RU2242459C2 - Способ получения ненасыщенного мононитрила - Google Patents

Способ получения ненасыщенного мононитрила

Info

Publication number
RU2242459C2
RU2242459C2 RU98121500/04A RU98121500A RU2242459C2 RU 2242459 C2 RU2242459 C2 RU 2242459C2 RU 98121500/04 A RU98121500/04 A RU 98121500/04A RU 98121500 A RU98121500 A RU 98121500A RU 2242459 C2 RU2242459 C2 RU 2242459C2
Authority
RU
Russia
Prior art keywords
stream
water
mononitrile
column
acrylonitrile
Prior art date
Application number
RU98121500/04A
Other languages
English (en)
Other versions
RU98121500A (ru
Inventor
Энн М. ГРЭХЭМ (US)
Энн М. Грэхэм
Санджай П. ГОДБОУЛ (US)
Санджай П. Годбоул
Дэниел Дж. ЛИ (US)
Дэниел Дж. ЛИ
Original Assignee
Дзе Стандарт Ойл Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Стандарт Ойл Компани filed Critical Дзе Стандарт Ойл Компани
Publication of RU98121500A publication Critical patent/RU98121500A/ru
Application granted granted Critical
Publication of RU2242459C2 publication Critical patent/RU2242459C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

Настоящее изобретение относится к способу получения ненасыщенных мононитрилов, выбранных из группы, состоящей из акрилонитрила и метакрилонитрила, включающему следующие стадии: взаимодействие олефина, выбранного из группы, состоящей из пропилена и изобутилена, аммиака и кислорода в реакционной зоне в присутствии катализатора; перемещение выходящего из реактора потока, содержащего ненасыщенный мононитрил, в охлаждающую колонну, в которой выходящий из реактора поток, содержащий ненасыщенный мононитрил, контактирует с первым водным потоком с охлаждением выходящего из реактора потока; перемещение охлажденного потока, содержащего ненасыщенный мононитрил, в абсорбционную колонну, в которой выходящий из реактора поток контактирует, по крайней мере, со вторым водным потоком с отделением и удалением ненасыщенного мононитрила в качестве кубового потока из абсорбционной колонны; перемещение кубового потока, содержащего ненасыщенный мононитрил, в регенерационную колонну на стадию регенерации и очистки мононитрила; обработка, по крайней мере, одного отработанного водного потока перед рециркулированием в отработанный поток со снижением рН, в частности, для снижения количества следовых примесей окислителей, присутствующих в рециркулируемом водном потоке акрилонитрила. Способ позволяет снизить содержание следовых примесей окислителя в рециркулируемых водных отработанных потоках. 7 з.п. ф-лы, 1 ил.

