила, и
• молярное отношение аммиак/нитрильные функциональны группы равно от 0,2 до 3.
На первой стадии (стадия А) кислотные функциональные группы димерных и/или тримерных кислот превращают в нитрильные функциональные группы, чтобы получить ди- и тринитрилы (описанная выше реакция введения аммиака), и на второй стадии (стадия В) нитрильные функциональные группы гидрированием превращают в первичные аминные функциональные группы, как указано выше.
В частности, способ изобретения с успехом может быть использован с высокой селективностью при получении первичных аминов в форме ди- или триаминов высокой степени чистоты. Термин "высокая селективность" применяют для обозначения, что нитрильные функциональные группы превращают в первичные аминные функциональные группы, в частности, превращают в первичные аминные функциональные группы более чем на 95% по отношению к общему числу образовавшихся аминных функциональных групп, в частности, до первичных аминных функциональных групп более чем на 97%. Другими образовавшимися аминными функциональными группами могут быть преимущественно вторичные амины, например, в пропорции менее 5%, предпочтительно менее 3% по отношению к общему количеству образовавшихся аминных функциональных групп. Что касается третичных аминов, если они образовались, обычно они присутствуют только в виде следов.
Способ данного изобретения имеет в целом выгодное применение в селективном синтезе первичных ди- и/или триаминов с высокой селективностью из ненасыщенных жирных кислот, получаемых из таллового масла или других растительных источников, которые существуют главным образом в форме ди- и/или тримеров. Указанные формы кислот хорошо известны и описаны, например, в патенте США 3475406 или также в патентном описании WO 2003/054092.
Способ синтеза первичных ди- и/или триаминов из ненасыщенных жирных кислот может быть представлен следующей схемой:
Figure 00000001
Figure 00000002
Figure 00000003
на указанной схеме представлены только дикислоты, динитрилы и диамины и а, b, c и d независимо друг от друга представляют собой число метиленовых (-СН2-) звеньев в каждой цепи. Обычно каждый из а, b, c и d равен от 1 до 24, более обычно от 2 до 20, более конкретно от 4 до 16.
Благодаря высокой степени чистоты и высокой селективности (>95% первичных аминов) первичные амины, полученные согласно способу данного изобретения, применимы в очень многих областях. В качестве примеров использования указанных аминов может быть упомянуто их применение в качестве ингибиторов коррозии, в моющих средствах, в качестве добавок к битумам, флотационных агентов, агентов против слеживания, противопылевых агентов, сшивающих агентов, присадок к маслам, добавок при обработке воды, добавок к бетонам и другие.
Последующие примеры служат для иллюстрации данного изобретения без введения ограничений рамок защиты, определенных в формуле изобретения, приложенной к данному описанию.
Пример 1: Синтез динитрила из Pripol 1013
2516 г димеризованной жирной кислоты, продающейся под названием Pripol 1013, с кислотным числом 191,9 мг КОН/г, загружают в предварительно высушенный стеклянный реактор емкостью 3 л, снабженный механической мешалкой, электронагревателем, дефлегматором, парциальным конденсатором горячего орошения и ловушкой, охлаждаемой сухим льдом и системой введения аммиака. Прибавляют загрузку катализатора оксида цинка 1,57 г, то есть 0,0626% масс. от использованной димеризованной жирной кислоты. Реакционную среду перемешивают и затем нагревают до 160°С. Затем вводят газообразный аммиак со скоростью 0,417 л/мин на кг. Реакционную среду доводят до 300°С. Подачу аммиака продолжают до достижения кислотного числа реакционной среды менее 0,1 мг КОН/г. Время взаимодействия равно приблизительно от 12 до 14 ч. По завершении реакции реакционную смесь охлаждают до 40°С и реактор опорожняют. Выход составляет около 100% и селективность для динитрила фактически 100%.
