EP1059012A1 - Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten - Google Patents

Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten

Info

Publication number
EP1059012A1
EP1059012A1 EP99913203A EP99913203A EP1059012A1 EP 1059012 A1 EP1059012 A1 EP 1059012A1 EP 99913203 A EP99913203 A EP 99913203A EP 99913203 A EP99913203 A EP 99913203A EP 1059012 A1 EP1059012 A1 EP 1059012A1
Authority
EP
European Patent Office
Prior art keywords
handover
time slot
time
mobile
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99913203A
Other languages
English (en)
French (fr)
Inventor
Erich Kamperschroer
Uwe Schwark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP99913203A priority Critical patent/EP1059012A1/de
Publication of EP1059012A1 publication Critical patent/EP1059012A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Definitions

  • Telecommunication systems with wireless telecommunication between mobile and / or stationary transceivers are special message systems with a message transmission link between a message source and a message sink, in which for example base stations and mobile parts for message processing and transmission are used as transceivers and in which 1) the message processing and message transmission can take place in a preferred transmission direction (simplex mode) or in both transmission directions (duplex mode), 2) the message processing is preferably digital, 3) the message transmission over the long-distance transmission path is wireless based on various Message transmission method for multiple use of the FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) and / or CDMA (Code Division Multiple Access) - e.g. according to radio standards such as
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Groupe Speciale Mobile or Global System for Mobile Communication; see. Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A.Mann: "The GSM standard - the basis for digital European mobile radio networks", pages 137 to 152 in connection with the publication telekom praxis 4/1993, P. Smolka n GSM radio interface - elements and functions ", 2 pages 17 to 24],
  • Baier "Sp ad-spectrum technology and CDMA - an originally military technology conquered the civilian sector”; (6): IEEE Personal Communications, February 1995, pages 48 to 53; PGAndermo, LM Ewerbring: "An CDMA-Based Radio Access Design for UMTS”; (7): ITG fraberichte 124 (1993), Berlin, Offenbach: VDE Verlag ISBN 3-8007-1965-7, pages 61 to 15; Dr. T.Zimmermann, Siemens AG: "Application of CDMA in mobile communication”; (8): telcom report 16, (1993), volume 1, pages 38 to 41; Dr. T. Ketseoglou, Siemens AG and Dr.
  • the transmission according to (1) ... (3) is normally characterized by continuous (analog) signals, currency ⁇ rend in the transmission according to (4) is usually discontinuous signals (eg, pulses, digital signals) occur.
  • FIGURES 1 to 7 show:
  • FIGURE 1 "three-level structure" of a WCDMA / FDD air interface in the "downlink",
  • FIGURE 2 "three-level structure" of a WCDMA / FDD air interface in the "uplink",
  • FIGURE 3 "three-layer structure" steep a TDCDMA / TDD air interface ⁇
  • FIGURE 4 radio scenario with multiple channel utilization after frequency, / time, / code multiplex
  • FIG. 5 shows the basic structure of a base station designed as a transceiver
  • FIG. 6 shows the basic structure of a mobile station which is also designed as a transceiver
  • FIGURE 7 shows a DECT transmission time frame.
  • the licensed coordinated mobile radio is based on WCDMA technology (Wideband Code Division Multiple Access) and, as with GSM, is operated in FDD mode (Frequency Division Duplex), while in a second sub-scenario the unlicensed uncoded ordinated mobile radio based on TD-CDMA technology (Time Division-Code Division Multiple Access) and, as with DECT, operated in TDD mode (Frequency Division Duplex).
  • the air interface of the telecommunication system in the up and down direction of the telecommunication contains: " UTRA Physical Layer Descripti on FDD Parts "Vers. 0.
  • the respective multi-time frame MZR contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has 16 time slots ZS1 ... ZS16.
  • the individual time slot ZS, ZS1 ... ZS16 (burst) has a pilot sequence PS with Npnot bits for channel estimation, a TPC sequence TPCS with N TPC bits for traffic control (Traffic Power Control). and a TFCI sequence TFCIS with N TFC ⁇ bits for the transport format information (Traffic Format Channel Indication) and with regard to the 5 second physical channel DPDCH a user data sequence NDS with N data bits.
  • WCDMA / FDD Systems from ETSI or ARIB - FIGURE 1 the first physical channel ["Dedicated Physical Control Channel (DPCCH)] and the second physical channel [" Dedicated Physical Data Channel (DPDCH)] are time-multiplexed, while in the "uplink "(Upward direction of telecommunications; radio connection from the mobile station to the base station) - FIGURE 2 - an I / Q multiplex takes place, in which the second physical channel DPDCH is transmitted in the I channel and the first physical channel DPCCH in the Q channel.
  • DPCCH Direct Physical Control Channel
  • DPDCH Dedicated Physical Data Channel
  • the air interface of the telecommunications system the document TSG RAN WG1 based in up and down direction of telecommunications according to (S1. 21): "3 rd Generation Partnership Project (3GPP) "Vers. 0. 0. 0. 1, 1999-01 again on the "three-level structure", consisting of the multi-time frame MZR, the time frame ZR and the time slots ZS, for all physical channels, which is shown in FIG. 3.
  • the respective multi-time frame MZR again contains, for example, 72 time frames ZR, while each time frame ZR, for example, again has the 16 time slots ZS1 ... ZS16.
  • ZS16 (burst) has either according impact ARIB forward a first time slot structure (burst structure) ZSS1 consisting frequency in the order of a first Nutzschulse- NDS1 with N Da tai bits, the pilot -Sequence PS with N P ii ot bits for channel estimation, the TPC sequence TPCS with N TPC bits for power control, the TFCI sequence TFCIS with N TFC ⁇ bits for specifying the transport format, a second user data sequence NDS2 and a guard time zone SZZ (guard period ) with N Gua rd bits, or according to the ETSI proposal, a second time slot structure (burst structure) ZSS2, in the order consisting of the first user data sequence NDS1, a first TFCI sequence 6 TFCIS1, a midamble sequence MIS for channel estimation, a second TFCI sequence TFCIS2, the second user data sequence NDS2 and the protection time zone SZZ.
  • FIGURE 4 shows e.g. based on a GSM radio scenario with e.g. two radio cells and base stations arranged therein (base transceiver station), a first base station BTS1 (transceiver) a first radio cell FZ1 and a second base station BTS2 (transceiver) omnidirectionally "illuminating" a second radio cell FZ2, and starting from the FIGURES 1 and 2 show a radio scenario with multiple use of channels according to frequency / time / code multiplex, in which the base stations BTS1, BTS2 have an air interface designed for the radio scenario with a plurality of mobile stations MSI ... located in the radio cells FZ1, FZ2.
  • MS5 transmitting / receiving device
  • wireless unidirectional or bidirectional - upward direction UL (up link) and / or downward direction DL (down link) - telecommunication are connected or connectable to corresponding transmission channels TRC (transmission channel).
  • the base stations BTS1, BTS2 are connected in a known manner (cf. GSM telecommunications system) to a base station controller BSC (BaseStation Controller) which takes over the frequency management and switching functions as part of the control of the base stations.
  • the base station controller BSC in turn is via a mobile switching center MSC
  • the mobile switching center MSC Mobile Switching Center with the higher-level telecommunications network, e.g. the PSTN (Public Switched Telecommunication Network).
  • the mobile switching center MSC is the administrative center for the telecommunications system shown. It takes over the complete call management and, with associated registers (not shown), the authentication of the telecommunications subscribers and the location monitoring in the network.
  • FIG. 5 shows the basic structure of the base station BTS1, BTS2 designed as a transceiver
  • FIG. 6 shows the basic structure of the base station, also as a 7 / Receiving device trained mobile station MS1 ... MS5 shows.
  • the base station BTS1, BTS2 takes over the sending and receiving of radio messages from and to the mobile station MS1..MS5, while the mobile station MS1 ... MS5 takes over the sending and receiving of radio messages from and to the base station BTS1, BTS2.
  • the base station has a transmitting antenna SAN and a receiving antenna EAN
  • the mobile station MS1 ... MS5 has an antenna ANT that can be controlled by an antenna switchover AU and is common for transmitting and receiving.
  • the base station BTS1, BTS2 receives, for example, at least one radio message FN with a frequency / time / code component from at least one of the mobile stations MS1 ... MS5 via the receive antenna EAN, while the mobile station MS1 ... MS5 in the downward direction (reception path) receives, for example, at least one radio message FN with a frequency / time / code component from at least one base station BTS1, BTS2 via the common antenna ANT.
  • the radio message FN consists of a broadband spread carrier signal with information modulated onto data symbols.
  • the received carrier signal is filtered in a radio receiving device FEE (receiver) and mixed down to an intermediate frequency, which in turn is subsequently sampled and quantized.
  • FEE radio receiving device
  • the signal After an analog / digital conversion, the signal, which has been distorted on the radio path by multipath propagation, is fed to an equalizer EQL, which largely compensates for the distortions (Stw.: Synchronization).
  • a channel estimator KS to estimate the transmission properties of the transmission channel TRC on which the radio message FN has been transmitted.
  • the transmission properties of the channel are specified in the time domain by the channel impulse response. So that the channel impulse response can be estimated, the radio FN sends or assigns special information in the form of a so-called midambel on the transmission side (in the present case from the mobile station MS1 ... MS5 or the base station BTS1, BTS2), which is designed as a training information sequence.
  • a subsequent data detector DD common to all received signals, the individual mobile station-specific signal components contained in the common signal are equalized and separated in a known manner. After equalization and separation, the previously existing data symbols are converted into binary data in a symbol-to-data converter SDW. The original bit stream is then obtained from the intermediate frequency in a demodulator DMOD before the individual time slots are assigned to the correct logical channels and thus also to the different mobile stations in a demultiplexer DMUX.
  • the bit sequence obtained is decoded channel by channel in a channel codec KC.
  • the bit information is assigned to the control and signaling time slot or a voice time slot and - in the case of the base station (FIGURE 5) - the control and signaling data and the voice data for transmission to the base station controller BSC together for signaling and voice coding / decoding (Voice codec) handover the responsible interface SS, while - in the case of the mobile station (FIGURE 6) - the control and signaling data of a control and signaling unit STSE responsible for complete signaling and control of the mobile station and the voice data one for voice input and - output speech codec SPC are passed.
  • the speech data are stored in a predetermined data stream (for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction).
  • a predetermined data stream for example 64 kbit / s stream in the network direction or 13 kbit / s stream from the network direction.
  • the base station BTS1, BTS2 sends, for example, at least one radio message FN with a frequency / time / code component to at least one of the mobile stations MS1 ... MS5 via the transmitting antenna SAN, while the mobile station MS1 ... MS5 in the upward direction (transmission path) via the common antenna ANT, for example, sends at least one radio message FN with a frequency / time / code component to at least one base station BTS1, BTS2.
  • the transmission path begins at the base station BTS1, BTS2 in
  • FIGURE 5 with the fact that in the channel codec KC control and signaling data as well as voice data received from the base station controller BSC via the interface SS are assigned to a control and signaling time slot or a voice time slot and these are coded channel by channel into a bit sequence.
  • the transmission path begins at the mobile station MS1 ... MS5 in FIGURE 6 with the fact that in the channel codec KC speech data received from the speech codec SPC and control and signaling data received from the control and signaling unit STSE a control and signaling time slot or are assigned to a speech time slot and these are coded channel-wise into a bit sequence.
  • the bit sequence obtained in the base station BTS1, BTS2 and in the mobile station MS1 ... MS5 is in each case converted into data symbols in a data-to-symbol converter DSW. Subsequently, the data symbols are each in a spreading device SPE with a subscriber-specific one
  • the burst generator BG consisting of a burst composer BZS and a multiplexer MUX
  • BG consisting of a burst composer BZS and a multiplexer MUX
  • FSE transmitter
  • TDD Time Division Duplex
  • a TDD telecommunication system which has such a transmission time frame is e.g. the well-known DECT system [Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb. No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 15-1... 9, October 1992 and the DECT publication of the DECT Forum, February 1991, pages 1 to 16].
  • DECT system Digital Enhanced (formerly: European) Cordless Telecommunication; see. Telecommunications Electronics 42 (1992) Jan. / Feb. No. 1, Berlin, DE; U. Pilger "Structure of the DECT standard", pages 23 to 29 in connection with the ETSI publication ETS 3001 15-1... 9, October 1992 and the DECT publication of the DECT Forum, February 1991, pages 1 to 16].
  • FIGURE 7 shows a DECT transmission time frame with a duration of 10 ms, consisting of 12 "downlink , N time slots and 12" uplink w time slots.
  • Time slot ZS D0WN and the "uplink" time slot ZS UP also 11 according to the DECT standard is half the length (5 ms) of the DECT transmission time frame.
  • FDD (Frequency Division Duplex) telecommunication systems are telecommunication systems in which the time frame, consisting of several time slots, is transmitted in a first frequency band for the downlink direction and in a second frequency band for the uplink direction.
  • An FDD telecommunications system that transmits the time frame in this way is, for example, the well-known GSM system [Groupe Speciale Mobile or Global System for Mobile Communication; see. Informatik Spektrum 14 (1991) June, No. 3, Berlin, DE; A.Mann: "The GSM standard - the basis for digital European of specific mobile unknetze f" th Be 131-152 in connection with the publication telecom practice 4/1993, P. Smolka "GSM radio interface '- elements and Functions", Pages 11 to 24].
