RU2395919C2 - Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением - Google Patents

Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением Download PDF

Info

Publication number
RU2395919C2
RU2395919C2 RU2007138505/09A RU2007138505A RU2395919C2 RU 2395919 C2 RU2395919 C2 RU 2395919C2 RU 2007138505/09 A RU2007138505/09 A RU 2007138505/09A RU 2007138505 A RU2007138505 A RU 2007138505A RU 2395919 C2 RU2395919 C2 RU 2395919C2
Authority
RU
Russia
Prior art keywords
control
symbols
frequency
symbol
wireless communications
Prior art date
Application number
RU2007138505/09A
Other languages
English (en)
Other versions
RU2007138505A (ru
Inventor
Алексей ГОРОХОВ (US)
Алексей ГОРОХОВ
Айман Фавзи НАДЖИБ (US)
Айман Фавзи НАДЖИБ
Арак СУТИВОНГ (US)
Арак СУТИВОНГ
Дхананджай Ашок ГОРЕ (US)
Дхананджай Ашок ГОРЕ
Тинфан ЦЗИ (US)
Тинфан ЦЗИ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2007138505A publication Critical patent/RU2007138505A/ru
Application granted granted Critical
Publication of RU2395919C2 publication Critical patent/RU2395919C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к области техники беспроводной связи и, в частности, к передаче контрольной информации в системе беспроводной связи с ортогональным частотным разделением (OFDMA). Техническим результатом является обеспечение надежности приема переданных контрольных символов. Указанный технический результат достигается тем, что предложены схемы для улучшения возможностей мультиплексирования контрольных символов, передаваемых из различных подвижных станций на одних и тех же частотах и в одних и тех же временных интервалах, без помех и/или смещения. В системе множественного доступа с ортогонально-частотным разделением со скачкообразной перестройкой частоты контрольные символы между абонентами могут перекрываться. Ортогональность между абонентами, контрольные символы которых перекрываются, обеспечена за счет использования ортогональных последовательностей контрольных символов и индивидуальных кодов скремблирования для конкретных секторов и для конкретных ячеек сотовой связи. 8 н. и 50 з.п. ф-лы, 1 табл., 11 ил.