Пример 2: Синтез динитрила из Pripol 1048
2130 г димерной/тримерной жирной кислоты, продающейся под названием Pripol 1048 (смесь гидрированных димерной и тримерной кислоты), с кислотным числом 187,8 мг КОН/г, загружают в установку, идентичную в примере 1. Прибавляют загрузку катализатора оксида цинка 1,33 г, то есть 0,0625% масс. от использованной жирной кислоты. Реакционную смесь перемешивают и затем нагревают до 160°С. Затем вводят газообразный аммиак со скоростью 0,417 л/мин на кг. Реакционную смесь доводят до 300°С. Подачу аммиака продолжают до достижения кислотного числа реакционной среды менее 0,1 мг КОН/г. Время взаимодействия равно 15 ч. По завершении реакции реакционную смесь охлаждают до 40°С и реактор опорожняют. Выход составляет около 100% и селективность для динитрила фактически 100%.
Пример 3: Синтез диамина из Pripol 1013
200 г динитрила, полученного в примере 1 (Pripol 1013), и 15 г никеля Ренея, профильтрованного и промытого изопропанолом, то есть 7,5% масс. от начальной загрузки нитрила, помещают в автоклав емкостью 500 см3. Реактор закрывают, проверяют на герметичность под давлением и атмосферу реактора делают инертной путем компрессии/декомпрессии азотом. Затем при обычной температуре вводят аммиак, который дает давление от 0,5 до 0,6 МПа при 25°С. В данном случае это соответствует массе аммиака приблизительно от 25 до 35 г. Реакционную среду доводят при перемешивании до 120-130°С и затем подают водород так, чтобы конечное давление стало от 2,3 до 2,5 МПа. Немедленно происходит поглощение водорода. Мониторинг хода реакции осуществляют измерением основности. Последняя остается постоянной в течение около 12 часов. По завершении взаимодействия реакционную среду охлаждают до обычной температуры, водород и аммиак вытесняют азотом и затем выгружают неочищенный продукт реакции. Катализатор отделяют фильтрованием под азотом и он может быть рециклизован. Конверсия нитрила составляет 100%, а содержание вторичных аминов менее 3% (предел определения ЯМР).
Пример 4: Синтез диамина из Pripol 1048
200 г динитрила, полученного в примере 3 (из Pripol 1048), и 15 г никеля Ренея, профильтрованного и промытого изопропанолом, то есть 7,5% масс. от начальной загрузки нитрила из Pripol 1048, помещают в автоклав емкостью 500 см3. Реактор закрывают, проверяют на герметичность под давлением и атмосферу реактора делают инертной путем компрессии/декомпрессии азотом. Затем при обычной температуре вводят аммиак до достижения давления 0,6 МПа при 25°С. Реакционную среду доводят при перемешивании до 120-130°С и затем подают водород так, чтобы конечное давление стало 2,5 МПа. Немедленно происходит поглощение водорода. Мониторинг хода реакции осуществляют измерением основности. Взаимодействие продолжается в течение 12 часов. По завершении реакции реакционную среду охлаждают до обычной температуры, водород и аммиак вытесняют азотом и затем выгружают неочищенный продукт реакции. Катализатор отделяют фильтрованием под азотом и он может быть рециклизован. Конверсия нитрила составляет 100%, а содержание вторичных аминов менее 3% (предел определения ЯМР).
Примеры с 5 по 12: Синтез диаминов из Pripol 1013
Из динитрилов из Pripol 1013 синтезировали другие амины; вторую стадию проводили в условиях реакции, отличающихся от приведенных в примерах 3 или 4 (количество и природа катализатора, парциальное давление аммиака, возможное присутствие воды в катализаторе, возможное прибавление сильного основания). Условия работы в примерах с 5 по 12, а также характеристики синтезированных диаминов подробно даны в таблице ниже.
Figure 00000004
Figure 00000005
Пример 13: Синтез динитрила из азелаиновой кислоты