Description

Продукт акрилонитрила должен отвечать чрезвычайно жестким техническим требованиям. Это обусловлено тем, что акрилонитрил используется в качестве мономера в большом ряду реакций полимеризации, и загрязнение некоторыми примесями является чрезвычайно нежелательной характеристикой тем, что это подвергает опасности реакцию полимеризации. Такие примеси включают различные нитриты, перекиси и их предшественники. Технические условия на продукт акрилонитрила требуют, чтобы концентрация соединений, которые дают положительный иодометрический тест, была менее двух десятых части на миллион (0,2 ч. на млн). Калибровка теста проводится по отношению к известному количеству перекиси водорода. Оказывается, что соединения в таких следовых концентрациях являются трудными для идентификации и еще более трудными для отделения и уничтожения. Уничтожение следовой примеси дополнительно осложняется двумя факторами: (а) необходимостью точного определения, в какой точке способа получения ненасыщенных нитрилов должна быть уничтожена примесь, и (в) важностью уничтожения указанной примеси без введения новых загрязнений в желаемый продукт. Примеси обычно вводятся на реакционной стадии получения нитрила с α,β-моноолефиновой ненасыщенностью в реакторах. Однако вполне вероятно, что вредные примеси вводятся на других стадиях способа, а именно при разбавлении кислоты, экстракции водой и т.п., особенно, когда имеется ввиду, что эти примеси могут присутствовать в интервале с концентраций, которая не превышает несколько ч. на млн.
Способы и катализаторы для получения акрилонитрила и метакрилонитрила аммоксидированием пропилена и изобутилена соответственно описаны в многочисленных патентах США, включающих патенты №2481826, 2904580, 3044966, 3050546, 3197419, 3198750, 3200084, 3230246 и 3248340.
Когда олефин, например пропилен или изобутилен, реагирует с аммиаком и молекулярным кислородом с получением соответствующего ненасыщенного нитрила, такого как акрилонитрил или метакрилонитрил, также получаются относительно небольшие количества различных соединений, таких как цианистый водород, насыщенные алифатические нитрилы, такие как ацетонитрил, карбонильные соединения относительно низкой молекулярной массы, такие как ацетальдегид, пропионовый альдегид, акролеин, метакролеин и т.д., и следовые количества или другие соединения, которые могут быть описаны в общем плане как нитриты, перекиси и их предшественники. Желательные продукты реакции извлекаются абсорбцией в соответствующем растворителе, таком как вода, причем в ходе этой стадии могут быть образованы дополнительные тяжелые органические соединения. Более предпочтительно, продукты реакции извлекаются сначала быстрым охлаждением разбавленной кислотой, которая служит для нейтрализации избыточного количества аммиака, присутствующего в выходящем из реактора потоке, а затем абсорбцией в воде.
Продукты реакции аммоксидирования пропилена отделяются от "богатой" воды абсорбера в экстрактивно-дистилляционной колонне (называемой регенерационной колонной). Верхний погон из регенерационной колонны является азеотропной смесью акрилонитрила и воды, а кубовый остаток является водным потоком, содержащим ацетонитрил, который удаляется в другой дистилляционной колонне (называемой отпарной колонной). На установке получения метакрилонитрила извлекаемым нитрилом является метакрилонитрил, а извлекаемыми побочными продуктами являются соответствующие соединения, образованные из изобутилена.
Способы извлечения и очистки желаемого нитрила с моноолефиновой ненасыщенностью, такого как акрилонитрил и метакрилонитрил, описываются в патентах США №3352764, 2904580, 3044966 и 3198750.
Рассмотрение проблем, входящих в разделение смесей, содержащих акрилонитрил, ацетон и воду, а также способ осуществления разделения дистилляцией в присутствии больших количеств введенной воды приводятся в патенте США №2681306.
Рассмотрение проблем, входящих в отделение подобных смесей от небольших количеств различных насыщенных карбонильных соединений, найдено в патенте США №3149055.
Способ получения по существу чистых ненасыщенных алифатических нитрилов из неочищенной смеси, содержащей желаемый ненасыщенный нитрил вместе с соответствующим ненасыщенным алифатическим альдегидом и цианистым водородом в качестве примесей, рассматривается в патенте США №2836614.
Еще один способ отделения ненасыщенного нитрила, такого как акрилонитрил или метакрилонитрил, от небольших количеств насыщенных карбонильных соединений рассматривается в патенте США №3185636.
Предпочтительно, чтобы любое соединение, добавляемое к нитритсодержащему нитрилу, вводилось перед очисткой нитрила в колонне продукта, так чтобы реакционный продукт следовой примеси и добавленное соединение могли легко отделяться и выводиться из потока продукта. Добавляемое соединение называется также "поглотителем", и любое водорастворимое щелочное соединение будет действовать как эффективный поглотитель. Логичные места добавления поглотителя будут либо в абсорбере, отпарной колонне, либо в регенерационной колонне, либо в более чем одной колонне одновременно. Предпочтительным местоположением для добавления поглотителя является относительно разбавленный водный раствор, как описано далее, в верхней части регенерационной колонны. Так как желаемый нитрил является перегнанным верхним погоном в виде азеотропной смеси с водой в регенерационной колонне, можно экстрагировать в водной фазе водорастворимый реакционный продукт нежелаемой примеси и поглотитель с удалением указанной примеси из продукта.