  • the air interface for the GSM system knows a variety of logical channels called bearer services, e.g. an AGCH channel (Access Grant CHannel), a BCCH channel (BroadCast CHannel), a FACCH channel (Fast Associated Control CHannel), a PCH channel (Paging CHhannel), an RACH channel (Random Access CHannel) and a TCH channel (Traffic CHannel), whose respective function in the air interface, for example in the publication Informatik Spektrum 14 (1991) June, No.
  • AGCH channel Access Grant CHannel
  • BCCH channel BroadCast CHannel
  • FACCH channel Fest Associated Control CHannel
  • PCH channel Paging CHhannel
  • RACH channel Random Access CHannel
  • TCH channel Traffic CHannel
  • the biggest difference between the GSM system, which has a frequency and time level and is operated in a coordinated, licensed mode, and the DECT system, which also has a frequency and time level, which operates in a 12 nem uncoordinated, unlicensed mode is the way in which the physical resource "channel" is assigned to the respective system subscriber or telecommunications subscriber.
  • the channel allocation is controlled by a central entity, the network operator. This is possible because all the mobile stations within a radio area of a base station use the same time base, that is, they are operated synchronously. The synchronous operation allows a clear definition of time slot boundaries and thus a clear separation from different telecommunication participants. Adjacent base stations do not need to be operated synchronously, since the channels which are used in adjacent radio cells are generally separated by frequency planning in the frequency level. This type of channel allocation is referred to as "Fixed Channel Allocation (FCA)".
  • FCA Fixed Channel Allocation
  • the channels are first selected dynamically - "Dynamic Channel Selection (DCS)" - and then allocated.
  • the frequency / time level serves both for “Dynamic Channel Selection (DCS)” and for channel allocation as a platform or “pool".
  • DCS Dynamic Channel Selection
  • the handset regularly monitors the frequency / time level and finally selects the frequency / time slot combination in which the transmission channel is least disturbed by interference.
  • neighboring, uncoordinated operating base stations and mobile parts are always asynchronous and therefore the time bases run into one another or drift into one another, a situation often arises where the degree of interference reaches an unacceptable value.
  • a forwarding of the telecommunications connection - a handover - to another channel, ie a different frequency / time slot combination, 13 leads or is initiated. In such a case one speaks of an "intra cell handover".
  • the WCDMA / FDD operation and the TDCDMA / TDD operation should be used together in the context of the UMTS scenario (3rd mobile radio generation or IMT-2000), in addition to efficient handling of the logical channels and the transmission path services ( bearer handling) especially for the above reasons, the implementation of a suitable "handover" procedure for telecommunication systems with wireless, based on code and time division multiplex telecommunication between mobile and / or stationary transceivers is indispensable.
  • the object on which the invention is based is to provide a secure "handover" procedure for telecommunication systems with wireless telecommunications based on code and time division multiplexing between mobile and / or stationary transceivers after the display of a "handover".
  • the idea underlying the invention is that - according to claim 1 - for telecommunications systems with wireless, based on code and time division multiplex telecommunications between mobile and / or stationary transceivers, both in the TDD mode and in the FDD mode 1) during a first phase of a "handover" procedure, the display of a "handover", a "handover” time slot pair is determined by a stationary transceiver, 2) during a second phase of the "handover M -Procedure, the initiation of a "handover", the stationary transceiver sends a first message "handover request" to the stationary transceiver associated mobile transceiver, with which the stationary 14 ordinary transceivers notify the mobile transceivers of the "handover” time slot pair, and the stationary transceiver sends the first message "handover request" to the mobile transceivers until all of the stationary ones Mobile transceivers assigned to the transceiver have confirmed the initiation of the "handover” by the first message, 3) during
  • FIGS. 8 to 10. show:
  • FIG. 8 shows a comparison with the time frames in FIGS. 1 to 3 and the DECT transmission time frame in FIG. 7 with regard to the number of time slots (modified) TDD time-division multiplex frames,
  • FIG. 9 on the basis of the time-division multiplex frame according to FIG. 8, a channel allocation table for channels with a frequency, code and time-division multiplex component,
  • FIGURE 10 is a message flow diagram of a "handover" procedure.
  • FIGURE 8 shows, starting from the time frames in FIGS. 1 to 3 and the DECT transmission time frame in FIGURE 7, a (modified) TDD time-division multiplex frame ZMR with eight time slots ZS ⁇ 1 ... ZS ⁇ 8, the first four time slots ZS ⁇ 1 ... ZS for the downward transmission direction DL and the second four time slots ZS 5 ... ZS ⁇ 8 for the upward transmission direction UL are provided.
  • the number of time slots is from "16" according to FIGURES 1 and 3 to "8" only for reasons of illustration for the channel allocation table. 15 le has been reduced in FIGURE 9 and has no restrictive, limiting influence on the invention. On the contrary - the number of time slots - like the other physical resources (eg code, frequency, etc.) - can be varied to a greater or lesser extent depending on the telecommunications system.
  • FIGURE 9 shows, based on the time-division multiplex frame according to FIGURE 8, a channel allocation table for channels with a frequency, code and time-division multiplex component.
  • the time division multiplex component of this table comprises the time slots ZS 1 ... ZS ⁇ 8 with the TDD division according to FIG. 8.
  • the frequency ultiplex component comprises 12 frequencies FR1 ... FR12, while the code multiplex component 8 codes (pseudo Random signals) C1 ... C8 contains.
  • RACH channel, the TCH channel and / or the FACCH channel, which are required in the telecommunication system in the downward direction and / or upward direction, are bundled in a code level spanned by the codes C1 ... C8.
  • This bundling has proven to be expedient for the above-mentioned telecommunication systems because it avoids unnecessary occupancy of time slots, that is to say the resource “time”.
  • FIGURE 9 shows a preferred embodiment according to which on the first frequency FR1 in the downward transmission direction in a first time slot ZS ⁇ 1 as a fixedly specified (agreed) first selection time slot and in the upward transmission direction in a fifth time slot ZS ⁇ 5 as a fixedly specified (agreed) second selection time slot, preferably all codes C1 ... C8 are used to bundle the above-mentioned transmission path services.
  • all codes C1 ... C8 are used to bundle the above-mentioned transmission path services.
  • time slot ZS 2 six codes - a first code Cl, a second code C2, a third code C3, a fourth code C4, a fifth code C5 and a sixth code C6 - and in the upward transmission direction in a sixth time slot ZS ⁇ 6 again the six Codes C1 ... C6, while the second group of telecommunication connections G2 on the second frequency FR2 in the downward transmission direction occupies the first code Cl in a fourth time slot ZSM and in the upward transmission direction in an eighth time slot ZS ⁇ 8.
  • the fourth time slot ZS and the second time slot ZS ⁇ 2 are “downlink” time slots ZSDOWN, while the sixth time slot ZS ⁇ 6 and the eighth time slot ZS ⁇ 8 are “uplink” time slots ZSU P.
  • a first distance AS1 between the "downlink" time slot ZSDOWN and the "uplink” time slot ZSU P - according to the prior art (cf. FIG. 7) - is as long as half
  • Time division frame ZMR The distance AS1 is thus a fraction of the length of the time-division multiplex frame ZMR, the fraction having the value 0.5.
  • the fourth time slot ZSM and the second time slot ZS X 2 are “downlink” time slots ZSDOWN, while the seventh time slot ZS ⁇ 7 and the fifth time slot ZS 5 are “uplink” time slots ZSup.
  • a second distance AS2 between the "downlink" time slot ZSDOWN and the "uplink" time slot ZSup is as long as a fraction (distance) of the length of the time-division multiplex frame ZMR, the fraction being dimensioned and larger or smaller than the value 0.5 such that the second distance AS2 is fixed.
  • the first group of telecommunication connections Gl occupies the four codes C1 ... C4 in the downward transmission direction on a sixth frequency FR6 in the second time slot ZS 2 and in the upward transmission direction on a fifth frequency FR5 in the eighth time slot ZS ⁇ 8 the six codes C1 ... C6 as well as a seventh code C7 and an eighth code C8, while the second group of telecommunication connections G2 in the downward transmission direction on the sixth frequency FR6 in a third time slot ZS ⁇ 3 the codes C1 ... C3 and in the upward direction - Direction of transmission on the fifth frequency FR5 in the fifth time slot ZS ⁇ 5 occupies the codes C1 ... C4.
  • the second time slot ZS ⁇ 2 and the third time slot ZS ⁇ 3 are “downlink” time slots ZSDOWN, while the eighth time slot ZS ⁇ 8 and the fifth time slot ZS ⁇ 5 are “uplink” time slots ZSup.
  • a third distance AS3 between the "downlink" time slot ZS D OWN and the "uplink” time slot ZSup is a fractional distance of the length of the time-division multiplex frame ZMR, the fraction in each case is dimensioned such that the third distance AS3 is variable.
  • the first group of telecommunications connections Gl occupies the first code C1 in the downward transmission direction on an eighth frequency FR8 in the fourth time slot ZSM and in the upward transmission direction on a ninth frequency FR9 in the sixth time slot ZS ⁇ 6 the seven codes C1 ... C7, while the second group of telecommunication connections G2 in the downward transmission direction on the eighth frequency FR8 in the third time slot ZS ⁇ 3 the first code Cl and in the upward transmission direction on the ninth frequency FR9 in the fifth time slot ZS ⁇ 5 the first Code C1 occupied.
  • the fourth time slot ZSM and the third time slot ZS 3 are “downlink” time slots ZS DOWN , while the sixth time slot ZS ⁇ 6 and the fifth time slot ZS'5 are “uplink” time slots ZSup.
  • a fourth distance AS4 between the "downlink" time slot ZS DO W N and the "uplink” time slot ZS UP is a fraction (distance) of the length of the time-division multiplex frame ZMR, the Fraction is dimensioned so that the fourth distance AS4 is fixed.
  • the first group of telecommunication connections G1 on an eleventh frequency FR11 in the downward transmission direction in the fourth time slot ZSM occupies the first code Cl and the second code C2 and in the upward transmission direction in the fifth time slot ZS ⁇ 5 the first code Cl and the second code C2, while the second group of telecommunication connections G2 on the eleventh frequency FR11 in the downward transmission direction in the first time slot ZS 1 occupies the codes C1 ... C5 and in the upward transmission direction in the eighth time slot ZS ⁇ 8 the codes C1 ... C3.
  • the fourth time slot ZSM and the first time slot ZS ⁇ 1 are “downlink” time slots ZS D OWN, while the fifth time slot ZS ⁇ 5 and the eighth time slot ZS ⁇ 8 are “uplink” time slots ZSU P.
  • a fifth distance AS5 between the "downlink" time slot ZSDOWN and the "uplink” time slot ZS UP is as long as a fraction (distance) of the length of the time-division multiplex frame ZMR , the fraction being dimensioned such that the second distance AS2 is variable.
  • the "handover" procedure basically consists of three phases, a first phase, which is referred to as the indication of a "handover” (handover indication), a second phase, which is called the initiation or initiation of a “handover” (handover initiation) is referred to, and a third phase, which is referred to as the execution of a "handover” (handover execution), which take place in the order given.
  • a “handover” is displayed by a base station BS, that is to say a first phase of the “handover” procedure is started.
  • the deterioration in the quality of the service to be transmitted [Quality of Service (QoS)] can alternatively also be determined by a mobile part, a first mobile part MT1, a second mobile part MT2 or an nth mobile part MTn, which then causes this deterioration in the base station BS , for example via the FACCH channel.
  • the base station BS is the "master” with respect to the "handover” procedure, while the mobile part MTl ... MTn is the "slave”.
  • the handset it is also possible for the handset to be the "handover” procedure "Master” and the base station is the "slave”.
  • the mobile parts MTl ... MTn connected to the base station BS change, if the affected mobile parts MTl ... MTn still have to transmit current data, immediately after receiving the first message Ml from the telecommunication time slot pair to the "handover" time slot pair In this case, the data transmission in the pair of telecommunication slots is ended and in the “handover” slot pair continues seamlessly.
  • the respective mobile part MT1 ... MTn transmits a second message "Handover Confirm" M2 on a signaling channel to the base station BS.
  • the base station BS thus receives data simultaneously in the pair of telecommunications timeslots and the "handover" pair of timeslots and, on the other hand, receives the second message M2
  • Initiation of the "handover" by the first message Ml is ultimately regarded as confirmed by the base station BS if - in the former case - those transmitted by the respective handset MTl ... MTn on the "uplink" time slot of the "handover" time slot pair Data are received from the base station BS without errors or if - in the second case - the base station BS receives the second message M2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Um für Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten nach dem Anzeigen eines "Handover" eine sichere "Handover"-Prozedur anzugeben, wird sowohl in dem TDD-Modus als auch in dem FDD-Modus 1) während einer ersten Phase einer "Handover"-Prozedur, dem Anzeigen eines "Handover", ein "Handover"-Zeitschlitzpaar von einem stationären Sende-/Empfangsgerät (BS) ermittelt, 2) während einer zweiten Phase der "Handover"-Prozedur, dem Initiieren eines "Handover", das stationäre Sende-/Empfangsgerät (BS) eine erste Meldung "Handover Request" an dem stationären Sende-/Empfangsgerät zugeordnete mobile Sende-/Empfangsgeräte (MT1...MTn) senden, mit der das stationäre Sende-/Empfangsgerät den mobilen Sende-/Empfangsgeräten das "Handover"-Zeitschlitzpaar mitteilt, und das stationäre Sende-/Empfangsgerät die erste Meldung "Handover Request" solange an die mobilen Sende-/Empfangsgeräte sendet, bis alle dem stationären Sende-/Empfangsgerät zugeordneten mobilen Sende-/Empfangsgeräte das Initiieren des "Handover" durch die erste Meldung bestätigt haben, 3) während einer dritten Phase der "Handover"-Prozedur, dem Ausführen eines "Handover", die "Handover"-Prozedur beendet.