2000 г (10,63 моль) азелаиновой кислоты и 1,25 г оксида цинка, то есть 0,0625% масс. в расчете на азелаиновую кислоту, загружают в стеклянный реактор емкостью 4 л, снабженный дефлегматором, механической мешалкой, системой введения газообразного аммиака и электрической системой обогрева.
Реакционную среду доводят до 130°С, чтобы расплавить дикислоту. Начинают перемешивание и температуру доводят до 210°С. Затем постепенно подают аммиак до номинальной скорости потока 0,417 л/мин на кг. Температуру реакционной среды повышают до 290-300°С. Температура дефлегматора равна 130°С. Ход реакции контролируют по кислотному числу реакционной среды. Через 17 часов поток аммиака останавливают и реакционную среду охлаждают. Затем перегоняют последнюю при пониженном давлении и получают нитрил азелаиновой кислоты с чистотой 99% и выходом 85%.
Пример 14: Синтез 1,9-диаминононана с аммиаком и сильным основанием
300 г (2 моль) нитрила азелаиновой кислоты, полученного в примере 13, загружают с 9 г никеля Ренея в чистый сухой автоклав емкостью 500 см3. Указанный автоклав закрывают и газовую фазу продувают азотом. Затем при обычной температуре вводят 17 г аммиака (1 моль, то есть 0,25 моль NH3/моль функциональных групп CN) и 0,6 г 50% масс. гидроксида натрия в воде. Реакционную среду перемешивают и затем вводят водород так, что конечное давление составляет 30 бар при 130°С.
После взаимодействия в течение 6 часов смесь охлаждают и катализатор отфильтровывают при температуре 60°С. Неочищенный диамин перегоняют обычным способом при пониженном давлении. Получают 1,9-диаминононан с чистотой 99,2% и выходом 88%. Диамин не содержит примесей, таких как этил-1,9-диаминононан.
Пример 15: Синтез 1,10-диаминодекана с одним аммиаком
300 г (1,83 моль) нитрила себациновой кислоты с 9 г никеля Ренея загружают в чистый сухой автоклав емкостью 500 см3. Автоклав закрывают и газовую фазу продувают азотом. Затем при обычной температуре вводят 50 г аммиака (2,94 моль, то есть 0,8 моль NH3/моль функциональных групп CN). Реакционную среду перемешивают и затем вводят водород так, что конечное давление составляет 30 бар при 130°С.
После взаимодействия в течение 19 часов смесь охлаждают и катализатор отфильтровывают при температуре 80°С. Неочищенный диамин перегоняют обычным способом. Получают 1,10-декандиамин с чистотой 99% и выходом 85%.
Пример 16: Синтез 1,10-диаминодекана с аммиаком и сильным основанием
300 г (1,83 моль) нитрила себациновой кислоты загружают с 9 г никеля Ренея в чистый сухой автоклав емкостью 500 см3. Последний закрывают и газовую фазу продувают азотом. Затем при обычной температуре вводят 15 г аммиака (0,88 моль, то есть 0,24 моль NH3/моль функциональных групп CN) и 0,6 г 50% масс. гидроксида натрия в воде. Реакционную среду перемешивают и затем вводят водород так, что конечное давление составляет 30 бар при 130°С.
После взаимодействия в течение 6 часов 30 минут смесь охлаждают и катализатор отфильтровывают при температуре 80°С. Неочищенный диамин перегоняют обычным способом. Получают 1,10-декандиамин с чистотой 99,3% и выходом 90%. Диамин не содержит этил-1,10-диаминодекана.
Пример 17: Синтез 1,10-диаминодекана с аммиаком, сильным основанием и растворителем
150 г (0,914 моль) нитрила себациновой кислоты с 4,5 г никеля Ренея и 150 г этанола загружают в чистый сухой автоклав емкостью 500 см3. Последний закрывают и газовую фазу продувают азотом. Затем при обычной температуре вводят 35,2 г аммиака (2,07 моль, то есть 1,13 моль NH3/моль функциональных групп CN) и 0,3 г 50% масс. гидроксида натрия в воде. Реакционную среду перемешивают и затем вводят водород так, что конечное давление составляет 30 бар при 130°С.
После взаимодействия в течение 5 часов смесь охлаждают и катализатор отфильтровывают при температуре 30°С. Растворитель упаривают и неочищенный диамин перегоняют обычным способом. Получают 1,10-декандиамин с чистотой 98,5% и выходом 90%. Диамин содержит этил-1,10-диаминодекан.