Description

I. Область техники, к которой относится изобретение
Настоящий документ относится, в общем случае, к области техники беспроводной связи и, помимо прочего, к передаче контрольной информации в системе беспроводной связи с ортогональным частотным разделением.
II. Известный уровень техники
В системе множественного доступа с ортогонально-частотным разделением, МДОЧР (OFDMA), используют мультиплексирование с ортогональным частотным разделением, МОЧР (OFDM). Мультиплексирование с ортогональным частотным разделением (МОЧР) представляет собой способ модуляции на нескольких несущих, в котором полную ширину полосы частот системы делят на множество (N) ортогональных частотных поднесущих. Эти поднесущие могут также именоваться тонами, элементами дискретизации и частотными каналами. Каждая поднесущая может быть промодулирована данными. На поднесущих, общее количество которых равно N, может быть передано до N модуляционных символов в каждом периоде символа МОЧР. Преобразование этих модуляционных символов во временную область осуществляют способом быстрого обратного преобразования Фурье, БОПФ (IFFT), по N точкам, осуществляя генерацию преобразованного символа, содержащего N элементарных посылок или выборок сигнала во временной области.
В системе связи со скачкообразной перестройкой частоты данные передают на различных частотных поднесущих в различные промежутки времени, которые могут именоваться "периодами скачкообразной перестройки". Эти частотные поднесущие могут быть созданы способом мультиплексирования с ортогональным частотным разделением, другими способами модуляции на нескольких несущих или некоторыми иными способами. При скачкообразной перестройке частоты передачу данных осуществляют путем псевдослучайных перескоков с одной поднесущей на другую поднесущую. Эта скачкообразная перестройка обеспечивает частотное разнесение и возможность лучше противостоять вредным воздействиям в тракте передачи, таким как, например, узкополосные помехи, взаимные помехи при приеме, замирание и т.д., при передаче данных.
Система МДОЧР (OFDMA) может обеспечивать одновременное обслуживание множества подвижных станций. Для системы МДОЧР со скачкообразной перестройкой частоты передача данных для заданной подвижной станции может производиться по каналу "информационного обмена", связанному с конкретной последовательностью скачкообразной перестройки частоты, СПЧ (FH). Эта последовательность СПЧ указывает конкретную поднесущую, которую следует использовать для передачи данных в каждом периоде скачкообразной перестройки. Может производиться одновременная передача множества передаваемых данных для множества подвижных станций по множеству каналов информационного обмена, связанных с различными последовательностями СПЧ. Эти последовательности СПЧ могут быть заданы как являющиеся ортогональными друг к другу, поэтому в каждом периоде скачкообразной перестройки каждая поднесущая используется только одним каналом информационного обмена и, следовательно, только для одной передачи данных. За счет использования ортогональных последовательностей СПЧ множественные передачи данных обычно не создают взаимных помех вследствие использования преимуществ частотного разнесения.
Для восстановления данных, переданных по каналу беспроводной связи, обычно необходима точная оценка параметров канала беспроводной связи между передатчиком и приемником. Оценку параметров канала обычно производят путем передачи контрольного сигнала из передатчика и измерения контрольного сигнала в приемнике. Контрольный сигнал состоит из контрольных символов, которые являются априорно известными как для передатчика, так и для приемника. Таким образом, приемник может оценить отклик канала на основании принятых символов и известных символов.
Часть каждой передачи из любой конкретной подвижной станции в базовую станцию часто именуют передачей по " обратной линии связи", которая в течение периода скачкообразной перестройки выделена для передачи контрольных символов. Как правило, количество контрольных символов определяет качество оценки параметров канала и, следовательно, характеристики, связанные с частотой появления ошибок в пакетах. Однако использование контрольных символов вызывает снижение эффективной скорости передачи данных, которая может быть достигнута. Таким образом, чем большей является ширина полосы частот, выделенная для контрольной информации, тем меньшая ширина полосы частот становится доступной для передачи данных.
Одним из типов системы множественного доступа с ортогонально-частотным разделением со скачкообразной перестройкой частоты, МДОЧР-СПЧ (FH-OFDMA), является система с блочной скачкообразной перестройкой, в которой множеству подвижных станций выделены смежные группы частот и периодов символа. В такой системе важным является обеспечение надежного приема контрольной информации из подвижной станции при одновременном уменьшении ширины полосы частот, выделенной для контрольной информации, поскольку блок имеет ограниченное количество символов и тонов, которые могут быть использованы для передачи как контрольного сигнала, так и данных.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном из вариантов осуществления изобретения для контрольных символов, передаваемых из подвижной станции или базовой станции, создают комбинации контрольных символов. Наличие такой комбинации обеспечивает возможность улучшенного приема и демодуляции переданных контрольных символов.
В дополнительных вариантах осуществления изобретения предложены схемы для улучшения способности мультиплексирования контрольных символов без помех и/или смещений от различных подвижных станций в одном и том же секторе базовой станции на тех же самых частотах и в тех же самых временных интервалах в системе МОЧР.
В других вариантах осуществления изобретения предложены схемы для уменьшения смещения или помех для контрольных символов, переданных из различных подвижных станций в соседних ячейках сотовой связи на одних и тех же частотах и в одних и тех же временных интервалах в системе МОЧР.
В других вариантах осуществления изобретения предложены способы изменения комбинаций контрольных символов. Кроме того, в других дополнительных вариантах осуществления изобретения предложены способы генерации контрольных символов.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки, сущность и преимущества вариантов осуществления настоящего изобретения могут стать более очевидными из приведенного ниже подробного описания при его рассмотрении совместно с чертежами, на которых одинаковыми номерами позиций на разных чертежах обозначены соответственно одинаковые блоки и на которых изображено следующее:
на Фиг. 1 проиллюстрирована система беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения;
на Фиг. 2 проиллюстрирована схема распределения спектра частот для системы беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения;
на Фиг. 3A проиллюстрированы блок-схемы присвоения контрольных символов согласно одному из вариантов осуществления изобретения;
на Фиг. 3В проиллюстрированы блок-схемы присвоения контрольных символов согласно другому варианту осуществления изобретения;
на Фиг. 4A проиллюстрирована схема скремблирования контрольных символов согласно одному из вариантов осуществления изобретения;
на Фиг. 4В проиллюстрирована схема скремблирования контрольных символов согласно другому варианту осуществления изобретения;
на Фиг. 5 проиллюстрирована базовая станция с множеством секторов в системе беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения;
на Фиг. 6 проиллюстрирована система беспроводной связи множественного доступа согласно другому варианту осуществления изобретения;
на Фиг. 7 проиллюстрирована блок-схема варианта осуществления системы передатчика и системы приемника в системе беспроводной связи множественного доступа с множеством входов и множеством выходов;
на Фиг. 8 проиллюстрирована схема последовательности операций способа генерации контрольных символов согласно одному из вариантов осуществления изобретения; и
на Фиг. 9 проиллюстрирована схема последовательности операций способа изменения комбинаций контрольных символов согласно одному из вариантов осуществления изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
На Фиг. 1 проиллюстрирована система беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения. Базовая станция 100 содержит группы 102, 104 и 106 из множества антенн, каждая из которых содержит одну или большее количество антенн. На Фиг. 1 показана только одна антенна для каждой группы 102, 104 и 106 антенн, однако для каждой группы антенн, которая соответствует сектору базовой станции 100, может быть использовано множество антенн. Подвижная станция 108 поддерживает связь с антенной 104, при этом антенна 104 передает информацию в подвижную станцию 108 по прямой линии 114 связи и принимает информацию из подвижной станции 108 по обратной линии 112 связи. Подвижная станция 110 поддерживает связь с антенной 106, при этом антенна 106 передает информацию в подвижную станцию 110 по прямой линии 118 связи и принимает информацию из подвижной станции 110 по обратной линии 116 связи.
Каждую группу 102, 104 и 106 антенн и/или область, в которой они, как запланировано, обеспечивают связь, часто именуют сектором базовой станции. В этом варианте осуществления изобретения каждая из групп 102, 104 и 106 антенн выполнена таким образом, что обеспечивает связь с подвижными станциями, находящимися в секторе, соответственно в секторах 120, 122 и 124 зон, обслуживаемых базовой станцией 100.
Базовой станцией может являться стационарная станция, используемая для обеспечения связи с оконечными устройствами, и также может именоваться точкой доступа, узлом B (Node B) или каким-либо иным термином. Подвижная станция также может именоваться подвижной станцией, абонентской аппаратурой, АА (UE), устройством беспроводной связи, оконечным устройством, терминалом доступа или каким-либо иным термином.
На Фиг. 2 проиллюстрирована схема распределения спектра частот для системы беспроводной связи множественного доступа. Множество символов 200 мультиплексирования с ортогональным частотным разделением, МОЧР (OFDM), распределено по T периодам символа и по S частотным поднесущим. Каждый символ 200 МОЧР содержит один период символа из T периодов символа и тон или частотную поднесущую из S поднесущих.
В системе МОЧР со скачкообразной перестройкой частоты конкретной подвижной станции может быть выделен один или большее количество символов 200. В одном из вариантов осуществления изобретения схемы распределения, который показан на Фиг. 2, группе подвижных станций для обеспечения связи по обратной линии связи выделена одна или большее количество областей скачкообразной перестройки для символов, например область 202 скачкообразной перестройки. В каждой области скачкообразной перестройки распределение символов может быть выполнено по случайному закону для уменьшения потенциально возможных помех и для обеспечения частотного разнесения, противодействующего вредным воздействиям на тракт передачи.
Каждая область 202 скачкообразной перестройки содержит символы 204, выделенные одной или большему количеству подвижных станций, которые поддерживают связь с сектором базовой станции, и выделенные для области скачкообразной перестройки. В других вариантах осуществления изобретения каждая область скачкообразной перестройки предоставляется одной или большему количеству подвижных станций. В течение каждого периода скачкообразной перестройки, или кадра, местоположение области 202 скачкообразной перестройки в пределах T периодов символа и на S поднесущих изменяется в соответствии с последовательностью скачкообразной перестройки. Кроме того, распределение символов 204 для отдельных подвижных станций в пределах области 202 скачкообразной перестройки может изменяться для каждого периода скачкообразной перестройки.
Последовательность скачкообразной перестройки может обеспечивать выбор местоположения области 202 скачкообразной перестройки для каждого периода скачкообразной перестройки, производимый псевдослучайным образом, по случайному закону или согласно заранее заданной последовательности. Последовательности скачкообразной перестройки для различных секторов одной и той же базовой станции созданы таким образом, что являются взаимно ортогональными, во избежание "внутриячеечных" помех между подвижными станциями, поддерживающими связь с одной и той же базовой станцией. Кроме того, последовательности скачкообразной перестройки для каждой базовой станции могут быть псевдослучайными относительно последовательностей скачкообразной перестройки для соседних базовых станций. Это может помочь в рандомизации "межъячеечных" помех между подвижными станциями, поддерживающими связь с различными базовыми станциями.
В случае передачи информации по обратной линии связи некоторые из символов 204 из области 202 скачкообразной перестройки выделены для контрольных символов, которые передают из подвижных станций в базовую станцию. Процедура распределения контрольных символов для символов 204 предпочтительно должна обеспечивать поддержку множественного доступа с пространственным разделением, МДПР (SDMA), при котором сигналы от различных подвижных станций, накладывающиеся друг на друга в той же самой области скачкообразной перестройки, могут быть разделены вследствие наличия множества приемных антенн в секторе или в базовой станции при условии достаточного различия пространственных характеристик, соответствующих различным подвижным станциям. Для более точного извлечения и более точной демодуляции сигналов различных подвижных станций необходимо обеспечить точную оценку параметров соответствующих обратных каналов связи. Следовательно, может оказаться желательным, чтобы контрольные символы, передаваемые по обратной линии связи, позволяли различать характеристики контрольных сигналов от различных подвижных станций в каждой приемной антенне в секторе, чтобы впоследствии применить многоантенную обработку для контрольных символов, принятых из различных подвижных станций.
Блочная скачкообразная перестройка частоты может быть использована как для прямой линии связи, так и для обратной линии связи, или только для обратной линии связи, в зависимости от системы. Следует отметить следующее: несмотря на то, что на Фиг. 2 область 200 скачкообразной перестройки изображена имеющей длину, равную семи периодам символа, область 200 скачкообразной перестройки может иметь длину, равную любой желательной величине, ее размер может изменяться между периодами скачкообразной перестройки или между различными областями скачкообразной перестройки в конкретном периоде скачкообразной перестройки.
Хотя вариант осуществления изобретения, показанный на Фиг. 2, описан применительно к использованию блочной скачкообразной перестройки, местоположение блока не обязательно должно изменяться между последовательными периодами скачкообразной перестройки или вообще не должно изменяться.
На Фиг. 3A и Фиг. 3В проиллюстрированы блок-схемы распределения контрольных символов согласно нескольким вариантам осуществления изобретения. Области 300 и 320 скачкообразной перестройки определяются T периодами символа и S поднесущими или тонами. Область 300 скачкообразной перестройки содержит контрольные символы 302, а область 320 скачкообразной перестройки содержит контрольные символы 322, при этом остальные периоды символов и комбинации тонов являются доступными для символов данных и других символов. В одном из вариантов осуществления изобретения места расположения контрольных символов для каждой из областей скачкообразной перестройки, то есть группа из N S смежных тонов по N T последовательным символам МОЧР, должны иметь тоны контрольных символов, расположенные близко к краям области скачкообразной перестройки. Это обычно обусловлено тем, что типичные каналы в областях применения, связанных с беспроводной связью, представляют собой относительно медленные функции от времени и частоты, поэтому приближение первого порядка для канала, например первый порядок разложения в ряд Тейлора, по области скачкообразной перестройки по времени и частоте предоставляет информацию о состоянии канала, которая является достаточной для оценки параметров канала для конкретной подвижной станции. По существу, для надлежащего приема и надлежащей демодуляции символов, полученных из подвижных станций, предпочтительным вариантом является оценка пары параметров канала, а именно постоянной составляющей канала, то есть члена нулевого порядка из разложения канала в ряд Тейлора по времени и по диапазону частот канала, и линейной составляющей, то есть члена первого порядка из разложения канала в ряд Тейлора по времени и по диапазону частот канала. Обычно точность оценки постоянной составляющей не зависит от расположения контрольного символа. Точность оценки линейной составляющей предпочтительно обеспечивают, как правило, посредством контрольных тонов, расположенных на краях области скачкообразной перестройки.
Контрольные символы 302 и 322 расположены в смежных кластерах 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) контрольных символов. В одном из вариантов осуществления изобретения каждый кластер 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) в области скачкообразной перестройки имеет фиксированное количество, а часто - одинаковое количество контрольных символов в заданной области скачкообразной перестройки. В одном из вариантов осуществления изобретения при использовании кластеров 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) смежных контрольных символов может учитываться влияние помех от множества абонентов, вызванных помехами между несущими, которые являются следствием большого доплеровского сдвига и/или больших разбросов значений задержки символов. Кроме того, если прием контрольных символов от подвижных станций, запланированных для той же самой области скачкообразной перестройки, производят с существенно различными уровнями мощности, то сигналы более сильной подвижной станции могут создавать помехи значительной величины для более слабой подвижной станции. Величина помех является более высокой на краях, например на поднесущей 1 и на поднесущей S, области скачкообразной перестройки, а также на краю символов МОЧР, например, в периодах 1 и T символа, когда избыточный разброс значений задержки вызывает утечку, то есть, когда становится существенной та часть энергии канала, которая сконцентрирована в ответвлениях, превышающих циклический префикс символов МОЧР. Следовательно, если контрольные символы расположены исключительно на краях области скачкообразной перестройки, то может произойти ухудшение точности оценки параметров канала и смещение в оценке помех. Следовательно, как изображено на Фиг. 3A и Фиг. 3В, контрольные символы расположены близко к краям области скачкообразной перестройки, однако не допускают ситуации, когда все контрольные символы находятся на краях области скачкообразной перестройки.
На Фиг. 3A область 300 скачкообразной перестройки включает в себя контрольные символы 302. В случае каналов с явно выраженной избирательностью по частоте, а не избирательностью по времени, контрольные символы 302 расположены в смежных кластерах 304, 306, 308 и 310 контрольных символов, причем каждый кластер 304, 306, 308 и 310 контрольных символов охватывает множество периодов символа и один частотный тон. Частотный тон предпочтительно выбирают таким образом, чтобы он был близким к краям диапазона частот области 300 скачкообразной перестройки, однако чтобы он не находился точно на краю. В варианте осуществления изобретения, показанном на Фиг. 3A, ни один из контрольных символов 302 из конкретного кластера не находится на крайних частотных тонах, и в каждом кластере на краю периода символа может находиться только контрольный символ.
Одним из логических обоснований "горизонтальной" формы смежных кластеров контрольных символов, которыми являются контрольные символы 302, является то, что для каналов с более высокой избирательностью по частоте компонента первого порядка (линейная компонента) может быть более сильной в частотной области, чем во временной области.
Следует отметить, что в варианте осуществления изобретения, показанном на Фиг. 3A, один или большее количество контрольных символов в каждом кластере могут иметь иной тон, чем один или большее количество контрольных символов в другом кластере. Например, кластер 304 может иметь тон S, а кластер 306 может иметь тон S-1.
Согласно Фиг. 3В, в случае наличия каналов с явной избирательностью по времени, а не с избирательностью по частоте, контрольные символы 322 расположены в кластерах 324, 326, 328 и 330 из смежных контрольных символов, каждый из которых охватывает множество частотных тонов, но имеет один и тот же период символа в области 320 скачкообразной перестройки. Так как могут иметься контрольные символы 322, расположенные на краях области 320 скачкообразной перестройки, то символы МОЧР, расположенные на краях области 320 скачкообразной перестройки, то есть те символы МОЧР, которые имеют максимальный тон, например тон S, или минимальный тон, например тон 1, диапазона частот, определяющего S поднесущих, могут быть включены в состав контрольных символов в качестве их части. Однако в варианте осуществления изобретения, показанном на Фиг. 3В, поднесущая максимальной или минимальной частоты может быть выделена только одному контрольному символу в каждом кластере.
В варианте осуществления изобретения, изображенном на Фиг. 3В, канал с более высокой избирательностью по времени может иметь типичную структуру, которая может быть получена путем поворота структуры, выбранной для каналов с более высокой избирательностью по частоте (Фиг. 3A) на 90°.
Следует отметить, что в варианте осуществления изобретения, показанном на Фиг. 3В, один или большее количество контрольных символов в каждом кластере могут быть выделены для иного периода символа, чем один или большее количество контрольных символов в другом кластере. Например, кластер 324 может быть в ином периоде T символа, чем кластер 326.
Кроме того, в вариантах осуществления изобретения, изображенных на Фиг. 3A и Фиг. 3В, комбинации контрольных символов выполнены таким образом, что кластеры 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) предпочтительно являются симметричными относительно центра области скачкообразной перестройки. Симметрия кластеров относительно центра области скачкообразной перестройки может обеспечивать улучшенную одновременную оценку параметров канала относительно временных и частотных характеристик канала.
Хотя на Фиг. 3A и Фиг. 3В в каждой области скачкообразной перестройки изображены четыре кластера контрольных символов, может быть использовано меньшее или большее количество кластеров в каждой области скачкообразной перестройки. Кроме того, количество контрольных символов в каждом кластере контрольных символов также может быть различным. Общее количество контрольных символов и кластеров контрольных символов является функцией количества контрольных символов, требуемых базовой станцией для успешной демодуляции символов данных, принятых по линии обратной связи, и для оценки параметров канала между базовой станцией и подвижной станцией. К тому же, каждый кластер не обязательно должен иметь одинаковое количество контрольных символов. В одном из вариантов осуществления изобретения количество подвижных станций, мультиплексирование сигналов которых может быть произведено посредством одной области скачкообразной перестройки, может быть равным количеству контрольных символов в области скачкообразной перестройки.
Кроме того, хотя на Фиг. 3A и Фиг. 3В изображены кластеры контрольных символов, предназначенные для обоих типов каналов: каналов, имеющих избирательность по частоте, или каналов, имеющих избирательность по времени, комбинация контрольных символов может быть такой, что в одной и той же комбинации контрольных символов имеются кластеры для каналов с избирательностью по частоте, а также кластеры для каналов с избирательностью по времени, например, некоторые кластеры расположены в виде структуры кластеров 304, 306, 308 или 310, а некоторые кластеры расположены в виде структуры кластеров 324, 326, 328 или 330.
В некоторых вариантах осуществления изобретения выбранная для использования комбинация контрольных символов может быть основана на условиях, для которых оптимизирован канал. Например, для каналов, в которых может происходить перемещение подвижных станций с высокой скоростью, например подвижных станций, расположенных в транспортных средствах, предпочтительной может являться комбинация контрольных символов с избирательностью по времени, в то время как для перемещения подвижной станции с малой скоростью, например, для пешеходов, может быть использована комбинация контрольных символов с избирательностью по частоте. В другом варианте осуществления изобретения комбинация контрольных символов может быть выбрана на основании состояния канала, определение которого произведено после заранее заданного количества периодов скачкообразной перестройки.
На Фиг. 4A и Фиг. 4В проиллюстрированы схемы распределения контрольных символов согласно другим вариантам осуществления изобретения. Как показано на Фиг. 4A, область 400 скачкообразной перестройки содержит контрольные символы C 1,q, C 2,q и C 3,q, расположенные в кластере 402; C 4,q, C 5,q и C 6,q, расположенные в кластере 404; C 7,q, C 8,q и C 9,q, расположенные в кластере 406; и C 10,q, C 11,q и C 12,q, расположенные в кластере 408. В одном из вариантов осуществления изобретения для улучшения пространственного разнесения в областях скачкообразной перестройки, когда множество подвижных станций создает перекрывающиеся контрольные символы, мультиплексирование контрольных символов от различных подвижных станций по тому же самому периоду символа МОЧР и тону должно быть выполнено таким образом, чтобы контрольные символы являлись, по существу, ортогональными при их приеме в антеннах кластера базовой станции.
На Фиг. 4A в области 400 скачкообразной перестройки каждый из контрольных символов C 1,q, C 2,q, C 3,q, C 4,q, C 5,q, C 6,q, C 7,q, C 8,q, C 9,q, C 10,q, C 11,q и C 12,q выделен множеству подвижных станций, то есть каждый период символа содержит множество контрольных символов от нескольких различных подвижных станций. Генерацию и передачу каждого из контрольных символов в кластере контрольных символов, например в кластере 402, 404, 406 и 408, осуществляют таким образом, чтобы приемник контрольных символов в кластере, например базовая станция, мог принимать их так, чтобы они являлись ортогональными относительно контрольных символов от каждой другой подвижной станции в том же самом кластере. Это может быть выполнено путем применения заранее заданного сдвига фазы, например скалярной функции для умножения на нее, каждой из выборок, из которых составлены контрольные символы, переданные каждой из подвижных станций. Для обеспечения ортогональности скалярные произведения, отображающие последовательность скалярных функций в каждом кластере для каждой подвижной станции, могут быть равными нулю.
Кроме того, в некоторых вариантах осуществления изобретения предпочтительно, чтобы контрольные символы каждого кластера являлись ортогональными к контрольным символам каждого другого кластера из области скачкообразной перестройки. Это может быть обеспечено тем же самым способом, которым обеспечивают ортогональность для контрольных символов в пределах каждого кластера от иной подвижной станции, путем использования иной последовательности скалярных функций для контрольных символов каждой подвижной станции в каждом кластере контрольных символов. Математическое определение ортогональности может быть сделано путем выбора последовательности произведений вектора на скаляр для каждого из контрольных символов для конкретного кластера для конкретной подвижной станции, вектор которой является ортогональным, например произведение вектора на скаляр равно нулю, относительно вектора, отображающего последовательность произведений вектора на скаляр, используемых для контрольных символов других подвижных станций во всех кластерах и той же самой подвижной станции в других кластерах.
В одном из вариантов осуществления изобретения, в котором обеспечена ортогональность контрольных символов по каждому из кластеров, количество подвижных станций, поддержка которых может быть обеспечена, равно количеству контрольных символов, имеющихся в каждом кластере контрольных символов.
В вариантах осуществления изобретения, показанных на Фиг. 4A и Фиг. 4В, абонент номер q из Q абонентов, сигналы которых перекрываются, 1≤qQ, использует последовательность S, размер которой равен N P, где N P - общее количество тонов контрольных символов (на Фиг. 4A и Фиг. 4В N P=12):
Figure 00000001
,
1≤qQ (1)
здесь (T) обозначает транспозицию матрицы, содержащей последовательности. Как описано выше, для того чтобы получить непротиворечивые оценки соответствующих каналов путем снижения помех между контрольными символами, последовательности скалярных функций в каждом кластере контрольных символов должны быть различными для различных подвижных станций. Кроме того, последовательности должны быть линейно независимыми, по существу, предпочтительно, чтобы никакая последовательность или никакой из векторов не являлись линейной комбинацией остальных последовательностей. Математическим определением этого может являться следующее: матрица N P×Q
Figure 00000002
(2)
является матрицей полного столбцевого ранга. Следует отметить, что в выражении (2) вышеупомянутая матрица QN P. То есть количество подвижных станций, сигналы которых перекрываются, не должно превышать общего количества контрольных символов в области скачкообразной перестройки.
На основании изложенного выше, любой набор последовательностей Q с полным рангом
Figure 00000003
обеспечивает возможность получения непротиворечивой оценки параметров канала. Однако в другом варианте осуществления изобретения реальная точность оценки может зависеть от корреляционных свойств
Figure 00000003
. В одном из вариантов осуществления изобретения, как может быть определено с использованием уравнения (1), функционирование может быть улучшено в том случае, когда любые две последовательности являются взаимно (квази-) ортогональными при наличии канала. Математическое определение этого условия может иметь следующий вид:
Figure 00000004
для всех 1≤p,qQ, (3)
где
Figure 00000005
- комплексный коэффициент усиления канала, соответствующий k-му контрольному символу, 1≤kN P. В канале, имеющем временную и частотную инвариантность (
Figure 00000006
), условие (3) сводится до требования взаимно-ортогональных последовательностей:
Figure 00000007
для всех 1≤p,qQ, (4)
причем принудительное применение этого условия для любой возможной реализации канала из типичного набора каналов может быть нецелесообразным. Фактически, выражение (3) может удовлетворяться в том случае, когда канал имеет ограниченную избирательность по времени и по частоте, что имеет место в каналах связи с пешеходами, имеющих относительно малый разброс значений задержки. Однако эти условия могут быть существенно иными в каналах связи с транспортными средствами и/или в каналах с существенным разбросом значений задержки, что приводит к ухудшению рабочих характеристик.
Как было изложено со ссылкой на Фиг. 3A и Фиг. 3В, комбинации выделенных контрольных символов состоят из нескольких кластеров контрольных символов, расположенных близко к краям области скачкообразной перестройки, где каждый кластер является смежным по времени (Фиг. 3A) и/или по частоте (Фиг. 3В). Так как изменения параметров канала в каждом кластере обычно являются ограниченными вследствие того, что контрольные символы являются по своему характеру непрерывными по времени и частоте, и вследствие непрерывности канала по времени и частоте, следовательно, создание различных последовательностей, являющихся ортогональными по каждому кластеру, позволяет выполнить условие (3). Потенциально возможный недостаток этого технического решения состоит в том, что количество подвижных станций с перекрывающимися сигналами, которые могут быть ортогональными по каждому кластеру, ограничено размером кластера, обозначенным здесь как N С. В примере, показанном на Фиг. 4A и Фиг. 4В, N С=3, и, следовательно, в этом варианте осуществления изобретения может быть обеспечено ортогональное разделение до Q=3 подвижных станций. На самом деле, во многих практических сценариях достаточным является весьма небольшое количество Q. Когда Q>N С, то сохранение ортогональности всех подвижных станций по каждому кластеру может оказаться затруднительным, так как могут иметь место некоторые межсимвольные помехи. Следовательно, если Q>N C, то достаточной может являться приближенная ортогональность при некоторой потере эффективности каналов, изменяющихся по времени и/или по частоте.
В одном из вариантов осуществления изобретения набор расчетных параметров для последовательностей скалярных функций
Figure 00000002
может быть задан следующим образом:
∗Любые две последовательности являются ортогональными по всему набору контрольных символов, удовлетворяя, тем самым, следующему выражению:
Figure 00000008
для всех 1≤p,qQ, (5)
∗Последовательные группы из N С последовательностей являются такими, что любые две последовательности в группе являются взаимно ортогональными по любому кластеру контрольных символов:
Figure 00000009
,
Figure 00000010
,
Figure 00000011
,
Figure 00000012
(6)
∗Все элементы
Figure 00000013
всех последовательностей имеют, по существу, равные абсолютные величины, например, приблизительно, одинаковую мощность,
где величиной М C обозначено общее количество кластеров размера N C, поэтому количество контрольных символов равно N P=M С N C.
В одном из вариантов осуществления изобретения последовательности
Figure 00000002
созданы с использованием экспоненциальных функций для того, чтобы каждая последовательность обеспечивала одинаковую энергию для каждого символа. Кроме того, в этом варианте осуществления изобретения группы из N С последовательностей могут быть сделаны взаимно ортогональными в каждом кластере, вне зависимости от размера кластера, поскольку экспоненты не ограничены конкретными кратными значениями, и с последовательностями, используемыми в любом кластере, по всем контрольным символам, что реализовано следующим образом: (i) путем определения экспоненциальных последовательностей в каждом кластере; и (ii) путем заполнения участков внутри кластера по всем кластерам. Это видно из уравнения (7), в котором определен базис дискретного преобразования Фурье, ДПФ (DFT), из N × N элементов.
Figure 00000014
(7)
Приведенное выше выражение (7) может быть записано в компактной блочной форме следующим образом:
Figure 00000015
(8)
где обозначение
Figure 00000016
означает блок матрицы, охватывающий столбцы исходной матрицы с 1-го по Q-й. Более общий вид
Figure 00000017
может быть задан следующим выражением:
Figure 00000018
(9)
где
Figure 00000019
- произвольная единичная матрица N C×N C элементов
Figure 00000020
, а
Figure 00000021
- произвольная единичная матрица M C×M C элементов
Figure 00000022
.
В одном из вариантов осуществления изобретения, в котором обеспечена ортогональность контрольных символов по каждому из кластеров, количество подвижных станций, поддержка которых может быть обеспечена, равно количеству контрольных символов, имеющихся в каждом кластере контрольных символов.
В одном из вариантов осуществления изобретения генерацию экспоненциальных функций, используемых для умножения выборок контрольных символов, осуществляют с использованием функции дискретного преобразования Фурье, которая является хорошо известной. В вариантах осуществления изобретения, в которых для генерации символов, предназначенных для передачи, используется функция дискретного преобразования Фурье, во время формирования символов с использованием функции дискретного преобразования Фурье при генерации символов, предназначенных для передачи, применяют дополнительный сдвиг фазы.
В вариантах осуществления изобретения, показанных на Фиг. 4A и Фиг. 4В, произведения вектора на скаляр, представляющие собой последовательность скалярных функций в каждом кластере для каждой подвижной станции, могут быть равны нулю. Однако в других вариантах осуществления изобретения имеет место иная ситуация. Они могут быть реализованы таким образом, что в каждом кластере для каждой подвижной станции обеспечена только лишь квазиортогональность между последовательностями скалярных функций.
Кроме того, в тех ситуациях, когда количество подвижных станций, для которых выделена область скачкообразной перестройки, является меньшим, чем количество контрольных символов, выделенных для области скачкообразной перестройки, базовая станция по-прежнему может производить декодирование скалярных сдвигов, чтобы использовать их для выполнения оценки помех. Следовательно, эти контрольные символы могут быть использованы для оценки помех, так как они являются ортогональными или квазиортогональными относительно контрольных символов, передаваемых другими подвижными станциями, для которых выделена область скачкообразной перестройки.
На Фиг. 5 проиллюстрирована базовая станция с множеством секторов в системе беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения. Базовая станция 500 содержит множество групп антенн, состоящих из антенн 502, 504 и 506. На Фиг. 5 для каждой группы 502, 504 и 506 антенн показана только одна антенна, однако может быть использовано множество антенн. Множество антенн из каждой группы 502, 504 и 506 антенн может быть использовано для обеспечения в базовой станции пространственного разнесения сигналов, переданных из подвижных станций в соответствующем секторе, в дополнение к пространственному разнесению, которое обеспечивают различные физические местоположения различных подвижных станций.
Каждая группа 502, 504 и 506 антенн базовой станции 500 сконфигурирована таким образом, что поддерживает связь с подвижными станциями в секторе, обслуживаемом базовой станцией 500. В варианте осуществления изобретения, показанном на Фиг. 5, группа 502 антенн охватывает сектор 514, группа 504 антенн охватывает сектор 516, а группа 506 антенн охватывает сектор 518. Как было описано со ссылкой на Фиг. 4, внутри каждого сектора может быть выполнена точная демодуляция контрольных символов, переданных из подвижных станций, и они могут быть использованы в базовой станции для оценки параметров канала и для других функций вследствие ортогональности или приблизительной ортогональности между всеми межсекторными кластерами контрольных символов.
Однако могут существовать внутрисекторные помехи для подвижных станций, находящихся вблизи от границы сектора, например для подвижной станции 510, которая находится вблизи от границы секторов 514 и 516. В этом случае контрольные символы из подвижной станции 510 могут быть переданы с более низкими уровнями мощности, чем контрольные символы из других подвижных станций в обоих секторах 514 и 516. В такой ситуации подвижная станция 510 может, в конечном счете, получать выигрыш от приема в антеннах обоих секторов, в особенности, в том случае, когда может происходить замирание ее канала передачи сигналов в обслуживающий сектор, то есть в сектор 516, при увеличении мощности передачи из антенны 504. Для получения полного выигрыша от приема из антенны 502 сектора 514 должна быть обеспечена точная оценка параметров канала подвижной станции 510 между антенной 502 сектора 514. Однако, если в данной схеме распределения контрольных символов для скалярных множеств контрольных символов в различных секторах используются одинаковые или по существу одинаковые последовательности, то может возникать конфликт между контрольными символами, переданными подвижной станцией 510, и контрольными символами, переданными подвижной станцией 508, передача которой запланирована в секторе 514, в той же самой области скачкообразной перестройки, как и для подвижной станции 510, передача которой запланирована в секторе 516. Кроме того, в некоторых случаях, в зависимости от стратегии управления мощностью, используемой базовой станцией для управления подвижными станциями, уровень мощности передачи символов из подвижной станции 508 может существенно превышать уровень сигнала подвижной станции 510 в группе 502 антенн сектора 514, в особенности, в том случае, когда подвижная станция 508 расположена близко к базовой станции 500.
Для борьбы с внутрисекторными помехами, которые могут возникать, могут быть использованы коды скремблирования для подвижных станций. Код скремблирования может быть уникальным для отдельных подвижных станций или может быть одинаковым для каждой из подвижных станций, поддерживающих связь с отдельным сектором. В одном из вариантов осуществления изобретения эти конкретные коды скремблирования обеспечивают для группы 502 антенн возможность воспринимать комбинированный канал подвижных станций 508 и 510.
В том случае, когда вся область скачкообразной перестройки выделена для одной подвижной станции, могут быть созданы индивидуальные последовательности скремблирования для конкретных абонентов, предназначенные для того, чтобы каждая подвижная станция в заданном секторе использовала одну и ту же последовательность контрольных символов; формулирование этих последовательностей было описано со ссылкой на Фиг. 4A и Фиг. 4В. В примере, показанном на Фиг. 5, подвижные станции 508, 510 и 512 могут иметь различные индивидуальные последовательности скремблирования для конкретных абонентов, и, следовательно, может быть достигнута достаточно точная оценка параметров канала.
В тех случаях, когда одна и та же область скачкообразной перестройки выделена или может быть выделена множеству подвижных станций, для уменьшения внутрикластерных помех могут быть использованы два подхода. Во-первых, индивидуальные последовательности скремблирования для конкретных абонентов могут быть использованы в том случае, если размер N C кластера является большим или равным количеству подвижных станций с перекрывающимися сигналами в каждом секторе Q, умноженному на количество секторов в ячейке сотовой связи. В этом случае различным секторам могут быть выделены отдельные наборы из Q различных индивидуальных кодов скремблирования для конкретных абонентов.
Однако, если размер N C кластера является меньшим, чем количество перекрывающихся подвижных станций в каждом секторе Q, умноженное на количество секторов в ячейке сотовой связи, что может являться важным фактором для ограничения непроизводительных издержек, связанных с контрольными символами, если цель разработки системы состоит в сохранении N C, то индивидуальные коды скремблирования для конкретных абонентов могут не быть эффективными для уменьшения помех между ячейками сотовой связи. В таких случаях вместе с индивидуальной последовательностью скремблирования для конкретного абонента может быть использована индивидуальная последовательность скремблирования для конкретного сектора.
Индивидуальной последовательностью скремблирования для конкретного сектора является последовательность
Figure 00000023
из N P комплексных функций, на которые умножают соответствующие элементы последовательностей
Figure 00000002
для всех подвижных станций в одном и том же секторе. В ячейке сотовой связи, состоящей из S секторов, для умножения последовательностей
Figure 00000002
подвижных станций может быть использован набор из S индивидуальных последовательностей
Figure 00000024
скремблирования для конкретных секторов. В этом случае подвижные станции, расположенные в различных секторах, например в секторах 514 и 516, в которых могут находиться подвижные станции, использующие те же самые индивидуальные последовательности
Figure 00000002
скремблирования для конкретных абонентов, могут различаться вследствие наличия различных индивидуальных последовательностей
Figure 00000025
и
Figure 00000026
скремблирования для конкретных секторов, которые используются для умножения индивидуальной последовательности скремблирования для конкретного абонента.
Аналогично индивидуальному скремблированию для конкретного абонента предпочтительно, чтобы все элементы
Figure 00000024
были приблизительно равными по абсолютной величине для сохранения приблизительно равной мощности между контрольными символами. В других вариантах осуществления изобретения предпочтительно, чтобы элементы
Figure 00000024
были такими, чтобы любая пара контрольных символов в кластере контрольных символов, соответствующая любым двум комбинациям индивидуальных последовательностей скремблирования для конкретного сектора и для конкретного абонента, удовлетворяла условию (3). Один из подходов к выбору содержимого каждой индивидуальной последовательности
Figure 00000024
для конкретного сектора состоит в выполнении исчерпывающего поиска последовательностей, например, элементы каждой последовательности берут из некоторой постоянной по модулю совокупности (полученной путем фазовой манипуляции, ФМн (PSK)), которой является, например, квадратурная фазовая манипуляция, КФМн (QPSK), 8-позиционная ФМн фазовая манипуляция (8-PSK). Критерий выбора может быть основан на "наихудшей" дисперсии ошибок оценки параметров канала, соответствующей "наихудшей" комбинации подвижных станций из различных секторов и различного индивидуального скремблирования для конкретных абонентов, которая основана на потенциально возможном состоянии функционирования канала. Ошибка оценки параметров канала может быть вычислена аналитически на основании статистических свойств канала. В частности, след ковариационной матрицы оценки параметров канала, предполагающий наличие корреляционной структуры канала, основан на ожидаемой модели замирания и на таких параметрах, как, например, скорость подвижной станции, которая определяет избирательность по времени, и разброс задержки при распространении, который определяет избирательность по частоте. Аналитические выражения для минимальной достижимой ошибки оценки параметров канала при условии наличия заданной корреляционной структуры истинного канала являются известными в данной области техники. Для оптимизации выбора
Figure 00000024
также могут быть использованы иные аналогичные критерии.
В приведенной ниже таблице показан набор индивидуальных последовательностей
Figure 00000024
скремблирования для конкретных секторов, который может быть использован в одном из вариантов осуществления, в котором в качестве схемы модуляции используют квадратурную амплитудную манипуляцию. Каждый элемент таблицы указывает I и Q компоненты каждого
Figure 00000027
, где 1≤sS, 1≤kN P при S=3 и N P=12.
k 1 2 3 4 5 6 7 8 9 10 11 12
s=1 {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0} {+1,+0}
s=2 {+1,+0} {+1,+0} {-1,+0} {+1,+0} {+0,-1} {+1,+0} {+1,+0} {+0,-1} {+0,+1} {+0,+1} {+0,+1} {+0,+1}
s=3 {+0,+1} {-1,+0} {+1,+0} {+1,+0} {+0,+1} {+0,-1} {+0,-1} {+0,+1} {+1,+0} {+0,-1} {+1,+0} {-1,+0}
В некоторых вариантах осуществления изобретения в каждой ячейке сотовой связи в сети связи в качестве индивидуальных последовательностей скремблирования для конкретных секторов могут быть использованы одинаковые последовательности.
На Фиг. 6 проиллюстрирована система 600 беспроводной связи с множественным доступом согласно другому варианту осуществления изобретения. В том случае, когда в множестве ячеек сотовой связи, например в ячейках 602, 604 и 606 сотовой связи, используются одинаковые наборы индивидуальных последовательностей скремблирования для конкретного сектора и для конкретного абонента, помехи, исходящие из соседних ячеек сотовой связи, могут приводить к ухудшению точности оценки параметров канала вследствие конфликта между контрольными символами. Например, оценка параметров канала в интересующем секторе может быть смещена каналом подвижной станции из соседней ячейки сотовой связи, которая имеет то же самое индивидуальное скремблирование для конкретного сектора и для конкретного абонента. Во избежание такого смещения в дополнение к индивидуальному скремблированию для конкретного абонента и для конкретного сектора может быть использовано индивидуальное скремблирование для конкретной ячейки сотовой связи. Схема индивидуального скремблирования для конкретной ячейки сотовой связи может быть определена следующим выражением:
Figure 00000028
, представляющим собой вектор из скалярных функций, на которые умножают соответствующую последовательность контрольных символов для каждой подвижной станции в ячейке сотовой связи. Полные последовательности контрольных символов
Figure 00000029
, которые соответствуют подвижной станции с индивидуальным скремблированием для абонента номер q в секторе номер s ячейки сотовой связи номер с, могут быть определены указанным ниже способом. Если используется индивидуальное скремблирование для конкретного сектора, то
Figure 00000030
, 1≤kN P, 1≤sS, c=1, 2,…
(10)
Если же индивидуальное скремблирование для конкретного сектора не используется, то
Figure 00000031
, 1≤kN P, 1≤sS, c=1, 2,…
(11)
Как уже было упомянуто выше, использование индивидуального скремблирования для конкретного сектора рекомендовано в том случае, когда Q>1, и не рекомендовано, когда Q=1.
В отличие от индивидуального скремблирования для конкретного сектора и для конкретного абонента не требуется использование какой-либо особой оптимизации индивидуальных последовательностей скремблирования для конкретных ячеек сотовой связи. Двумя конструктивными параметрами, которые могут быть использованы, являются следующие:
∗Все элементы индивидуальных последовательностей скремблирования для конкретных ячеек сотовой связи являются равными по модулю.
∗Индивидуальные последовательности скремблирования для конкретных ячеек сотовой связи являются существенно различными для различных ячеек сотовой связи.
При отсутствии заранее заданного распределения индивидуальных последовательностей скремблирования для конкретных ячеек сотовой связи по сети базовых станций, при формировании
Figure 00000032
индивидуальных последовательностей для конкретных ячеек сотовой связи могут быть использованы (псевдо)случайные индивидуальные последовательности скремблирования для конкретных ячеек сотовой связи из некоторой постоянной по модулю, полученной путем фазовой манипуляции совокупности, такой как, например, квадратурная фазовая манипуляция, 8-позиционная фазовая манипуляция. Для дополнительного улучшения рандомизации индивидуального скремблирования для конкретных ячеек сотовой связи и во избежание появления плохих устойчивых комбинаций последовательностей скремблирования может производиться периодическое изменение индивидуального скремблирования для конкретных ячеек сотовой связи (псевдо)случайным образом. В некоторых вариантах осуществления изобретения периодическое изменение может производиться через каждый кадр, через каждый суперкадр или через множество кадров или суперкадров.
На Фиг. 7 изображена блок-схема варианта осуществления системы 710 передатчика и системы 750 приемника в системе 700 с множеством входов и множеством выходов (MIMO). В системе 710 передатчика данные трафика для нескольких потоков данных предоставляют из источника 712 данных в устройство 714 обработки данных, предназначенных для передачи. В одном из вариантов осуществления каждый поток данных передают через соответствующую передающую антенну. Устройство 714 обработки данных, предназначенных для передачи, выполняет форматирование, кодирование и перемежение данных информационного обмена для каждого потока данных на основании конкретного алгоритма кодирования, выбранного для этого потока данных, создавая закодированные данные.
Может быть произведено мультиплексирование закодированных данных для каждого потока данных с данными контрольного сигнала, используя способы мультиплексирования с ортогональным частотным разделением (МОЧР). Данные контрольного сигнала обычно представляют собой известную комбинацию данных, обработанную известным способом и используемую в системе приемника для оценки отклика канала. Затем выполняют модуляцию мультиплексированных данных контрольного сигнала и закодированных данных для каждого потока данных (то есть отображение на символы) на основании конкретной схемы модуляции (например, двухпозиционной фазовой манипуляции, квадратурной фазовой манипуляции, М-позиционной фазовой манипуляции или М-позиционной квадратурной амплитудной модуляции), выбранной для этого потока данных, для создания модуляционных символов. Скорость передачи данных, кодирование и модуляция для каждого потока данных могут быть определены посредством исполняемых команд, поданных контроллером 130.
Затем модуляционные символы для всех потоков данных подают в устройство 720 обработки передаваемых данных, которое может выполнять дополнительную обработку модуляционных символов (например, для мультиплексирования с ортогональным частотным разделением (МОРЧ)). Затем устройство 720 обработки передаваемых данных подает N T потоков модуляционных символов в N T передатчиков 722a-722t. Каждый передатчик 722 принимает и обрабатывает соответствующий поток символов, создавая один или большее количество аналоговых сигналов, и, кроме того, осуществляет предварительное формирование (например, усиление, фильтрацию и преобразование с повышением частоты) аналоговых сигналов, создавая модулированный сигнал, пригодный для передачи по каналу системы MIMO. Затем производят передачу N T модулированных сигналов из передатчиков 722a-722t через N T соответствующих антенн 124a-124t.
В системе 750 приемника переданные модулированные сигналы принимают посредством N R антенн 752a-752r, и принятый сигнал из каждой антенны 752 подают в соответствующий приемник 754. Каждый приемник 754 осуществляет предварительное формирование (например, фильтрацию, усиление и преобразование с понижением частоты) соответствующего принятого сигнала, преобразует предварительно сформированный сигнал в цифровую форму, создавая выборки, и производит дальнейшую обработку выборок для создания соответствующего "принятого" потока символов.
Затем устройство 760 обработки принятых данных (RX) получает и обрабатывает N R принятых потоков символов из N R приемников 754 на основании конкретного способа обработки в приемнике для получения N T "обнаруженных" потоков символов. Более подробное описание обработки, выполняемой устройством 760 обработки принятых данных, приведено ниже. Каждый обнаруженный поток символов содержит символы, которые представляют собой оценочные значения модуляционных символов, переданных для соответствующего потока данных. Затем устройство 760 обработки принятых данных выполняет демодуляцию, обращение перемежения и декодирование каждого обнаруженного потока символов для восстановления данных трафика для потока данных. Обработка, выполняемая устройством 760 обработки принятых данных, является взаимодополняющей к той обработке, которая выполнена устройством 720 обработки передаваемых данных и устройством 714 обработки данных, предназначенных для передачи, в системе 710 передатчика.
Устройство 760 обработки принятых данных может вычислять оценку отклика канала между N T передающими и N R приемными антеннами, например, на основании информации о контрольных символах, мультиплексированной с данными трафика. Устройство 760 обработки принятых данных может распознавать контрольные символы согласно комбинациям контрольных символов, хранящимся в запоминающем устройстве, например, в запоминающем устройстве 772, которые идентифицируют частотную поднесущую и период символа, присвоенные каждому контрольному символу. Кроме того, в запоминающем устройстве могут быть запомнены индивидуальные последовательности скремблирования для конкретных абонентов для конкретных секторов и для конкретных ячеек сотовой связи, чтобы они могли быть использованы устройством 760 обработки принятых данных для множества принятых символов для обеспечения возможности их правильного декодирования.
Оценка отклика канала, сгенерированная устройством 760 обработки принятых данных, может быть использована для выполнения пространственной, пространственно/временной обработки в приемнике, для регулировки уровней мощности, для изменения степени или алгоритмов модуляции или для иных действий. Кроме того, устройство 760 обработки принятых данных может оценивать значения отношения "сигнал/смесь помехи с шумом" (ОСШ) для обнаруженных потоков символов и, возможно, другие характеристики канала и подавать эти величины в контроллер 770. Устройство 760 обработки принятых данных или контроллер 770 могут дополнительно вычислять оценочное значение "действующего" ОСШ для системы. Затем контроллер 770 предоставляет информацию о состоянии канала, ИСК (CSI), которая может содержать информацию различных типов о канале связи и/или о принятом потоке данных. Например, ИСК может содержать только действующее значение ОСШ. Затем выполняют обработку ИСК устройством 778 обработки данных, предназначенных для передачи, которое также получает из источника 776 данных данные трафика для нескольких потоков данных, подвергнутые модуляции посредством модулятора 780, подвергнутые предварительному формированию передатчиками 754a-754r и переданные обратно в систему 710 передатчика.
В системе передатчика 710 модулированные сигналы из системы 750 приемника принимают посредством антенн 724, выполняют их предварительное формирование приемниками 722, их демодуляцию посредством демодулятора 740 и их обработку устройством 742 обработки принятых данных для восстановления ИСК, переданной из системы приемника. Переданную ИСК затем подают в контроллер 730 и используют (1) для определения скоростей передачи данных и алгоритмов кодирования и модуляции, которые следует использовать для потоков данных, и (2) для генерации различных сигналов управления для устройства 714 обработки данных, предназначенных для передачи, и для устройства 720 обработки передаваемых данных.
Контроллеры 730 и 770 осуществляют управление работой соответственно в системе передатчика и в системе приемника. Запоминающие устройства 732 и 772 обеспечивают хранение программных кодов и данных, используемых соответствующими контроллерами 730 и 770. В запоминающих устройствах 732 и 772 хранят комбинации контрольных символов, выраженные в виде сведений о местах расположения кластеров, индивидуальных последовательностей скремблирования для конкретных абонентов, индивидуальных последовательностей скремблирования для конкретных секторов в случае их использования и индивидуальных последовательностей скремблирования для конкретных ячеек сотовой связи в случае их использования. В некоторых вариантах осуществления изобретения в каждом запоминающем устройстве хранится множество комбинаций контрольных символов для того, чтобы передатчик мог производить передачу, а приемник мог производить прием как комбинаций контрольных символов с избирательностью по частоте, так и комбинаций контрольных символов с избирательностью по времени. Также может быть использована комбинация из комбинаций контрольных символов, имеющих кластеры, адаптированные для каналов с избирательностью по времени и для каналов с избирательностью по частоте. Это обеспечивает для передатчика возможность передачи конкретной комбинации символов на основании такого параметра, как случайная последовательность, или в ответ на команду из базовой станции.
Затем устройства 730 и 770 обработки могут произвести выбор того, какие именно из комбинаций контрольных символов, из индивидуальных последовательностей скремблирования для конкретных абонентов, из индивидуальных последовательностей скремблирования для конкретных секторов и из индивидуальных последовательностей скремблирования для конкретных ячеек сотовой связи следует использовать при передаче контрольных символов.
В приемнике могут использоваться различные способы обработки для обработки N R принятых сигналов с целью обнаружения N T переданных потоков символов. Эти способы обработки в приемнике могут быть классифицированы на две основные категории: (i) способы пространственной и пространственно-временной обработки в приемнике (которые также именуют способами выравнивания); и (ii) способ обработки в приемнике путем "последовательного обнуления/выравнивания и подавления помех" (который также именуют способом обработки в приемнике путем "последовательного подавления помех" или "последовательного подавления").
Хотя на Фиг. 7 проиллюстрирована система MIMO, та же самая система может быть применена для системы с множеством входов и с одним выходом, в которой множество передающих антенн, например антенн в базовой станции, передают один или большее количество потоков символов в устройство с одной антенной, которым является, например, подвижная станция. К тому же, тем же самым способом, который был описан со ссылкой на Фиг. 7, может быть использована система антенн с одним выходом и одним входом.
На Фиг. 8 проиллюстрирована схема последовательности операций способа генерации контрольных символов согласно одному из вариантов осуществления изобретения. Производят выбор множества кластеров контрольных символов, подлежащих передаче во время области скачкообразной перестройки из конкретной подвижной станции (блок 800). Эти кластеры контрольных символов могут быть все настроены для передачи по каналу с избирательностью по частоте (Фиг. 3A), по каналу с избирательностью по времени (Фиг. 3В) или могут представлять собой комбинацию кластеров, настроенных для передачи по каналу с избирательностью по частоте и по каналу с избирательностью по времени.
После выбора кластеров контрольных символов определяют, обеспечивает ли кластер базовой станции, с которой поддерживает связь подвижная станция, поддержку множества подвижных станций или установлена ли связь между ним и множеством подвижных станций (блок 802). Это определение может быть основано на заранее заданных сведениях о сети, в которой находится подвижная станция. В альтернативном варианте эта информация может быть передана из сектора для базовой станции в виде части его информации о контрольных символах или в виде широковещательных сообщений.
Если кластер не поддерживает связь с множеством подвижных станций или если в текущий момент времени отсутствует связь между ним и множеством подвижных станций, то к контрольным символам применяют скалярные функции, однозначно определяющие кластер, с которым подвижная станция поддерживает связь (блок 804). В одном из вариантов осуществления изобретения скалярные функции для каждого сектора могут быть запомнены в подвижной станции и использованы в зависимости от идентификационного сигнала сектора, который является частью его части информации о его контрольных символах или представляет собой широковещательные сообщения.
Если же кластер поддерживает связь с множеством подвижных станций, то к контрольным символам применяют скалярные функции, однозначно определяющие подвижную станцию (блок 806). В некоторых вариантах осуществления изобретения скалярные функции для каждой подвижной станции могут быть основаны на ее уникальном идентификаторе, используемом для регистрации или созданном в устройстве во время изготовления.
После того, как к контрольным символам применены скалярные функции, однозначно определяющие как сектор, с которым подвижная станция поддерживает связь, так и саму подвижную станцию, к контрольным символам применяют другую последовательность скалярных функций (блок 808), относящуюся к ячейке сотовой связи, с которой поддерживает связь подвижная станция. Эта скалярная функция может изменяться во времени, если каждой ячейке сотовой связи не присвоены конкретные скалярные функции, которые известны или предоставлены подвижным станциям. После этой операции контрольные символы могут передаваться из подвижной станции в базовую станцию.
В одном из вариантов осуществления изобретения скалярные функции, рассмотренные со ссылкой на Фиг. 8, могут включать в себя сдвиг фазы каждой из выборок, из которых составлены контрольные символы. Как описано выше со ссылкой на Фиг. 4A, 4В, 5 и 6, скалярные функции выбирают таким образом, чтобы каждый кластер контрольных символов являлся ортогональным каждому другому набору контрольных символов из той же самой подвижной станции в других кластерах контрольных символов и в том же самом и в других кластерах контрольных символов для других подвижных станций из того же самого сектора базовой станции.
Кроме того, каждый из блоков, описанных со ссылкой на Фиг. 8, может быть реализован в виде одной или более команд на машиночитаемом носителе информации, например памяти, реализуемых процессором, контроллером или иными электронными схемами.
На Фиг. 9 проиллюстрирована схема последовательности операций способа изменения комбинаций контрольных символов согласно одному из вариантов осуществления изобретения. Получают информацию о состоянии канала (блок 900). Эта информация может содержать значения отношения ОСШ в одном или более секторов базовых станций, сведения об избирательности канала в базовой станции, о желательном типе трафика, то есть, является ли абонент пешеходом или же он находится в транспортном средстве, для соответствующей оптимизации базовой станции, о разбросах значений задержки или другие характеристики канала. Кроме того, эта информация может относиться к промежуткам времени, может являться частью регулярных операций технического обслуживания в базовой станции или в сети базовых станций, может быть основана на увеличении нагрузки в базовой станции или в сети базовых станций, или к иным моментам времени.
Эту информацию анализируют для определения состояния канала в секторе или в базовой станции (блок 902). Этим анализом может являться определение того, является ли канал каналом с избирательностью по частоте, каналом с избирательностью по времени или комбинацией обоих этих каналов. Затем результаты анализа используют для определения комбинации контрольных символов для передачи из подвижных станций, которые могут поддерживать связь с сектором или с базовой станцией (блок 904). Эти кластеры контрольных символов могут быть все настроены для передачи по каналу с избирательностью по частоте (фиг. 3A), по каналу с избирательностью по времени (Фиг. 3В), могут представлять собой комбинацию кластеров, настроенных для передачи по каналу с избирательностью по частоте и по каналу с избирательностью по времени. Конкретная выбранная комбинация контрольных символов может быть затем использована всеми подвижными станциями, поддерживающими связь с базовой станцией или с сектором, пока снова не будет выполнена диагностика для базовой станции или сектора.
Для реализации конкретной комбинации контрольных символов в подвижных станциях, поддерживающих связь с базовой станцией или с сектором базовой станции, из базовой станции или из сектора в подвижные станции может быть передана команда в виде части процедуры инициализации или начальной установки. В некоторых вариантах осуществления изобретения информация о том, какую именно комбинацию контрольных символов, индивидуальную последовательность скремблирования для конкретного абонента, индивидуальную последовательность скремблирования для конкретного сектора и/или индивидуальную последовательность скремблирования для конкретной ячейки сотовой связи следует использовать, может быть передана в преамбуле одного или более пакетов данных, которые передают из базовой станции в подвижную станцию через регулярные промежутки времени или во время инициализации или начальной установки.
Следует отметить, что упомянутый анализ также может быть использован для определения количества контрольных символов для передачи в каждом кластере контрольных символов и групп контрольных символов. Кроме того, каждый из блоков, описанных со ссылкой на Фиг. 9, может быть реализован в виде одной или более команд на машиночитаемом носителе информации, например памяти, или на сменном носителе информации, реализуемых процессором, контроллером или иными электронными схемами.
Описанные способы могут быть реализованы различными средствами. Например, эти способы могут быть реализованы аппаратными средствами, программными средствами или посредством комбинации этих средств. Для аппаратной реализации устройства обработки, находящиеся в базовой станции или подвижных станциях, могут быть реализованы в одной или более специализированных интегральных микросхем (ASIC), процессоров для цифровой обработки сигналов (DSP), устройств цифровой обработки сигналов (DSPD), программируемых логических устройств (PLD), программируемых пользователем вентильных матриц (FPGA), процессоров, контроллеров, микроконтроллеров, микропроцессоров, иных электронных устройств, выполненных с возможностью реализации описанных функций, или в виде их комбинации.
Для программной реализации описанные способы могут быть реализованы посредством модулей (например, процедур, функций и т.д.), выполняющих описанные функции. Программные коды могут быть запомнены в памяти и выполняться устройствами обработки. Память может быть реализована в устройстве обработки или внешним образом относительно устройства обработки и в этом случае может связываться с устройством обработки через различные средства, известные в данной области техники.
Вышеизложенное описание раскрытых вариантов осуществления изобретения приведено для того, чтобы предоставить любому специалисту в данной области техники возможность реализовать или использовать настоящее изобретение. Для специалистов в данной области техники очевидна возможность различных видоизменений этих вариантов осуществления изобретения, и определенные здесь основополагающие принципы могут быть применены для других вариантов осуществления изобретения, не выходя за пределы сущности или объема изобретения. Таким образом, настоящее изобретение не ограничено продемонстрированными вариантами осуществления, а соответствует максимально широкому объему, согласованному с раскрытыми принципами и новыми признаками.