Description

Beschreibung
Telekommunikationssysteme mit drahtloser, auf Code- und Zeit- multiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten
Telekommunikationssysteme mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten sind spezielle Nachrichtensysteme mit einer Nachrichtenüber- tragungsstrecke zwischen einer Nachrichtenquelle und einer Nachrichtensenke, bei denen beispielsweise Basisstationen und Mobilteile zur Nachrichtenverarbeitung und -Übertragung als Sende- und Empfangsgeräte verwendet werden und bei denen 1) die Nachrichtenverarbeitung und Nachrichtenübertragung in einer bevorzugten Übertragungsrichtung (Simplex-Betrieb) oder in beiden Übertragungsrichtungen (Duplex-Betrieb) erfolgen kann, 2) die Nachrichtenverarbeitung vorzugsweise digital ist, 3) die Nachrichtenübertragung über die Fernübertragungs- strecke drahtlos auf der Basis von diversen Nachrichtenübertragungsverfahren zur Mehrfachausnutzung der Nachrichtenübertragungsstrecke FDMA (Frequency Division Multiple Access) , TDMA (Time Division Multiple Access) und/oder CDMA (Code Di- vision Multiple Access) - z.B. nach Funkstandards wie
DECT [Digital Enhanced (früher: European) Cordless Telecom u- nication; vgl. Nachrichtentechnik Elektronik 42 (1992) Jan. /Feb. Nr. 1 , Berlin, DE; U. Pilger "Struktur des DECT- Standards" , Sei ten 23 bis 29 in Verbindung mit der ETSI- Publikation ETS 3001 75-1 . . . 9, Oktober 1992 und der DECT-
Publikation des DECT-Forum, Februar 1997, Sei ten 1 bis 1 6] , GSM [Groupe Speciale Mobile oder Global System for Mobile Communication; vgl. Informatik Spektrum 14 (1991) Juni , Nr. 3, Berlin, DE; A.Mann : "Der GSM-Standard - Grundlage für di - gi tale europäische Mobil f unknetze" , Sei ten 137 bis 152 in Verbindung mit der Publikation telekom praxis 4/1993, P. Smolka nGSM-Funkschni ttstelle - Elemente und Funktionen", 2 Seiten 17 bis 24] ,
UMTS [Universal Mobile Telecommunication System; vgl. (1) : Nachrichtentechnik Elektronik, Berlin 45, 1995, Heft 1, Seiten 10 bis 14 und Heft 2, Seiten 24 bis 27; P.Jung, B.Steiner: "Konzept eines CDMA-Mobilfunksystems mit gemeinsamer Detektion für die dritte Mobil funkgeneration" ; (2) : Nachrichtentechnik Elektronik, Berlin 41, 1991, Heft 6, Seiten 223 bis 227 und Seite 234; P.W. Baier, P.Jung, A. Klein: "CDMA - ein günstiges Vielfachzugriffsverfahren für frequenzselek- tive und zeitvariante Mobilfunkkanäle" ; (3) : IEICE Transacti- ons on Fundamentals of Electonics, Communications and Computer Sciences, Vol. E79-A, No. 12, December 1996, Seiten 1930 bis 1937; P.N. Baier, P.Jung: "CDMA Myths and Realities Revi- sited"; (4) : IEEE Personal Communications , February 1995, Seiten 38 bis 41; A.ürie, M.Streeton, C.Mourot: "An Advanced TDMA Mobile Access System for UMTS"; (5) : telekom praxis, 5/1995, Seiten 9 bis 14; P. VI. Baier: " Sp r e ad- Spectrum- Technik und CDMA - eine ursprünglich militärische Technik erobert den zivilen Bereich"; (6) : IEEE Personal Communications , February 1995, Seiten 48 bis 53; P.G.Andermo, L.M. Ewerbring: "An CDMA- Based Radio Access Design for UMTS"; (7) : ITG Fachberichte 124 (1993), Berlin, Offenbach: VDE Verlag ISBN 3-8007-1965-7, Seiten 61 bis 15; Dr. T.Zimmermann, Siemens AG: "Anwendung von CDMA in der Mobilkommunikation" ; (8) : telcom report 16, (1993), Heft 1, Seiten 38 bis 41; Dr. T. Ketseoglou, Siemens AG und Dr. ■ T.Zimmermann, Siemens AG: "Effizienter Teilnehmerzugriff für die 3. Generation der Mobilkommunikation - Vielfachzugriff sver fahren CDMA macht Luft schnitt stelle flexibler"; (9): Funkschau 6/98: R.Siet ann "Ringen um die UMTS- Schnittstelle", Seiten 16 bis 81] ACS oder PACS, IS-54, IS- 95, PHS, PDC etc. [vgl. IEEE Communications Magazine, January 1995, Seiten 50 bis 57; D.D. Falconer et al:"Time Division Multiple Access Methods for ireless Personal Communications"] erfolgt. 3 "Nachricht" ist ein übergeordneter Begriff, der sowohl für den Sinngehalt (Information) als auch für die physikalische Repräsentation (Signal) steht. Trotz des gleichen Sinngehal¬ tes einer Nachricht - also gleicher Information - können un- terschiedliche Signalformen auftreten. So kann z.B. eine einen Gegenstand betreffende Nachricht
(1) in Form eines Bildes,
(2) als gesprochenes Wort,
(3) als geschriebenes Wort, (4) als verschlüsseltes Wort oder Bild übertragen werden.
Die Übertragungsart gemäß (1) ... (3) ist dabei normalerweise durch kontinuierliche (analoge) Signale charakterisiert, wäh¬ rend bei der Übertragungsart gemäß (4) gewöhnlich diskontinu- ierliche Signale (z.B. Impulse, digitale Signale) entstehen.
Die nachfolgenden FIGUREN 1 bis 7 zeigen:
FIGUR 1 "Drei-Ebenen-Struktur" einer WCDMA/FDD-Luftschnitt- stelle im „Downlink",
FIGUR 2 "Drei-Ebenen-Struktur" einer WCDMA/FDD-Luftschnitt- stelle im „Uplink",
FIGUR 3 "Drei-Ebenen-Struktur" einer TDCDMA/TDD-Luftschnitt¬ steile,
FIGUR 4 Funkszenario mit Kanal-Mehrfachausnutzung nach dem Frequenz-, /Zeit-, /Codemultiplex,
FIGUR 5 den prinzipiellen Aufbau einer als Sende-/Empfangs- gerät ausgebildeten Basisstation,
FIGUR 6 den prinzipiellen Aufbau einer ebenfalls als Sende- /Empfangsgerät ausgebildeten Mobilstation,
FIGUR 7 einen DECT-Ubertragungszeitrahmen. Im UMTS-Szenario (3. Mobilfunkgeneration bzw. IMT-2000) gibt es z.B. gemäß der Druckschrift Funkschau 6/98 : R. Sietmann "Ringen um die UMTS-Schni ttstelle" , Sei ten 16 bis 81 zwei Teilszenarien. In einem ersten Teilszenario wird der lizen- sierte koordinierte Mobilfunk auf einer WCDMA-Technologie (Wideband Code Division Multiple Access) basieren und, wie bei GSM, im FDD-Modus (Frequency Division Duplex) betrieben, während in einem zweiten Teilszenario der unlizensierte unko- ordinierte Mobilfunk auf einer TD-CDMA-Technologie (Time Division-Code Division Multiple Access) basieren und, wie bei DECT, im TDD-Modus (Frequency Division Duplex) betrieben wird.
Für den WCDMA/FDD-Betrieb des Universal-Mobil-Telekommunika- tion-Systems enthält die Luftschnittstelle des Telekommunikationsystems in Auf- und Abwärtsrichtung der Telekommunikation gemäß der Druckschrift ETSI STC SMG2 UMTS-Ll , Tdoc SMG2 UMTS- Ll 1 63/98 : " UTRA Physical Layer Descripti on FDD Parts" Vers . 0. 3, 1998-05-29 jeweils mehrere physikalische Kanäle, von denen ein erster physikalischer Kanal, der sogenannte Dedicated Physical Control CHannel DPCCH, und ein zweiter physikalischer Kanal, der sogenannte Dedicated Physical Data CHannel DPDCH, in bezug auf eine "Drei-Ebenen-Struktur" (three-layer- structure) , bestehend aus 720 ms lange (TMZR=720 ms) Multi- zeitrahmen* (super frame) MZR, 10 ms lange (TFZR=10 ms) Zeitrahmen (radio frame) ZR und 0,625 ms lange (Tzs=0, 625 ms) Zeitschlitzen (timeslot) ZS , die in den FIGUREN 1 und 2 dargestellt sind. Der jeweilige Multizeitrahmen MZR enthält z.B. 72 Zeitrahmen ZR, während jeder Zeitrahmen ZR z.B. wiederum 16 Zeitschlitze ZS1...ZS16 aufweist. Der einzelne Zeitschlitz ZS, ZS1...ZS16 (Burst) weist bezüglich des ersten physikalischen Kanals DPCCH als Burststruktur eine Pilot-Sequenz PS mit Npnot Bits zur Kanalschätzung, eine TPC-Sequenz TPCS mit NTPC-Bits zur Leistungsregelung (Traffic Power Control) und eine TFCI-Sequenz TFCIS mit NTFCτ-Bits zur Transportformatangäbe (Traffic Format Channel Indication) sowie bezüglich des 5 zweiten physikalischen Kanals DPDCH eine Nutzdatensequenz NDS mit NData-Bits auf.
Im "Downlink" (Abwärtsrichtung der Telekommunikation; Funk- Verbindung von der Basisstation zur Mobilstation) des
WCDMA/FDD Systems von ETSI bzw. ARIB - FIGUR 1 - werden der erste physikalische Kanal ["Dedicated Physical Control Channel (DPCCH) ] und der zweite physikalische Kanal ["Dedicated Physical Data Channel (DPDCH) ] zeitlich gemultiplext, während im "Uplink" (Aufwärtsrichtung der Telekommunikation; Funkverbindung von der Mobilstation zur Basisstation) - FIGUR 2 - ein I/Q-Multiplex stattfindet, bei dem der zweite physikalische Kanal DPDCH im I-Kanal und der erste physikalische Kanal DPCCH im Q-Kanal übertragen werden.
Für den TDCDMA/TDD-Betrieb des Universal-Mobil-Telekommunika- tion-Systems basiert die Luftschnittstelle des Telekommunikationsystems in Auf- und Abwärtsrichtung der Telekommunikation gemäß der Druckschrift TSG RAN WG1 (S1 . 21 ) : "3rd Generation Partnership Project (3GPP) " Vers . 0. 0. 1 , 1999-01 wiederum auf die "Drei-Ebenen-Struktur", bestehend aus den Multizeitrahmen MZR, den Zeitrahmen ZR und den Zeitschlitzen ZS, für sämtliche physikalischen Kanäle, die in FIGUR 3 dargestellt ist. Der jeweilige Multizeitrahmen MZR enthält wiederum z.B. 72 Zeitrahmen ZR, während jeder Zeitrahmen ZR z.B. wiederum die 16 Zeitschlitze ZS1...ZS16 aufweist. Der einzelne Zeitschlitz ZS, ZS1...ZS16 (Burst) weist entweder gemäß dem ARIB-Vor- schlag eine erste Zeitschlitzstruktur (Burststruktur) ZSS1, in der Reihenfolge bestehend aus einer ersten Nutzdatense- quenz NDS1 mit NDatai-Bits, der Pilot-Sequenz PS mit NPiiot Bits zur Kanalschätzung, der TPC-Sequenz TPCS mit NTPC-Bits zur Leistungsregelung, der TFCI-Sequenz TFCIS mit NTFCτ-Bits zur Transportformatangabe, einer zweiten Nutzdatensequenz NDS2 und einer Schutzzeitzone SZZ (guard period) mit NGuard-Bits, oder gemäß dem ETSI-Vorschlag eine zweite Zeitschlitzstruktur (Burststruktur) ZSS2, in der Reihenfolge bestehend aus der ersten Nutzdatensequenz NDS1, einer ersten TFCI-Sequenz 6 TFCIS1, einer Midamble-Sequenz MIS zur Kanalschätzung, einer zweiten TFCI-Sequenz TFCIS2, der zweiten Nutzdatensequenz NDS2 und der Schutzzeitzone SZZ auf.