Продукт ненасыщенного алифатического нитрила, такого как акрилонитрил или метакрилонитрил, охлаждается в охлаждающей башне потоком подкисленной воды при противоточном контакте. Газы из охлаждающей башни выводятся в нижнюю часть абсорбера, где акрилонитрил, ацетонитрил и другие относительно растворимые газы абсорбируются. Неабсорбированные газы выводятся в выводную трубу и удаляются.
Обычно поток из нижней части абсорбера, известный как поток "богатой" воды, выводится в регенерационную колонну, где он экстрактивно дистиллируется. Регенерационной колонной может быть любое пригодное контактирующее устройство, в котором жидкость и пар противоточно контактируют во множестве сообщающихся зон или стадий. Пары верхней части регенерационной колонны являются обогащенными акрилонитрилом, другими компонентами являются, главным образом, вода и цианистый водород, и загрязняются нежелательными примесями, такими как нитриты, соединения, которые имеют характеристики нитритов, и их предшественники. Пары верхней части конденсируются и собираются в декантаторе, жидкость подвергается жидкостно-жидкостнофазному разделению, причем менее плотный слой является органической фазой, а более плотный слой является водной фазой. Органическая фаза, являющаяся, главным образом, акрилонитрилом, загрязненным водой и цианистым водородом, выводится для дальнейшей очистки. Водная фаза возвращается в верхнюю секцию регенерационной колонны.
Кроме того, в патенте США 3442771 рассматривается способ удаления следовых примесей (например, нитритов, перекисей и их предшественников) из ненасыщенных мононитрилов (например, акрилонитрила), загрязненных водой. Способ, рассмотренный в патенте США 3442771, требует добавления щелочного раствора к частично конденсированной азеотропной смеси ненасыщенного нитрила и воды, где азеотропная смесь получается в виде потока верхнего погона из экстрактивно-дистилляционной колонны, в частности регенерационной колонны. Воздействием щелочного раствора является экстракция реакционного продукта следовых примесей в водной фазе азеотропной смеси с оставлением органической фазы, относительно свободной от примесей. Азеотропная смесь затем перегружается в декантатор, где имеет место жидкостно-жидкостнофазное разделение. Органическая фаза, содержащая неочищенный акрилонитрил, затем удаляется для дальнейшей очистки, тогда как водная фаза, содержащая реакционные продукты, рециклируется в регенерационную колонну. Настоящее изобретение относится к улучшенному способу извлечения и очистки акрилонитрила, в котором следовые примеси, такие как окислители, удаляются из рециклируемых водных отработанных потоков акрилонитрила.
Краткое описание изобретения
Целью данного изобретения является снижение содержания следовых примесей окислителя в рециклируемых водных отработанных потоках акрилонитрила, полученных в процессе получения акрилонитрила.
Дополнительной целью данного изобретения является снижение содержания следовых окислителей и/или примесей в рециклируемом отработанном водном потоке, поступающем в регенерационную колонну.
Еще одной дополнительной целью настоящего изобретения является снижение содержания следовых окислителей и/или примесей в рециклируемом отработанном водном потоке, входящем в охлаждающую колонну.
Дополнительные цели и преимущества изобретения будут представлены частично в последующем описании, а частично могут быть выявлены из описания или могут быть выяснены при осуществлении изобретения. Цели и преимущества изобретения могут быть реализованы и достигнуты с помощью средств и комбинаций, особенно выделенных в прилагаемой формуле изобретения.
Для достижения вышеуказанных целей и в соответствии с целью изобретения, как включено и широко описано здесь, способ настоящего изобретения включает взаимодействие олефина, выбранного из группы, состоящей из пропилена и изобутилена, аммиака и кислорода в реакционной зоне в присутствии катализатора с получением выходящего из реактора потока, содержащего соответствующий ненасыщенный мононитрил (например, акрилонитрил или метакрилонитрил); перемещение выходящего из реактора потока, содержащего ненасыщенный мононитрил, в охлаждающую колонну, в которой выходящий из реактора поток, содержащий ненасыщенный мононитрил, контактирует, по крайней мере, с первым водным потоком с охлаждением выходящего из реактора потока; перемещение охлажденного выходящего из реактора потока, содержащего ненасыщенный мононитрил, в абсорбционную колонну, в которой выходящий из реактора поток, содержащий ненасыщенный мононитрил, контактирует, по крайней мере, с вторым водным потоком с отделением и удалением ненасыщенного мононитрила в виде кубового потока из абсорбционной колонны; перемещение кубового потока, содержащего ненасыщенный мононитрил, в регенерационную колонну на стадию регенерации и очистки, где ненасыщенный мононитрил извлекается и очищается; и обработку, по крайней мере, одного водного отработанного потока для улучшения эффективности способа, в котором улучшение содержит обработку, по крайней мере, одного водного потока перед рециркулированием в отработанный поток со снижением рН, в результате чего снижается количество следовых примесей окислителей, присутствующих в водном рециркулированном потоке акрилонитрила. Необходимо понимать, что используемый здесь термин "обработка" предназначен для включения не только обработки перед возвращением в отработанный поток, но также обработки рециркулируемого потока непосредственно при возращении в отработанный поток.