Claims (58)

1. Аппаратура беспроводной связи, содержащая
по меньшей мере, одну антенну;
запоминающее устройство, в котором хранятся комбинации контрольных символов, предназначенных для передачи из устройства беспроводной связи, и множество скалярных функций; и
устройство обработки, соединенное, по меньшей мере, с одной антенной и с запоминающим устройством, при этом устройство обработки выполнено с обеспечением возможности выбирать одну из комбинаций контрольных символов, и умножать контрольные символы выбранной комбинации на множество скалярных функций перед передачей контрольных символов из антенны;
причем комбинации контрольных символов содержат кластеры контрольных символов, где каждый из кластеров контрольных символов содержит множество контрольных символов; и
аппаратура беспроводной связи выполнена с возможностью передавать сигналы с использованием множества частотных поднесущих в диапазоне частот между максимальной частотой и минимальной частотой;
при этом передача, по меньшей мере, одного множества контрольных символов из каждого множества кластеров осуществляется с использованием частотной поднесущей, иной, чем поднесущая с максимальной частотой или с минимальной частотой.
2. Аппаратура беспроводной связи по п.1, в которой в запоминающем устройстве хранится другое множество скалярных функций, и устройство обработки обеспечивает умножение выборок на группу из множества скалярных функций и на группу из другого множества скалярных функций.
3. Аппаратура беспроводной связи по п.2, в которой другое множество скалярных функций формирует векторы скалярных функций, причем каждый вектор ортогонален каждому другому вектору.
4. Аппаратура беспроводной связи по п.1, в которой множество скалярных функций содержит векторы скалярных функций и причем каждый вектор ортогонален каждому другому вектору.
5. Аппаратура беспроводной связи по п.1, в которой устройство обработки изменяет диапазон частот между первым промежутком времени и вторым промежутком времени таким образом, чтобы в диапазоне частот для второго промежутка времени отсутствовали частоты из диапазона частот для первого промежутка времени.
6. Аппаратура беспроводной связи по п.1, в которой аппаратура беспроводной связи осуществляет передачу сигналов с использованием множества смежных периодов символа между первым периодом символа и последним периодом символа, и каждый из кластеров контрольных символов содержит множество контрольных символов, при этом в течение любого из первого периода символа или последнего периода символа передается только один из множества контрольных символов из каждого множества кластеров.
7. Аппаратура беспроводной связи по п.1, в которой множество контрольных символов содержит множество кластеров контрольных символов с избирательностью по времени и кластеров контрольных символов с избирательностью по частоте.
8. Аппаратура беспроводной связи по п.1, в которой каждая из множества скалярных функций содержит сдвиг фазы для каждой выборки каждого символа.
9. Аппаратура беспроводной связи по п.1, в которой множество скалярных функций содержит векторы скалярных функций, причем каждый вектор квазиортогонален каждому другому вектору.
10. Аппаратура беспроводной связи по п.9, в которой устройство обработки умножает контрольные символы на векторы скалярных функций с использованием дискретного преобразования Фурье.
11. Способ беспроводной связи, заключающийся в том, что осуществляют генерацию множества комбинаций контрольных символов, причем каждая комбинация контрольных символов имеет множество контрольных символов, предназначенных для передачи из устройства беспроводной связи;
выбирают одну из комбинаций контрольных символов и применяют одну из множества скалярных функций к каждому из множества контрольных символов в выбранной комбинации контрольных символов; и
передают множество контрольных символов с использованием множества поднесущих между максимальной частотой и минимальной частотой, причем группируют множество контрольных символов по кластерам и каждому контрольному символу из каждого кластера выделяют частоту передачи таким образом, чтобы, по меньшей мере, одному контрольному символу из каждого кластера была выделена поднесущая иная, чем поднесущая с максимальной частотой и поднесущая с минимальной частотой.
12. Способ по п.11, в котором множество скалярных функций сгруппировано в векторы, причем каждый вектор ортогонален каждому другому вектору.
13. Способ по п.11, в котором упомянутое применение включает в себя сдвиг фазы каждой выборки, содержащей каждый контрольный символ, в соответствии со скалярной функцией.
14. Способ по п.11, в котором к каждому из множества контрольных символов дополнительно применяют другую скалярную функцию из другого множества скалярных функций,
15. Способ по п.14, в котором упомянутое применение другой скалярной функции содержит изменение во времени другой скалярной функции, применяемой к контрольному символу из множества контрольных символов.
16. Способ по п.11, в котором множество скалярных функций содержит скалярные функции, однозначно определяющие устройство беспроводной связи.
17. Способ по п.11, в котором множество скалярных функций содержит скалярные функции, однозначно определяющие сектор базовой станции, с которым поддерживает связь устройство беспроводной связи.
18. Способ по п.11, в котором множество скалярных функций содержит векторы скалярных функций, причем каждый вектор квазиортогонален каждому другому вектору.
19. Способ по п.11, в котором упомянутое применение множества скалярных функций содержит использование дискретного преобразования Фурье.
20. Способ беспроводной связи, заключающийся в том, что
группируют первое множество контрольных символов по множеству кластеров, упорядоченных согласно первому состоянию канала;
применяют в первом устройстве беспроводной связи первое множество скалярных функций к первому множеству контрольных символов;
передают из первого устройства беспроводной связи множество контрольных символов в течение множества промежутков времени и на множестве частот;
группируют второе множество контрольных символов по множеству кластеров, упорядоченных согласно второму состоянию канала;
применяют во втором устройстве беспроводной связи второе множество скалярных функций, иных, чем первое множество скалярных функций, ко второму множеству контрольных символов, при этом каждый кластер из множества первых контрольных символов ортогонален каждому другому кластеру из множества первых контрольных символов и из множества вторых контрольных символов; и
передают из второго устройства беспроводной связи второе множество контрольных символов в течение того же самого множества промежутков времени и на том же самом множестве частот, что и множество первых контрольных символов.
21. Способ по п.20, в котором множество контрольных символов передают с использованием множества поднесущих между максимальной частотой и минимальной частотой, при этом передача из первого устройства беспроводной связи содержит передачу каждого кластера из первого множества контрольных символов таким образом, чтобы, по меньшей мере, одному контрольному символу каждого кластера была выделена поднесущая иная, чем поднесущая с максимальной частотой и поднесущая с минимальной частотой.
22. Способ по п.20, в котором максимальную частоту и минимальную частоту изменяют между первым промежутком времени и вторым промежутком времени таким образом, чтобы в диапазоне частот между минимальной частотой и максимальной частотой для второго промежутка времени отсутствовали частоты из диапазона частот между минимальной частотой и максимальной частотой для первого промежутка времени.
23. Способ по п.20, в котором множество контрольных символов передают в течение множества смежных периодов символа между первым периодом символа и последним периодом символа, каждый из кластеров контрольных символов содержит множество контрольных символов, при этом в течение любого из первого периода символа или последнего периода символа передают только один из множества контрольных символов из каждого кластера.
24. Способ по п.20, в котором к каждому из множества первых контрольных символов дополнительно применяют другую скалярную функцию из другого множества скалярных функций.
25. Способ по п.24, в котором применение другой скалярной функции содержит изменение во времени другой скалярной функции, применяемой к каждому из множества первых контрольных символов.
26. Способ по п.25, дополнительно содержащий выбор первого множества скалярных функций на основании того сектора базовой станции, в который производит передачу первое устройство беспроводной связи.
27. Способ по п.25, в котором первое множество скалярных функций однозначно определяет первое устройство беспроводной связи.
28. Способ по п.20, в котором первое множество скалярных функций содержит векторы скалярных функций, причем каждый вектор квазиортогонален каждому другому вектору.
29. Способ по п.20, в котором применение в первом устройстве беспроводной связи первого множества скалярных функций содержит использование дискретного преобразования Фурье.
30. Аппаратура беспроводной связи, содержащая
множество антенн;
запоминающее устройство для хранения множества комбинаций контрольных символов, каждая из которых содержит множество кластеров, каждый из которых содержит множество контрольных символов, причем каждый кластер из множества кластеров из одной и той же комбинации контрольных символов ортогонален каждому другому кластеру из множества кластеров из той же самой комбинации контрольных символов; и
устройство обработки, соединенное с множеством антенн и с запоминающим устройством, при этом устройство обработки выполнено с обеспечением возможности выбирать одну комбинацию контрольных символов из множества комбинаций контрольных символов для декодирования множества групп контрольных символов, принятых из множества устройств беспроводной связи множеством антенн;
причем каждому контрольному символу из каждой комбинации контрольных символов выделена частота в пределах диапазона частот между максимальной частотой и минимальной частотой, и, по меньшей мере, одному из множества контрольных символов каждого из множества кластеров выделена частотная поднесущая, иная, чем поднесущая с максимальной частотой или поднесущая с минимальной частотой.
31. Аппаратура беспроводной связи по п.30, в которой множество комбинаций контрольных символов содержит, по меньшей мере, одну комбинацию контрольных символов с избирательностью по времени и, по меньшей мере, одну комбинацию контрольных символов с избирательностью по частоте.
32. Аппаратура беспроводной связи по п.30, в которой запоминающее устройство дополнительно хранит множество последовательностей, являющихся ортогональными каждой другой последовательности из множества последовательностей, при этом устройство обработки избирательно выдает команды на умножение контрольных символов из комбинации контрольных символов на некоторые последовательности из множества последовательностей перед декодированием контрольных символов.
33. Аппаратура беспроводной связи по п.30, в которой запоминающее устройство дополнительно хранит другое множество последовательностей, при этом устройство обработки избирательно выдает команды на умножение контрольных символов из комбинации контрольных символов как на некоторые последовательности из множества последовательностей, так и на некоторые последовательности из другого множества последовательностей перед декодированием контрольных символов.
34. Аппаратура беспроводной связи по п.33, в которой устройство обработки генерирует команду для передачи, по меньшей мере, из одной из множества антенн, указывающую комбинацию контрольных символов из множества комбинаций контрольных символов.
35. Аппаратура беспроводной связи по п.30, в которой каждому контрольному символу из каждой комбинации контрольных символов выделен период символа из множества смежных периодов символа между первым периодом символа и последним периодом символа, причем любой из первого периода символа или последнего периода символа выделен только одному из множества контрольных символов каждого из множества кластеров.
36. Аппаратура беспроводной связи по п.30, в которой каждый из контрольных символов из каждого принятого кластера имеет частотную поднесущую из группы смежных частотных поднесущих в диапазоне от минимальной частоты до максимальной частоты и в течение периода символа из группы смежных периодов символа в интервале от первого периода символа до последнего периода символа, причем в каждом кластере не более чем одному контрольному символу выделена максимальная частота или минимальная частота в качестве частотной поднесущей для его передачи, либо первый период символа или последний период символа в качестве периода символа для его передачи,
37. Аппаратура беспроводной связи, содержащая
множество антенн;
запоминающее устройство для хранения множества комбинаций контрольных символов, каждая из которых содержит множество кластеров, причем каждый кластер из множества кластеров из одной той же комбинации контрольных символов ортогонален каждому другому кластеру из множества кластеров из той же самой комбинации контрольных символов; и
устройство обработки, соединенное с множеством антенн и с запоминающим устройством, при этом устройство обработки выполнено с обеспечением возможности выбирать одну из множества комбинаций контрольных символов и обеспечивать передачу множества контрольных символов, соответствующих одной комбинации контрольных символов из множества комбинаций контрольных символов, по меньшей мере, из двух из множества антенн;
причем каждому контрольному символу из каждой комбинации контрольных символов выделяют частоту в пределах диапазона частот между максимальной частотой и минимальной частотой, и, по меньшей мере, одному из множества контрольных символов каждого из множества кластеров выделяют частотную поднесущую, являющуюся иной, чем поднесущая с максимальной частотой или поднесущая с минимальной частотой.
38. Аппаратура беспроводной связи по п.37, в которой устройство обработки обеспечивает передачу множества контрольных символов, соответствующих другой комбинации контрольных символов, которая является иной, чем упомянутая одна комбинация контрольных символов, из множества комбинаций контрольных символов, по меньшей мере, из двух из множества антенн.
39. Аппаратура беспроводной связи по п.37, в которой множество комбинаций контрольных символов содержит, по меньшей мере, одну комбинацию контрольных символов с избирательностью по времени и, по меньшей мере, одну комбинацию контрольных символов с избирательностью по частоте.
40. Аппаратура беспроводной связи по п.37, в которой запоминающее устройство дополнительно хранит множество последовательностей, ортогональных каждой другой последовательности из множества последовательностей, при этом устройство обработки избирательно выдает команды на умножение контрольных символов из комбинации контрольных символов на некоторые последовательности из множества последовательностей перед передачей множества контрольных символов, соответствующих упомянутой одной комбинации контрольных символов.
41. Аппаратура беспроводной связи по п.37, в которой запоминающее устройство дополнительно хранит другое множество последовательностей, при этом устройство обработки избирательно выдает команды на умножение контрольных символов из комбинации контрольных символов как на некоторые последовательности из множества последовательностей, так и на некоторые последовательности из другого множества последовательностей перед передачей множества контрольных символов, соответствующих упомянутой одной комбинации контрольных символов.
42. Аппаратура беспроводной связи по п.41, в которой устройство обработки генерирует команду для передачи, по меньшей мере, одной из множества антенн, указывающую комбинацию контрольных символов из множества комбинаций контрольных символов.
43. Аппаратура беспроводной связи по п.37, в которой каждому контрольному символу из каждой комбинации контрольных символов выделен период символа из множества смежных периодов символа между первым периодом символа и последним периодом символа, при этом любой из первого периода символа или последнего периода символа выделен только одному из множества контрольных символов каждого из множества кластеров.
44. Аппаратура беспроводной связи по п.37, в которой каждый из контрольных символов каждого кластера выделен для передачи с использованием частотной поднесущей из группы смежных частотных поднесущих в диапазоне от минимальной частоты до максимальной частоты и в течение периода символа из группы смежных периодов символа в интервале от первого периода символа до последнего периода символа, при этом в каждом кластере не более чем одному контрольному символу выделена максимальная частота или минимальная частота в качестве частотной поднесущей для его передачи, либо первый период символа или последний период символа в качестве периода символа для его передачи.
45. Аппаратура беспроводной связи, содержащая
средство выбора комбинации контрольных символов, имеющей множество кластеров, из множества комбинаций контрольных символов;
средство распределения множества контрольных символов согласно выбранной комбинации контрольных символов; и
средство применения множества скалярных функций к каждому из множества контрольных символов перед передачей контрольного символа;
причем передача множества контрольных символов осуществляется с использованием множества поднесущих между максимальной частотой и минимальной частотой,
при этом средство распределения содержит средство выделения частоты передачи каждому контрольному символу из каждого кластера таким образом, чтобы, по меньшей мере, одному контрольному символу из каждого кластера была выделена поднесущая, иная, чем поднесущая с максимальной частотой или с минимальной частотой.
46. Аппаратура беспроводной связи по п.45, в которой средство применения содержит средство применения множества скалярных функций таким образом, что каждый кластер контрольных символов является ортогональным каждому другому кластеру контрольных символов.
47. Аппаратура беспроводной связи по п.45, дополнительно содержащая средство применения другой скалярной функции из другого множества скалярных функций к каждому из множества контрольных символов.
48. Аппаратура беспроводной связи по п.47, в которой средство применения другой скалярной функции содержит средство изменения во времени другой скалярной функции, применяемой к контрольному символу из множества контрольных символов.
49. Аппаратура беспроводной связи по п.45, в которой множество скалярных функций содержит скалярные функции, однозначно определяющие устройство беспроводной связи.
50. Аппаратура беспроводной связи по п.45, в которой множество скалярных функций содержит скалярные функции, однозначно определяющие сектор базовой станции.
51. Аппаратура беспроводной связи по п.45, в которой передача множества контрольных символов осуществляется в течение множества смежных периодов символа между первым периодом символа и последним периодом символа, при этом средство распределения содержит средство присвоения каждому контрольному символу периода символа таким образом, чтобы в течение любого из первого периода символа или последнего периода символа передавался только один контрольный символ из каждого кластера.
52. Аппаратура беспроводной связи, содержащая
средство группирования первого множества контрольных символов по множеству кластеров согласно состоянию канала;
средство применения в первом устройстве беспроводной связи первого множества скалярных функций к первому множеству контрольных символов;
средство передачи из первого устройства беспроводной связи множества контрольных символов в течение множества промежутков времени и на множестве частот;
средство группирования второго множества контрольных символов по множеству кластеров;
средство применения во втором устройстве беспроводной связи второго множества скалярных функций, иных, чем первое множество скалярных функций, к второму множеству контрольных символов, причем каждый кластер из множества первых контрольных символов ортогонален каждому другому кластеру из множества первых контрольных символов и из множества вторых контрольных символов; и
средство передачи из второго устройства беспроводной связи второго множества контрольных символов в течение того же самого множества промежутков времени и на том же самом множестве частот, что и множества первых контрольных символов,
53. Аппаратура беспроводной связи по п.52, в которой передача множества контрольных символов осуществляется с использованием множества поднесущих между максимальной частотой и минимальной частотой, при этом средство передачи из первого устройства беспроводной связи содержит средство передачи каждого кластера из первого множества контрольных символов таким образом, чтобы, по меньшей мере, одному контрольному символу каждого кластера была выделена поднесущая иная, чем поднесущая с максимальной частотой и поднесущая с минимальной частотой,
54. Аппаратура беспроводной связи по п.53, в которой средство передачи изменяет максимальную частоту и минимальную частоту между первым промежутком времени и вторым промежутком времени таким образом, чтобы в диапазоне частот между минимальной частотой и максимальной частотой для второго промежутка времени отсутствовали частоты из диапазона частот между минимальной частотой и максимальной частотой для первого промежутка времени.
55. Аппаратура беспроводной связи по п.52, в которой передача множества контрольных символов осуществляется в течение множества смежных периодов символа между первым периодом символа и последним периодом символа, при этом средство группирования содержит средство группирования множества контрольных символов таким образом, чтобы в течение любого из первого периода символа или последнего периода символа передавался только один из множества контрольных символов из каждой группы.
56. Аппаратура беспроводной связи по п.52, дополнительно содержащая средство применения другой скалярной функции из другого множества скалярных функций к каждому из множества первых контрольных символов.
57. Аппаратура беспроводной связи по п.56, в которой средство применения другой скалярной функции содержит средство изменения во времени другой скалярной функции, применяемой к каждому из множества первых контрольных символов.
58. Машиночитаемый носитель, на котором закодированы инструкции для осуществления беспроводной связи, причем инструкции содержат код для
группирования первого множества контрольных символов по множеству кластеров согласно первому состоянию канала;
применения в первом устройстве беспроводной связи первого множества скалярных функций к первому множеству контрольных символов;
передачи из первого устройства беспроводной связи множества контрольных символов в течение множества промежутков времени и на множестве частот;
группирования второго множества контрольных символов по множеству кластеров согласно второму состоянию канала;
применения во втором устройстве беспроводной связи второго множества скалярных функций, иных, чем первое множество скалярных функций, к второму множеству контрольных символов, причем каждый кластер из множества первых контрольных символов ортогонален каждому другому кластеру из множества первых контрольных символов и из множества вторых контрольных символов; и
передачи из второго устройства беспроводной связи второго множества контрольных символов в течение того же самого множества промежутков времени и на том же самом множестве частот, что и множество первых контрольных символов.
RU2007138505/09A 2005-03-17 2006-03-17 Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением RU2395919C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/083,693 US9143305B2 (en) 2005-03-17 2005-03-17 Pilot signal transmission for an orthogonal frequency division wireless communication system
US11/083,693 2005-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2010121653/08A Division RU2010121653A (ru) 2005-03-17 2010-05-27 Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением

Publications (2)

Publication Number Publication Date
RU2007138505A RU2007138505A (ru) 2009-04-27
RU2395919C2 true RU2395919C2 (ru) 2010-07-27

Family

ID=36926389

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2007138505/09A RU2395919C2 (ru) 2005-03-17 2006-03-17 Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением
RU2010121653/08A RU2010121653A (ru) 2005-03-17 2010-05-27 Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2010121653/08A RU2010121653A (ru) 2005-03-17 2010-05-27 Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением

Country Status (12)

Country Link
US (1) US9143305B2 (ru)
EP (2) EP1859592B1 (ru)
JP (1) JP5166236B2 (ru)
KR (2) KR100925094B1 (ru)
CN (1) CN101167321B (ru)
BR (1) BRPI0607786A2 (ru)
CA (1) CA2601191A1 (ru)
ES (1) ES2694680T3 (ru)
HU (1) HUE040663T2 (ru)
RU (2) RU2395919C2 (ru)
TW (1) TW200707997A (ru)
WO (1) WO2006110259A1 (ru)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) * 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7768979B2 (en) * 2005-05-18 2010-08-03 Qualcomm Incorporated Separating pilot signatures in a frequency hopping OFDM system by selecting pilot symbols at least hop away from an edge of a hop region
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
WO2007023923A1 (ja) 2005-08-24 2007-03-01 Matsushita Electric Industrial Co., Ltd. Mimo-ofdm送信装置及びmimo-ofdm送信方法
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
KR100906125B1 (ko) * 2005-09-26 2009-07-07 삼성전자주식회사 광대역 무선 통신시스템에서 패스트 피드백 정보를검파하기 위한 장치 및 방법
WO2007036798A2 (en) * 2005-09-30 2007-04-05 Nortel Networks Limited Pilot scheme for a mimo communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8978103B2 (en) * 2006-08-21 2015-03-10 Qualcomm Incorporated Method and apparatus for interworking authorization of dual stack operation
US8174995B2 (en) * 2006-08-21 2012-05-08 Qualcom, Incorporated Method and apparatus for flexible pilot pattern
KR100973118B1 (ko) 2006-08-21 2010-07-29 콸콤 인코포레이티드 듀얼 스택 동작의 인가를 인터워킹하기 위한 방법 및 장치
BRPI0717445A2 (pt) * 2006-10-19 2014-03-04 Qualcomm Inc Codificação de sinalização em sistemas de comunicação sem fio
TW200838234A (en) * 2006-10-26 2008-09-16 Qualcomm Inc Beacon coding in wireless communications systems
AU2007316400B2 (en) * 2006-11-06 2011-03-03 Qualcomm Incorporated Codeword level scrambling for MIMO transmission
US7933346B2 (en) * 2006-12-27 2011-04-26 Intel Corporation Base station and method for mitigating interference in a sectorized communication network
KR101107893B1 (ko) 2007-01-05 2012-01-25 콸콤 인코포레이티드 개선된 채널 및 간섭 추정을 위한 파일럿 설계
US8130867B2 (en) * 2007-01-05 2012-03-06 Qualcomm Incorporated Pilot design for improved channel and interference estimation
US8213483B2 (en) * 2007-02-06 2012-07-03 Qualcomm Incorporated Hopping structures for broadband pilot signals
WO2008115401A1 (en) 2007-03-15 2008-09-25 Interdigital Technology Corporation Method and apparatus for feedback overhead reduction in wireless communications
US8326318B2 (en) 2007-05-01 2012-12-04 Qualcomm Incorporated Position location for wireless communication systems
US9119026B2 (en) * 2007-05-18 2015-08-25 Qualcomm Incorporated Enhanced pilot signal
US8412227B2 (en) 2007-05-18 2013-04-02 Qualcomm Incorporated Positioning using enhanced pilot signal
US8750917B2 (en) * 2007-05-18 2014-06-10 Qualcomm Incorporated Multiplexing and power control of uplink control channels in a wireless communication system
KR101445335B1 (ko) * 2007-05-28 2014-09-29 삼성전자주식회사 가변적인 데이터 송신율을 가지는 ofdm 심볼을송수신하는 ofdm 송신/수신 장치 및 그 방법
KR100921769B1 (ko) 2007-07-12 2009-10-15 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
KR20090009693A (ko) 2007-07-20 2009-01-23 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
WO2009014355A1 (en) * 2007-07-20 2009-01-29 Electronics And Telecommunications Research Institute Method for generating downlink frame, and method for searching cell
WO2009014356A1 (en) * 2007-07-20 2009-01-29 Electronics And Telecommunications Research Institute Method for generating downlink frame, and method for searching cell
JP5480349B2 (ja) * 2007-09-10 2014-04-23 エルジー エレクトロニクス インコーポレイティド 多重アンテナシステムにおけるパイロット副搬送波の割当方法
KR101542378B1 (ko) 2007-09-10 2015-08-07 엘지전자 주식회사 다중 안테나 시스템에서의 파일럿 부반송파 할당 방법
US9401787B2 (en) 2007-11-02 2016-07-26 Nokia Solutions And Networks Oy Method and apparatus for providing an efficient pilot pattern
US20090245402A1 (en) * 2008-03-31 2009-10-01 Qualcomm Incorporated Apparatus and method for tile processing in wireless communications
US20090257342A1 (en) * 2008-04-10 2009-10-15 Media Tek Inc. Resource block based pilot pattern design for 1/2 - stream mimo ofdma systems
CN101557371B (zh) * 2008-04-10 2012-12-12 上海贝尔阿尔卡特股份有限公司 多载波mimo系统的基站中为移动终端确定导频图案的方法
US8724718B2 (en) * 2008-04-10 2014-05-13 Mediatek Inc. Pilot pattern design for small size resource block in OFDMA systems
US8488693B2 (en) * 2008-06-11 2013-07-16 Industrial Technology Research Institute Wireless communication systems and methods using reference signals
US8848621B2 (en) * 2008-06-11 2014-09-30 Qualcomm Incorporated Apparatus and method for cell-based highly detectable pilot multiplexing
US8559351B2 (en) 2008-08-01 2013-10-15 Qualcomm Incorporated Dedicated reference signal design for network MIMO
US8676133B2 (en) 2008-09-19 2014-03-18 Qualcomm Incorporated Reference signal design for LTE A
US8391401B2 (en) * 2008-09-23 2013-03-05 Qualcomm Incorporated Highly detectable pilot structure
WO2010069111A1 (zh) * 2008-12-18 2010-06-24 中兴通讯股份有限公司 一种实现毫微微小区导频分配的方法、基站及移动终端
US8711672B2 (en) 2008-12-30 2014-04-29 Acer Incorporated Wireless communication system using pilot allocation, method and pilot pattern thereof
US8693429B2 (en) * 2009-03-31 2014-04-08 Qualcomm Incorporated Methods and apparatus for generation and use of reference signals in a communications system
CN101867446B (zh) * 2009-04-15 2016-08-03 Lg电子株式会社 传送接收广播信号的方法及传送接收广播信号设备
US8718101B2 (en) * 2009-12-29 2014-05-06 Acer Incorporated Pilot selection method, wireless communication system and base station thereof
US9503914B2 (en) 2012-01-31 2016-11-22 Apple Inc. Methods and apparatus for enhanced scrambling sequences
CN103458420B (zh) * 2012-05-31 2016-12-28 华为技术有限公司 一种无线通信方法、基站及用户设备
WO2014051494A1 (en) * 2012-08-09 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Reference signal mapping
CN103687010B (zh) * 2012-08-30 2017-07-04 电信科学技术研究院 一种传输参考信号的方法、装置及系统
CN104348763B (zh) 2013-07-23 2018-06-05 华为技术有限公司 一种用于大规模天线的信道测量方法和用户终端
US9967070B2 (en) * 2014-10-31 2018-05-08 Qualcomm Incorporated Pilot reconfiguration and retransmission in wireless networks
WO2018091082A1 (en) * 2016-11-16 2018-05-24 Huawei Technologies Duesseldorf Gmbh Radio device and radio cell with multiplexed data sequences with unequal power allocation
WO2018103897A1 (en) 2016-12-09 2018-06-14 Telefonaktiebolaget L M Ericsson (Publ) Improved antenna arrangement for distributed massive mimo
WO2019076513A1 (en) 2017-10-17 2019-04-25 Telefonaktiebolaget Lm Ericsson (Publ) DISTRIBUTED MIMO SYNCHRONIZATION
EP3714551A1 (en) 2017-11-21 2020-09-30 Telefonaktiebolaget LM Ericsson (publ) Improved antenna arrangement for distributed massive mimo
EP3868032A1 (en) * 2018-10-16 2021-08-25 Telefonaktiebolaget LM Ericsson (publ) Disturbance mitigation in a wireless communication system
DE102018218730A1 (de) * 2018-10-31 2020-04-30 Diehl Metering Gmbh Detektion einer Pilotsequenz auf einfachen Rechnern
WO2021160571A1 (en) 2020-02-10 2021-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Dielectric waveguide signal transfer function compensation
CN111953463B (zh) * 2020-07-08 2022-06-10 杭州电子科技大学 一种基于用户分簇的导频分配方法
CN116192347A (zh) * 2021-11-29 2023-05-30 中兴通讯股份有限公司 导频图案生成方法、装置、电子设备及存储介质