FIGUR 4 zeigt z.B. auf der Basis eines GSM-Funkszenarios mit z.B. zwei Funkzellen und darin angeordneten Basisstationen (Base Transceiver Station) , wobei eine erste Basisstation BTS1 (Sender/Empfänger) eine erste Funkzelle FZ1 und eine zweite Basisstation BTS2 (Sende-/Empfangsgerät) eine zweite Funkzelle FZ2 omnidirektional "ausleuchtet", und ausgehend von den FIGUREN 1 und 2 ein Funkszenario mit Kanal-Mehrfach- ausnutzung nach dem Frequenz-/Zeit-/Codemultiplex, bei dem die Basisstationen BTS1, BTS2 über eine für das Funkszenario ausgelegte Luftschnittstelle mit mehreren in den Funkzellen FZ1, FZ2 befindlichen Mobilstationen MSI...MS5 (Sende-/Emp- fangsgerät) durch drahtlose uni- oder bidirektionale - Aufwärtsrichtung UL (Up Link) und/oder Abwärtsrichtung DL (Down Link) - Telekommunikation auf entsprechende Übertragungkanäle TRC (Transmission Channel) verbunden bzw. verbindbar sind. Die Basisstationen BTS1, BTS2 sind in bekannter Weise (vgl. GSM-Telekommunikationssystem) mit einer Basisstationssteuerung BSC (BaseStation Controller) verbunden, die im Rahmen der Steuerung der Basisstationen die Frequenzverwaltung und Vermittlungsfunktionen übernimmt. Die Basisstationssteuerung BSC ist ihrerseits über eine Mobil-Vermittlungsstelle MSC
(Mobile Switching Center) mit dem übergeordneten Telekommunikationsnetz, z.B. dem PSTN (Public Switched Telecommunication Network) , verbunden. Die Mobil-Vermittlungsstelle MSC ist die Verwaltungszentrale für das dargestellte Telekommunikations- syste . Sie übernimmt die komplette Anrufverwaltung und mit angegliederten Registern (nicht dargestellt) die Authentisie- rung der Telekommunikationsteilnehmer sowie die Ortsüberwachung im Netzwerk.
FIGUR 5 zeigt den prinzipiellen Aufbau der als Sende-/Emp- fangsgerät ausgebildeten Basisstation BTS1, BTS2, während FIGUR 6 den prinzipiellen Aufbau der ebenfalls als Sende- 7 /Empfangsgerät ausgebildeten Mobilstation MS1...MS5 zeigt. Die Basisstation BTS1, BTS2 übernimmt das Senden und Empfangen von Funknachrichten von und zur Mobilstation MS1..MS5, während die Mobilstation MS1...MS5 das Senden und Empfangen von Funknachrichten von und zur Basisstation BTS1, BTS2 übernimmt. Hierzu weist die Basisstation eine Sendeantenne SAN und eine Empfangsantenne EAN auf, während die Mobilstation MS1...MS5 eine durch eine Antennenumschaltung AU steuerbare für das Senden und Empfangen gemeinsame Antenne ANT aufweist. In der Aufwärtsrichtung (Empfangspfad) empfängt die Basisstation BTS1, BTS2 über die Empfangsantenne EAN beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit- /Code-Komponente von mindestens einer der Mobilstationen MS1...MS5, während die Mobilstation MS1...MS5 in der Ab- wärtsrichtung (Empfangspfad) über die gemeinsame Antenne ANT beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit-/Code-Komponente von mindestens einer Basisstation BTS1, BTS2 empfängt. Die Funknachricht FN besteht dabei aus einem breitbandig gespreizten Trägersignal mit einer aufmodulierten aus Datensymbolen zusammengesetzten Information.
In einer Funkempfangseinrichtung FEE (Empfänger) wird das empfangene Trägersignal gefiltert und auf eine Zwischenfre- quenz heruntergemischt, die ihrerseits im weiteren abgetastet und quantisiert wird. Nach einer Analog/Digital-Wandlung wird das Signal, das auf dem Funkweg durch Mehrwegeausbreitung verzerrt worden ist, einem Equalizer EQL zugeführt, der die Verzerrungen zu einem großen Teil ausgleicht (Stw. : Synchro- nisation) .
Anschließend wird in einem Kanalschätzer KS versucht die Übertragungseigenschaften des Übertragungskanals TRC auf dem die Funknachricht FN übertragen worden ist, zu schätzen. Die Übertragungseigenschaften des Kanals sind dabei im Zeitbereich durch die Kanalimpulsantwort angegeben. Damit die Kanalimpulsantwort geschätzt werden kann, wird der Funknach- rieht FN sendeseitig (im vorliegenden Fall von der Mobilstation MS1...MS5 bzw. der Basisstation BTS1, BTS2) eine spezielle, als Trainingsinformationssequenz ausgebildete Zusatzinformation in Form einer sogenannten Midambel zugewiesen bzw. zugeordnet.
In einem daran anschließenden für alle empfangenen Signale gemeinsamen Datendetektor DD werden die in dem gemeinsamen Signal enthaltenen einzelnen mobilstationsspezifischen Si- gnalanteile in bekannter Weise entzerrt und separiert. Nach der Entzerrung und Separierung werden in einem Symbol-zuDaten-Wandler SDW die bisher vorliegenden Datensymbole in binäre Daten umgewandelt. Danach wird in einem Demodulator DMOD aus der Zwischenfrequenz der ursprüngliche Bitstrom gewonnen, bevor in einem Demultiplexer DMUX die einzelnen Zeitschlitze den richtigen logischen Kanälen und damit auch den unterschiedlichen Mobilstationen zugeordnet werden.
In einem Kanal-Codec KC wird die erhaltene Bitsequenz kanal- weise decodiert. Je nach Kanal werden die Bitinformationen dem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeitschlitz zugewiesen und - im Fall der Basisstation (FIGUR 5) - die Kontroll- und Signalisierungsdaten und die Sprachdaten zur Übertragung an die Basisstationssteuerung BSC gemeinsam einer für die Signalisierung und Sprachcodierung/- decodierung (Sprach-Codec) zuständigen Schnittstelle SS übergeben, während - im Fall der Mobilstation (FIGUR 6) - die Kontroll- und Signalisierungsdaten einer für die komplette Signalisierung und Steuerung der Mobilstation zuständigen Steuer- und Signalisiereinheit STSE und die Sprachdaten einem für die Spracheingabe und -ausgäbe ausgelegten Sprach-Codec SPC übergeben werden.
In dem Sprach-Codec der Schnittstelle SS in der Basisstation BTS1, BTS2 werden die Sprachdaten in einem vorgegebenen Datenstrom (z.B. 64kbit/s-Strom in Netzrichtung bzw. 13kbit/s- Strom aus Netzrichtung) . In einer Steuereinheit STE wird die komplette Steuerung der Basisstation BTS1, BTS2 durchgeführt.
In der Abwärtsrichtung (Sendepfad) sendet die Basisstation BTS1, BTS2 über die Sendeantenne SAN beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit-/Code- Komponente an mindestens eine der Mobilstationen MS1...MS5, während die Mobilstation MS1...MS5 in der Aufwärtsrichtung (Sendepfad) über die gemeinsame Antenne ANT beispielsweise mindestens eine Funknachricht FN mit einer Frequenz-/Zeit- /Code-Komponente an mindestens einer Basisstation BTS1, BTS2 sendet.
Der Sendepfad beginnt bei der Basisstation BTS1, BTS2 in
FIGUR 5 damit, daß in dem Kanal-Codec KC von der Basisstationssteuerung BSC über die Schnittstelle SS erhaltene Kontroll- und Signalisierungsdaten sowie Sprachdaten einem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeit- schlitz zugewiesen werden und diese kanalweise in eine Bitsequenz codiert werden.
Der Sendepfad beginnt bei der Mobilstation MS1...MS5 in FIGUR 6 damit, daß in dem Kanal-Codec KC von dem Sprach-Codec SPC erhaltene Sprachdaten und von der Steuer- und Signalsiereinheit STSE erhaltene Kontroll- und Signalisierungsdaten einem Kontroll- und Signalisierungszeitschlitz oder einem Sprachzeitschlitz zugewiesen werden und diese kanalweise in eine Bitsequenz codiert werden.
Die in der Basisstation BTS1, BTS2 und in der Mobilstation MS1...MS5 gewonnene Bitsequenz wird jeweils in einem Daten- zu-Symbol-Wandler DSW in Datensymbole umgewandelt. Im Anschluß daran werden jeweils die Datensymbole in einer Sprei- zeinrichtung SPE mit einem jeweils teilnehmerindividuellen
Code gespreizt. In dem Burstgenerator BG, bestehend aus einem Burstzusammensetzer BZS und einem Multiplexer MUX, wird da- 10 nach in dem Burstzusammensetzer BZS jeweils den gespreizten Datensymbolen eine Trainingsinformationssequenz in Form einer Mitambel zur Kanalschätzung hinzugefügt und im Multiplexer MUX die auf diese Weise erhaltene Burstinformation auf den jeweils richtigen Zeitschlitz gesetzt. Abschließend wird der erhaltene Burst jeweils in einem Modulator MOD hochfrequent moduliert sowie digital/analog umgewandelt, bevor das auf diese Weise erhaltene Signal als Funknachricht FN über eine Funksendeeinrichtung FSE (Sender) an der Sendeantenne SAN bzw. der gemeinsamen Antenne ANT abgestrahlt wird.
TDD-Telekommunikationsysteme (Time Division Duplex) sind Telekommunikationssysteme, bei denen der Ubertragungszeitrah- men, bestehend aus mehreren Zeitschlitzen, für die Abwärts- Übertragungsrichtung (Downlink) und die Aufwärtsübertragungs- richtung (Uplink) - vorzugsweise in der Mitte - geteilt ist.
Ein TDD-Telekommunikationssystem, das einen derartigen Über- tragungszeitrahmen aufweist, ist z.B. das bekannte DECT- System [Digital Enhanced (früher: European) Cordless Telecom- munication; vgl. Nachrichtentechnik Elektronik 42 (1992) Jan. /Feb. Nr. 1 , Berlin, DE; U. Pilger „Struktur des DECT- Standards " , Sei ten 23 bis 29 in Verbindung mit der ETSI- Publikation ETS 3001 15-1 . . . 9, Oktober 1992 und der DECT- Publikation des DECT-Forum, Februar 1991 , Sei ten 1 bis 16] .