В предпочтительном варианте настоящего изобретения рециркулируемый водный поток обрабатывается кислотой для снижения рН. Предпочтительно кислотой может быть неорганическая кислота, такая как серная или органическая кислота, такая как уксусная, акриловая, муравьиная или гликолевая, выбираемая с учетом стоимости, доступности, совместимости, металловедения и т.д.
В другом предпочтительном варианте настоящего изобретения отработанный водный рециркулируемый, имеющий высокий рН поток обрабатывается путем определения точки возвращения рециркулируемого потока в способ в точке способа, имеющей более низкий рН, в результате чего естественно снижается рН потока при его возвращении в отработанный поток.
В другом предпочтительном варианте настоящего изобретения отработанный водный поток поступает в регенерационную колонну на стадию регенерации.
В другом предпочтительном варианте настоящего изобретения олефином является пропилен.
В еще одном предпочтительном варианте настоящего изобретения реакционной зоной является реактор с псевдоожиженным слоем.
В дополнительном предпочтительном варианте настоящего изобретения обработка водного отработанного потока включает стадию модификации объемного отношения воды к акрилонитрилу в азеотропной смеси, в результате чего достигается большее экстрагирование окислителей, примесей водной фазой.
На чертеже представлена технологическая схема предпочтительного варианта настоящего изобретения.
Подробное описание изобретения
Нижеследующее является более подробным описанием отдельного варианта данного изобретения, в котором нитрилом с α,β-моноолефиновой ненасыщенностью является акрилонитрил, используемой абсорбционной средой является вода, а насыщенным алифатическим нитрилом является ацетонитрил.
При рассмотрении чертежа видно, что питающий поток “богатой” воды вводится в регенерационную колонну 1 на питательной тарелке 3, что составляет две трети пути до верха колонны 1, заполненной тарелками ректификационной колонны. Могут быть использованы другие устройства контактирования жидкости с паром, такие как набивка колонн, но сетчатые тарелки являются предпочтительными. Пары верхнего погона 2 конденсируются в конденсаторе паров 4, который является двойным конденсатором, и конденсат затем проходит в декантатор 5, где имеет место фазовое разделение, причем органический слой (фаза неочищенного акрилонитрила) удаляется для дальнейшей очистки, а водный слой (акрилонитрилистощенная водная фаза) возвращается в верхнюю секцию регенерационной колонны 1. Флегма водяного слоя может быть возвращена в регенерационную колонну 1 на питательной тарелке 3, или вблизи верха регенерационной колонны 1, или между питательной тарелкой 3 и верхом 2 в соответствии с требуемыми рабочими характеристиками колонны. Преимущество введения флегмы водяного слоя в регенерационную колонну в точке ниже верхней тарелки состоит в том, что это позволяет избежать нарастания нежелательных водорастворимых органических компонентов, включая реакционный продукт, образованный с нежелательными следовыми примесями, которые имеют тенденцию к мгновенному испарению на верхней тарелке и соответствующему накапливанию в потоке флегмы водяного слоя. Специалисту должно быть понятно, что способ изобретения является действующим, даже если флегма водяного слоя вводилась ниже питательной тарелки, но нет особой причины делать это. Чем ниже точка возврата флегмы водяного слоя ниже питательной тарелки, тем больше акрилонитрила должно быть удалено из нижней секции регенерационной колонны 1.
Может использоваться другое средство отделения органической фазы от водной фазы. Например, конденсат может течь через такие материалы как силикагель, молекулярные сита и т.п., которые предпочтительно удаляют воду и растворенные в ней компоненты. Жидкостно-жидкостное центрифугирование также может использоваться для отделения более легкой органической фазы от более тяжелой водной фазы.
Тепловой режим, требующийся для получения необходимой объемной скорости парообразования в нижней части регенерационной колонны 1, может быть обеспечен теплопередачей в любом традиционном рибойлерном устройстве, например, при выведении жидкости в нижней части или вблизи нижней части колонны 1, как показано цифрой 6, и теплообмене жидкости в термосифонном рибойлере 7. Выходящий поток из термосифонного рибойлера возвращается в нижнюю часть регенерационной колонны 1 под цифрой 8. Острый пар 9 может подаваться либо в дополнение, либо вместо требуемой тепловой нагрузки регенерационной колонны 1. Кубовый поток, богатый ацетонитрилом, выводится из регенерационной колоны 1 в отпарную колонну, не показанную на технологической схеме.
В способе настоящего изобретения водный рециркулируемый поток, поступающий в верхнюю часть регенерационной колонны 1, обрабатывается для уменьшения рН потока, поступающего в регенерационную колонну. Эта обработка может быть неорганической кислотой, такой как серная, или органическими кислотами, такими как уксусная, акриловая, муравьиная или гликолевая, выбираемыми из соображений стоимости, доступности, совместимости, металловедения и т.д. Кроме того, температура, время пребывания и другие характеристики рециркулируемого потока при низком рН и перед возвратом в способ могут быть минимальными или увеличенными в зависимости от совместимости с полезным продуктом.