Claims (8)

1. Способ синтеза ди- и/или триаминов из ди- и/или тринитрилов, включающий стадию конверсии нитрильных функциональных групп в первичные аминные функциональные группы гидрированием в присутствии катализатора гидрирования и водорода, отличающийся тем,
- что после контактирования нитрилов и катализатора гидрирования при обычной температуре вводят аммиак и реакционную среду начинают перемешивать перед введением водорода, температуру взаимодействия поддерживают в интервале от 110°С до 170°С и предпочтительно от 130°С до 150°С,
- что количество использованного катализатора гидрирования составляет от 0,1 мас.% до 15 мас.% от загрузки нитрила, и
- что при молярном отношении аммиак/нитрильные функциональные группы от 0,2 до 1,3, к реакционной среде прибавляют по меньшей мере одно сильное основание, предпочтительно в водной форме, в пропорции от 0,07 до 1 мол.% в расчете на нитрильные функциональные группы,
где сильное основание представляет собой сильное неорганическое основание, выбранное из гидроксидов щелочного металла или щелочноземельного металла.
2. Способ по п.1, в котором взаимодействие проводят под конечным давлением от 2 МПа до 15 МПа, предпочтительно от 2 МПа до 4 МПа.
3. Способ по п.1, в котором количество использованного катализатора гидрирования составляет от 3 мас.% до 10 мас.% от загрузки нитрилов и молярное отношение аммиак/нитрильные функциональные группы равно от 0,5 до 1.
4. Способ по п.1, отличающийся тем, что количество использованного катализатора гидрирования составляет от 4 мас.% до 8 мас.% от загрузки нитрилов.
5. Способ по п.1, отличающийся тем, что катализатор гидрирования выбирают из никеля Ренея, кобальта Ренея, палладия, нанесенного на уголь, или оксида алюминия, и/или родия, нанесенного на уголь, или оксида алюминия.
6. Способ синтеза ди- и/или триаминов из ди- и/или тримерных жирных кислот, предусматривающий следующие стадии:
A) конверсия в реакторе кислотных функциональных групп димерных и/или тримерных кислот в нитрильные функциональные группы для получения ди- и тринитрилов в присутствии катализатора введения аммиака, предпочтительно выбранного из оксидов металлов, предпочтительно оксида цинка, при отношении катализатор/дики слоты и/или трикислоты от 0,01 мас.% до 0,15 мас.% с последующим введением в реактор аммиака,
B) конверсия нитрильных функциональных групп продукта со стадии А) в первичные аминные функциональные группы в реакторе под давлением с использованием способа по одному из пп.1-5.
7. Способ по п.6, отличающийся тем, что стадию А) проводят под давлением от 0,05 до 0,4 МПа, предпочтительно при атмосферном давлении (0,1 МПа), при температуре в интервале от 150°С до 170°С перед введением NH3, затем температуру повышают, предпочтительно, постепенно до температуры в интервале от 250°С до 320°С, предпочтительно от 290°С до 310°С.
8. Способ по п.6 или 7, отличающийся тем, что на стадии А) молярное отношение по массе катализатор/дикислота и/или трикислота равно от 0,03 мас.% до 0,1 мас.%.
RU2009119997/04A 2006-10-27 2007-10-26 Способ синтеза первичных диаминов и/или триаминов высокой степени чистоты RU2454400C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0654595A FR2907780B1 (fr) 2006-10-27 2006-10-27 Procede de synthese de diamines et/ou de triamines primaires de haute purete a partir d'acides dimeres ou trimeres
FR0654595 2006-10-27
FR0754304 2007-04-05
FR0754304A FR2907781B1 (fr) 2006-10-27 2007-04-05 Procede de synthese de diamines et/ou de triamines primaires de haute purete a partir d'acides dimeres ou trimeres