FIGUR 7 zeigt einen DECT-Übertragungszeitrahmen mit einer Zeitdauer von 10 ms, bestehend aus 12 „Downlink,N-Zeitschlit- zen und 12 „Uplinkw-Zeitschlitzen. Für eine beliebige bidi- rektionale Telekommunikationsverbindung auf einer vorgegebenen Frequenz in Abwärtsübertragungsrichtung DL (Down Link) und Aufwärtsübertragungsrichtung UL (Up Link) wird gemäß dem DECT-Standard ein freies Zeitschlitzpaar mit einem „Down- link"-Zeitschlitz ZSDOWN und einem „Uplink"-Zeitschlitz ZSUP ausgewählt, bei dem der Abstand zwischen dem „Downlink"-
Zeitschlitz ZSD0WN und dem „Uplink"-Zeitschlitz ZSUP ebenfalls 11 gemäß dem DECT-Standard die halbe Länge (5 ms) des DECT- Übertragungszeitrahmens beträgt.
FDD-Telekommunikationsysteme (Frequency Division Duplex) sind Telekommunikationssysteme, bei denen der Zeitrahmen, bestehend aus mehreren Zeitschlitzen, für die Abwärtsübertragungs- richtung (Downlink) in einem ersten Frequenzband und für die Aufwärtsübertragungsrichtung (Uplink) in einem zweiten Frequenzband übertragen wird.
Ein FDD-TelekommunikationsSystem, das den Zeitrahmen auf diese Weise überträgt, ist z.B. das bekannte GSM-System [Groupe Speciale Mobile oder Global System for Mobile Communication; vgl. Informatik Spektrum 14 (1991) Juni , Nr. 3, Berlin, DE; A.Mann : "Der GSM-Standard - Grundlage für digitale europäi sche Mobil f unknetze" , Sei ten 131 bis 152 in Verbindung mit der Publikation telekom praxis 4/1993, P. Smolka "GSM-Funkschnittstelle ' - Elemente und Funktionen", Seiten 11 bis 24] .
Die Luftschnittstelle für das GSM-System kennt eine Vielzahl von als Übertragungswegdienste (bearer Services) bezeichneten logischen Kanälen, so z.B. einen AGCH-Kanal (Access Grant CHannel) , einen BCCH-Kanal (BroadCast CHannel, einen FACCH- Kanal (Fast Associated Control CHannel) , einen PCH-Kanal (Pa- ging CHhannel) , einen RACH-Kanal (Random Access CHannel) und einen TCH-Kanal (Traffic CHannel), deren jeweilige Funktion in der Luftschnittselle z.B. in der Druckschrift Informatik Spektrum 14 (1991) Juni , Nr. 3, Berlin, DE; A.Mann: "Der GSM- Standard - Grundlage für digitale europäische Mobilfunknet- ze", Seiten 131 bis 152 in Verbindung mit der Publikation te- lekom praxis 4/1993, P. Smolka "GSM-Funkschnittstelle - Elemente und Funktionen", Seiten 11 bis 24 beschrieben ist.
Der größte Unterschied zwischen dem eine Frequenz- und Zeit- Ebene aufweisenden GSM-System, das in einem koordinierten, lizensierten Modus betrieben wird, und dem ebenfalls eine Frequenz- und Zeit-Ebene aufweisenden DECT-System, das in ei- 12 nem unkoordinierten, unlizensierten Modus betrieben wird, liegt in der Art und Weise, wie die physikalische Ressource "Kanal" dem jeweiligen Sytemteilnehmer bzw. Telekommunikationsteilnehmer zugeteilt wird.
In dem koordinierten, lizensierten Telekommunikationssystem wird die Kanalzuteilung von einer zentralen Instanz, dem Netzbetreiber, gesteuert. Dies ist möglich, weil alle sich innerhalb eines Funkbereichs einer Basisstation aufhaltenden Mobilstationen die gleiche Zeitbasis benutzen, also synchron betrieben werden. Der synchrone Betrieb erlaubt eine klare Definition von Zeitschlitzgrenzen und somit eine klare Trennung von verschiedenen Telekommunikationsteilnehmern. Benachbarte Basisstationen brauchen nicht synchron betrieben wer- den, da die Trennung von Kanälen, die in benachbarten Funkzellen benutzt werden, im allgemeinen durch eine Frequenzplanung in der Frequenz-Ebene erfolgt. Diese A-rt der Kanalzuteilung wird als "Fixed Channel Allocation (FCA) " bezeichnet.
In dem unkoordinierten unlizensierten Telekommunikationssystem, wo eine solche zentrale Instanz für die Kanalzuteilung nicht vorhanden ist, werden die Kanäle zunächst dynamisch ausgewählt - "Dynamic Channel Selection (DCS) " - und dann zugeteilt. Die Frequenz-/Zeit-Ebene dient dabei sowohl für die "Dynamic Channel Selection (DCS)" als auch für die Kanalzuteilung als Plattform bzw. "pool" . In einem solchen System überwacht das Mobilteil regelmäßig die Frequenz-/Zeit-Ebene und wählt schließlich die Frequenz-/Zeitschlitzkombination aus, bei der Übertragungskanal am wenigsten durch auftretende Interferenzen gestört ist. Dadurch, daß benachbarte unkoordi- niert operierende Basisstationen und Mobilteile immer asynchron sind und deshalb die Zeitbasen gegenseitig ineinanderlaufen bzw. ineinanderdriften, entsteht häufig eine Situation, wo der Grad der Interferenz einen inakzeptablen Wert er- reicht. In diesem Fall, muß ein Weiterreichen der Telekommun- kationsverbindung - ein Handover" - auf einen anderen Kanal, sprich einer anderen Frequenz-/Zeitschlitzkombination einge- 13 leitet bzw. initiiert werden. Man spricht in einem solchen Fall von einem "Intra Cell Handover".
Da im Rahmen des UMTS-Szenario (3. Mobilfunkgeneration bzw. IMT-2000) der WCDMA/FDD-Betrieb und der TDCDMA/TDD-Betrieb gemeinsam zum Einsatz kommen sollen, ist neben einem effizienten Umgang mit den logischen Kanälen bzw. den Übertragungswegdiensten (bearer handling) insbesondere aus den vorstehenden Gründen die Realisierung einer geeigneten "Handover"- Prozedur für Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten unverzichtbar .
Die der Erfindung zugrundeliegende Aufgabe besteht darin, für Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten nach dem Anzeigen eines "Handover" eine sichere "Handover"-Prozedur anzugeben.
Diese Aufgabe wird jeweils durch die Merkmale des Patentanspruches 1 gelöst.
Die der Erfindung zugrundeliegende Idee besteht darin, daß - gemäß dem Anspruch 1 - bei für Telekommunikationssysteme mit drahtloser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Emp- fangsgeräten, sowohl in dem TDD-Modus als auch in dem FDD- Modus 1) während einer ersten Phase einer „Handover"-Prozedur, dem Anzeigen eines „Handover", ein „Handover"-Zeitschlitzpaar von einem stationären Sende-/Empfangsgerät ermittelt wird, 2) während einer zweiten Phase der „HandoverM-Prozedur, dem Initiieren eines „Handover", das stationäre Sende-/Empfangsgerät eine erste Meldung "Handover Request" an dem stationären Sende-/Empfangsgerät zugeordnete mobile Sende-/Empfangsgeräte sendet, mit der das sta- 14 tionäre Sende-/Empfangsgerät den mobilen Sende-/Empfangs- geräten das „Handover"-Zeitschlitzpaar mitteilt, und das stationäre Sende-/Empfangsgerät die erste Meldung "Handover Request" solange an die mobilen Sende-/Empfangsgeräte sendet, bis alle dem stationären Sende-/Empfangsgerät zugeordnete mobile Sende-/Empfangsgeräte das Initiieren des „Handover" durch die erste Meldung bestätigt haben, 3) während einer dritten Phase der „Handover"-Prozedur, dem Ausführen eines „Handover", die „Handover"-Prozedur beendet wird.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Ein Ausführungsbeispiel der Erfindung wird anhand der FIGUREN 8 bis 10 erläutert. Diese zeigen:
FIGUR 8 ein gegenüber den Zeitrahmen in den FIGUREN 1 bis 3 und dem DECT-Übertragungszeitrahmen in FIGUR 7 in bezug auf die Zeitschlitzanzahl (modifizierten) TDD-Zeitmultiplexrah- men,
FIGUR 9 auf der Basis des Zeitmultiplexrahmens nach FIGUR 8 eine Kanalzuweisungstabelle für Kanäle mit einer Frequenz-, Code- und Zeitmultiplexkomponente,
FIGUR 10 ein Meldungsflußdiagramm einer „Handover"-Prozedur.
FIGUR 8 zeigt ausgehend von den Zeitrahmen in den FIGUREN 1 bis 3 und dem DECT-Übertragungszeitrahmen in FIGUR 7 einen (modifizierten) TDD-Zeitmultiplexrahmen ZMR mit acht Zeitschlitzen ZSλl...ZSΛ8, wobei die ersten vier Zeitschlitze ZSλl...ZS für die Abwärtsübertragungsrichtung DL und die zweiten vier Zeitschlitzen ZS 5...ZSλ8 für die Aufwärtsüber- tragungsrichtung UL vorgesehen sind. Die Anzahl der Zeitschlitze ist von „16" gemäß den FIGUREN 1 und 3 auf „8" lediglich aus Darstellungsgründen für die Kanalzuweisungstabel- 15 le in FIGUR 9 verringert worden und hat keinen beschränkenden, limitierenden Einfluß auf die Erfindung. Im Gegenteil - die Anzahl der Zeitschlitze kann - wie die anderen physikalischen Ressourcen (z.B. Code, Frequenz, etc.) - vielmehr je nach Telekommunikationssystem mehr oder weniger beliebig variiert werden.
FIGUR 9 zeigt auf der Basis des Zeitmultiplexrahmens nach FIGUR 8 eine Kanalzuweisungstabelle für Kanäle mit einer Fre- quenz-, Code- und Zeitmultiplexkomponente. Die Zeitmultiplex- komponente dieser Tabelle umfaßt die Zeitschlitze ZS 1...ZSΛ8 mit der TDD-Einteilung gemäß FIGUR 8. Die Frequenz ultiplex- komponente umfaßt 12 Frequenzen FR1...FR12, während die Code- multiplexkomponente 8 Codes (Pseudo-Zufallssignale) C1...C8 enthält.
Auf einer ersten Frequenz FR1 werden als „bearer Services" ausgebildete Übertragungswegdienste, z.B. logische Kanäle des Telekommunikationssystems wie der Steuerkanal zur Signalisie- rung, der AGCH-Kanal, der BCCH-Kanal, der PCH-Kanal, der
RACH-Kanal, der TCH-Kanal und/oder der FACCH-Kanal, die in dem Telekommunikationssystem in Abwärtsrichtung und/oder Aufwärtsrichtung benötigt werden, in einer durch die Codes C1...C8 aufgespannten Code-Ebene gebündelt. Diese Bündelung erweist sich für die vorstehend genannten Telekommunikationssysteme als zweckmäßig, weil dadurch eine unnötige Belegung von Zeitschlitzen, also der Ressource „Zeit" vermieden wird.