Family Cites Families (893)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393276A (en) 1981-03-19 1983-07-12 Bell Telephone Laboratories, Incorporated Fourier masking analog signal secure communication system
FR2527871B1 (fr) 1982-05-27 1986-04-11 Thomson Csf Systeme de radiocommunications, a sauts de frequence
SU1320883A1 (ru) 1985-02-06 1987-06-30 Предприятие П/Я Р-6707 Устройство дл восстановлени временных интервалов цифровых сигналов,принимаемых из канала с ограниченной полосой пропускани
FR2584884B1 (fr) 1985-07-09 1987-10-09 Trt Telecom Radio Electr Procede et dispositif de recherche de canal libre pour un systeme de radio mobile
JPS6216639A (ja) 1985-07-16 1987-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> 秘話音声信号送出装置
GB2180127B (en) 1985-09-04 1989-08-23 Philips Electronic Associated Method of data communication
JPS6290045A (ja) 1985-10-16 1987-04-24 Kokusai Denshin Denwa Co Ltd <Kdd> Fdma通信方式における周波数割当方式
US5008900A (en) 1989-08-14 1991-04-16 International Mobile Machines Corporation Subscriber unit for wireless digital subscriber communication system
FR2652452B1 (fr) 1989-09-26 1992-03-20 Europ Agence Spatiale Dispositif d'alimentation d'une antenne a faisceaux multiples.
JPH04111544A (ja) 1990-08-31 1992-04-13 Nippon Telegr & Teleph Corp <Ntt> 無線チャネル割当方法
US5257399A (en) 1990-11-28 1993-10-26 Telefonaktiebolaget L M Ericsson Multiple access handling in a cellular communications system
US5253270A (en) 1991-07-08 1993-10-12 Hal Communications Apparatus useful in radio communication of digital data using minimal bandwidth
US5455839A (en) 1991-12-27 1995-10-03 Motorola, Inc. Device and method for precoding
JP2904986B2 (ja) 1992-01-31 1999-06-14 日本放送協会 直交周波数分割多重ディジタル信号送信装置および受信装置
US5384810A (en) 1992-02-05 1995-01-24 At&T Bell Laboratories Modulo decoder
US5363408A (en) 1992-03-24 1994-11-08 General Instrument Corporation Mode selective quadrature amplitude modulation communication system
US5282222A (en) 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
GB9209027D0 (en) 1992-04-25 1992-06-17 British Aerospace Multi purpose digital signal regenerative processing apparatus
US5268694A (en) 1992-07-06 1993-12-07 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
FR2693861A1 (fr) 1992-07-16 1994-01-21 Philips Electronique Lab Récepteur de signaux à répartition multiplexée de fréquences orthogonales muni d'un dispositif de synchronisation de fréquences.
US5604744A (en) 1992-10-05 1997-02-18 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels for multiple access radiocommunication
US5768276A (en) 1992-10-05 1998-06-16 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels supporting broadcast SMS
US5603081A (en) 1993-11-01 1997-02-11 Telefonaktiebolaget Lm Ericsson Method for communicating in a wireless communication system
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
JP2942913B2 (ja) 1993-06-10 1999-08-30 ケイディディ株式会社 相手認証/暗号鍵配送方式
EP0705512B1 (en) 1993-06-18 1997-10-01 Qualcomm Incorporated Method and apparatus for determining the data rate of a received signal
US5870393A (en) 1995-01-20 1999-02-09 Hitachi, Ltd. Spread spectrum communication system and transmission power control method therefor
JPH0746248A (ja) 1993-07-30 1995-02-14 Toshiba Corp 無線通信システム
US6501810B1 (en) 1998-10-13 2002-12-31 Agere Systems Inc. Fast frame synchronization
US5594738A (en) 1993-10-18 1997-01-14 Motorola, Inc. Time slot allocation method
ZA948134B (en) 1993-10-28 1995-06-13 Quaqlcomm Inc Method and apparatus for performing handoff between sectors of a common base station
US5410538A (en) 1993-11-09 1995-04-25 At&T Corp. Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system
DE69434353T2 (de) 1993-12-22 2006-03-09 Koninklijke Philips Electronics N.V. Mehrträger-Frequenzsprungkommunikationssystem
US5465253A (en) 1994-01-04 1995-11-07 Motorola, Inc. Method and apparatus for demand-assigned reduced-rate out-of-band signaling channel
US5469471A (en) 1994-02-01 1995-11-21 Qualcomm Incorporated Method and apparatus for providing a communication link quality indication
GB9402942D0 (en) 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
US5513379A (en) 1994-05-04 1996-04-30 At&T Corp. Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing
US5603096A (en) 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
US5583869A (en) 1994-09-30 1996-12-10 Motorola, Inc. Method for dynamically allocating wireless communication resources
WO1996013920A1 (en) 1994-10-27 1996-05-09 International Business Machines Corporation Method and apparatus for secure identification of a mobile user in a communication network
JP3437291B2 (ja) 1994-11-14 2003-08-18 キヤノン株式会社 再生装置および再生方法
US6169910B1 (en) 1994-12-30 2001-01-02 Focused Energy Holding Inc. Focused narrow beam communication system
US5684491A (en) 1995-01-27 1997-11-04 Hazeltine Corporation High gain antenna systems for cellular use
JPH08288927A (ja) 1995-04-17 1996-11-01 Oki Electric Ind Co Ltd スペクトル拡散通信方式及びスペクトル拡散通信装置
DE69534445T2 (de) 1995-04-28 2006-04-27 Alcatel Verfahren zur TDMA-Verwaltung, Zentralstation, Teilnehmerstation und Netzwerk zur Ausführung des Verfahrens
US5612978A (en) 1995-05-30 1997-03-18 Motorola, Inc. Method and apparatus for real-time adaptive interference cancellation in dynamic environments
US6215983B1 (en) 1995-06-02 2001-04-10 Trw Inc. Method and apparatus for complex phase equalization for use in a communication system
US6535666B1 (en) 1995-06-02 2003-03-18 Trw Inc. Method and apparatus for separating signals transmitted over a waveguide
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US5726978A (en) 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
FI99252C (fi) 1995-07-03 1997-12-29 Nokia Mobile Phones Ltd Yhdistetty radiosignaalin modulointi- ja monikäyttömenetelmä
US6154484A (en) 1995-09-06 2000-11-28 Solana Technology Development Corporation Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing
US5815488A (en) 1995-09-28 1998-09-29 Cable Television Laboratories, Inc. Multiple user access method using OFDM
JPH09139725A (ja) 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd 多重通信装置
DE69633705T2 (de) 1995-11-16 2006-02-02 Ntt Mobile Communications Network Inc. Verfahren zum Erfassen eines digitalen Signals und Detektor
JP2812318B2 (ja) 1995-11-29 1998-10-22 日本電気株式会社 スペクトラム拡散通信方法及び装置
US5815116A (en) 1995-11-29 1998-09-29 Trw Inc. Personal beam cellular communication system
US5887023A (en) 1995-11-29 1999-03-23 Nec Corporation Method and apparatus for a frequency hopping-spread spectrum communication system
KR0150275B1 (ko) 1995-12-22 1998-11-02 양승택 멀티캐스트 통신의 폭주 제어방법
EP0786889B1 (en) 1996-02-02 2002-04-17 Deutsche Thomson-Brandt Gmbh Method for the reception of multicarrier signals and related apparatus
US6088592A (en) 1996-03-25 2000-07-11 Airnet Communications Corporation Wireless system plan using in band-translators with diversity backhaul to enable efficient depolyment of high capacity base transceiver systems
US6134215A (en) 1996-04-02 2000-10-17 Qualcomm Incorpoated Using orthogonal waveforms to enable multiple transmitters to share a single CDM channel
US5822368A (en) 1996-04-04 1998-10-13 Lucent Technologies Inc. Developing a channel impulse response by using distortion
JPH09281508A (ja) 1996-04-12 1997-10-31 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその作製方法
GB9609148D0 (en) 1996-05-01 1996-07-03 Plessey Telecomm Multi-party communication
US5790537A (en) 1996-05-15 1998-08-04 Mcgill University Interference suppression in DS-CDMA systems
EP0807989B1 (en) 1996-05-17 2001-06-27 Motorola Ltd Devices for transmitter path weights and methods therefor
US5926470A (en) 1996-05-22 1999-07-20 Qualcomm Incorporated Method and apparatus for providing diversity in hard handoff for a CDMA system
GB9611146D0 (en) 1996-05-29 1996-07-31 Philips Electronics Nv Method of, and system for, transmitting messages
US5732113A (en) 1996-06-20 1998-03-24 Stanford University Timing and frequency synchronization of OFDM signals
KR980007105A (ko) 1996-06-28 1998-03-30 김광호 이동국 송신전력 제어방법
US6909797B2 (en) 1996-07-10 2005-06-21 R2 Technology, Inc. Density nodule detection in 3-D digital images
US6058309A (en) 1996-08-09 2000-05-02 Nortel Networks Corporation Network directed system selection for cellular and PCS enhanced roaming
US6141317A (en) 1996-08-22 2000-10-31 Tellabs Operations, Inc. Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system
US6233456B1 (en) 1996-09-27 2001-05-15 Qualcomm Inc. Method and apparatus for adjacent coverage area handoff in communication systems
JP3444114B2 (ja) 1996-11-22 2003-09-08 ソニー株式会社 通信方法、基地局及び端末装置
US5956642A (en) 1996-11-25 1999-09-21 Telefonaktiebolaget L M Ericsson Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
US6061337A (en) 1996-12-02 2000-05-09 Lucent Technologies Inc. System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site
KR19980063990A (ko) 1996-12-11 1998-10-07 윌리엄비.켐플러 로컬 다지점 분배 서비스 시스템 내에서 전송 자원을 할당 및할당해제하는 방법
KR100221336B1 (ko) 1996-12-28 1999-09-15 전주범 직교 주파수 분할 다중화 수신 시스템의 프레임 동기 장치 및 그 방법
US5953325A (en) 1997-01-02 1999-09-14 Telefonaktiebolaget L M Ericsson (Publ) Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas
US6232918B1 (en) 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
US6173007B1 (en) 1997-01-15 2001-01-09 Qualcomm Inc. High-data-rate supplemental channel for CDMA telecommunications system
US5933421A (en) 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
US5920571A (en) 1997-02-07 1999-07-06 Lucent Technologies Inc. Frequency channel and time slot assignments in broadband access networks
US6335922B1 (en) 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
JP2000511750A (ja) 1997-02-21 2000-09-05 モトローラ・インコーポレイテッド ワイヤレス通信システムにおいてスペクトル資源を配分するための方法および装置
US6584144B2 (en) 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
US6359923B1 (en) 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US5838268A (en) 1997-03-14 1998-11-17 Orckit Communications Ltd. Apparatus and methods for modulation and demodulation of data
US5974310A (en) 1997-03-20 1999-10-26 Omnipoint Corporation Communication control for a user of a central communication center
FI104610B (fi) 1997-03-27 2000-02-29 Nokia Networks Oy Ohjauskanavan allokointi pakettiradioverkossa
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100242421B1 (ko) 1997-04-14 2000-02-01 윤종용 디지털 이동 통신시스템의 파이롯트 피엔 오프셋 할당 방법
FI106605B (fi) 1997-04-16 2001-02-28 Nokia Networks Oy Autentikointimenetelmä
US6076114A (en) 1997-04-18 2000-06-13 International Business Machines Corporation Methods, systems and computer program products for reliable data transmission over communications networks
FI105136B (fi) 1997-04-21 2000-06-15 Nokia Mobile Phones Ltd Yleinen pakettiradiopalvelu
FI104939B (fi) 1997-04-23 2000-04-28 Nokia Networks Oy Merkinannon toteutus tietoliikenneverkossa
CN1494236A (zh) 1997-04-24 2004-05-05 ��ʽ����Ntt����Ħ 移动通信方法和移动通信系统
KR100241894B1 (ko) 1997-05-07 2000-02-01 윤종용 개인통신 시스템의 코드분할 접속방식 기지국 시스템에서 소프트웨어 관리방법
US6075814A (en) 1997-05-09 2000-06-13 Broadcom Homenetworking, Inc. Method and apparatus for reducing signal processing requirements for transmitting packet-based data with a modem
FI105063B (fi) 1997-05-16 2000-05-31 Nokia Networks Oy Menetelmä lähetyssuunnan määrittämiseksi ja radiojärjestelmä
JP2879030B2 (ja) 1997-05-16 1999-04-05 株式会社次世代デジタルテレビジョン放送システム研究所 Ofdm送信装置及び受信装置とofdm送信方法及び受信方法
US6374115B1 (en) 1997-05-28 2002-04-16 Transcrypt International/E.F. Johnson Method and apparatus for trunked radio repeater communications with backwards compatibility
CA2291744C (en) 1997-05-30 2010-01-26 Qualcomm Incorporated A method of and apparatus for paging a wireless terminal in a wireless telecommunications system
US6052364A (en) 1997-06-13 2000-04-18 Comsat Corporation CDMA system architecture for satcom terminals
SE9702271D0 (sv) 1997-06-13 1997-06-13 Ericsson Telefon Ab L M Återanvändning av fysisk kontrollkanal i ett distribuerat cellulärt radiokommunikationssystem
US6151296A (en) 1997-06-19 2000-11-21 Qualcomm Incorporated Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals
US5867478A (en) 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6240129B1 (en) 1997-07-10 2001-05-29 Alcatel Method and windowing unit to reduce leakage, fourier transformer and DMT modem wherein the unit is used
US6038150A (en) 1997-07-23 2000-03-14 Yee; Hsian-Pei Transistorized rectifier for a multiple output converter
US6038263A (en) 1997-07-31 2000-03-14 Motorola, Inc. Method and apparatus for transmitting signals in a communication system
US6307849B1 (en) 1997-09-08 2001-10-23 Qualcomm Incorporated Method and system for changing forward traffic channel power allocation during soft handoff
KR100365346B1 (ko) 1997-09-09 2003-04-11 삼성전자 주식회사 이동통신시스템의쿼시직교부호생성및쿼시직교부호를이용한대역확산장치및방법
US6038450A (en) 1997-09-12 2000-03-14 Lucent Technologies, Inc. Soft handover system for a multiple sub-carrier communication system and method thereof
US6377809B1 (en) 1997-09-16 2002-04-23 Qualcomm Incorporated Channel structure for communication systems
US6577739B1 (en) 1997-09-19 2003-06-10 University Of Iowa Research Foundation Apparatus and methods for proportional audio compression and frequency shifting
US6058105A (en) 1997-09-26 2000-05-02 Lucent Technologies Inc. Multiple antenna communication system and method thereof
US6075797A (en) 1997-10-17 2000-06-13 3Com Corporation Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
KR100369602B1 (ko) 1997-11-03 2003-04-11 삼성전자 주식회사 부호분할다중접속방식이동통신시스템의전력제어비트삽입방법
US5995992A (en) 1997-11-17 1999-11-30 Bull Hn Information Systems Inc. Conditional truncation indicator control for a decimal numeric processor employing result truncation
US6108323A (en) 1997-11-26 2000-08-22 Nokia Mobile Phones Limited Method and system for operating a CDMA cellular system having beamforming antennas
US5971484A (en) 1997-12-03 1999-10-26 Steelcase Development Inc. Adjustable armrest for chairs
US6067315A (en) 1997-12-04 2000-05-23 Telefonaktiebolaget Lm Ericsson Method and apparatus for coherently-averaged power estimation
US6563806B1 (en) 1997-12-12 2003-05-13 Hitachi, Ltd. Base station for multi-carrier TDMA mobile communication system and method for assigning communication channels
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US6393008B1 (en) 1997-12-23 2002-05-21 Nokia Movile Phones Ltd. Control structures for contention-based packet data services in wideband CDMA
JPH11191756A (ja) 1997-12-25 1999-07-13 Nec Corp Phs(登録商標)によるデータ通信装置及び方法
JPH11196109A (ja) 1997-12-26 1999-07-21 Canon Inc 無線情報通信システム
DE19800653A1 (de) 1998-01-09 1999-07-15 Albert M Huber Vorrichtung zum Abtrennen von Partikeln, oder von Partikeln und Gasen, oder von Fluiden anderer Dichte aus Flüssigkeiten, oder Suspensionen, oder Emulsionen, die ein feststehendes Gehäuse besitzt und mit Hilfe der Zentrifugalkraft separiert und auch diese obengenannten Medien durch diese Vorrichtung und eventuell nachgeschaltete Mittel fördert
DE19800953C1 (de) 1998-01-13 1999-07-29 Siemens Ag Verfahren und Funk-Kommunikationssystem zur Zuteilung von Funkressourcen einer Funkschnittstelle
US6175650B1 (en) 1998-01-26 2001-01-16 Xerox Corporation Adaptive quantization compatible with the JPEG baseline sequential mode
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
RU2216101C2 (ru) 1998-02-14 2003-11-10 Самсунг Электроникс Ко., Лтд. Устройство и способ передачи данных для системы мобильной связи с выделенным каналом управления
JP3589851B2 (ja) 1998-02-20 2004-11-17 株式会社日立製作所 パケット通信システム及びパケット通信装置
JP3199020B2 (ja) 1998-02-27 2001-08-13 日本電気株式会社 音声音楽信号の符号化装置および復号装置
EP1058977B1 (de) 1998-02-27 2003-10-22 Siemens Aktiengesellschaft Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1059012A1 (de) 1998-02-27 2000-12-13 Siemens Aktiengesellschaft Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten
WO1999048227A1 (en) 1998-03-14 1999-09-23 Samsung Electronics Co., Ltd. Device and method for exchanging frame messages of different lengths in cdma communication system
WO1999049595A1 (en) 1998-03-23 1999-09-30 Samsung Electronics Co., Ltd. Power control device and method for controlling a reverse link common channel in a cdma communication system
CA2327678C (en) 1998-04-03 2007-12-18 Tellabs Operations, Inc. Filter for impulse response shortening, with addition spectral constraints, for multicarrier transmission
US6112094A (en) 1998-04-06 2000-08-29 Ericsson Inc. Orthogonal frequency hopping pattern re-use scheme
JPH11298954A (ja) 1998-04-08 1999-10-29 Hitachi Ltd 無線通信方法及び無線通信装置
US6353620B1 (en) 1998-04-09 2002-03-05 Ericsson Inc. System and method for facilitating inter-nodal protocol agreement in a telecommunications
WO1999055021A1 (fr) 1998-04-21 1999-10-28 Thomson Multimedia Procede de transmission dans un reseau de communication domestique comportant un canal sans fil
US6567425B1 (en) 1998-04-23 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Bearer independent signaling protocol
US6075350A (en) 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering
US6198775B1 (en) 1998-04-28 2001-03-06 Ericsson Inc. Transmit diversity method, systems, and terminals using scramble coding
JP3955680B2 (ja) 1998-05-12 2007-08-08 株式会社エヌ・ティ・ティ・ドコモ 時分割通信方式の移動通信システムにおける無線チャネルアクセス方法、その方法を使用する基地局及び移動局
KR100383575B1 (ko) 1998-05-12 2004-06-26 삼성전자주식회사 단말기의송신전력에서피크전력대평균전력비를줄이기위한확산변조방법및장치
BR9906499A (pt) 1998-05-12 2000-09-26 Samsung Electronics Co Ltd Soc Processo e dispositivo para a redução da razão de energia de pico para média da energia de transmissão de uma estação móvel em um sistema de comunicação móvel.
GB2337414A (en) 1998-05-14 1999-11-17 Fujitsu Ltd Soft handoff in cellular communications networks
US6643275B1 (en) 1998-05-15 2003-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
KR100291476B1 (ko) 1998-05-25 2001-07-12 윤종용 파일럿측정요구명령제어방법및시스템
JP2000004215A (ja) 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd 送受信システム
JP3092798B2 (ja) 1998-06-30 2000-09-25 日本電気株式会社 適応送受信装置
JP2000022618A (ja) 1998-07-03 2000-01-21 Hitachi Ltd 基地局およびアンテナビームの制御方法
RU2141706C1 (ru) 1998-07-06 1999-11-20 Военная академия связи Способ и устройство адаптивной пространственной фильтрации сигналов
KR100318959B1 (ko) 1998-07-07 2002-04-22 윤종용 부호분할다중접속통신시스템의서로다른부호간의간섭을제거하는장치및방법
WO2000003508A1 (fr) 1998-07-13 2000-01-20 Sony Corporation Procede de communication, emetteur, et recepteur
EP1040689B1 (en) 1998-07-16 2013-09-11 Samsung Electronics Co., Ltd. Processing packet data in mobile communication system
US6636525B1 (en) 1998-08-19 2003-10-21 International Business Machines Corporation Destination dependent coding for discrete multi-tone modulation
KR100429540B1 (ko) 1998-08-26 2004-08-09 삼성전자주식회사 이동통신시스템의패킷데이터통신장치및방법
US6798736B1 (en) 1998-09-22 2004-09-28 Qualcomm Incorporated Method and apparatus for transmitting and receiving variable rate data
JP2000102065A (ja) 1998-09-24 2000-04-07 Toshiba Corp 無線通信基地局装置
CA2282942A1 (en) 1998-11-09 2000-05-09 Lucent Technologies Inc. Efficient authentication with key update
US6542485B1 (en) 1998-11-25 2003-04-01 Lucent Technologies Inc. Methods and apparatus for wireless communication using time division duplex time-slotted CDMA
US6473399B1 (en) 1998-11-30 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining an optimum timeout under varying data rates in an RLC wireless system which uses a PDU counter
DE69815113T2 (de) 1998-12-04 2004-04-08 Lucent Technologies Inc. Fehlerverschleierung und -korrektur für Sprach-, Bild- und Videosignale
US6590881B1 (en) 1998-12-04 2003-07-08 Qualcomm, Incorporated Method and apparatus for providing wireless communication system synchronization
CA2316209C (en) 1998-12-07 2004-04-27 Samsung Electronics Co., Ltd. Device and method for gating transmission in a cdma mobile communication system
JP2000184425A (ja) 1998-12-15 2000-06-30 Toshiba Corp 無線通信基地局装置
GB2345612B (en) 1998-12-31 2003-09-03 Nokia Mobile Phones Ltd Measurement report transmission in a telecommunications system
US6654429B1 (en) 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
EP1018827B1 (en) 1999-01-08 2004-05-06 Sony International (Europe) GmbH Synchronisation structure for OFDM system
US6229795B1 (en) 1999-01-13 2001-05-08 Qualcomm Incorporated System for allocating resources in a communication system
US6393012B1 (en) 1999-01-13 2002-05-21 Qualcomm Inc. System for allocating resources in a communication system
EP1021019A1 (en) 1999-01-15 2000-07-19 Sony International (Europe) GmbH Quasi-differential modulation/demodulation method for multi-amplitude digital modulated signals and OFDM system
US6584140B1 (en) 1999-01-22 2003-06-24 Systems Information And Electronic Systems Integration Inc. Spectrum efficient fast frequency-hopped modem with coherent demodulation
US6219161B1 (en) 1999-01-25 2001-04-17 Telcordia Technologies, Inc. Optical layer survivability and security system
US6388998B1 (en) 1999-02-04 2002-05-14 Lucent Technologies Inc. Reuse of codes and spectrum in a CDMA system with multiple-sector cells
US6597746B1 (en) 1999-02-18 2003-07-22 Globespanvirata, Inc. System and method for peak to average power ratio reduction
US6256478B1 (en) 1999-02-18 2001-07-03 Eastman Kodak Company Dynamic packet sizing in an RF communications system
CA2262315A1 (en) 1999-02-19 2000-08-19 Northern Telecom Limited Joint optimal power balance for coded/tdm constituent data channels
US6259918B1 (en) 1999-02-26 2001-07-10 Telefonaktiebolaget Lm (Publ) Preservation of cell borders at hand-off within a smart antenna cellular system
US6487243B1 (en) 1999-03-08 2002-11-26 International Business Machines Corporation Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems
US6317435B1 (en) 1999-03-08 2001-11-13 Qualcomm Incorporated Method and apparatus for maximizing the use of available capacity in a communication system
US6987746B1 (en) 1999-03-15 2006-01-17 Lg Information & Communications, Ltd. Pilot signals for synchronization and/or channel estimation
KR20000060428A (ko) 1999-03-16 2000-10-16 윤종용 코드분할다중접속 시스템에서 기지국간 직접 연결을 이용한 소프트/소프터 핸드오프의 강화 방법
US6693952B1 (en) 1999-03-16 2004-02-17 Lucent Technologies Inc. Dynamic code allocation for downlink shared channels
US7151761B1 (en) 1999-03-19 2006-12-19 Telefonaktiebolaget L M Ericsson (Publ) Code reservation for interference measurement in a CDMA radiocommunication system
US6483820B1 (en) 1999-03-22 2002-11-19 Ericsson Inc. System and method for dynamic radio resource allocation for non-transparent high-speed circuit-switched data services
US6430401B1 (en) 1999-03-29 2002-08-06 Lucent Technologies Inc. Technique for effectively communicating multiple digital representations of a signal
GB2348776B (en) 1999-04-06 2003-07-09 Motorola Ltd A communications network and method of allocating resource thefor
US6249683B1 (en) 1999-04-08 2001-06-19 Qualcomm Incorporated Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel
US6937665B1 (en) 1999-04-19 2005-08-30 Interuniversitaire Micron Elektronica Centrum Method and apparatus for multi-user transmission
EP1047209A1 (en) 1999-04-19 2000-10-25 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multiuser transmission
US6614857B1 (en) 1999-04-23 2003-09-02 Lucent Technologies Inc. Iterative channel estimation and compensation based thereon
JP4224168B2 (ja) 1999-04-23 2009-02-12 パナソニック株式会社 基地局装置及びピーク電力抑圧方法
WO2000070791A1 (en) 1999-05-12 2000-11-23 Samsung Electronics Co., Ltd. Method of providing burst timing for high-speed data transmission in a base station transceiver system of a mobile communication system
JP3236273B2 (ja) 1999-05-17 2001-12-10 三菱電機株式会社 マルチキャリア伝送システムおよびマルチキャリア変調方法
US6445917B1 (en) 1999-05-19 2002-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Mobile station measurements with event-based reporting
US6674787B1 (en) 1999-05-19 2004-01-06 Interdigital Technology Corporation Raising random access channel packet payload
US6674810B1 (en) 1999-05-27 2004-01-06 3Com Corporation Method and apparatus for reducing peak-to-average power ratio in a discrete multi-tone signal
EP1063780A3 (en) 1999-06-02 2003-11-26 Texas Instruments Incorporated Spread spectrum channel estimation sequences
US6631126B1 (en) 1999-06-11 2003-10-07 Lucent Technologies Inc. Wireless communications using circuit-oriented and packet-oriented frame selection/distribution functions
US6539213B1 (en) 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
FR2794915A1 (fr) 1999-06-14 2000-12-15 Canon Kk Procede et dispositif d'emission, procede et dispositif de reception, et systemes les mettant en oeuvre
US7095708B1 (en) 1999-06-23 2006-08-22 Cingular Wireless Ii, Llc Methods and apparatus for use in communicating voice and high speed data in a wireless communication system
JP3518426B2 (ja) 1999-06-30 2004-04-12 Kddi株式会社 Cdma移動通信システムにおける符号割当方法
US6363060B1 (en) 1999-06-30 2002-03-26 Qualcomm Incorporated Method and apparatus for fast WCDMA acquisition
US6657949B1 (en) 1999-07-06 2003-12-02 Cisco Technology, Inc. Efficient request access for OFDM systems
EP1200545B1 (en) 1999-07-28 2007-02-21 Ciba SC Holding AG Water-soluble granules of salen-type manganese complexes
US6831943B1 (en) 1999-08-13 2004-12-14 Texas Instruments Incorporated Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification
JP2001069046A (ja) 1999-08-30 2001-03-16 Fujitsu Ltd 送受信システムおよび受信装置
US6542743B1 (en) 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
US6765969B1 (en) 1999-09-01 2004-07-20 Motorola, Inc. Method and device for multi-user channel estimation
US6928047B1 (en) 1999-09-11 2005-08-09 The University Of Delaware Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length
US6633614B1 (en) 1999-09-15 2003-10-14 Telcordia Technologies, Inc. Multicarrier personal access communication system
PL357336A1 (en) 1999-10-02 2004-07-26 Samsung Electronics Co, Ltd Apparatus and method for gating data on a control channel in a cdma communication system
RU2242091C2 (ru) 1999-10-02 2004-12-10 Самсунг Электроникс Ко., Лтд. Устройство и способ стробирования данных, передаваемых по каналу управления в системе связи мдкр
US6870882B1 (en) 1999-10-08 2005-03-22 At&T Corp. Finite-length equalization over multi-input multi-output channels
US6337659B1 (en) 1999-10-25 2002-01-08 Gamma Nu, Inc. Phased array base station antenna system having distributed low power amplifiers
US6985466B1 (en) 1999-11-09 2006-01-10 Arraycomm, Inc. Downlink signal processing in CDMA systems utilizing arrays of antennae
US6721568B1 (en) 1999-11-10 2004-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Admission control in a mobile radio communications system
KR100602022B1 (ko) 1999-12-15 2006-07-20 유티스타콤코리아 유한회사 이동통신 시스템에서 동기식 기지국과 비동기식 기지국간핸드오프에 필요한 파라메타 전송방법
AU774690B2 (en) 1999-11-17 2004-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Acceleration dependent channel switching in mobile telecommunications
US6466800B1 (en) 1999-11-19 2002-10-15 Siemens Information And Communication Mobile, Llc Method and system for a wireless communication system incorporating channel selection algorithm for 2.4 GHz direct sequence spread spectrum cordless telephone system
JP3289718B2 (ja) 1999-11-24 2002-06-10 日本電気株式会社 時分割多重アクセス方法及び基準局装置、端末局装置
JP3807982B2 (ja) 1999-11-29 2006-08-09 サムスン エレクトロニクス カンパニー リミテッド 符号分割多重接続通信システムの共通パケットチャネルのチャネル割り当て方法及び装置
DE19957288C1 (de) 1999-11-29 2001-05-10 Siemens Ag Verfahren zur Signalisierung einer Funkkanalstruktur in einem Funk-Kommunikationssystem
US6763009B1 (en) 1999-12-03 2004-07-13 Lucent Technologies Inc. Down-link transmission scheduling in CDMA data networks
US6351499B1 (en) 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6690951B1 (en) 1999-12-20 2004-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic size allocation system and method
CA2327734A1 (en) 1999-12-21 2001-06-21 Eta Sa Fabriques D'ebauches Ultra-thin piezoelectric resonator
US6628735B1 (en) * 1999-12-22 2003-09-30 Thomson Licensing S.A. Correction of a sampling frequency offset in an orthogonal frequency division multiplexing system
US6628673B1 (en) 1999-12-29 2003-09-30 Atheros Communications, Inc. Scalable communication system using overlaid signals and multi-carrier frequency communication
US6678318B1 (en) 2000-01-11 2004-01-13 Agere Systems Inc. Method and apparatus for time-domain equalization in discrete multitone transceivers
US7463600B2 (en) 2000-01-20 2008-12-09 Nortel Networks Limited Frame structure for variable rate wireless channels transmitting high speed data
US6907020B2 (en) 2000-01-20 2005-06-14 Nortel Networks Limited Frame structures supporting voice or streaming communications with high speed data communications in wireless access networks
US6804307B1 (en) 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
KR100387034B1 (ko) 2000-02-01 2003-06-11 삼성전자주식회사 무선통신 시스템의 패킷데이타 서비스를 위한스케듈링장치 및 방법
FI117465B (fi) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6754511B1 (en) 2000-02-04 2004-06-22 Harris Corporation Linear signal separation using polarization diversity
WO2001059968A1 (en) 2000-02-09 2001-08-16 Golden Bridge Technology, Inc. Collision avoidance
GB0002985D0 (en) 2000-02-09 2000-03-29 Travelfusion Limited Integrated journey planner
US6546248B1 (en) 2000-02-10 2003-04-08 Qualcomm, Incorporated Method and apparatus for generating pilot strength measurement messages
JP3826653B2 (ja) 2000-02-25 2006-09-27 Kddi株式会社 無線通信システムのサブキャリア割当方法
US6642887B2 (en) 2000-02-29 2003-11-04 Hrl Laboratories, Llc Cooperative mobile antenna system
JP2001245355A (ja) 2000-03-01 2001-09-07 Mitsubishi Electric Corp 移動通信におけるパケット伝送システム
JP2001249802A (ja) 2000-03-07 2001-09-14 Sony Corp 伝送方法、伝送システム、伝送制御装置及び入力装置
KR100493068B1 (ko) 2000-03-08 2005-06-02 삼성전자주식회사 이동통신시스템에서 피드백 정보를 이용하는 반맹목적방식의 송신안테나어레이 장치 및 방법
DE60029012T2 (de) 2000-03-15 2006-12-07 Nokia Corp. Verfahren und vorrichtung für sende-diversity
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6940845B2 (en) 2000-03-23 2005-09-06 At & T, Corp. Asymmetric measurement-based dynamic packet assignment system and method for wireless data services
JP2001285927A (ja) 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd 通信端末装置及び無線通信方法
US6493331B1 (en) 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
US7403748B1 (en) 2000-04-07 2008-07-22 Nokia Coporation Multi-antenna transmission method and system
US7289570B2 (en) 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6934275B1 (en) 2000-04-17 2005-08-23 Motorola, Inc. Apparatus and method for providing separate forward dedicated and shared control channels in a communications system
US6961364B1 (en) 2000-04-18 2005-11-01 Flarion Technologies, Inc. Base station identification in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US6954481B1 (en) 2000-04-18 2005-10-11 Flarion Technologies, Inc. Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US6807146B1 (en) 2000-04-21 2004-10-19 Atheros Communications, Inc. Protocols for scalable communication system using overland signals and multi-carrier frequency communication
WO2001082543A2 (en) 2000-04-22 2001-11-01 Atheros Communications, Inc. Multi-carrier communication systems employing variable ofdm-symbol rates and number of carriers
US6748220B1 (en) 2000-05-05 2004-06-08 Nortel Networks Limited Resource allocation in wireless networks
US6519462B1 (en) 2000-05-11 2003-02-11 Lucent Technologies Inc. Method and apparatus for multi-user resource management in wireless communication systems
FI20001133A (fi) 2000-05-12 2001-11-13 Nokia Corp Menetelmä päätelaitteiden ja yhteysaseman välisen tiedonsiirron järjestämiseksi tiedonsiirtojärjestelmässä
FI20001160A (fi) 2000-05-15 2001-11-16 Nokia Networks Oy Pilottisignaalin toteuttamismenetelmä
DE20023936U1 (de) 2000-05-17 2007-09-27 Matsushita Electric Works, Ltd. Hybride ARQ-Sende- und Empfangsvorrichtung
US6529525B1 (en) 2000-05-19 2003-03-04 Motorola, Inc. Method for supporting acknowledged transport layer protocols in GPRS/edge host application
KR100370746B1 (ko) 2000-05-30 2003-02-05 한국전자통신연구원 다차원 직교 자원 도약 다중화 통신 방식 및 장치
CA2310188A1 (en) 2000-05-30 2001-11-30 Mark J. Frazer Communication structure with channels configured responsive to reception quality
GB2363256B (en) 2000-06-07 2004-05-12 Motorola Inc Adaptive antenna array and method of controlling operation thereof