Например, серная кислота может добавляться к водному рециркулируемому потоку регенерационной колонны для снижения его рН с 6,5-7,0 до 2,0 и его измеренного перекисного уровня до половины. Если температура и время пребывания рециркулируемого потока увеличиваются только от значений, необходимых для транспортирования материала из регенерационной колонны в охлаждающую, ожидается дополнительное снижение измеренной перекиси. Поток может затем быть введен снова в охлаждающую колонну, восстанавливая значение серной кислоты, используемой в виде эквивалентного снижения кислоты, необходимой для поддержания рН охлаждения. Приведенный ниже пример 1 предназначен для моделирования этой методики обработки.
Пример 1
100 ч. на млн примеси нитрита натрия добавляется для моделирования извлечения воды декантатора (рН 7, буферировано бикарбонатом, 7% акрилонитрила, 3% цианистого водорода). Эта вода затем обрабатывается серной кислотой до значений рН 5,5; 4,0; 3,0 и 2,0. В качестве контрольной часть образца остается необработанной при рН 7,0. Перекись определяется с использованием стандартного иодометрического теста (ACRN-18-1) после разбавления образцов не содержащим перекись ацетонитрилом с доведением концентраций до калибровочного интервала теста. Определенными значениями являются 97 ч. на млн для контрольного образца и 86 ч. на млн, 12 ч. на млн, 56 ч. на млн и 47 ч. на мл для образцов, обработанных до значений рН 5,5; 4,0; 3,0 и 2,0 соответственно. Для подтверждения того, что это снижение перекиси является глубоко необратимым, обработанные образцы затем доводятся до рН 5,5, типичному значению рН охлаждения, путем добавления аммиака. Измеренными уровнями перекиси являются тогда 86 ч. на млн, 78 ч. на млн, 61 ч. на млн и 53 ч. на млн.
Как указано ранее, другой методикой обработки, рассматриваемой при осуществлении настоящего изобретения, является повторное направление рециркулируемого потока в точку, где более низкое значение рН по сравнению с прежним положением рециркулируемого потока. Например, регенерируемую водную фазу декантатора, в которой обычно содержится до 70 ч. на млн измеренной перекиси, обычно снова направляют в регенерационную колонну, в которой рН находится между 6 и 8. При осуществлении этого аспекта изобретения предусматривается, что этот поток повторно направляется в охлаждающую колонну, которая регулируется при более низком значении рН (например, 5,8-5,3). Ожидается, что увеличение измеренной перекиси в охлаждающей жидкости рециркулируемого потока будет меньше количества, присутствующего в рециркулируемом потоке. Температура и время пребывания в течение рецикла могут увеличиваться с достижением дополнительного снижения измеренной перекиси. Пример 2 приводится ниже для моделирования этого аспекта изобретения.
Пример 2. 100 ч. на млн примеси иона нитрита (предполагается, что в отработанных акрилонитрильных потоках находится часть или весь окислитель и ведет себя, как если бы присутствовали нитритный ион или нитритпроизводное) добавляется в моделированное питание регенерационной колонны, моделированную охлаждающую воду и в качестве контроля в деминерализованную воду. Перекись определяется с использованием стандартного иодометрического теста (ACRN-18-1) после разбавления образцов не содержащим перекись ацетонитрилом с доведением концентраций до калибровочного интервала теста. Определенными значениями являются: для контрольного образца 100 ч. на млн, для образца моделированного питания регенерационной колонны - 98 ч. на млн и для образца моделированной охлаждающей воды - 75 ч. на млн.
Наконец, также предусматривается, что обработка рециркулируемого потока может осуществляться путем изменения отношения воды к акрилонитрилу в гетерогенной азеотропной смеси, полученной в процессе акрилонитрильного способа. Измеренный уровень перекиси в водной фазе может быть намного больше уровня в акрилонитрильной фазе в азеотропной смеси. Это особенно соблюдается тогда, когда азеотропная смесь получается в точке, где значение рН регулируется около нейтрального, и/или где значение рН самой водной фазы регулируется около нейтрального. Любой способ, который увеличивает объем воды, отделяемой от такого конденсата, может дать в результате экстракцию большего количества окислителя в водном рециркулируемом потоке. Он может направляться или обрабатываться, как рассмотрено здесь, затем подвергаться рециркуляции. Наибольшее преимущество при осуществлении данной части данного изобретения реализуется при регенерации водной фазы декантатора.
Приведенный ниже пример 3 является воспроизведением данного аспекта настоящего изобретения.
Пример 3
Получается образец акрилонитрила с введенным нитритом (5 ч. на млн). 90 мл этого акрилонитрила встряхивается вместе с 10 мл воды, значение рН которой откорректировано до 7 с помощью бикарбонатного буфера (моделированная регенерированная водная фаза декантатора) с воспроизведением приблизительно азеотропной композиции. Фазы разделяются, и в каждой определяется перекись с использованием стандартного иодометрического теста. Установлено, что в акрилонитрильной фазе содержится 0,80 ч. на млн измеренной перекиси, составляющей 43% общего первоначально добавленного количества, а в водной фазе - 6,7 ч. на млн, 52% общего первоначального количества. Данное испытание повторяется, но с объемным соотношением 90:20. В этом случае в акрилонитрильной фазе содержится 0,55 ч. на млн измеренной перекиси, 30% общего первоначального количества, а в водной фазе - 4,4 ч. на млн, 68% общего первоначального количества. При объемном соотношении 90:30 в акрилонитрильной фазе содержится 0,35 ч. на млн измеренной перекиси, 19% общего первоначально введенного количества, а в водной фазе - 3,2 ч. на млн, 75% общего количества.