Die FIGUR 9 zeigt eine bevorzugte Ausführungsform, gemäß der auf der ersten Frequenz FR1 in der Abwärtsübertragungsrich- tung in einem ersten Zeitschlitz ZSΛ1 als ein fest vorgegebener (vereinbarter) erster Auswahlzeitschlitz und in der Auf- wärtsübertragungsrichtung in einem fünften Zeitschlitz ZSΛ5 als ein fest vorgegebener (vereinbarter) zweiter Auswahlzeit- schlitz vorzugsweise jeweils sämtliche Codes C1...C8 für die Bündelung der genannten Übertragungswegdienste herangezogen werden. Es ist natürlich auch möglich weniger oder, wenn mehr co CO > > h-> H> cπ o cπ o Cπ O π
Ό tr cx d rt XI < tr cn XI XI ∑: N x d cn ∑; 3 ö tr CΛ ^ cx o H cx d rt cx dd tr PJ l-J Φ d P- P> Φ Φ φ o P* φ d φ Φ Φ l-J J O Φ d P- Φ φ J P> O φ d Φ P- Φ Φ φ d tr M d d d Φ d P- d P- l-J d φ d o n P • tu d x P- φ p- d cn Q 0 cx CX Φ cn CX cx xj d P- J rt P* P- cx P* tr n • 1 P1 d O d o Φ d P- P) H φ Ml d P* N CΛ l-J rt O Φ φ CΛ ∑: CΛ tα φ * 5 <v cx rt n cx rt X φ d 3 d tr d d Φ d φ Hi P* Φ x d PJ Ό Φ 1 P- π PJ n Φ *^ o p- N P- 4-. d χι 3 Hi Ό XI P* d: 3 o d < φ rt φ l-J o 5^ d 00 d tu d Φ Φ Φ J
N Ml φ P- PJ Ό d Φ cn O ts. l-J φ CΛ d P- f cx o PJ P) 1 α Φ CΛ d cn 00 OJ
Φ l-J d P* Φ d I cn tr Φ tr <! < IS1 φ ∑: O rt φ d n P- 5^ ) cn Φ Φ
•n P-* cn cx <-• cx O N P- (X ι-( CΛ Φ P> Φ d M d Φ PJ o d PJ cn s> l-J
50 φ rt φ φ <! ä Φ d rt P- Φ tsi M <! d CΛ ) • CΛ P" α l-J d o n PJ r IV Φ cn d o PJ 3 d d s φ l-J tr φ cn Φ a Φ J tα Φ M1 P* O o d rt cx d tr d PJ cx Φ P- Φ l-J Φ ∑: N Φ CΛ 1 P- • d tr
P- "( Φ Φ Mi d H P- ι_ι. d d P* tr 1 cn P- d Hi 3 Φ 5 d • rt d < d d Ml PJ P- P- rt d Φ tr d cx d P* rt M φ l-J = l-J cn PJ • cx d Φ CΛ Φ P*1 iv o φ ∑; P- cx d φ d ∑: Φ Hl (X l-J Hi < O d o n φ n s d l-J CΛ P- P) P- Hi
I? Φ cx d 3 P- 3 φ w = P- ∑: P) o OD M o
P* σ Φ Ω φ Φ rt <S P-* P- P- φ X) d φ cn P- t-J PJ cx d φ P- cx α
∑; iv P- P- tr IV d P- CΛ ∑: 1 P- ι-J P- cn N d N d d φ Hi M φ φ P* * ) Φ
PJ* PJ d d i-J O cx o IS. φ cn φ d CΛ ∑: XI P- I P- 3 x d rt rt d cn
H rt cx Φ J W Φ d H1 P- d ; r φ N Φ cn d pι Φ o φ cx Φ Hi cn rt P- d Hi 3 d cn • cn d cx rt 3 φ H- cn d d Hi <; s d tr P- P* d* CX N ω o d tr Mi d <5 . Φ cx P- P- d rt N cx d N d* Φ N φ d l-J φ 50 d d* d XI P- d d CΛ Φ * φ o Hi PJ Φ Φ φ l-J M n ts. ∑: 3 l-J tr cn cn cx l-J P- O M < d U d d* l-J d d l-J CX d 1 tα φ < ∑: cx KΩ φ < cn P- ;v tr tr CΛ d CΌ J d P- PJ PJ d 1 P* φ Φ Φ φ l-J Φ N M 3 PJ M P- IS. XI HI tr P* Hi o M i***. l-J cx Φ d 5 rt < l-J P- d l-J CX Φ rt ι-J Φ Φ PJ rt J d Cπ P* ∑; < φ rt Φ P- M d* \ d x PJ Λ Φ tr rt cn P) M
H tr d IV l-J P- Mi CX Φ PJ* cn Φ <! M Φ cn tr o P- d n P* Φ CΛ rt M Hi
P> P- PJ rt ιv o Mi d XI P- l-J P- H d CΛ tr d Φ α H I P) tr XI Φ i-J rt Φ XI d=
XI d ι-J P- P- d d d Φ o rt σ ts. P- 50 M Φ o PJ P* P- Φ P- Φ Φ d Φ XI d (X P- O Φ cn M X) tr tr ω PJ α <J ω d l-J tα rt "^ P- tr tr M d cn d d d o d M <i Φ O: d= P1 1 Φ ^ cx Φ CD tr 1 P- rt Φ Φ Φ ts. rt d
XI d PJ rt Φ 3 d M tr tr H- H M d P- P- x 5*! O φ N d d n l-J Φ Φ XI cn XI < P1 l-J P rt Φ Φ cn Φ tr φ d d cx d P- PJ d P- o IV P- P" σ l-J Φ CΛ Φ P- tr n cn P* l-J O P- P- XI φ P) PJ φ d d N ∑: Φ cx PJ rt P1 cn
P- d CSJ cn P- IV H> N Φ rt tr
•>• Φ d d CΛ 3 l-J d ) d CΛ Φ d Φ
• d CΛ rt rt o \-> ι-3 rt d P- XI ι-J Φ t cx φ cn XI CΛ •τ) P1 d ∑: n P) o Φ Φ tr cn Φ • cx Φ dd rt P> O d 3 N φ φ φ x Φ cπ α cn Hi P- tr d tr rt H1 tr P- d l-J cx . XI 50 3 d Φ l-J CΛ d ι-J M P- Φ φ d= φ d Φ Φ C-l d rt P- cn d Φ 3 X) <J d cn rt o Hi Φ cx rt CΛ d O M N P* öd d d P) PJ IV Φ XI φ φ P- d cn d CΛ P- J rt Φ o o CΛ P- Φ o ^ tr d rt d: ^
X) d φ O CX Φ P- P- d XI cn d CΛ φ l-J Φ tr l-J Φ φ i-J cn l-J N d
Hi XI 3* Φ d cn 3 d cx CΛ O P- N l-J P* d
§ 3 ι-J Φ PJ ∑: Φ PJ
P- rt rt P- φ M d ?r Φ rt O rt ∑: J < < M d PJ: n d Λ ts. Φ d d Φ d a cn rt P- l-J PJ d Φ < Φ d P- φ Hi tr o P- CΛ P- o
P- JX d l-J M φ CS3 o O rt PJ d < Φ P- P- o φ M O XI α dd X) .* d tr
Φ d P- P- d d Φ l-J d t φ P- l-J CΛ H CΛ rt Φ M tr o φ Φ Φ n d M1 d
P- Φ φ ιv Ό d P* cn rt o P- < ts: tr rt Φ rt I-* rt d cn n ) XI 3 d l-J PJ Ό x cx d rt l_J. d d o Φ t* P- l-J cx φ Φ φ X tα cn Φ
Φ φ rt Φ P- φ Φ φ d n CΛ M -«• d 1 φ tr P- P- Hi 1 P- O cn tr
P* φ Φ n
3 N l-J (X XI o <! < tr cx < CΛ N tr Hi P1 cx d* 5^ cn P* l- H
∑: cn O Φ P* a Φ Φ CΛ P- φ d Hl Φ ∑: Φ : rt P- l-J J P- PJ d
N Φ rt d d 3 d PJ ι-J 3 rt Φ M CSI d P- d s l-J Ml d l-J Φ d φ d cx o
∑: P- Φ CΛ rt P- φ d d Φ ^* tr Cπ cx d X) l-J tr Φ cx CΛ cx P) M Hi o
Φ rt tr rt Hi Ό P- P- -• d φ cn Φ PJ < φ cx P- o Φ h-1 d X! N
P- Φ cn Φ PJ= N cn Ό φ P- •^ d d 3 cn < CΛ Φ Φ d φ d o d d Φ • Φ rt d ι-J P- Φ ∑: rt Φ M ∑: l-J cx L_J. XI N Φ CΛ I M d cx cx d XI 1 tö cn OJ
Φ d 1 rt P- Φ Φ 1 Φ Φ d Φ CΛ φ φ o XI φ d d 1 P- P- P* 1 d 1 CΛ 1 1 M 3 Φ CΛ
1 1 1 1 1 1 rt 1 1 x N d
17 Zeitschlitz ZS 2 sechs Codes - einen ersten Code Cl, einen zweiten Code C2, einen dritten Code C3, einen vierten Code C4, einen fünften Code C5 und einen sechsten Code C6 - und in Aufwärtsübertragungsrichtung in einem sechsten Zeitschlitz ZSΛ6 wieder die sechs Codes C1...C6, während die zweite Gruppe von Telekommunikationsverbindungen G2 auf der zweiten Frequenz FR2 in Abwärtsübertragungsrichtung in einem vierten Zeitschlitz ZSM den ersten Code Cl und in Aufwärtsübertragungsrichtung in einem achten Zeitschlitz ZSλ8 wieder den er- sten Code Cl belegt.
Der vierte Zeitschlitz ZS und der zweite Zeitschlitz ZSΛ2 sind „Downlink"-Zeitschlitze ZSDOWN, während der sechste Zeitschlitz ZSΛ6 und der achte Zeitschlitz ZSλ8 „Uplink"-Zeit- schlitze ZSUP sind.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 ist ein erster Abstand AS1 zwischen dem „Downlink"-Zeit- schlitz ZSDOWN und dem „Uplink"-Zeitschlitz ZSUP - gemäß dem Stand der Technik (vgl. FIGUR 7) - so lang, wie der halbe
Zeitmultiplexrahmen ZMR. Der Abstand AS1 ist somit ein Bruchteil der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil den Wert 0,5 hat.
In dem zweiten Verbindungsszenario VSZ2 belegt die erste
Gruppe von- Telekommunikationsverbindungen Gl auf einer vierten Frequenz FR4 in Abwärtsübertragungsrichtung in dem vierten Zeitschlitz ZS die sechs Codes C1...C6 und in Aufwärtsübertragungsrichtung in einem siebten Zeitschlitz ZSΛ6 wieder die sechs Codes C1...C6, während die zweite Gruppe von Telekommunikationsverbindungen G2 auf der vierten Frequenz FR4 in Abwärtsübertragungsrichtung in einem zweiten Zeitschlitz ZSΛ2 die Codes C1...C4 und in Aufwärtsübertragungsrichtung in dem fünften Zeitschlitz ZSλ5 den ersten Code Cl und den zweiten Code C2 belegt. 18 Der vierte Zeitschlitz ZSM und der zweite Zeitschlitz ZSX2 sind - wie beim ersten Verbindungsszenario VSZ1 - „Downlink"- Zeitschlitze ZSDOWN, während der siebte Zeitschlitz ZSλ7 und der fünfte Zeitschlitz ZS 5 „Uplink"-Zeitschlitze ZSup sind.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 ist ein zweiter Abstand AS2 zwischen dem „Downlink"-Zeit- schlitz ZSDOWN und dem „Uplink"-Zeitschlitz ZSup so lang, wie ein Bruchteil (fractional distance) der Länge des Zeitmulti- plexrahmens ZMR, wobei der Bruchteil so bemessen und größer oder kleiner als der Wert 0,5 ist, daß der zweite Abstand AS2 fest ist.
In dem dritten Verbindungsszenario VSZ3 belegt die erste Gruppe von Telekommunikationsverbindungen Gl in Abwärtsübertragungsrichtung auf einer sechsten Frequenz FR6 in dem zweiten Zeitschlitz ZS 2 die vier Codes C1...C4 und in Aufwärts- übertragungsrichtung auf einer fünften Frequenz FR5 in dem achten Zeitschlitz ZSΛ8 die sechs Codes C1...C6 sowie einen siebten Code C7 und einen achten Code C8, während die zweite Gruppe von Telekommunikationsverbindungen G2 in Abwärtsübertragungsrichtung auf der sechsten Frequenz FR6 in einem dritten Zeitschlitz ZSλ3 die Codes C1...C3 und in Aufwärtsüber- tragungsrichtung auf der fünften Frequenz FR5 in dem fünften Zeitschlitz ZSΛ5 die Codes C1...C4 belegt.
Der zweite Zeitschlitz ZSΛ2 und der dritte Zeitschlitz ZSΛ3 sind „Downlink"-Zeitschlitze ZSDOWN, während der achte Zeitschlitz ZSΛ8 und der fünfte Zeitschlitz ZSλ5 „Uplink"-Zeit- schlitze ZSup sind.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 beträgt ein dritter Abstand AS3 zwischen dem „Downlink"-Zeit- schlitz ZSDOWN und dem „Uplink"-Zeitschlitz ZSup ein Bruchteil (fractional distance) der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil jeweils so bemessen ist, daß der dritte Abstand AS3 variabel ist. 19
In dem vierten Verbindungsszenario VSZ4 belegt die erste Gruppe von Telekommunikationsverbindungen Gl in Abwärtsübertragungsrichtung auf einer achten Frequenz FR8 in dem viert- ten Zeitschlitz ZSM den ersten Code Cl und in Aufwärtsüber- tragungsrichtung auf einer neunten Frequenz FR9 in dem sechsten Zeitschlitz ZSΛ6 die sieben Codes C1...C7, während die zweite Gruppe von Telekommunikationsverbindungen G2 in Abwärtsübertragungsrichtung auf der achten Frequenz FR8 in dem dritten Zeitschlitz ZSΛ3 den ersten Code Cl und in Aufwärts- übertragungsrichtung auf der neunten Frequenz FR9 in dem fünften Zeitschlitz ZSΛ5 den ersten Code Cl belegt.
Der vierte Zeitschlitz ZSM und der dritte Zeitschlitz ZS 3 sind „Downlink"-Zeitschlitze ZSDOWN, während der sechste Zeitschlitz ZSλ6 und der fünfte Zeitschlitz ZS'5 „Uplink"-Zeit- schlitze ZSup sind.