US6839325B2 (en) 2000-06-09 2005-01-04 Texas Instruments Incorporated Wireless communication system which uses ARQ packets to ACK a plurality of packets from an 802.15 superpacket
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6701165B1 (en) 2000-06-21 2004-03-02 Agere Systems Inc. Method and apparatus for reducing interference in non-stationary subscriber radio units using flexible beam selection
US6337983B1 (en) 2000-06-21 2002-01-08 Motorola, Inc. Method for autonomous handoff in a wireless communication system
US20020015405A1 (en) 2000-06-26 2002-02-07 Risto Sepponen Error correction of important fields in data packet communications in a digital mobile radio network
JP2002016531A (ja) 2000-06-27 2002-01-18 Nec Corp Cdma通信方式及びその方法
JP2002026790A (ja) 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
DE10032426B4 (de) 2000-07-04 2006-01-12 Siemens Ag Strahlformungsverfahren
US7301018B2 (en) 2000-07-11 2007-11-27 Japan Science And Technology Corporation Probe for mass spectrometry of liquid sample
IT1318161B1 (it) 2000-07-14 2003-07-23 Cit Alcatel Metodo e dispositivo per il recupero di portante in sistemi ofdm
FR2814301B1 (fr) 2000-07-17 2004-11-12 Telediffusion De France Tdf Synchronisation d'un signal amrf
US7418043B2 (en) 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
KR100576665B1 (ko) 2000-07-26 2006-05-10 미쓰비시덴키 가부시키가이샤 멀티 캐리어 cdma 통신 장치, 멀티 캐리어 cdma송신 장치 및 멀티 캐리어 cdma 수신 장치
GB2366938B (en) 2000-08-03 2004-09-01 Orange Personal Comm Serv Ltd Authentication in a mobile communications network
DE10039429A1 (de) 2000-08-11 2002-03-07 Siemens Ag Verfahren zur Signalübertragung in einem Funk-Kommunikationssystem
GB0020088D0 (en) 2000-08-15 2000-10-04 Fujitsu Ltd Adaptive beam forming
US6980540B1 (en) 2000-08-16 2005-12-27 Lucent Technologies Inc. Apparatus and method for acquiring an uplink traffic channel, in wireless communications systems
US6487184B1 (en) 2000-08-25 2002-11-26 Motorola, Inc. Method and apparatus for supporting radio acknowledgement information for a uni-directional user data channel
US6985434B2 (en) 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US6937592B1 (en) 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US6898441B1 (en) 2000-09-12 2005-05-24 Lucent Technologies Inc. Communication system having a flexible transmit configuration
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US6694147B1 (en) 2000-09-15 2004-02-17 Flarion Technologies, Inc. Methods and apparatus for transmitting information between a basestation and multiple mobile stations
US6802035B2 (en) 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6842487B1 (en) 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US7349371B2 (en) 2000-09-29 2008-03-25 Arraycomm, Llc Selecting random access channels
US6778513B2 (en) 2000-09-29 2004-08-17 Arraycomm, Inc. Method and apparatus for separting multiple users in a shared-channel communication system
US6658258B1 (en) 2000-09-29 2003-12-02 Lucent Technologies Inc. Method and apparatus for estimating the location of a mobile terminal
US6496790B1 (en) 2000-09-29 2002-12-17 Intel Corporation Management of sensors in computer systems
KR100452536B1 (ko) 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 이동통신기지국 장치
JP2002111556A (ja) 2000-10-02 2002-04-12 Ntt Docomo Inc 基地局装置
US7072315B1 (en) 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
FR2815507B1 (fr) 2000-10-16 2003-01-31 Cit Alcatel Procede de gestion des ressources radio dans un reseau de telecommunication interactif
US6704571B1 (en) 2000-10-17 2004-03-09 Cisco Technology, Inc. Reducing data loss during cell handoffs
US6870808B1 (en) 2000-10-18 2005-03-22 Adaptix, Inc. Channel allocation in broadband orthogonal frequency-division multiple-access/space-division multiple-access networks
AU766996B2 (en) 2000-10-20 2003-10-30 Samsung Electronics Co., Ltd. Apparatus and method for determining a data rate of packet data in a mobile communication system
CA2424462C (en) 2000-10-20 2010-03-30 Biochemie Gesellschaft M.B.H. Clavulanic acid pharmaceutical compositions
US6907270B1 (en) 2000-10-23 2005-06-14 Qualcomm Inc. Method and apparatus for reduced rank channel estimation in a communications system
US6788959B2 (en) 2000-10-30 2004-09-07 Nokia Corporation Method and apparatus for transmitting and receiving dynamic configuration parameters in a third generation cellular telephone network
ATE468723T1 (de) 2000-11-03 2010-06-15 Sony Deutschland Gmbh Sendeleistungsregelung für ofdm- kommunikationsverbindungen
US6567387B1 (en) 2000-11-07 2003-05-20 Intel Corporation System and method for data transmission from multiple wireless base transceiver stations to a subscriber unit
WO2002039760A2 (en) 2000-11-07 2002-05-16 Nokia Corporation System for uplink scheduling of packet data traffic in wireless system
US20020090024A1 (en) 2000-11-15 2002-07-11 Tan Keng Tiong Method and apparatus for non-linear code-division multiple access technology
ATE330378T1 (de) 2000-11-17 2006-07-15 Nokia Corp Verfahren, vorrichtungen und telekommunikationsnetzwerk zum regeln der antennengewichte eines transceivers
ATE383723T1 (de) 2000-11-28 2008-01-15 Ericsson Telefon Ab L M Teilnehmergerät-abbau mittels eines rufverfahrens in einem zellularen kommunikationssystem
GB0029424D0 (en) 2000-12-02 2001-01-17 Koninkl Philips Electronics Nv Radio communication system
US20040048609A1 (en) 2000-12-11 2004-03-11 Minoru Kosaka Radio communication system
US20020077152A1 (en) 2000-12-15 2002-06-20 Johnson Thomas J. Wireless communication methods and systems using multiple overlapping sectored cells
WO2002049306A2 (en) 2000-12-15 2002-06-20 Broadstorm Telecommunications, Inc. Multi-carrier communications with group-based subcarrier allocation
AU2002232589A1 (en) 2000-12-15 2002-06-24 Broadstorm Telecommunications, Inc. Multi-carrier communications with group-based subcarrier allocation
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US6862268B2 (en) 2000-12-29 2005-03-01 Nortel Networks, Ltd Method and apparatus for managing a CDMA supplemental channel
US6920119B2 (en) 2001-01-09 2005-07-19 Motorola, Inc. Method for scheduling and allocating data transmissions in a broad-band communications system
US6829293B2 (en) 2001-01-16 2004-12-07 Mindspeed Technologies, Inc. Method and apparatus for line probe signal processing
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US6813284B2 (en) 2001-01-17 2004-11-02 Qualcomm Incorporated Method and apparatus for allocating data streams given transmission time interval (TTI) constraints
EP1227601A1 (en) 2001-01-25 2002-07-31 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Downlink scheduling using parallel code trees
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
RU2192094C1 (ru) 2001-02-05 2002-10-27 Гармонов Александр Васильевич Способ когерентной разнесенной передачи сигнала
FR2820574B1 (fr) 2001-02-08 2005-08-05 Wavecom Sa Procede d'extraction d'un motif de symboles de reference servant a estimer la fonction de transfert d'un canal de transmission, signal, dispositif et procedes correspondants
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6985453B2 (en) 2001-02-15 2006-01-10 Qualcomm Incorporated Method and apparatus for link quality feedback in a wireless communication system
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
US20020160781A1 (en) 2001-02-23 2002-10-31 Gunnar Bark System, method and apparatus for facilitating resource allocation in a communication system
US6937641B2 (en) 2001-02-28 2005-08-30 Golden Bridge Technology, Inc. Power-controlled random access
US6930470B2 (en) 2001-03-01 2005-08-16 Nortel Networks Limited System and method for code division multiple access communication in a wireless communication environment
US6675012B2 (en) 2001-03-08 2004-01-06 Nokia Mobile Phones, Ltd. Apparatus, and associated method, for reporting a measurement summary in a radio communication system
US6940827B2 (en) 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6934340B1 (en) 2001-03-19 2005-08-23 Cisco Technology, Inc. Adaptive control system for interference rejections in a wireless communications system
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6748024B2 (en) 2001-03-28 2004-06-08 Nokia Corporation Non-zero complex weighted space-time code for multiple antenna transmission
US7042897B1 (en) 2001-04-05 2006-05-09 Arcwave, Inc Medium access control layer protocol in a distributed environment
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
US7145959B2 (en) 2001-04-25 2006-12-05 Magnolia Broadband Inc. Smart antenna based spectrum multiplexing using existing pilot signals for orthogonal frequency division multiplexing (OFDM) modulations
US6625172B2 (en) 2001-04-26 2003-09-23 Joseph P. Odenwalder Rescheduling scheduled transmissions
US7230941B2 (en) 2001-04-26 2007-06-12 Qualcomm Incorporated Preamble channel decoding
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7188300B2 (en) 2001-05-01 2007-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Flexible layer one for radio interface to PLMN
US7042856B2 (en) 2001-05-03 2006-05-09 Qualcomm, Incorporation Method and apparatus for controlling uplink transmissions of a wireless communication system
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
EP1259008B1 (en) 2001-05-17 2006-10-04 SAMSUNG ELECTRONICS Co. Ltd. Mobile communication apparatus with antenna array and mobile coomunication method therefor
FR2825208B1 (fr) 2001-05-22 2004-07-09 Cit Alcatel Procede d'attribution de ressources en communication dans un systeme de telecommunications du type mf-tdma
US7190734B2 (en) 2001-05-25 2007-03-13 Regents Of The University Of Minnesota Space-time coded transmissions within a wireless communication network
US6904097B2 (en) 2001-06-01 2005-06-07 Motorola, Inc. Method and apparatus for adaptive signaling in a QAM communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
EP1267513A3 (en) 2001-06-11 2006-07-26 Unique Broadband Systems, Inc. Multiplexing of multicarrier signals
WO2003001696A2 (en) 2001-06-21 2003-01-03 Flarion Technologies, Inc. Method of tone allocation for tone hopping sequences
US7027523B2 (en) 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
WO2003010984A1 (en) 2001-06-27 2003-02-06 Nortel Networks Limited Communication of control information in wireless communication systems
GB0116015D0 (en) 2001-06-29 2001-08-22 Simoco Digital Systems Ltd Communications systems
WO2003001981A2 (en) 2001-06-29 2003-01-09 The Government Of The United State Of America As Represent By The Secretary Of The Department Of Health And Human Services Method of promoting engraftment of a donor transplant in a recipient host
US6963543B2 (en) 2001-06-29 2005-11-08 Qualcomm Incorporated Method and system for group call service
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
JP2003018054A (ja) 2001-07-02 2003-01-17 Ntt Docomo Inc 無線通信方法及びシステム並びに通信装置
DE10132492A1 (de) 2001-07-03 2003-01-23 Hertz Inst Heinrich Adaptives Signalverarbeitungsverfahren zur bidirektionalen Funkübertragung in einem MIMO-Kanal und MIMO-System zur Verfahrensdurchführung
JP3607643B2 (ja) 2001-07-13 2005-01-05 松下電器産業株式会社 マルチキャリア送信装置、マルチキャリア受信装置、およびマルチキャリア無線通信方法
US7197282B2 (en) 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US7236536B2 (en) 2001-07-26 2007-06-26 Lucent Technologies Inc. Method and apparatus for detection and decoding of signals received from a linear propagation channel
US20030027579A1 (en) 2001-08-03 2003-02-06 Uwe Sydon System for and method of providing an air interface with variable data rate by switching the bit time
JP4318412B2 (ja) 2001-08-08 2009-08-26 富士通株式会社 通信システムにおける送受信装置及び送受信方法
US6776765B2 (en) 2001-08-21 2004-08-17 Synovis Life Technologies, Inc. Steerable stylet
JP4127757B2 (ja) 2001-08-21 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、通信端末装置、及びバースト信号送信方法
KR100459557B1 (ko) 2001-08-23 2004-12-03 삼성전자주식회사 고속 순방향 패킷 접속 통신 시스템에서 데이터 상태정보를 나타내기 위한 혼화 자동 재전송 요구 채널 번호할당 방법
JP2003069472A (ja) 2001-08-24 2003-03-07 Matsushita Electric Ind Co Ltd 受信端末装置及び通信システム
KR100474689B1 (ko) 2001-08-30 2005-03-08 삼성전자주식회사 이동통신 시스템에서 소프트 핸드오프 도중의 전력제어 방법
ES2295211T3 (es) 2001-09-05 2008-04-16 Nokia Corporation Metodo de señalizacion de bucle cerrado para controlar multiples haces de transmision y dispositivo transceptor adaptado de forma correspondiente.
DE60128155T2 (de) 2001-09-07 2008-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Verfahren und anordnungen zur erzielung einer dynamischen betriebsmittelverteilungsrichtlinie in paketgestützten kommunikationsnetzen
FR2829642B1 (fr) 2001-09-12 2004-01-16 Eads Defence & Security Ntwk Signal multiporteuses, procede de poursuite d'un canal de transmission a partir d'un tel signal et dispositif pour sa mise en oeuvre
US7106319B2 (en) 2001-09-14 2006-09-12 Seiko Epson Corporation Power supply circuit, voltage conversion circuit, semiconductor device, display device, display panel, and electronic equipment
WO2003028302A2 (en) 2001-09-24 2003-04-03 Atheros Communications, Inc. Method and system for variable rate acknowledgement for wireless communication protocols
JP2003101515A (ja) 2001-09-25 2003-04-04 Sony Corp 無線通信システム、基地局、移動局、送信制御方法及びプログラム格納媒体
KR100440182B1 (ko) 2001-09-29 2004-07-14 삼성전자주식회사 음영지역에서의 퀵페이징 방법
RU2207723C1 (ru) 2001-10-01 2003-06-27 Военный университет связи Способ распределения ресурсов в системе электросвязи с множественным доступом
US7218906B2 (en) 2001-10-04 2007-05-15 Wisconsin Alumni Research Foundation Layered space time processing in a multiple antenna system
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
JP3675433B2 (ja) 2001-10-17 2005-07-27 日本電気株式会社 移動通信システム及び通信制御方法並びにそれに用いる基地局、移動局
KR100533205B1 (ko) 2001-10-17 2005-12-05 닛본 덴끼 가부시끼가이샤 이동 통신 시스템, 통신 제어 방법, 이것에 사용되는기지국 및 이동국
US7349667B2 (en) 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
KR100452639B1 (ko) 2001-10-20 2004-10-14 한국전자통신연구원 위성 이동 통신 시스템에서 공통 패킷 채널 접속 방법
KR100547847B1 (ko) 2001-10-26 2006-01-31 삼성전자주식회사 이동통신 시스템에서 역방향 링크의 제어 장치 및 방법
US7164649B2 (en) 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US20030086393A1 (en) 2001-11-02 2003-05-08 Subramanian Vasudevan Method for allocating wireless communication resources
US6909707B2 (en) 2001-11-06 2005-06-21 Motorola, Inc. Method and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7453801B2 (en) 2001-11-08 2008-11-18 Qualcomm Incorporated Admission control and resource allocation in a communication system supporting application flows having quality of service requirements
WO2003043262A1 (en) 2001-11-13 2003-05-22 Telcordia Technologies, Inc. Method and system for spectrally compatible remote terminal adsl deployment
GB2382265B (en) 2001-11-14 2004-06-09 Toshiba Res Europ Ltd Emergency rescue aid
SE0103853D0 (sv) 2001-11-15 2001-11-15 Ericsson Telefon Ab L M Method and system of retransmission
JP3637965B2 (ja) 2001-11-22 2005-04-13 日本電気株式会社 無線通信システム
TW595857U (en) 2001-11-29 2004-06-21 Us 091219345
JP3756110B2 (ja) 2001-11-29 2006-03-15 シャープ株式会社 無線通信装置
US7443835B2 (en) 2001-12-03 2008-10-28 Nokia Corporation Policy based mechanisms for selecting access routers and mobile context
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
JP3895165B2 (ja) 2001-12-03 2007-03-22 株式会社エヌ・ティ・ティ・ドコモ 通信制御システム、通信制御方法、通信基地局及び移動端末
US6799043B2 (en) 2001-12-04 2004-09-28 Qualcomm, Incorporated Method and apparatus for a reverse link supplemental channel scheduling
JP3955463B2 (ja) 2001-12-05 2007-08-08 ソフトバンクテレコム株式会社 直交周波数分割多重通信システム
US20030112745A1 (en) 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US7054301B1 (en) 2001-12-31 2006-05-30 Arraycomm, Llc. Coordinated hopping in wireless networks using adaptive antenna arrays
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
JP3914203B2 (ja) * 2002-01-10 2007-05-16 富士通株式会社 Ofdmシステムにおけるパイロット多重方法及びofdm受信方法
DE10240138A1 (de) 2002-01-18 2003-08-14 Siemens Ag Dynamische Zuordnung von Funkressourcen in einem Funk-Kommunikationssystem
US6954622B2 (en) 2002-01-29 2005-10-11 L-3 Communications Corporation Cooperative transmission power control method and system for CDMA communication systems
US20030142648A1 (en) 2002-01-31 2003-07-31 Samsung Electronics Co., Ltd. System and method for providing a continuous high speed packet data handoff
US7006557B2 (en) 2002-01-31 2006-02-28 Qualcomm Incorporated Time tracking loop for diversity pilots
JP2003235072A (ja) 2002-02-06 2003-08-22 Ntt Docomo Inc 無線リソース割当て方法、無線リソース割当て装置及び移動通信システム
US7283508B2 (en) 2002-02-07 2007-10-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving serving HS-SCCH set information in an HSDPA communication system
US7031742B2 (en) 2002-02-07 2006-04-18 Qualcomm Incorporation Forward and reverse link power control of serving and non-serving base stations in a wireless communication system
RU2237379C2 (ru) 2002-02-08 2004-09-27 Самсунг Электроникс Способ формирования диаграммы направленности адаптивной антенной решетки базовой станции и устройство для его реализации (варианты)
US7009500B2 (en) 2002-02-13 2006-03-07 Ford Global Technologies, Llc Method for operating a pre-crash sensing system in a vehicle having a countermeasure system using stereo cameras
WO2003069832A1 (de) 2002-02-13 2003-08-21 Siemens Aktiengesellschaft Methode zum beamforming eines mehrnutzempfängers mit kanalschätzung
IL151937A0 (en) 2002-02-13 2003-07-31 Witcom Ltd Near-field spatial multiplexing
US7050759B2 (en) 2002-02-19 2006-05-23 Qualcomm Incorporated Channel quality feedback mechanism and method
JP2003249907A (ja) 2002-02-22 2003-09-05 Hitachi Kokusai Electric Inc Ofdm方式の伝送装置
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US7099299B2 (en) 2002-03-04 2006-08-29 Agency For Science, Technology And Research CDMA system with frequency domain equalization
US7039356B2 (en) 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
KR100464014B1 (ko) 2002-03-21 2004-12-30 엘지전자 주식회사 다중 입출력 이동 통신 시스템에서의 폐루프 신호 처리 방법
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
JP2003292667A (ja) 2002-03-29 2003-10-15 Jsr Corp 架橋発泡用熱可塑性エラストマー組成物、成形品の製造方法、および成形品
US6741587B2 (en) 2002-04-02 2004-05-25 Nokia Corporation Inter-frequency measurements with MIMO terminals
US6850741B2 (en) 2002-04-04 2005-02-01 Agency For Science, Technology And Research Method for selecting switched orthogonal beams for downlink diversity transmission
US7508804B2 (en) 2002-04-05 2009-03-24 Alcatel-Lucent Usa Inc. Shared signaling for multiple user equipment
KR100896682B1 (ko) 2002-04-09 2009-05-14 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
US7424072B2 (en) 2002-04-15 2008-09-09 Matsushita Electric Industrial Co., Ltd. Receiving apparatus and receiving method
US7522673B2 (en) 2002-04-22 2009-04-21 Regents Of The University Of Minnesota Space-time coding using estimated channel information
JP2003318857A (ja) 2002-04-25 2003-11-07 Mitsubishi Electric Corp デジタル放送受信機
ES2351438T3 (es) 2002-04-25 2011-02-04 Powerwave Cognition, Inc. Utilización dinámica de recursos inalámbricos.
US6839336B2 (en) 2002-04-29 2005-01-04 Qualcomm, Incorporated Acknowledging broadcast transmissions
US7161971B2 (en) 2002-04-29 2007-01-09 Qualcomm, Incorporated Sending transmission format information on dedicated channels
US7170876B2 (en) 2002-04-30 2007-01-30 Qualcomm, Inc. Outer-loop scheduling design for communication systems with channel quality feedback mechanisms
US7170937B2 (en) 2002-05-01 2007-01-30 Texas Instruments Incorporated Complexity-scalable intra-frame prediction technique
US6836670B2 (en) 2002-05-09 2004-12-28 Casabyte, Inc. Method, apparatus and article to remotely associate wireless communications devices with subscriber identities and /or proxy wireless communications devices
JP4334274B2 (ja) 2002-05-16 2009-09-30 株式会社エヌ・ティ・ティ・ドコモ マルチキャリア伝送用送信機及びマルチキャリア伝送方法
KR100689399B1 (ko) 2002-05-17 2007-03-08 삼성전자주식회사 이동통신시스템에서 스마트 안테나의 순방향 송신빔 형성장치 및 방법
JP2003347985A (ja) 2002-05-22 2003-12-05 Fujitsu Ltd 無線基地局装置及びその省電力方法
JP4067873B2 (ja) 2002-05-24 2008-03-26 三菱電機株式会社 無線伝送装置
GB0212165D0 (en) 2002-05-27 2002-07-03 Nokia Corp A wireless system
US6917602B2 (en) 2002-05-29 2005-07-12 Nokia Corporation System and method for random access channel capture with automatic retransmission request
US7899067B2 (en) 2002-05-31 2011-03-01 Cisco Technology, Inc. Method and apparatus for generating and using enhanced tree bitmap data structures in determining a longest prefix match
US8699505B2 (en) 2002-05-31 2014-04-15 Qualcomm Incorporated Dynamic channelization code allocation
US7366223B1 (en) 2002-06-06 2008-04-29 Arraycomm, Llc Modifying hopping sequences in wireless networks
EP1461872A4 (en) 2002-06-07 2007-05-09 Nokia Corp APPARATUS AND ASSOCIATED METHOD FOR FACILITATING THE DISTRIBUTION OF DATA COMMUNICATIONS IN A RADIO COMMUNICATIONS SYSTEM
KR100548311B1 (ko) 2002-06-07 2006-02-02 엘지전자 주식회사 이동 통신 시스템에서의 송신 다이버시티 장치와 방법
JP3751265B2 (ja) 2002-06-20 2006-03-01 松下電器産業株式会社 無線通信システムおよびスケジューリング方法
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7483408B2 (en) 2002-06-26 2009-01-27 Nortel Networks Limited Soft handoff method for uplink wireless communications
US20040077379A1 (en) 2002-06-27 2004-04-22 Martin Smith Wireless transmitter, transceiver and method
US7551546B2 (en) 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
ATE308172T1 (de) 2002-06-27 2005-11-15 Siemens Ag Anordnung und verfahren zur datenübertragung in einem mehrfacheingabe mehrfachausgabe funkkommunikationssystem
WO2004004173A1 (en) 2002-06-27 2004-01-08 Koninklijke Philips Electronics N.V. Measurement of channel characteristics in a communication system
US7043274B2 (en) 2002-06-28 2006-05-09 Interdigital Technology Corporation System for efficiently providing coverage of a sectorized cell for common and dedicated channels utilizing beam forming and sweeping
US7372911B1 (en) 2002-06-28 2008-05-13 Arraycomm, Llc Beam forming and transmit diversity in a multiple array radio communications system
KR100640470B1 (ko) 2002-06-29 2006-10-30 삼성전자주식회사 패킷 서비스 통신 시스템에서 전송 안테나 다이버시티방식을 사용하여 데이터를 전송 장치 및 방법
CN1219372C (zh) 2002-07-08 2005-09-14 华为技术有限公司 一种实现多媒体广播和多播业务的传输方法
KR100630112B1 (ko) 2002-07-09 2006-09-27 삼성전자주식회사 이동통신시스템의 적응형 채널 추정장치 및 방법
US7243150B2 (en) 2002-07-10 2007-07-10 Radwin Ltd. Reducing the access delay for transmitting processed data over transmission data
US20040017785A1 (en) 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
EP1553714B1 (en) 2002-07-16 2020-07-01 Optis Wireless Technology, LLC Communicating method and transmitting device
EP1525704A1 (en) 2002-07-17 2005-04-27 Koninklijke Philips Electronics N.V. Time-frequency interleaved mc-cdma for quasi-synchronous systems
MXPA05000709A (es) 2002-07-17 2005-06-06 Soma Networks Inc Igualacion de dominio de frecuencia en sistemas de comunicaciones con mezclado.
CA2492503A1 (en) 2002-07-18 2004-01-29 Interdigital Technology Corporation Orthogonal variable spreading factor (ovsf) code assignment
US7020446B2 (en) 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
JP4022744B2 (ja) 2002-08-01 2007-12-19 日本電気株式会社 移動通信システム及びベストセル変更方法並びにそれに用いる基地局制御装置
CN1682474B (zh) 2002-08-02 2011-02-02 Nms通讯公司 用于网络信号整合和带宽缩减的方法和装置
JP4047655B2 (ja) 2002-08-07 2008-02-13 京セラ株式会社 無線通信システム
US6788963B2 (en) 2002-08-08 2004-09-07 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple a states
US7418241B2 (en) 2002-08-09 2008-08-26 Qualcomm Incorporated System and techniques for enhancing the reliability of feedback in a wireless communications system
US7558193B2 (en) 2002-08-12 2009-07-07 Starent Networks Corporation Redundancy in voice and data communications systems
US7180627B2 (en) 2002-08-16 2007-02-20 Paxar Corporation Hand-held portable printer with RFID read/write capability
US7050405B2 (en) 2002-08-23 2006-05-23 Qualcomm Incorporated Method and system for a data transmission in a communication system
DE10238796B4 (de) 2002-08-23 2006-09-14 Siemens Ag Verfahren zur Richtungsbestimmung der Position einer Mobilstation relativ zu einer Basisstation, Mobilfunksystem sowie Einrichtung zur Richtungsbestimmung
JP3999605B2 (ja) 2002-08-23 2007-10-31 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動通信システム及び通信方法
US6985498B2 (en) 2002-08-26 2006-01-10 Flarion Technologies, Inc. Beacon signaling in a wireless system
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
JP2004096142A (ja) 2002-08-29 2004-03-25 Hitachi Kokusai Electric Inc 地区エリアポーリング方式
KR100831987B1 (ko) 2002-08-30 2008-05-23 삼성전자주식회사 다중 사용자를 위한 다중 안테나를 이용한 송수신 장치
US7167916B2 (en) 2002-08-30 2007-01-23 Unisys Corporation Computer OS dispatcher operation with virtual switching queue and IP queues
US7519032B2 (en) 2002-09-04 2009-04-14 Koninklijke Philips Electronics N.V. Apparatus and method for providing QoS service schedule and bandwidth allocation to a wireless station
IL151644A (en) 2002-09-05 2008-11-26 Fazan Comm Llc Allocation of radio resources in a cdma 2000 cellular system
US7227854B2 (en) 2002-09-06 2007-06-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting CQI information in a CDMA communication system employing an HSDPA scheme
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US6776165B2 (en) 2002-09-12 2004-08-17 The Regents Of The University Of California Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles
WO2004028037A1 (ja) 2002-09-20 2004-04-01 Mitsubishi Denki Kabushiki Kaisha 無線通信システム
US7209712B2 (en) 2002-09-23 2007-04-24 Qualcomm, Incorporated Mean square estimation of channel quality measure
GB0222555D0 (en) 2002-09-28 2002-11-06 Koninkl Philips Electronics Nv Packet data transmission system
KR100933155B1 (ko) 2002-09-30 2009-12-21 삼성전자주식회사 주파수분할다중접속 이동통신시스템에서 가상 셀의 자원할당장치 및 방법
US7317680B2 (en) 2002-10-01 2008-01-08 Nortel Networks Limited Channel mapping for OFDM
US7412212B2 (en) 2002-10-07 2008-08-12 Nokia Corporation Communication system
JP4602641B2 (ja) 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ 信号伝送システム、信号伝送方法及び送信機
KR100461547B1 (ko) 2002-10-22 2004-12-16 한국전자통신연구원 디에스/시디엠에이 미모 안테나 시스템에서 보다 나은수신 다이버시티 이득을 얻기 위한 전송 시스템
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7477618B2 (en) 2002-10-25 2009-01-13 Qualcomm Incorporated Method and apparatus for stealing power or code for data channel operations
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
CN1723647B (zh) 2002-10-26 2010-08-25 韩国电子通信研究院 利用comb模式码元的跳频正交频分多址方法
US7023880B2 (en) 2002-10-28 2006-04-04 Qualcomm Incorporated Re-formatting variable-rate vocoder frames for inter-system transmissions
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US6928062B2 (en) 2002-10-29 2005-08-09 Qualcomm, Incorporated Uplink pilot and signaling transmission in wireless communication systems
WO2004040690A2 (en) 2002-10-29 2004-05-13 Nokia Corporation Low complexity beamformers for multiple transmit and receive antennas
EP1576734A1 (en) 2002-10-30 2005-09-21 Koninklijke Philips Electronics N.V. Trellis-based receiver
US6963959B2 (en) 2002-10-31 2005-11-08 International Business Machines Corporation Storage system and method for reorganizing data to improve prefetch effectiveness and reduce seek distance
JP2004153676A (ja) 2002-10-31 2004-05-27 Mitsubishi Electric Corp 通信装置、送信機および受信機
JP2004158901A (ja) 2002-11-01 2004-06-03 Kddi Corp Ofdm及びmc−cdmaを用いる送信装置、システム及び方法
US7680507B2 (en) 2002-11-04 2010-03-16 Alcatel-Lucent Usa Inc. Shared control and signaling channel for users subscribing to data services in a communication system
JP4095881B2 (ja) 2002-11-13 2008-06-04 株式会社 サンウェイ 道路路面計画の評価方法
DE10254384B4 (de) 2002-11-17 2005-11-17 Siemens Ag Bidirektionales Signalverarbeitungsverfahren für ein MIMO-System mit einer rangadaptiven Anpassung der Datenübertragungsrate
JP4084639B2 (ja) 2002-11-19 2008-04-30 株式会社エヌ・ティ・ティ・ドコモ 移動通信における受付制御方法、移動通信システム、移動局、受付制御装置及び受付制御用プログラム
JP3796212B2 (ja) 2002-11-20 2006-07-12 松下電器産業株式会社 基地局装置及び送信割り当て制御方法
US20040098505A1 (en) 2002-11-20 2004-05-20 Clemmensen Daniel G. Forwarding system with multiple logical sub-system functionality
KR100479864B1 (ko) 2002-11-26 2005-03-31 학교법인 중앙대학교 이동 통신 시스템에서의 하향링크 신호의 구성 방법과동기화 방법 및 그 장치 그리고 이를 이용한 셀 탐색 방법
KR101038462B1 (ko) 2002-12-04 2011-06-01 인터디지탈 테크날러지 코포레이션 채널 품질 지표의 검출
JP4350491B2 (ja) 2002-12-05 2009-10-21 パナソニック株式会社 無線通信システム、無線通信方法、及び無線通信装置
US8179833B2 (en) 2002-12-06 2012-05-15 Qualcomm Incorporated Hybrid TDM/OFDM/CDM reverse link transmission
US7272768B2 (en) 2002-12-09 2007-09-18 Broadcom Corporation Edge incremental redundancy memory structure and memory management
KR100507519B1 (ko) 2002-12-13 2005-08-17 한국전자통신연구원 Ofdma 기반 셀룰러 시스템의 하향링크를 위한 신호구성 방법 및 장치
US7508798B2 (en) 2002-12-16 2009-03-24 Nortel Networks Limited Virtual mimo communication system
KR100552669B1 (ko) 2002-12-26 2006-02-20 한국전자통신연구원 층적 공간-시간 구조의 검파기를 갖는 다중 입출력시스템에 적용되는 적응 변복조 장치 및 그 방법
US6904550B2 (en) 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
KR100606008B1 (ko) 2003-01-04 2006-07-26 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 역방향 데이터재전송 요청 송수신 장치 및 방법
JP4098096B2 (ja) 2003-01-06 2008-06-11 三菱電機株式会社 スペクトル拡散受信装置
US8400979B2 (en) 2003-01-07 2013-03-19 Qualcomm Incorporated Forward link handoff for wireless communication systems with OFDM forward link and CDMA reverse link
CN1302671C (zh) 2003-01-07 2007-02-28 华为技术有限公司 一种第三方为接收方接收多媒体短消息付费的方法
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
JP4139230B2 (ja) 2003-01-15 2008-08-27 松下電器産業株式会社 送信装置及び送信方法
US7346018B2 (en) 2003-01-16 2008-03-18 Qualcomm, Incorporated Margin control in a data communication system
CN100417269C (zh) 2003-01-20 2008-09-03 中兴通讯股份有限公司 智能天线波束切换方法
KR100580244B1 (ko) 2003-01-23 2006-05-16 삼성전자주식회사 무선랜상의 핸드오프 방법
WO2004068721A2 (en) 2003-01-28 2004-08-12 Celletra Ltd. System and method for load distribution between base station sectors
JP4276009B2 (ja) 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ 移動局、基地局、無線伝送プログラム、及び無線伝送方法
JP4514463B2 (ja) 2003-02-12 2010-07-28 パナソニック株式会社 送信装置及び無線通信方法
JP3740471B2 (ja) 2003-02-13 2006-02-01 株式会社東芝 Ofdm受信装置、半導体集積回路及びofdm受信方法
AU2003212244A1 (en) 2003-02-14 2004-09-06 Docomo Communications Laboratories Europe Gmbh Two-dimensional channel estimation for multicarrier multiple input outpout communication systems
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US7660282B2 (en) 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
RU2368106C2 (ru) 2003-02-18 2009-09-20 Квэлкомм Инкорпорейтед Планируемая и автономная передача и подтверждение приема
US7813322B2 (en) 2003-02-19 2010-10-12 Qualcomm Incorporated Efficient automatic repeat request methods and apparatus
KR101061654B1 (ko) 2003-02-19 2011-09-01 콸콤 인코포레이티드 멀티-유저 통신 시스템들에서 제어된 중첩 코딩
US9544860B2 (en) 2003-02-24 2017-01-10 Qualcomm Incorporated Pilot signals for use in multi-sector cells
US7307972B2 (en) 2003-02-24 2007-12-11 Autocell Laboratories, Inc. Apparatus for selecting an optimum access point in a wireless network on a common channel
KR100539230B1 (ko) 2003-02-26 2005-12-27 삼성전자주식회사 다양한 규격의 신호를 송수신 처리하는 물리층 장치, 이를구비한 무선 랜 시스템 및 그 무선 랜 방법
JP2004260658A (ja) 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd 無線lan装置
JP4298744B2 (ja) 2003-02-27 2009-07-22 インターデイジタル テクノロジー コーポレーション 高速ダイナミックチャネル割当の無線リソース管理手順
US7486735B2 (en) 2003-02-28 2009-02-03 Nortel Networks Limited Sub-carrier allocation for OFDM
KR100547758B1 (ko) 2003-02-28 2006-01-31 삼성전자주식회사 초광대역 통신 시스템의 프리앰블 송수신 장치 및 방법
US7746816B2 (en) 2003-03-13 2010-06-29 Qualcomm Incorporated Method and system for a power control in a communication system
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US20040179480A1 (en) 2003-03-13 2004-09-16 Attar Rashid Ahmed Method and system for estimating parameters of a link for data transmission in a communication system
US20040181569A1 (en) 2003-03-13 2004-09-16 Attar Rashid Ahmed Method and system for a data transmission in a communication system
US7130580B2 (en) 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US7016319B2 (en) 2003-03-24 2006-03-21 Motorola, Inc. Method and apparatus for reducing co-channel interference in a communication system
SE527445C2 (sv) 2003-03-25 2006-03-07 Telia Ab Lägesanpassat skyddsintervall för OFDM-kommunikation
JP4162522B2 (ja) 2003-03-26 2008-10-08 三洋電機株式会社 無線基地装置、送信指向性制御方法、および送信指向性制御プログラム