Claims (8)

1. Способ получения ненасыщенных мононитрилов, выбранных из группы, состоящей из акрилонитрила и метакрилонитрила, включающий следующие стадии: взаимодействие олефина, выбранного из группы, состоящей из пропилена и изобутилена, аммиака и кислорода в реакционной зоне в присутствии катализатора; перемещение выходящего из реактора потока, содержащего ненасыщенный мононитрил, в охлаждающую колонну, в которой выходящий из реактора поток, содержащий ненасыщенный мононитрил, контактирует с первым водным потоком с охлаждением выходящего из реактора потока; перемещение охлажденного потока, содержащего ненасыщенный мононитрил, в абсорбционную колонну, в которой выходящий из реактора поток контактирует, по крайней мере, со вторым водным потоком с отделением и удалением ненасыщенного мононитрила в качестве кубового потока из абсорбционной колонны; перемещение кубового потока, содержащего ненасыщенный мононитрил, в регенерационную колонну на стадию регенерации и очистки мононитрила; обработка, по крайней мере, одного отработанного водного потока перед рециркулированием в отработанный поток со снижением рН, в частности, для снижения количества следовых примесей окислителей, присутствующих в рециркулируемом водном потоке акрилонитрила.
2. Способ по п.1, отличающийся тем, что обработанный рециркулируемый водный поток рециркулируется в регенерационную колонну.
3. Способ по п.1, отличающийся тем, что обработанный рециркулируемый водный поток рециркулируется в охлаждающую колонну.
4. Способ по п.1, отличающийся тем, что выбранным олефином является пропилен.
5. Способ по п.1, отличающийся тем, что выбранной реакционной зоной является реактор с псевдоожиженным слоем.
6. Способ по п.1, отличающийся тем, что, по крайней мере, два рециркулируемых водных потока обрабатываются со снижением рН.
7. Способ по п.1, отличающийся тем, что водный поток далее обрабатывается кислотой со снижением рН перед возвращением в процесс.
8. Способ по п.1, отличающийся тем, что дополнительно образуют, по крайней мере, одну гетерогенную азеотропную смесь, содержащую воду и ненасыщенный мононитрил; увеличивают отношение воды к ненасыщенному мононитрилу в азеотропной смеси перед отделением ненасыщенного мононитрила от воды; рециркулируют воду при более низком рН.
RU98121500/04A 1998-05-13 1998-11-27 Способ получения ненасыщенного мононитрила RU2242459C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69.078,384 1998-05-13
US09/078,384 US5869730A (en) 1998-05-13 1998-05-13 Oxidant reduction by manipulation and/or treatment of aqueous acrylonitrile process streams
US09/078,384 1998-05-13