Für jede Telekommunikationsverbindung in den Gruppen Gl, G2 beträgt ein vierter Abstand AS4 zwischen dem „Downlink"-Zeit- schlitz ZSDOWN und dem „Uplink"-Zeitschlitz ZSUP ein Bruchteil (fractional distance) der Länge des Zeitmultiplexrahmens ZMR, wobei der Bruchteil jeweils so bemessen ist, daß der vierte Abstand AS4 fest ist.
In dem fünften Verbindungsszenario VSZ5 belegt die erste Gruppe von Telekommunikationsverbindungen Gl auf einer elften Frequenz FR11 in Abwärtsübertragungsrichtung in dem vierten Zeitschlitz ZSM den ersten Code Cl und den zweiten Code C2 und in Aufwärtsübertragungsrichtung in dem fünften Zeitschlitz ZSλ5 wieder den ersten Code Cl und den zweiten Code C2, während die zweite Gruppe von Telekommunikationsverbindungen G2 auf der elften Frequenz FR11 in Abwärtsübertragungsrichtung in dem ersten Zeitschlitz ZS 1 die Codes C1...C5 und in Aufwärtsübertragungsrichtung in dem achten Zeitschlitz ZSΛ8 die Codes C1...C3 belegt. 20 Der vierte Zeitschlitz ZSM und der erste Zeitschlitz ZSλl sind „Downlink"-Zeitschlitze ZSDOWN, während der fünfte Zeitschlitz ZSλ5 und der achte Zeitschlitz ZSΛ8 „Uplink"-Zeit- schlitze ZSUP sind.
Für jede TelekommunikationsVerbindung in den Gruppen Gl, G2 ist ein fünfter Abstand AS5 zwischen dem „Downlink"-Zeit- schlitz ZSDOWN und dem „Uplink"-Zeitschlitz ZSUP so lang, wie ein Bruchteil (fractional distance) der Länge des Zeitmulti- plexrahmens ZMR, wobei der Bruchteil so bemessen, daß der zweite Abstand AS2 variabel ist.
FIGUR 10 zeigt ein Meldungsflußdiagramm einer „Handover"- Prozedur. Die "Handover"-Prozedur besteht im Prinzip aus drei Phasen, einer ersten Phase, die als das Anzeigen eines "Handover" (Handover Indication) bezeichnet wird, einer zweiten Phase, die als das Einleiten bzw. Initiieren eines "Handover" (Handover Initiation) bzeichnet wird, und einer dritten Phase, die als das Ausführen eines "Handover" (Handover Executi- on) bezeichnet wird, die in der angegebenen Reihenfolge ablaufen.
Im Fall einer Verschlechterung der Qualität des zu übertragenden Dienstes [Quality of Service (QoS) ] wird von einer Ba- sisstation BS ein „Handover" angezeigt, also eine erste Phase der „Handover"-Prozedur gestartet. Die Verschlechterung der Qualität des zu übertragenden Dienstes [Quality of Service (QoS) ] kann alternativ auch von einem Mobilteil, einem ersten Mobilteil MT1, einem zweiten Mobilteil MT2 oder einem n-ten Mobilteil MTn, festgestellt werden, das daraufhin diese Verschlechterung der Basisstation BS, z.B. über den FACCH-Kanal, mitteilt. In diesem Fall ist die Basisstation BS bezüglich der „Handover"-Prozedur der „Master", während das Mobilteil MTl...MTn der „Slave" ist. Es ist aber auch möglich, daß das Mobilteil bezüglich der „Handover"-Prozedur der „Master" und die Basisstation der „Slave" ist. ω CΛJ r-o M M>
Cπ cπ O Cπ O cπ
cn cx d* CΛ P- cx CΛ CΛ n P- P- Φ § 3 d* CX P- t≥x XI P* TJ rt ? _ α tsi öd d α JX CX IV N Φ ∑; 3 φ tr o d d tr P- p- PJ d 3 M 3 Φ O rt Φ Φ Cl Φ P- o o O d P- pj: P- tr 3 Φ tr φ Φ rt l-J φ d Φ φ d o d O d 3 ι-< cn P- n cn φ < < 3 d tr rt
P-* l-J P- x M P- H- l-J IV tr XI N 1 § PJ rt X φ φ 3 d:
P- σ rt P* φ CΛ rt O φ Λ' td d Φ öd α d Hi **: cn 1 •* N l-J H d tr 5 rt α rt o H rt 3 P* I-J d l-J cx PJ cx PJ \ cx cx rt X l-J P- d Hi tα n 5^ tα ∑: * d Φ tα Φ ≥:
N ∑; PJ: N 3 PJ cn P- rt Φ cn ts. Φ φ Φ d O Φ P- P- PJ tr PJ J Φ 1 P- PJ cx 3
X) d X* XJ σ d J x rt Φ P- d P- φ 3 l-J l-J M PJ d IV n d d d P* IS. -τ) ^ rt d P- 00
P1 rt o P* cx P- P> cx rt φ i-J PJ M cx φ OJ
PJ ) d Φ Φ cn o cn P- CΛ cx cn J
P) P- PJ ∑: rt d CΛ d φ d öd CΛ rt Φ M n P- n rt rt 3 o rt o Φ P- O rt PJ o cn & l-J d N l-J P> XI d cn n rt cn M d tr d PJ Φ P- O < N < rt N P- XI < φ N
Φ IV d Φ I-* d £ N n P) O Mi Hi P- CΛ O Φ X! P- φ <V cn φ O Φ φ Φ cn X cn P- φ CX x Φ « φ tc rt tr O o Φ XI rt d Φ M PJ d ι-( tr O P- d d l-J P*
Φ d Φ P> PJ P- 1 P- P* M cx cn cn — i J -* PJ tr d cn «"» tr 3 ω tSi 3 d IV 1? l-J d CX d rt ^ o P- XI 3 Φ 1 P- N 1 M α CΛ P1 l-J N Φ 1 Φ Φ
O φ d (X d PJ cn PJ d rt l-J PJ N P- S 3 Φ cx INI Φ Φ Φ P- φ d tSJ P- d
P* P- CX CX φ Φ o d I—* O d N φ rt d O o d P- P- Φ n 3 tr rt P- φ cn
P) rt P- ts. i-J l-J < XI tr PJ öd P- P- P tr α* P-* rt Φ P- Φ x N cx rt ö P- x) Φ d cn Φ CX φ rt cn Φ P1 CΛ α n o Φ d rt cn rt PJ XI φ Ό φ cn P- rt P* P* χι O Φ P- ι-J rt l-J £ Φ P- Φ r d •- l-J cn PJ O PJ CΛ d o P- M P) 3 O φ cn φ d φ tr Φ cn rt PJ Φ P» l-J rt P- φ cn Φ φ Ml d tr d o Hi O d P) tr d n P1 Φ
I-* l-J CΛ XJ d \ tr N d P- d d M •S Hi tr tr ∑: d M s cn tr cn cn
P- CΛ o d ts. ∑: d XI d PJ Φ ∑: d= P- P*1 PJ rt X P- rt ∑: tr rt rt tα tr d £ φ P- d PJ cx φ X ^^ Hl P- o tr rt cx P- d PJ tr N rt Φ P- Φ
P- N Φ P> P- XI Φ P- H x P) φ P) d ö Hi CΛ Φ N Φ rt rt P* α d Φ Φ N cn rt P- tα cn Φ d P- rt cx Φ M 3 φ d Mi P> P- Φ l-J Xi 3 N * d Q) (X l-J P* x) N cn PJ d s cx rt cx x CΛ d Φ l-J cx tr rt o P- rt P> χi IV 3 O Φ X! P) σ Ό φ d
PJ φ o N φ d n cx Φ cn σ CΛ o P> Φ ^ XI Φ -J P) PJ P- < P- Φ P) Φ PJ cx
I-* CX j Φ l-J d tr Φ d o rt < d d 1 φ ) M σ PJ d 1 rt φ rt d M cn PJ J o
Φ X Φ d Xt P* d ) ∑; Φ φ 1 S CΛ N XI Φ o l-J Hi INI ^ l-J cn • cn l-J d <
Φ cn d M P- £ d d M cx σ o rt ∑: Φ cn ∑: φ φ cx Φ tr Φ d i cx d S rt £ o P*1 S Φ P- P_ PJ Φ d d cn P- CX Hi φ M P> PJ M
3 1-3 XI 1 φ Hi N o tr cx P* Φ 1 cn Φ d H P- • 5 P- P- rt PJ τ) Φ cn d d d -*
P- Φ tsi CΛ o J tr P- P- Φ P* ∑; φ CΛ £p M cn P- cn cx fυ d tsi d cn rt rt rt P1 S Φ h CΛ PJ P- P* φ IV cx φ dd cn Φ Φ cn d cn o o rt cn x
Φ M1 P- l-*3 3 Φ PJ P-* rt d P- n rt 1 rt Φ IV ι-( φ tr (X N • X Φ rt φ d cx IV rt φ ) rt ι-J rt φ 3 1 d rt n Φ . d 2 cx 3 I-** P- Φ P) M tr P- M
Φ o PJ cn I—* rt N Φ Φ P- P- tsi X! cn tα — ' ? ∑: tr CX 1 φ P- φ cx d PJ Φ d o
H 3" d O φ P- rt CΛ P- P* rt φ O 1 Φ P- P) Φ INI d ^ rt d cx Φ P1 P- φ tr
[J3 Hl tr IV o Φ P- tr *A cn P- n cn rt Φ ö N dd M o h cn öd d P* o d CX 3 Φ α rt tα P* PJ rt d cx Φ Φ P- P- O PJ » < cn cx cx
PJ d x P- w Φ P- P- d £ Φ cn ) P- d PJ Φ d rt 3 ∑: CX Λ φ rt CX Φ 5^! P- tn P- Φ rt 3 d φ rt H M O d rt rt CΛ d Φ P- M Φ PJ 3 PJ φ
P- iv 3 N d XI £ P» tr cx N P*" rt CΛ Hi Φ o <J P-* CΛ CΛ PJ d cn d cn PJ X) d .— .. öd Φ Ml • dd P*1 o X) cn • p- P- M d tr φ P- cn CΛ CX PJ dd cn rt 03 P) P- ö PJ rt M> • P) P- < PJ 3 d Hi P* M d rt -X) tr P- P- J rt P- n PJ IV J CΛ Φ • • cn rt φ P) P- d > O P- IV IV tα J cn tr Φ φ PJ cn
P> o π l-J PJ rt P* P- • S P- N M M d P1 Φ X l-J rt Φ * PJ rt d rt PJ cn d P- rt d X φ rt Φ CΛ • Ml cn Φ rt rt PJ 3 N tr \ d P- P- φ cn rt O cn cn
P- ω 1 CΛ P- d CΛ rt s d cn CX 0 cn CX PJ d J M INI cx O rt tr φ Φ d S. cn
O N P O 1 rt • Ml • et Φ Φ Φ d P1 rt CX cn Φ o d P- rt d P) ) rt d Φ P> Hi d ö PJ d PJ cn xQ d= 3 Φ Φ o P* Φ 3 P* < P* (X Φ P^ tr P) n H
P- d o CΛ P- rt t≥, s rt d σ cx < O cn O rt Φ dd Φ JX Φ d P* J rt td rt PJ l-J N φ P- PJ CX P- P* Ml φ φ 5 P- Φ d CX CΛ l P-
CΛ 1 rt Φ d O P- rt o Φ CΛ M ö S -J CΛ M P) M t d n •*: cx rt
P* O r XI M Φ ι-3 Φ cn φ P : P* O
P- cn d tr φ d P* rt rt o Φ d Φ cn tr 1 Φ d ; rt cn d
< P- d rt rt cx φ 3 M ∑: ι-( P- P* P* P- > tα ι-3 rt φ d d 1 Φ öd cx •τ) P- Öd IV PJ: d rt o — - Φ P- d Φ ffi PJ Φ cx Φ öd l-J cx Λ Φ O φ CΛ o XI 1 M tr σ 1 rt φ P- PJ d P- Φ CΛ 1 M 1 1 3 t—* rt PJ J d 1 d 1 Φ cn 1 1 1 1 1 1
22 bundenen Mobilteile MTl...MTn das Initiieren des „Handover" durch die erste Meldung Ml bestätigt haben.
Die mit der Basisstation BS verbundenen Mobilteile MTl...MTn wechseln, wenn die betroffenen Mobilteile MTl...MTn noch laufende Daten zu übertragen haben, nach dem Empfang der ersten Meldung Ml unmittelbar von dem Telekommunikationszeitschlitz- paar auf das „Handover"-Zeitschlitzpaar . Dabei wird die Datenübertragung in dem Telekommunikationszeitschlitzpaar been- det und in dem „Handover"-Zeitschlitzpaar nahtlos (seamless) fortgesetzt.
Wenn die betroffenen Mobilteile MTl...MTn jedoch noch laufende Daten zu übertragen haben, dann überträgt das jeweilige Mobilteil MT1...MTn eine zweite Meldung "Handover Confirm" M2 auf einem Signalisierugskanal an die Basisstation BS .
Die Basisstation BS empfängt somit einerseits simultan Daten in dem Telekommunikationszeitschlitzpaar und dem „Handover"- Zeitschlitzpaar und andererseits die zweite Meldung M2. Das
Initiieren des „Handover" durch die erste Meldung Ml wird von der Basisstation BS letztendlich als bestätigt angesehen, wenn - im erstgenannten Fall - die von dem jeweiligen Mobilteil MTl...MTn auf dem „uplink"-Zeitschlitz des „Handover"- Zeitschlitzpaares übertragenen Daten von der Basisstation BS ohne Fehler empfangen werden oder wenn - im zweitgenannten Fall - die Basisstation BS die zweite Meldung M2 empfängt.
Die zweite Phase der „Handover"-Prozedur, das Initiieren ei- nes „Handover", ist abgeschlossen, wenn alle Mobilteile
MTl...MTn das Initiieren des „Handover" durch die erste Meldung Ml bestätigt haben.
In der dritten Phase der „Handover"-Prozedur, das Ausführen eines „Handover", wird dann, nachdem alle Mobilteile
MTl...MTn das Initiieren des „Handover" durch die erste Mel¬ dung Ml bestätigt haben; das „Handover"-Zeitschlitzpaar also 23 als neues Telekommunikationszeitschlitzpaar dient, abschließend die Übertragung in dem bisherigen Telekommunikations- zeitschlitzpaar beendet.