US20040192386A1 (en) 2003-03-26 2004-09-30 Naveen Aerrabotu Method and apparatus for multiple subscriber identities in a mobile communication device
JP4218387B2 (ja) 2003-03-26 2009-02-04 日本電気株式会社 無線通信システム、基地局及びそれらに用いる無線リンク品質情報補正方法並びにそのプログラム
JP4181906B2 (ja) 2003-03-26 2008-11-19 富士通株式会社 送信機及び受信機
US7233634B1 (en) 2003-03-27 2007-06-19 Nortel Networks Limited Maximum likelihood decoding
WO2004086706A1 (en) 2003-03-27 2004-10-07 Docomo Communications Laboratories Europe Gmbh Apparatus and method for estimating a plurality of channels
GB2400280B (en) 2003-04-02 2005-06-01 Matsushita Electric Ind Co Ltd Dynamic resource allocation in packet data transfer
US7085574B2 (en) 2003-04-15 2006-08-01 Qualcomm, Incorporated Grant channel assignment
KR20050119143A (ko) 2003-04-21 2005-12-20 미쓰비시덴키 가부시키가이샤 무선통신장치, 송신장치, 수신장치 및 무선통신시스템
EP1618748B1 (en) 2003-04-23 2016-04-13 QUALCOMM Incorporated Methods and apparatus of enhancing performance in wireless communication systems
US7640373B2 (en) 2003-04-25 2009-12-29 Motorola, Inc. Method and apparatus for channel quality feedback within a communication system
KR100942645B1 (ko) 2003-04-29 2010-02-17 엘지전자 주식회사 이동통신 시스템에서의 신호전송 방법 및 장치
US7013143B2 (en) 2003-04-30 2006-03-14 Motorola, Inc. HARQ ACK/NAK coding for a communication device during soft handoff
US6824416B2 (en) 2003-04-30 2004-11-30 Agilent Technologies, Inc. Mounting arrangement for plug-in modules
US20040219919A1 (en) 2003-04-30 2004-11-04 Nicholas Whinnett Management of uplink scheduling modes in a wireless communication system
US6993342B2 (en) 2003-05-07 2006-01-31 Motorola, Inc. Buffer occupancy used in uplink scheduling for a communication device
US6882855B2 (en) 2003-05-09 2005-04-19 Motorola, Inc. Method and apparatus for CDMA soft handoff for dispatch group members
US7254158B2 (en) 2003-05-12 2007-08-07 Qualcomm Incorporated Soft handoff with interference cancellation in a wireless frequency hopping communication system
US7177297B2 (en) 2003-05-12 2007-02-13 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
US6950319B2 (en) 2003-05-13 2005-09-27 Delta Electronics, Inc. AC/DC flyback converter
US7545867B1 (en) 2003-05-14 2009-06-09 Marvell International, Ltd. Adaptive channel bandwidth selection for MIMO wireless systems
US7181196B2 (en) 2003-05-15 2007-02-20 Lucent Technologies Inc. Performing authentication in a communications system
KR100526542B1 (ko) 2003-05-15 2005-11-08 삼성전자주식회사 이동 통신 시스템에서 다중안테나를 사용하는송신다이버시티 방식을 사용하여 데이터를 송수신하는장치 및 방법
JP2006526353A (ja) 2003-05-15 2006-11-16 エルジー エレクトロニクス インコーポレイティド 無線通信のためのチャネル化コードの割り当て方法及び装置
US20040228313A1 (en) 2003-05-16 2004-11-18 Fang-Chen Cheng Method of mapping data for uplink transmission in communication systems
WO2004105272A1 (ja) 2003-05-20 2004-12-02 Fujitsu Limited 移動通信システムにおけるアプリケーションハンドオーバ方法並びに同移動通信システムに使用される移動管理ノード及び移動ノード
US7454510B2 (en) 2003-05-29 2008-11-18 Microsoft Corporation Controlled relay of media streams across network perimeters
US7366137B2 (en) 2003-05-31 2008-04-29 Qualcomm Incorporated Signal-to-noise estimation in wireless communication devices with receive diversity
US8018902B2 (en) 2003-06-06 2011-09-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for channel quality indicator determination
US7079870B2 (en) 2003-06-09 2006-07-18 Ipr Licensing, Inc. Compensation techniques for group delay effects in transmit beamforming radio communication
KR100547734B1 (ko) 2003-06-13 2006-01-31 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 매체 접속 제어 계층의 동작 상태 제어 방법
WO2004114549A1 (en) 2003-06-13 2004-12-29 Nokia Corporation Enhanced data only code division multiple access (cdma) system
JP2006527965A (ja) 2003-06-18 2006-12-07 サムスン エレクトロニクス カンパニー リミテッド 直交周波数分割多重方式を使用する通信システムにおける基地局の識別のためのパイロットパターンを送受信する装置及び方法
US7236747B1 (en) 2003-06-18 2007-06-26 Samsung Electronics Co., Ltd. (SAIT) Increasing OFDM transmit power via reduction in pilot tone
CN1643867B (zh) 2003-06-22 2010-06-23 株式会社Ntt都科摩 用于估计信道的设备和方法
KR20050000709A (ko) 2003-06-24 2005-01-06 삼성전자주식회사 다중 접속 방식을 사용하는 통신 시스템의 데이터 송수신장치 및 방법
US7433661B2 (en) 2003-06-25 2008-10-07 Lucent Technologies Inc. Method for improved performance and reduced bandwidth channel state information feedback in communication systems
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
NZ526669A (en) 2003-06-25 2006-03-31 Ind Res Ltd Narrowband interference suppression for OFDM systems
EP1492241B1 (en) 2003-06-26 2007-02-14 Mitsubishi Electric Information Technology Centre Europe B.V. Improved sphere decoding of symbols transmitted in a telecommunication system
JP3746280B2 (ja) 2003-06-27 2006-02-15 株式会社東芝 通信方法、通信システム及び通信装置
US7257408B2 (en) 2003-06-30 2007-08-14 Nec Corporation Radio communication system and transmission mode selecting method
US7522919B2 (en) 2003-07-14 2009-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements to periodic silences in wireless communication systems
US7313126B2 (en) 2003-07-31 2007-12-25 Samsung Electronics Co., Ltd. Control system and multiple access method in wireless communication system
US7126928B2 (en) 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
US7315527B2 (en) 2003-08-05 2008-01-01 Qualcomm Incorporated Extended acknowledgement and rate control channel
ATE467283T1 (de) 2003-08-05 2010-05-15 Telecom Italia Spa Verfahren zur bereitstellung von extraverkehrswegen mit verbindungsschutz in einem kommunikationsnetz, diesbezügliches netz und computerprogrammprodukt dafür
US8140980B2 (en) 2003-08-05 2012-03-20 Verizon Business Global Llc Method and system for providing conferencing services
US7969857B2 (en) 2003-08-07 2011-06-28 Nortel Networks Limited OFDM system and method employing OFDM symbols with known or information-containing prefixes
US7460494B2 (en) 2003-08-08 2008-12-02 Intel Corporation Adaptive signaling in multiple antenna systems
KR101083141B1 (ko) 2003-08-12 2011-11-11 파나소닉 주식회사 무선 통신 장치 및 파일럿 심볼 전송 방법
KR100979589B1 (ko) 2003-08-13 2010-09-01 콸콤 인코포레이티드 무선 통신 시스템들에서 전력 제어 방법들 및 장치
ATE332061T1 (de) 2003-08-14 2006-07-15 Matsushita Electric Ind Co Ltd Synchronisation von basisstationen während soft- handover
CN1284795C (zh) 2003-08-15 2006-11-15 上海师范大学 磁性纳米粒子核酸分离器、及其制法和应用
RU2235429C1 (ru) 2003-08-15 2004-08-27 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Способ частотно-временной синхронизации системы связи и устройство для его осуществления
US7257167B2 (en) 2003-08-19 2007-08-14 The University Of Hong Kong System and method for multi-access MIMO channels with feedback capacity constraint
RU2408986C2 (ru) 2003-08-20 2011-01-10 Панасоник Корпорэйшн Устройство беспроводной связи и способ выделения поднесущих
US6925145B2 (en) 2003-08-22 2005-08-02 General Electric Company High speed digital radiographic inspection of piping
JP4194091B2 (ja) 2003-09-02 2008-12-10 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 無線通信システムおよび無線通信装置
US7221680B2 (en) 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US20050063298A1 (en) 2003-09-02 2005-03-24 Qualcomm Incorporated Synchronization in a broadcast OFDM system using time division multiplexed pilots
US7400856B2 (en) 2003-09-03 2008-07-15 Motorola, Inc. Method and apparatus for relay facilitated communications
US20050047517A1 (en) 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US8908496B2 (en) 2003-09-09 2014-12-09 Qualcomm Incorporated Incremental redundancy transmission in a MIMO communication system
US7356073B2 (en) 2003-09-10 2008-04-08 Nokia Corporation Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector
US6917821B2 (en) 2003-09-23 2005-07-12 Qualcomm, Incorporated Successive interference cancellation receiver processing with selection diversity
US20050068921A1 (en) 2003-09-29 2005-03-31 Jung-Tao Liu Multiplexing of physical channels on the uplink
KR100950668B1 (ko) 2003-09-30 2010-04-02 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 통신 시스템에서 업링크 파일럿 신호 송수신 장치 및 방법
EP1668835A1 (en) 2003-09-30 2006-06-14 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for congestion control in high speed wireless packet data networks
JP2005110130A (ja) * 2003-10-01 2005-04-21 Samsung Electronics Co Ltd 共通チャネル伝送システム、共通チャネル伝送方法及び通信プログラム
US7230942B2 (en) 2003-10-03 2007-06-12 Qualcomm, Incorporated Method of downlink resource allocation in a sectorized environment
EP1521414B1 (en) 2003-10-03 2008-10-29 Kabushiki Kaisha Toshiba Method and apparatus for sphere decoding
US7039370B2 (en) 2003-10-16 2006-05-02 Flarion Technologies, Inc. Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems
US7242722B2 (en) 2003-10-17 2007-07-10 Motorola, Inc. Method and apparatus for transmission and reception within an OFDM communication system
US7120395B2 (en) 2003-10-20 2006-10-10 Nortel Networks Limited MIMO communications
ATE368977T1 (de) 2003-10-21 2007-08-15 Alcatel Lucent Verfahren zur zuordnung der unterträger und zur auswahl des modulationsschemas in einem drahtlosen mehrträgerübertragungssystem
US7508748B2 (en) 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
KR20050040988A (ko) 2003-10-29 2005-05-04 삼성전자주식회사 주파수도약 직교 주파수 분할 다중화 기반 셀룰러시스템을 위한 통신방법
KR100957415B1 (ko) 2003-10-31 2010-05-11 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서 기지국 구분을 위한 파일럿 신호 송수신 장치 및 방법
KR101023330B1 (ko) 2003-11-05 2011-03-18 한국과학기술원 무선 통신 시스템에서 서비스 품질을 보장하기 위한 복합자동 재전송 요구 방법
US7664533B2 (en) 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
KR100981554B1 (ko) 2003-11-13 2010-09-10 한국과학기술원 다중 송수신 안테나들을 구비하는 이동통신시스템에서,송신 안테나들을 그룹핑하여 신호를 전송하는 방법
US7356000B2 (en) 2003-11-21 2008-04-08 Motorola, Inc. Method and apparatus for reducing call setup delay
EP1533950A1 (en) 2003-11-21 2005-05-25 Sony International (Europe) GmbH Method for connecting a mobile terminal to a wireless communication system, wireless communication system and mobile terminal for a wireless communication system
JP3908723B2 (ja) 2003-11-28 2007-04-25 Tdk株式会社 誘電体磁器組成物の製造方法
JP2005167502A (ja) 2003-12-01 2005-06-23 Ntt Docomo Inc 無線通信システム、送信無線局の制御装置及び受信無線局の制御装置、並びにサブキャリア選択方法
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
TWI232040B (en) 2003-12-03 2005-05-01 Chung Shan Inst Of Science CDMA transmitting and receiving apparatus with multiply applied interface functions and a method thereof
KR20050053907A (ko) 2003-12-03 2005-06-10 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 캐리어 할당 방법
CN1890935A (zh) 2003-12-03 2007-01-03 澳大利亚电信合作研究中心 Ofdm系统的信道评估
US7145940B2 (en) 2003-12-05 2006-12-05 Qualcomm Incorporated Pilot transmission schemes for a multi-antenna system
JP4864720B2 (ja) 2003-12-05 2012-02-01 クアルコム,インコーポレイテッド 閉ループ多重入出力移動通信システムで送信固有ベクトルを選択してデータを送信する装置及び方法
JP4188372B2 (ja) 2003-12-05 2008-11-26 日本電信電話株式会社 無線通信装置、無線通信方法、及び無線通信システム
EP1542488A1 (en) 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
KR100856227B1 (ko) 2003-12-15 2008-09-03 삼성전자주식회사 이동통신시스템에서의 송/수신장치 및 방법
EP1545082A3 (en) 2003-12-17 2005-08-03 Kabushiki Kaisha Toshiba Signal decoding methods and apparatus
US7302009B2 (en) 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
KR100560386B1 (ko) 2003-12-17 2006-03-13 한국전자통신연구원 무선 통신 시스템의 상향 링크에서 코히어런트 검출을위한 직교주파수 분할 다중 접속 방식의 송수신 장치 및그 방법
KR20050063826A (ko) 2003-12-19 2005-06-28 엘지전자 주식회사 무선통신 시스템의 무선자원 할당방법
KR100507541B1 (ko) 2003-12-19 2005-08-09 삼성전자주식회사 직교주파수분할다중접속 시스템에서의 데이터 및 파일롯할당 방법 과 그를 이용한 송신 방법 및 그 장치, 수신방법과 그 장치
US7181170B2 (en) 2003-12-22 2007-02-20 Motorola Inc. Apparatus and method for adaptive broadcast transmission
JP4301931B2 (ja) 2003-12-22 2009-07-22 株式会社三共 遊技機
AU2003290487A1 (en) 2003-12-22 2005-07-14 Telefonaktiebolaget Lm Ericsson (Publ) A method for determining transmit weights
KR100943572B1 (ko) 2003-12-23 2010-02-24 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서 주파수재사용율을 고려한 적응적 부채널 할당 장치 및 방법
US7352819B2 (en) 2003-12-24 2008-04-01 Intel Corporation Multiantenna communications apparatus, methods, and system
JP2005197772A (ja) 2003-12-26 2005-07-21 Toshiba Corp アダプティブアレイアンテナ装置
WO2005062729A2 (en) 2003-12-27 2005-07-14 Electronics And Telecommunications Research Institute A mimo-ofdm system using eigenbeamforming method
US7489621B2 (en) 2003-12-30 2009-02-10 Alexander A Maltsev Adaptive puncturing technique for multicarrier systems
WO2005069538A1 (en) 2004-01-07 2005-07-28 Deltel, Inc./Pbnext Method and apparatus for telecommunication system
CN1642051A (zh) 2004-01-08 2005-07-20 电子科技大学 一种获取最优导引符号功率的方法
EP1704664B1 (en) 2004-01-09 2013-10-23 LG Electronics Inc. Packet transmission method
US7289585B2 (en) 2004-01-12 2007-10-30 Intel Corporation Multicarrier receivers and methods for separating transmitted signals in a multiple antenna system
JP4167183B2 (ja) 2004-01-14 2008-10-15 株式会社国際電気通信基礎技術研究所 アレーアンテナの制御装置
JP2007518346A (ja) 2004-01-20 2007-07-05 エルジー エレクトロニクス インコーポレイティド Mimoシステムにおける信号送受信方法
US20050159162A1 (en) 2004-01-20 2005-07-21 Samsung Electronics Co., Ltd. Method for transmitting data in mobile communication network
JP4777907B2 (ja) 2004-01-20 2011-09-21 クゥアルコム・インコーポレイテッド 同期型ブロードキャスト/マルチキャスト通信
US8611283B2 (en) 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
US8144735B2 (en) 2004-02-10 2012-03-27 Qualcomm Incorporated Transmission of signaling information for broadcast and multicast services
GB2412541B (en) 2004-02-11 2006-08-16 Samsung Electronics Co Ltd Method of operating TDD/virtual FDD hierarchical cellular telecommunication system
CN1943152B (zh) * 2004-02-13 2011-07-27 桥扬科技有限公司 用于具有自适应发射和反馈的多载波通信系统的方法和设备
KR100827105B1 (ko) 2004-02-13 2008-05-02 삼성전자주식회사 광대역 무선 통신 시스템에서 고속 레인징을 통한 빠른핸드오버 수행 방법 및 장치
WO2005081437A1 (en) 2004-02-17 2005-09-01 Huawei Technologies Co., Ltd. Multiplexing scheme in a communication system
US7564906B2 (en) 2004-02-17 2009-07-21 Nokia Siemens Networks Oy OFDM transceiver structure with time-domain scrambling
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
JP2005236678A (ja) 2004-02-19 2005-09-02 Toyota Motor Corp 移動体用受信装置
US20070280336A1 (en) 2004-02-27 2007-12-06 Nokia Corporation Constrained Optimization Based Mimo Lmmse-Sic Receiver for Cdma Downlink
US7421041B2 (en) 2004-03-01 2008-09-02 Qualcomm, Incorporated Iterative channel and interference estimation and decoding
US20050195886A1 (en) 2004-03-02 2005-09-08 Nokia Corporation CPICH processing for SINR estimation in W-CDMA system
KR101084113B1 (ko) 2004-03-05 2011-11-17 엘지전자 주식회사 이동통신의 핸드오버에 적용되는 서비스 정보 전달 방법
US7290195B2 (en) 2004-03-05 2007-10-30 Microsoft Corporation Adaptive acknowledgment delay
US20050201296A1 (en) 2004-03-15 2005-09-15 Telefonaktiebolaget Lm Ericsson (Pu Reduced channel quality feedback
CN103516459B (zh) 2004-03-15 2016-09-21 苹果公司 用于具有四根发射天线的ofdm系统的导频设计
US7706350B2 (en) 2004-03-19 2010-04-27 Qualcomm Incorporated Methods and apparatus for flexible spectrum allocation in communication systems
US20050207367A1 (en) 2004-03-22 2005-09-22 Onggosanusi Eko N Method for channel quality indicator computation and feedback in a multi-carrier communications system
US7907898B2 (en) 2004-03-26 2011-03-15 Qualcomm Incorporated Asynchronous inter-piconet routing
JP2005284751A (ja) 2004-03-30 2005-10-13 Fujitsu Ltd 論理検証装置、論理検証方法および論理検証プログラム
JP4288368B2 (ja) 2004-04-09 2009-07-01 Okiセミコンダクタ株式会社 受信制御方法および無線lan装置
US7684507B2 (en) 2004-04-13 2010-03-23 Intel Corporation Method and apparatus to select coding mode
US7047006B2 (en) 2004-04-28 2006-05-16 Motorola, Inc. Method and apparatus for transmission and reception of narrowband signals within a wideband communication system
KR100594084B1 (ko) 2004-04-30 2006-06-30 삼성전자주식회사 직교 주파수 분할 다중 수신기의 채널 추정 방법 및 채널추정기
GB0409704D0 (en) 2004-04-30 2004-06-02 Nokia Corp A method for verifying a first identity and a second identity of an entity
US20050249266A1 (en) 2004-05-04 2005-11-10 Colin Brown Multi-subband frequency hopping communication system and method
US7411898B2 (en) 2004-05-10 2008-08-12 Infineon Technologies Ag Preamble generator for a multiband OFDM transceiver
JP4447372B2 (ja) 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信装置、無線受信装置、無線通信方法及びチャネル推定方法
KR20050109789A (ko) 2004-05-17 2005-11-22 삼성전자주식회사 공간분할다중화/다중입력다중출력 시스템에서의 빔포밍 방법
US20050259005A1 (en) 2004-05-20 2005-11-24 Interdigital Technology Corporation Beam forming matrix-fed circular array system
US7157351B2 (en) 2004-05-20 2007-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Ozone vapor clean method
US8000377B2 (en) 2004-05-24 2011-08-16 General Dynamics C4 Systems, Inc. System and method for variable rate multiple access short message communications
JP4398791B2 (ja) 2004-05-25 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ 送信機および送信制御方法
US7551564B2 (en) 2004-05-28 2009-06-23 Intel Corporation Flow control method and apparatus for single packet arrival on a bidirectional ring interconnect
KR100754794B1 (ko) 2004-05-29 2007-09-03 삼성전자주식회사 이동통신시스템에서 셀 식별 코드 송수신 장치 및 방법
US7437164B2 (en) 2004-06-08 2008-10-14 Qualcomm Incorporated Soft handoff for reverse link in a wireless communication system with frequency reuse
JP2005352205A (ja) 2004-06-10 2005-12-22 Fujinon Corp 照明装置
US7769107B2 (en) 2004-06-10 2010-08-03 Intel Corporation Semi-blind analog beamforming for multiple-antenna systems
US8619907B2 (en) 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US7773950B2 (en) 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
US8068530B2 (en) 2004-06-18 2011-11-29 Qualcomm Incorporated Signal acquisition in a wireless communication system
US7599327B2 (en) 2004-06-24 2009-10-06 Motorola, Inc. Method and apparatus for accessing a wireless communication system
KR101053610B1 (ko) 2004-06-25 2011-08-03 엘지전자 주식회사 Ofdm/ofdma 시스템의 무선자원 할당 방법
US7299048B2 (en) 2004-06-25 2007-11-20 Samsung Electronics Co., Ltd. System and method for performing soft handover in broadband wireless access communication system
US8000268B2 (en) 2004-06-30 2011-08-16 Motorola Mobility, Inc. Frequency-hopped IFDMA communication system
WO2006004968A2 (en) 2004-06-30 2006-01-12 Neocific, Inc. Methods and apparatus for power control in multi-carrier wireless systems
WO2006017086A1 (en) 2004-07-02 2006-02-16 Vibration Research Corporation System and method for simultaneously controlling spectrum and kurtosis of a random vibration
US8588326B2 (en) 2004-07-07 2013-11-19 Apple Inc. System and method for mapping symbols for MIMO transmission
JP4181093B2 (ja) 2004-07-16 2008-11-12 株式会社東芝 無線通信システム
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US10355825B2 (en) 2004-07-21 2019-07-16 Qualcomm Incorporated Shared signaling channel for a communication system
US8477710B2 (en) 2004-07-21 2013-07-02 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
US7676007B1 (en) 2004-07-21 2010-03-09 Jihoon Choi System and method for interpolation based transmit beamforming for MIMO-OFDM with partial feedback
US7567621B2 (en) 2004-07-21 2009-07-28 Qualcomm Incorporated Capacity based rank prediction for MIMO design
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US7257406B2 (en) 2004-07-23 2007-08-14 Qualcomm, Incorporated Restrictive reuse set management
US7986743B2 (en) 2004-08-03 2011-07-26 Agency For Science, Technology And Research Method for transmitting a digital data stream, transmitter, method for receiving a digital data stream and receiver
JP2006050326A (ja) 2004-08-05 2006-02-16 Toshiba Corp 情報処理装置および同装置のシーンチェンジ検出方法
US7428426B2 (en) 2004-08-06 2008-09-23 Qualcomm, Inc. Method and apparatus for controlling transmit power in a wireless communications device
US7499393B2 (en) 2004-08-11 2009-03-03 Interdigital Technology Corporation Per stream rate control (PSRC) for improving system efficiency in OFDM-MIMO communication systems
CN101015141B (zh) 2004-08-12 2010-12-08 Lg电子株式会社 无线通信系统专用服务的接收
US20060218459A1 (en) 2004-08-13 2006-09-28 David Hedberg Coding systems and methods
US20060039332A1 (en) 2004-08-17 2006-02-23 Kotzin Michael D Mechanism for hand off using subscriber detection of synchronized access point beacon transmissions
CN1296682C (zh) 2004-08-17 2007-01-24 广东省基础工程公司 一种隧道过江施工中用于监测河床沉降的装置及其方法
EP1628425B1 (en) 2004-08-17 2012-12-26 Samsung Electronics Co., Ltd. Apparatus and method for space-time-frequency block coding
US7899497B2 (en) 2004-08-18 2011-03-01 Ruckus Wireless, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US7336727B2 (en) 2004-08-19 2008-02-26 Nokia Corporation Generalized m-rank beamformers for MIMO systems using successive quantization
US20060039344A1 (en) 2004-08-20 2006-02-23 Lucent Technologies, Inc. Multiplexing scheme for unicast and broadcast/multicast traffic
US7852746B2 (en) 2004-08-25 2010-12-14 Qualcomm Incorporated Transmission of signaling in an OFDM-based system
KR100856249B1 (ko) 2004-08-26 2008-09-03 삼성전자주식회사 무선 통신 시스템에서 초기 동작 모드 검출 방법
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7362822B2 (en) 2004-09-08 2008-04-22 Intel Corporation Recursive reduction of channel state feedback
US7613423B2 (en) 2004-09-10 2009-11-03 Samsung Electronics Co., Ltd. Method of creating active multipaths for mimo wireless systems
GB0420164D0 (en) 2004-09-10 2004-10-13 Nokia Corp A scheduler
KR100715910B1 (ko) 2004-09-20 2007-05-08 삼성전자주식회사 다중 접속 방식을 사용하는 이동 통신 시스템의 셀 탐색장치 및 방법
RU2285388C2 (ru) 2004-09-27 2006-10-20 Оао "Онежский Тракторный Завод" Машина для бесчокерной трелевки деревьев
US7924935B2 (en) 2004-09-30 2011-04-12 Nortel Networks Limited Channel sounding in OFDMA system
US8325863B2 (en) 2004-10-12 2012-12-04 Qualcomm Incorporated Data detection and decoding with considerations for channel estimation errors due to guard subbands
US7969858B2 (en) 2004-10-14 2011-06-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands
US7636328B2 (en) 2004-10-20 2009-12-22 Qualcomm Incorporated Efficient transmission of signaling using channel constraints
US7616955B2 (en) 2004-11-12 2009-11-10 Broadcom Corporation Method and system for bits and coding assignment utilizing Eigen beamforming with fixed rates for closed loop WLAN
US20060089104A1 (en) 2004-10-27 2006-04-27 Nokia Corporation Method for improving an HS-DSCH transport format allocation
GB2419788B (en) 2004-11-01 2007-10-31 Toshiba Res Europ Ltd Interleaver and de-interleaver systems
US7139328B2 (en) 2004-11-04 2006-11-21 Motorola, Inc. Method and apparatus for closed loop data transmission
US7627051B2 (en) 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
CN101099326B (zh) 2004-11-16 2012-10-03 高通股份有限公司 Mimo通信系统的闭环速率控制
US20060104333A1 (en) 2004-11-18 2006-05-18 Motorola, Inc. Acknowledgment for a time division channel
US20060111054A1 (en) 2004-11-22 2006-05-25 Interdigital Technology Corporation Method and system for selecting transmit antennas to reduce antenna correlation
US7512096B2 (en) 2004-11-24 2009-03-31 Alcatel-Lucent Usa Inc. Communicating data between an access point and multiple wireless devices over a link
US7593473B2 (en) 2004-12-01 2009-09-22 Bae Systems Information And Electronic Systems Integration Inc. Tree structured multicarrier multiple access systems
US7822128B2 (en) 2004-12-03 2010-10-26 Intel Corporation Multiple antenna multicarrier transmitter and method for adaptive beamforming with transmit-power normalization
EP1820287A4 (en) 2004-12-08 2012-07-11 Korea Electronics Telecomm Transmitter, receiver and method for controlling a system with multiple inputs and outputs
US8179876B2 (en) 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
US7940710B2 (en) 2004-12-22 2011-05-10 Qualcomm Incorporated Methods and apparatus for efficient paging in a wireless communication system
CN101908908B (zh) 2004-12-22 2015-05-20 高通股份有限公司 用于在多址通信网络中进行灵活跳变的方法和装置
US7543197B2 (en) 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
US8238923B2 (en) 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US20060140289A1 (en) 2004-12-27 2006-06-29 Mandyam Giridhar D Method and apparatus for providing an efficient pilot scheme for channel estimation
CN1642335A (zh) 2005-01-06 2005-07-20 东南大学 移动通信系统混合无线资源管理方法
US7778826B2 (en) 2005-01-13 2010-08-17 Intel Corporation Beamforming codebook generation system and associated methods
CN101103571B (zh) 2005-01-18 2011-12-14 夏普株式会社 无线通信装置、便携式终端以及无线通信方法
JP2006211537A (ja) 2005-01-31 2006-08-10 Nec Corp コード状態変更装置、コード状態変更方法、およびコード状態変更プログラム
KR100966044B1 (ko) 2005-02-24 2010-06-28 삼성전자주식회사 다중 셀 통신 시스템에서 주파수 자원 할당 시스템 및 방법
KR20060096365A (ko) 2005-03-04 2006-09-11 삼성전자주식회사 다중 사용자 다중입력 다중출력(mu-mimo)통신시스템의 사용자 스케줄링 방법
US8135088B2 (en) 2005-03-07 2012-03-13 Q1UALCOMM Incorporated Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
US8095141B2 (en) 2005-03-09 2012-01-10 Qualcomm Incorporated Use of supplemental assignments
US20060203794A1 (en) 2005-03-10 2006-09-14 Qualcomm Incorporated Systems and methods for beamforming in multi-input multi-output communication systems
US7720162B2 (en) 2005-03-10 2010-05-18 Qualcomm Incorporated Partial FFT processing and demodulation for a system with multiple subcarriers
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US7512412B2 (en) 2005-03-15 2009-03-31 Qualcomm, Incorporated Power control and overlapping control for a quasi-orthogonal communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US20090213950A1 (en) 2005-03-17 2009-08-27 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US8031583B2 (en) 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US7797018B2 (en) 2005-04-01 2010-09-14 Interdigital Technology Corporation Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
US7711033B2 (en) 2005-04-14 2010-05-04 Telefonaktiebolaget Lm Ericsson (Publ) SIR prediction method and apparatus
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US7768979B2 (en) 2005-05-18 2010-08-03 Qualcomm Incorporated Separating pilot signatures in a frequency hopping OFDM system by selecting pilot symbols at least hop away from an edge of a hop region
US7916681B2 (en) 2005-05-20 2011-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication channel error rate estimation
US8077692B2 (en) 2005-05-20 2011-12-13 Qualcomm Incorporated Enhanced frequency division multiple access for wireless communication
EP1889436A4 (en) 2005-05-26 2012-01-25 Nokia Corp METHOD AND DEVICE FOR INDICATING CHANNEL STATUS INFORMATION FOR MULTIPLE CARRIER
JP4599228B2 (ja) 2005-05-30 2010-12-15 株式会社日立製作所 無線送受信機
US8842693B2 (en) 2005-05-31 2014-09-23 Qualcomm Incorporated Rank step-down for MIMO SCW design employing HARQ
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8126066B2 (en) 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US7403470B2 (en) 2005-06-13 2008-07-22 Qualcomm Incorporated Communications system, methods and apparatus
EP1734773A1 (en) 2005-06-14 2006-12-20 Alcatel A method for uplink interference coordination in single frequency networks, a base station a mobile terminal and a mobile network therefor
JP4869724B2 (ja) 2005-06-14 2012-02-08 株式会社エヌ・ティ・ティ・ドコモ 送信装置、送信方法、受信装置及び受信方法
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8254924B2 (en) 2005-06-16 2012-08-28 Qualcomm Incorporated Method and apparatus for adaptive registration and paging area determination
US20070071147A1 (en) 2005-06-16 2007-03-29 Hemanth Sampath Pseudo eigen-beamforming with dynamic beam selection
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8098667B2 (en) 2005-06-16 2012-01-17 Qualcomm Incorporated Methods and apparatus for efficient providing of scheduling information
US8503371B2 (en) 2005-06-16 2013-08-06 Qualcomm Incorporated Link assignment messages in lieu of assignment acknowledgement messages
DE102005028179A1 (de) 2005-06-17 2006-12-28 Siemens Ag Verfahren zum Verbindungsaufbau durch mobile Endgeräte in Kommunikationsnetzen mit variablen Bandbreiten
EP1897245A4 (en) 2005-06-20 2013-01-16 Texas Instruments Inc LOW UPLINK POWER SUPPLY CONTROL
KR100606099B1 (ko) 2005-06-22 2006-07-31 삼성전자주식회사 주파수 분할 다중 접속 방식시스템에서의 긍정 및 부정응답 채널을 설정하는 방법 및 장치
CA2612746A1 (en) 2005-07-04 2007-01-11 Samsung Electronics Co., Ltd. Position measuring system and method using wireless broadband (wibro) signal
US20070025345A1 (en) 2005-07-27 2007-02-01 Bachl Rainer W Method of increasing the capacity of enhanced data channel on uplink in a wireless communications systems
US7403745B2 (en) 2005-08-02 2008-07-22 Lucent Technologies Inc. Channel quality predictor and method of estimating a channel condition in a wireless communications network
US20070183386A1 (en) 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US7508842B2 (en) 2005-08-18 2009-03-24 Motorola, Inc. Method and apparatus for pilot signal transmission
WO2007022430A2 (en) 2005-08-18 2007-02-22 Beceem Communications Inc. Antenna virtualization in communication systems
WO2007024214A1 (en) 2005-08-19 2007-03-01 Mitsubishi Electric Research Laboratories Optimal signaling and selection verification for transmit antenna selection with erroneous feedback
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8331463B2 (en) 2005-08-22 2012-12-11 Qualcomm Incorporated Channel estimation in communications
EP2665219A1 (en) 2005-08-24 2013-11-20 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US20070047495A1 (en) 2005-08-29 2007-03-01 Qualcomm Incorporated Reverse link soft handoff in a wireless multiple-access communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
DE102005041273B4 (de) 2005-08-31 2014-05-08 Intel Mobile Communications GmbH Verfahren zum rechnergestützten Bilden von Systeminformations-Medium-Zugriffs-Steuerungs-Protokollnachrichten, Medium-Zugriffs-Steuerungs-Einheit und Computerprogrammelement
RU2417520C2 (ru) 2005-09-21 2011-04-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ представления канала блокирования управления скоростью передачи комбинированных данных в системе беспроводной связи
US20090022098A1 (en) 2005-10-21 2009-01-22 Robert Novak Multiplexing schemes for ofdma
US7835460B2 (en) 2005-10-27 2010-11-16 Qualcomm Incorporated Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US20070165738A1 (en) 2005-10-27 2007-07-19 Barriac Gwendolyn D Method and apparatus for pre-coding for a mimo system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8134977B2 (en) 2005-10-27 2012-03-13 Qualcomm Incorporated Tune-away protocols for wireless systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8649362B2 (en) 2005-11-02 2014-02-11 Texas Instruments Incorporated Methods for determining the location of control channels in the uplink of communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
WO2007065272A1 (en) 2005-12-08 2007-06-14 Nortel Networks Limited Resource assignment systems and methods
US8437251B2 (en) 2005-12-22 2013-05-07 Qualcomm Incorporated Methods and apparatus for communicating transmission backlog information
US9148795B2 (en) 2005-12-22 2015-09-29 Qualcomm Incorporated Methods and apparatus for flexible reporting of control information
US9451491B2 (en) 2005-12-22 2016-09-20 Qualcomm Incorporated Methods and apparatus relating to generating and transmitting initial and additional control information report sets in a wireless system
KR100793315B1 (ko) 2005-12-31 2008-01-11 포스데이타 주식회사 다운링크 프리앰블을 이용한 반송파 신호 대 잡음비 측정장치 및 방법
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US7486408B2 (en) 2006-03-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with reduced scribe lane usage for substrate measurement
US20070242653A1 (en) 2006-04-13 2007-10-18 Futurewei Technologies, Inc. Method and apparatus for sharing radio resources in an ofdma-based communication system
EP1855424B1 (en) 2006-05-12 2013-07-10 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
US8259695B2 (en) 2007-04-30 2012-09-04 Alcatel Lucent Method and apparatus for packet wireless telecommunications
US8254487B2 (en) 2007-08-09 2012-08-28 Samsung Electronics Co., Ltd. Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems
US20090180459A1 (en) 2008-01-16 2009-07-16 Orlik Philip V OFDMA Frame Structures for Uplinks in MIMO Networks
BRPI0917525B1 (pt) 2008-08-12 2020-09-29 Blackberry Limited Aparelhos e métodos para habilitar retransmissão transparente de enlace de descida em uma rede de comunicação sem fio
US8228862B2 (en) 2008-12-03 2012-07-24 Samsung Electronics Co., Ltd. Method and system for reference signal pattern design
US8238483B2 (en) 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
US20100232384A1 (en) 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
KR200471652Y1 (ko) 2013-08-07 2014-03-12 남경탁 의자 일체형 가구