Publications (2)

Publication Number Publication Date
RU2009119997A RU2009119997A (ru) 2010-12-10
RU2454400C2 true RU2454400C2 (ru) 2012-06-27

Family

ID=39155495

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009119997/04A RU2454400C2 (ru) 2006-10-27 2007-10-26 Способ синтеза первичных диаминов и/или триаминов высокой степени чистоты

Country Status (9)

Country Link
US (1) US20110190541A1 (ru)
EP (1) EP2086920A1 (ru)
JP (1) JP5389657B2 (ru)
BR (1) BRPI0717752A2 (ru)
FR (1) FR2907781B1 (ru)
IN (1) IN2009DN02522A (ru)
MX (1) MX2009004502A (ru)
RU (1) RU2454400C2 (ru)
WO (1) WO2008053113A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2774253T3 (es) 2009-04-20 2020-07-20 Dsm Ip Assets Bv Polímero flexible
FR2948944B1 (fr) 2009-08-04 2012-10-05 Ceca Sa Supramolecular polymer-containing bituminous composition
CN102617357A (zh) * 2012-03-13 2012-08-01 江苏永林油脂化工有限公司 一种二聚胺制备的方法
AU2018350702B2 (en) 2017-10-20 2022-06-16 Nouryon Chemicals International B.V. Process to treat metal or mineral ores and collector composition therefor
JP7371622B2 (ja) * 2018-04-11 2023-10-31 三菱瓦斯化学株式会社 ジシアノアルカンおよびビス(アミノメチル)アルカンの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242141A (en) * 1962-12-04 1966-03-22 Gen Mills Inc Polyamide compositions from fatty dimer diamines
US3475406A (en) * 1962-12-28 1969-10-28 Gen Mills Inc Polymers prepared from urea or thiourea and diamines derived from dimeric fat acids of 32 to 44 carbon atoms
US3483237A (en) * 1965-11-01 1969-12-09 Gen Mills Inc Polyamide compositions of a polymeric fat acid and a mixture of diamines
SU891638A1 (ru) * 1979-04-24 1981-12-23 Ордена Трудового Красного Знамени Институт Нефтехимических Процессов Им. Акад. Ю.Г.Мамедалиева Ан Азсср Способ получени ксилилендиаминов
US5175370A (en) * 1990-12-14 1992-12-29 Hoechst Aktiengesellschaft Process for the preparation of saturated primary fatty amines by hydrogenation of unsaturated fatty acid nitriles
US5254738A (en) * 1990-03-06 1993-10-19 Basf Aktiengesellschaft Preparation of 1,4-alkylenediamines
US20030120115A1 (en) * 2001-10-23 2003-06-26 Andreas Ansmann Supported cobalt catalysts for nitrile hydrogenations
RU2233266C2 (ru) * 1998-12-22 2004-07-27 Солютиа Инк. Способы получения амина из нитрила гидрированием (варианты)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516044A (en) * 1946-06-28 1950-07-18 John R Boyle Apparatus for transferring markings
US3010782A (en) * 1960-01-18 1961-11-28 Gen Mills Inc Corrosion inhibiting method and composition
US3231545A (en) * 1962-01-02 1966-01-25 Gen Mills Inc Polyamides from fatty dimer diamines and process of preparing same
IN150312B (ru) * 1977-08-20 1982-09-11 Hoechst Ag
DE3639857A1 (de) * 1986-11-21 1988-06-01 Hoechst Ag Verfahren zur herstellung von fettsaeurenitrilen und glycerin aus glyceriden
JP4370028B2 (ja) * 1999-12-14 2009-11-25 川研ファインケミカル株式会社 1,4−ジアミノブタンの製造方法
GB0130659D0 (en) * 2001-12-21 2002-02-06 Unichema Chemie Bv Coating composition
DE102005060488A1 (de) * 2005-12-15 2007-06-28 Basf Ag Verfahren zur Hydrierung von Nitrilen zu primären Aminen oder Aminonitrilen und dafür geeignete Katalysatoren