Publications (2)

Publication Number Publication Date
RU98121500A RU98121500A (ru) 2000-09-20
RU2242459C2 true RU2242459C2 (ru) 2004-12-20

Family

ID=22143710

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98121500/04A RU2242459C2 (ru) 1998-05-13 1998-11-27 Способ получения ненасыщенного мононитрила

Country Status (15)

Country Link
US (1) US5869730A (ru)
EP (1) EP0957084B1 (ru)
JP (2) JP4272283B2 (ru)
KR (1) KR100587188B1 (ru)
CN (1) CN1145607C (ru)
AT (1) ATE287872T1 (ru)
BG (1) BG64505B1 (ru)
BR (1) BR9805434B1 (ru)
DE (1) DE69828776T2 (ru)
ES (1) ES2236874T3 (ru)
RO (1) RO120405B1 (ru)
RU (1) RU2242459C2 (ru)
TR (1) TR199802494A3 (ru)
TW (1) TW534899B (ru)
ZA (1) ZA9810259B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721133C2 (ru) * 2015-12-17 2020-05-18 ИНЕОС Юроп АГ Колонна выделения

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869730A (en) * 1998-05-13 1999-02-09 The Standard Oil Company Oxidant reduction by manipulation and/or treatment of aqueous acrylonitrile process streams
US6002040A (en) * 1998-05-14 1999-12-14 The Standard Oil Company Reduced pressure drop in acrylonitrile absorber via direct contact spray heat exchange
US6860971B2 (en) * 1998-06-15 2005-03-01 Gregory J. Ward Process for recovery of olefinically unsaturated nitriles
US6107509A (en) * 1999-03-31 2000-08-22 The Standard Oil Company Process for the recovery of acrylonitrile and methacrylontrile
US6873087B1 (en) * 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
CA2415395C (en) * 2000-07-18 2009-12-01 The Standard Oil Company Improved process for the purification and recovery of acetonitrile
KR100676808B1 (ko) 2001-01-10 2007-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 산화 반응기 생산 용량의 증가 방법
US6984749B2 (en) * 2002-12-04 2006-01-10 Bp Corporation North America Inc. Method for inhibiting polymerization during the recovery and purification of unsaturated mononitriles
JP2004217656A (ja) * 2003-01-14 2004-08-05 Solutia Inc アクリロニトリル精製プロセスにおける凝縮させた冷却オーバーヘッドの再循環
US8585870B2 (en) * 2008-03-05 2013-11-19 E I Du Pont De Nemours And Company Process to C-manufacture acrylonitrile and hydrogen cyanide
JP6525666B2 (ja) * 2015-03-27 2019-06-05 キヤノン株式会社 トナー及びトナーの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2481826A (en) * 1947-02-28 1949-09-13 Allied Chem & Dye Corp Process for making aliphatic nitriles
MX67287A (ru) * 1959-02-24
US3044966A (en) * 1959-08-05 1962-07-17 Standard Oil Co Attrition resistant oxidation catalysts
US3198750A (en) * 1962-12-26 1965-08-03 Standard Oil Co Mixed antimony oxide-uranium oxide oxidation catalyst
NL293857A (ru) * 1962-06-11
US3200084A (en) * 1962-10-15 1965-08-10 Standard Oil Co Mixed antimony oxide-cerium oxide oxidation catalysts
IT708871A (ru) * 1962-11-28
US3352764A (en) * 1966-05-02 1967-11-14 Standard Oil Co Absorption and distillation process for separating crude unsaturated nitriles from acetonitrile with selective solvent recycle
GB1199697A (en) * 1967-11-13 1970-07-22 Nitto Chemical Industry Co Ltd Process for the Removal of Unreacted Ammonia in the Production of Acrylonitrile
US3936360A (en) * 1971-04-07 1976-02-03 The Standard Oil Company Process for distillation and recovery of olefinic nitriles
US4166008A (en) * 1977-07-29 1979-08-28 The Standard Oil Company Process for recovery of olefinic nitriles
KR850001603B1 (ko) * 1980-12-03 1985-10-24 아사히 가세이 고오교오 가부시기가이샤 불포화 니트릴의 제조법
US4334965A (en) * 1980-12-31 1982-06-15 Standard Oil Company Process for recovery of olefinic nitriles
JPH08231487A (ja) * 1995-02-28 1996-09-10 Asahi Chem Ind Co Ltd アクリロニトリルの製造方法
KR100186952B1 (ko) * 1996-06-18 1999-04-01 문성수 동합금 및 철-니켈 합금 소재에 팔라듐 또는 팔라듐 합금을 무전해 도금하는 방법
CN1110475C (zh) * 1996-10-23 2003-06-04 索罗蒂亚公司 纯化丙烯腈的方法
US5869730A (en) * 1998-05-13 1999-02-09 The Standard Oil Company Oxidant reduction by manipulation and/or treatment of aqueous acrylonitrile process streams