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISHIYAMA Y. et al. Investigation of optimum pilot channel structure for VSF-OFCDM broadband wireless access in forward link. VTC 2003-SPRING. The 57th IEEE Semiannual Vehicular Technology Conference. PROCEEDINGS JEJU. Korea, April 22-25, 2003, p.139-144. *

Also Published As

Publication number Publication date
KR20090096558A (ko) 2009-09-10
BRPI0607786A2 (pt) 2009-06-13
RU2010121653A (ru) 2011-12-10
CN101167321B (zh) 2013-06-05
JP5166236B2 (ja) 2013-03-21
ES2694680T3 (es) 2018-12-26
EP2259524A1 (en) 2010-12-08
TW200707997A (en) 2007-02-16
RU2007138505A (ru) 2009-04-27
EP1859592B1 (en) 2018-09-12
CN101167321A (zh) 2008-04-23
EP2259524B1 (en) 2019-12-04
WO2006110259A1 (en) 2006-10-19
EP1859592A1 (en) 2007-11-28
KR20070110931A (ko) 2007-11-20
JP2008533928A (ja) 2008-08-21
KR100925094B1 (ko) 2009-11-05
HUE040663T2 (hu) 2019-03-28
CA2601191A1 (en) 2006-10-19
US9143305B2 (en) 2015-09-22
KR100961586B1 (ko) 2010-06-04
US20060209670A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
RU2395919C2 (ru) Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением
RU2370902C2 (ru) Передача пилот-сигнала для системы беспроводной связи с ортогональным частотным разделением каналов
KR100880991B1 (ko) 이동통신 시스템에서 다중 안테나를 이용한 파일럿 송수신장치 및 방법
JP4690456B2 (ja) 直交周波数分割無線通信システムにおけるソフターおよびソフトハンドオフ
CN100488184C (zh) 正交频分复用通信系统和方法
AU2006305703B2 (en) Allocation of pilot pattern adapted to channel characteristics for an OFDM system
RU2357364C2 (ru) Мультиплексирование для сотовой системы радиосвязи с множеством несущих
US8494457B2 (en) Systems, methods and transceivers for wireless communications over discontiguous spectrum segments
US20090213950A1 (en) Pilot signal transmission for an orthogonal frequency division wireless communication system
KR20070114386A (ko) 송신장치, 송신방법, 수신장치 및 수신방법