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242141A (en) * 1962-12-04 1966-03-22 Gen Mills Inc Polyamide compositions from fatty dimer diamines
US3475406A (en) * 1962-12-28 1969-10-28 Gen Mills Inc Polymers prepared from urea or thiourea and diamines derived from dimeric fat acids of 32 to 44 carbon atoms
US3483237A (en) * 1965-11-01 1969-12-09 Gen Mills Inc Polyamide compositions of a polymeric fat acid and a mixture of diamines
SU891638A1 (ru) * 1979-04-24 1981-12-23 Ордена Трудового Красного Знамени Институт Нефтехимических Процессов Им. Акад. Ю.Г.Мамедалиева Ан Азсср Способ получени ксилилендиаминов
US5254738A (en) * 1990-03-06 1993-10-19 Basf Aktiengesellschaft Preparation of 1,4-alkylenediamines
US5175370A (en) * 1990-12-14 1992-12-29 Hoechst Aktiengesellschaft Process for the preparation of saturated primary fatty amines by hydrogenation of unsaturated fatty acid nitriles
RU2233266C2 (ru) * 1998-12-22 2004-07-27 Солютиа Инк. Способы получения амина из нитрила гидрированием (варианты)
US20030120115A1 (en) * 2001-10-23 2003-06-26 Andreas Ansmann Supported cobalt catalysts for nitrile hydrogenations

Also Published As

Publication number Publication date
FR2907781A1 (fr) 2008-05-02
WO2008053113A1 (fr) 2008-05-08
US20110190541A1 (en) 2011-08-04
JP2010507638A (ja) 2010-03-11
FR2907781B1 (fr) 2010-01-08
EP2086920A1 (fr) 2009-08-12
BRPI0717752A2 (pt) 2013-10-22
JP5389657B2 (ja) 2014-01-15
MX2009004502A (es) 2009-08-18
RU2009119997A (ru) 2010-12-10
IN2009DN02522A (ru) 2010-07-02

Similar Documents

Publication Publication Date Title
US20100068108A1 (en) Coated reactors, production method thereof and use of same
RU2454400C2 (ru) Способ синтеза первичных диаминов и/или триаминов высокой степени чистоты
KR100387410B1 (ko) 아미노니트릴 및 디아민의 제조방법
KR920001988B1 (ko) 3(4),8(9)-비스(아미노메틸)트리시클로(5.2.1.0^2,6)데칸의 제조방법
JP2008239605A (ja) N,n’−ビス(シアノエチル)−1,2−エチレンジアミン及びn,n’−ビス(3−アミノプロピル)−1,2−エチレンジアミンの選択的製造
JP3805364B2 (ja) 少なくとも3個のシアノ基を有する化合物からのアミンの製造法
US3591618A (en) Process for the preparation of m- and p-cyano benzylamine and the hexahydro-derivatives thereof
CA2280889C (en) Method for obtaining hexamethylene diamine from mixtures containing hexamethylene diamine
JP2015515512A (ja) ナイロンポリマーおよびその製造方法
KR20030078038A (ko) 디아민의 제조 방법
JP2858486B2 (ja) 2−ペンテンニトリルを用いたアミン類のシアノブチル化
JP5000659B2 (ja) ヘキサメチレンジアミン及びアミノカプロニトリルの製造方法
CN101605753B (zh) 高纯度二元伯胺和/或三元伯胺的合成方法
JPH11236359A (ja) シス/トランス異性体比が少なくとも70/30である3−アミノメチル−3,5,5−トリメチル−シクロヘキシルアミンを製造する方法
JPS59196843A (ja) シクロヘキシルアミン類の製造方法
RU2158254C2 (ru) Способ получения алифатических альфа, омега-аминонитрилов
JPS588381B2 (ja) 1,17↓−ジアミノ↓−9↓−アザヘプタデカンの製造法
GB731819A (en) Improvements in or relating to the production of hexamethylene diamine and salts thereof
US3780083A (en) Process for preparing alpha-monocyanoethylated butanone
CN116217405A (zh) 基于铁催化剂的己二胺中间体加氢制备己二胺的方法
WO2024052801A1 (en) Method for preparing amidines from n-(alkyl lactams)
JP6140826B2 (ja) アルデヒドから第一級脂肪族アミンを製造するための連続方法
TW202244046A (zh) 製備脒類的方法
JPS59219253A (ja) ヘキサメチレンジアミンの製造方法
MXPA01009782A (es) Procedimiento de hemihidrogenacion de dinitrilos en aminonitrilos.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151027