Claims

24 Patentansprüche
1. Verfahren zum Steuern des Weiterreichens von Telekommunikationsverbindungen in Telekommunikationssysteme mit drahtlo- ser, auf Code- und Zeitmultiplex basierender Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangs- geräten, wobei
(a) für das Telekommunikationssystem vorgegebene Trägerfrequenzen (FR1...FR12) jeweils in einer Anzahl von Zeit- schlitzen (ZS λl ...ZS λ8) mit jeweils einer vorgegebenen Zeitschlitzdauer (Tzs) derart unterteilt sind, daß das Telekommunikationssystem im TDD-Modus oder FDD-Modus betreibbar ist, wobei die Zeitschlitze (ZS l ...ZS λ8) pro Trägerfrequenz (FR1...FR12) jeweils einen Zeitmultiplex- rahmen (ZMR) bilden,
(b) in den Zeitschlitzen (ZS Λl ...ZS λ8) bzw. den Frequenzbereichen des Telekommunikationssystems höchstens eine vorgegebene Anzahl von bidirektionalen Telekommunikationsverbindungen in Auf- und Abwärtsrichtung zwischen Te- lekommunikationsteilnehmern der mobilen Sende-/Empfangs- geräten (MS1...MS5) und/oder stationären Sende-/Emp- fangsgeräten (BTS1, BTS2) des Telekommunikationssystems gleichzeitig herstellbar sind, wobei dabei übertragene Teilnehmersignale zur Separierbarkeit mit den Teilneh- mern individuell zugeordneten Pseudo-Zufallssignalen (C1...C8), den sogenannten Codes, verknüpft sind,
(c) bei dem während einer ersten Phase einer „Handover"- Prozedur, dem Anzeigen eines „Handover", ein „Handover"- Zeitschlitzpaar von einem stationären Sende-/Empfangs- gerät (BS) ermittelt wird, dadurch gekennzeichnet, daß
(d) während einer zweiten Phase der „Handover"-Prozedur, dem Initiieren eines „Handover",
(dl) das stationäre Sende-/Empfangsgerät (BS) eine erste Mel- düng "Handover Request" (Ml) an dem stationären Sendeempfangsgerät (BS) zugeordnete mobile Sende-/Empfangs- geräte (MTl...MTn) sendet, mit der das stationäre Sende- 25 /Empfangsgerät (BS) den mobilen Sende-/Empfangsgeräten (MTl...MTn) das „Handover"-Zeitschlitzpaar mitteilt, (d2) das stationäre Sende-/Empfangsgerät (BS) die erste Meldung "Handover Request" (Ml) solange an die mobilen Sen- de-/Empfangsgeräte (MTl...MTn) sendet, bis alle dem stationären Sende-/Empfangsgerät (BS) zugeordnete mobile Sende-/Empfangsgeräte (MTl...MTn) das Initiieren des „Handover" durch die erste Meldung (Ml) bestätigt haben, (d) während einer dritten Phase der „Handover"-Prozedur, dem Ausführen eines „Handover", die „Handover"-Prozedur beendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erste Meldung (Ml) durch eine zweite Meldung (M2) bestätigt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erste Meldung (Ml) dadurch bestätigt wird, daß die mobilen Sende-/Empfangsgeräte (MTl...MTn) zu übertragende Daten unmittelbar in dem „Handover"-Zeitschlitzpaar übertragen.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als „bearer Services" ausgebildete Übertragungswegdienste, die in dem Telekommunikationssystem in Abwärtsrichtung und/- oder Aufwärtsrichtung benötigt werden, in einer durch die Codes (C1...C8) aufgespannten Code-Ebene gebündelt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß zumindest ein Teil von logischen Kanälen des Telekommunikationssystems - z.B. der Steuerkanal zur Signalisierung, der AGCH-Kanal, der BCCH-Kanal, der PCH-Kanal, der RACH-Kanal, der TCH-Kanal und/oder der FACCH-Kanal - als Übertragungswegdienste in der Code-Ebene gebündelt wird. 26
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Bündelung in einem ersten Auswahlzeitschlitz (ZSΛ1) in Abwärtsrichtung und einem zweiten Auswahlzeitschlitz (ZSλ5) in Aufwärtsrichtung stattfindet.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß dem ersten Auswahlzeitschlitz (ZSΛ1) ein erster Zeitschlitz
(ZSΛ1) der Zeitschlitze (ZS λl ...ZS 8) zugeordnet wird und dem zweiten Auswahlzeitschlitz (ZSΛ5) ein fünfter Zeitschlitz (ZSΛ5) der Zeitschlitze (ZS l ...ZS 8 ) zugeordnet wird.
8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß in dem TDD-Modus für jede Telekommunkationsverbindung ein Zeitschlitzpaar, ein „Downlink"-Zeitschlitz (ZSDOWN) und ein „Uplink"-Zeitschlitz (ZSλ UP) derart ausgewählt wird, daß der Abstand (AS2...AS5) zwischen dem „Downlink"-Zeitschlitz
(ZS WN) und dem „Uplink"-Zeitschlitz (ZSV), die derselben Trägerfrequenz (FR1...FR12) oder unterschiedlichen Trägerfrequenzen (FR1...FR12) zugewiesen sind, ein Bruchteil der Länge des Zeitmultiplexrahmens (ZMR) ist, wobei der Abstand (AS2...AS5) fest oder variabel ist.
EP99913203A 1998-02-27 1999-03-01 Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten Withdrawn EP1059012A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99913203A EP1059012A1 (de) 1998-02-27 1999-03-01 Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98103506 1998-02-27
EP98103506 1998-02-27
PCT/EP1999/001316 WO1999044383A1 (de) 1998-02-27 1999-03-01 Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten
EP99913203A EP1059012A1 (de) 1998-02-27 1999-03-01 Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten

Publications (1)

Publication Number Publication Date
EP1059012A1 true EP1059012A1 (de) 2000-12-13

Family

ID=8231497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913203A Withdrawn EP1059012A1 (de) 1998-02-27 1999-03-01 Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten

Country Status (7)

Country Link
EP (1) EP1059012A1 (de)
JP (1) JP2002505563A (de)
KR (1) KR100377661B1 (de)
CN (1) CN1298616A (de)
AU (1) AU3142599A (de)
RU (1) RU2214070C2 (de)
WO (1) WO1999044383A1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19813182B4 (de) * 1998-03-25 2005-05-12 Siemens Ag Verfahren und Anordnung zur Kanalzuweisung in einem Funk-Kommunikationssystem
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7068618B2 (en) 2001-08-10 2006-06-27 Interdigital Technology Corp. Dynamic link adaption for time division duplex (TDD)
US7408900B2 (en) 2002-06-28 2008-08-05 Interdigital Technology Corporation Method and system for automated determination of inter-system border thresholds
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
CN1801997A (zh) * 2004-12-31 2006-07-12 西门子(中国)有限公司 Td-scdma移动通信系统中确定波束成形起始点的方法
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US7904055B2 (en) 2005-08-23 2011-03-08 Lg Electronics Inc. Communicating message in mobile communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
CN105515736A (zh) 2006-01-05 2016-04-20 Lg电子株式会社 在移动通信系统中发送数据
US9456455B2 (en) 2006-01-05 2016-09-27 Lg Electronics Inc. Method of transmitting feedback information in a wireless communication system
KR101211807B1 (ko) 2006-01-05 2012-12-12 엘지전자 주식회사 이동통신 시스템에서 무선단말의 동기상태 관리방법
KR101319870B1 (ko) * 2006-01-05 2013-10-18 엘지전자 주식회사 이동 통신 시스템에서의 핸드오버 방법
KR20070080552A (ko) 2006-02-07 2007-08-10 엘지전자 주식회사 이동 통신 시스템에서의 응답 정보 전송 방법
BRPI0706353B1 (pt) 2006-01-05 2023-01-24 Interdigital Patent Holdings, Inc Método para alocar recursos de rádio em um sistema de comunicação móvel
KR101387475B1 (ko) 2006-03-22 2014-04-22 엘지전자 주식회사 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법
US8234534B2 (en) 2006-06-21 2012-07-31 Lg Electronics Inc. Method of supporting data retransmission in a mobile communication system
FR2975560B1 (fr) * 2011-05-17 2013-06-14 Sagem Defense Securite Systeme de communication, et procede, programme d'ordinateur et moyens de stockage correspondants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2702109A1 (fr) * 1993-02-26 1994-09-02 Alcatel Radiotelephone Procédé de gestion de la redéfinition de fréquence dans un système de radiocommunication cellulaire avec des stations mobiles.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9944383A1 *

Also Published As

Publication number Publication date
CN1298616A (zh) 2001-06-06
KR100377661B1 (ko) 2003-03-26
JP2002505563A (ja) 2002-02-19
KR20010041393A (ko) 2001-05-15
AU3142599A (en) 1999-09-15
RU2214070C2 (ru) 2003-10-10
WO1999044383A1 (de) 1999-09-02

Similar Documents

Publication Publication Date Title
EP1059012A1 (de) Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation zwischen mobilen und/oder stationären sende-/empfangsgeräten
EP1058977B1 (de) Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1422860B1 (de) Luftschnittstelle für Telekommunikationssysteme mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende/Empfangsgeräten
EP1059011A1 (de) Weiterreichen in einem auf code- und zeitmultiplex basierenden telekommunikationssystem
WO1999022454A2 (de) Übertragungskanalschätzung in telekommunikationssystemen mit drahtloser telekommunikation
EP1058975B1 (de) Tdd-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1027782B1 (de) Telekommunikationssystem zur drahtlosen telekommunikation mit einer cdma-, fdma- und tdma-vielfachzugriffskomponente
EP1072108A2 (de) Telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1058976A1 (de) Luftschnittstelle für heim-telekommunikationssysteme mit drahtloser, auf code- und zeitmultiplex basierender telekommunikation
EP1226659B1 (de) Verfahren zur synchronisation einer signalübertragung in aufwärtsrichtung in einem funk-kommunikationssystem
DE19807960B4 (de) Telekommunikationssystem zur drahtlosen Mobiltelekommunikation im TDD-Modus, insbesondere ein im ungepaarten Frequenzband arbeitendes Universal-Mobil-Telekommunikationssystem (UMTS)
DE19849552A1 (de) Verfahren zum Regeln der Sendeleistung von mobilen Sende-/Empfangsgeräten in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksystemen der dritten Generation
WO2000025530A2 (de) Verfahren und anordnung zum schätzen von übertragungskanälen in mobilfunksystemen der dritten generation
DE19849533A1 (de) Verfahren zum Steuern der Übertragung von Datenpaketen in Telekommunikationssystemen mit drahtloser Telekommunikation zwischen mobilen und/oder stationären Sende-/Empfangsgeräten, insbesondere in Mobilfunksystemen der dritten Generation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041001