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721133C2 (ru) * 2015-12-17 2020-05-18 ИНЕОС Юроп АГ Колонна выделения

Also Published As

Publication number Publication date
BR9805434B1 (pt) 2009-01-13
CN1235154A (zh) 1999-11-17
CN1145607C (zh) 2004-04-14
KR19990087002A (ko) 1999-12-15
JPH11322696A (ja) 1999-11-24
ATE287872T1 (de) 2005-02-15
EP0957084A3 (en) 2000-07-12
EP0957084A2 (en) 1999-11-17
TW534899B (en) 2003-06-01
KR100587188B1 (ko) 2006-08-30
ZA9810259B (en) 1999-05-18
BR9805434A (pt) 1999-12-14
JP4272283B2 (ja) 2009-06-03
TR199802494A2 (xx) 1999-12-21
RO120405B1 (ro) 2006-01-30
DE69828776D1 (de) 2005-03-03
US5869730A (en) 1999-02-09
BG64505B1 (bg) 2005-05-31
ES2236874T3 (es) 2005-07-16
JP2009102391A (ja) 2009-05-14
DE69828776T2 (de) 2006-04-06
BG102955A (en) 2000-04-28
TR199802494A3 (tr) 1999-12-21
EP0957084B1 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP2009102391A (ja) 水性アクリロニトリルプロセス流の操作および/または処理によるオキシダントの低減
US7071348B2 (en) Process for the purification of olefinically unsaturated nitriles
JP2008507469A (ja) 蒸気流からアンモニアを回収及び再循環する改良法
US3352764A (en) Absorption and distillation process for separating crude unsaturated nitriles from acetonitrile with selective solvent recycle
EP0000566B1 (en) Process for recovery of olefinic nitriles
JPH0118891B2 (ru)
JP2002518353A (ja) オレフィン系不飽和ニトリルの回収方法
US3442771A (en) Extractive distillation process for separating nitrites,peroxides and precursors thereof from crude unsaturated nitriles saturated with water by alkaline addition
MXPA98009900A (es) Reduccion de oxidante por manipulacion y/o tratamiento de corrientes acuosas de proceso de acrilonitrilo
JPS6048505B2 (ja) アクリロニトリルおよびメタクリロニトリルの回収および精製
JPS6133809B2 (ru)
KR810001374B1 (ko) 올레핀 니트릴의 회수방법
KR810001375B1 (ko) 올레핀 나트릴의 회수방법
US3155599A (en) Removal of saturated carbonyl compounds from unsaturated nitriles
JPS6133814B2 (ru)
JPS5955863A (ja) メタクリロニトリルの精製回収方法
JPS5953458A (ja) メタクリロニトリルの精製回収方法
JPS6158468B2 (ru)
JPS59144746A (ja) メタクリロニトリルの精製方法
JPS61180757A (ja) 不飽和ニトリルの回収方法
JPS6133815B2 (ru)
JPS6158465B2 (ru)

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20080620

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171128