KR910004698B1 - 개선된 초기신도를 갖는 폴리올레핀섬유 및 그 제조방법 - Google Patents

개선된 초기신도를 갖는 폴리올레핀섬유 및 그 제조방법 Download PDF

Info

Publication number
KR910004698B1
KR910004698B1 KR1019880016099A KR880016099A KR910004698B1 KR 910004698 B1 KR910004698 B1 KR 910004698B1 KR 1019880016099 A KR1019880016099 A KR 1019880016099A KR 880016099 A KR880016099 A KR 880016099A KR 910004698 B1 KR910004698 B1 KR 910004698B1
Authority
KR
South Korea
Prior art keywords
molecular weight
olefin
fiber
carbon atoms
temperature
Prior art date
Application number
KR1019880016099A
Other languages
English (en)
Other versions
KR890010295A (ko
Inventor
가즈오 야기
히로유끼 다께다
Original Assignee
미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤
다께바야시 쇼오고
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤, 다께바야시 쇼오고 filed Critical 미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤
Publication of KR890010295A publication Critical patent/KR890010295A/ko
Application granted granted Critical
Publication of KR910004698B1 publication Critical patent/KR910004698B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/153Including an additional scrim layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

내용 없음.

Description

개선된 초기신도를 갖는 폴리올레핀섬유 및 그 제조방법
제 1 도는 초고분자량 폴리에티렌섬유(4), 초고분자량 에티렌/부텐-1 공중합체 섬유(5) 및 두 중합체의 조성물로 된 섬유(1)∼(3)의 크리프특성을 나타내는 그라프.
제 2, 3, 4, 5 및 6 도는 전술한 샘플들(1)∼(5)의 시차열곡선.
본 발명은 개선된 초기신도를 갖는 고강도 폴리올레핀섬유와 그의 제조방법에 관한 것이다.
고탄성계수와 고인장강도를 갖는 분자배향성형체는 초고분자량 폴리에티렌을 섬유테이프등으로 성형한 다음, 그 성형품을 연신시켜 얻는다는 것은 공지되어 있다. 예를들어 일본 특허공개 명세서 15408/81에는 초고분자량 폴리에티렌의 회석용액을 방사하여 얻은 필라멘트를 연신하는 방법이 기재되어 있다. 또한, 일본 특허공개 명세서 130313/84에는 초고분자량 폴리에티렌을 왁스와 용융혼련시킨 다음, 혼련된 혼합물을 압출, 냉각, 고형화한 후, 연신하는 방법이 기재되어 있다. 또한, 일본 특허공개 명세서 187614/84에는 상술한 바와 같은 용융혼련 혼합물을 압추르 드라프트, 냉각, 고형화한 다음, 연신하는 방법이 기재되어 있다.
만일, 초고분자량 폴리에티렌을 섬유로 성형한 다음, 그 섬유를 강연신할 경우, 탄성계수와 인장강도는 연신비의 증가에 따라 증가된다. 이 연신섬유는 고탄성계수와 고인장강도등의 양호한 기계특성을 갖고 있는 한편, 경량특성, 내수성 및 내후성이 우수하다. 그러나, 이 연신섬유는 초기신도가 크고 또한, 내크리프성이 불량한 결점을 갖고 있어 여전히 만족스럽지 못하다.
초기신도는 유기섬유에서 공통점으로 독특하게 관측되는 현상으로서 이 현상은 케브랄(Kevlar)섬유(전방향족 폴리아미드섬유) 등의 고강성 중합체에서조차 관측된다. 특히, 고탄성계수와 고강도를 갖는 상술한 폴리에티렌섬유에서는 초기신도가 정상온도에서 약 1%정도로 너무 크므로 예를들어 합성물질등의 분야에서 고탄성계수를 충분히 이용할 수 없다. 특히, 이렇게 큰 초기신도에 의한 영향은 섬유보강수지물질류, 텐숀부재류(광섬유 코드류) 등에서는 심각하다.
그러므로, 본 발명의 목적은 초기신도와 내크리프성이 크게 개선되고 또한, 고강도와 탄성계수를 갖는 폴리올레핀섬유와 이 폴리올레핀섬유의 제조방법을 제공하는데 있다.
좀 더 구체적으로, 본 발명의 한 태양에 의하면, 개선된 초기신도를 갖는 폴리올레핀섬유가 제공되는데, 이 섬유는 초고분자량 폴리에티렌과 에티렌과 적어도 3 탄소원자를 갖는 올레핀의 초고분자량 공중합체로 구성되는 조성물로 강연신체로 구성하되, 전 조성물중의 적어도 3 탄소원자를 갖는 올레핀의 함량은 전 조성물내의 1000 탄소원자당 측쇄의 수는 평균하여 0.2∼0.5인 비로 하며, 상기 올레핀은 전 조성물로서 적어도 5dl/g의 고유점도[η]를 갖고 있으며, 여기서 상기 강연신체는 시차주사 칼로리메터에 의해 구속상태에서 측정할 때 제2온도상승에서 주용융 흡열피이크로서 측정되는 조성물의 고유결정 용융온도[Tm]보다 적어도 15℃만큼 더 높은 온도영역에서 서로 인접한 적어도 두 결정용융 흡열피이크들을 갖고 있다.
본 발명의 또 다른 태양에 의하면, 개선된 초기신도를 갖는 폴리올레핀섬유의 제조방법이 제공되는데, 이 방법은 적어도 5dl/g의 고유점도[η]을 갖는 초고분자량 폴리에티렌과 적어도 5dl/g의 고유점도[η]를 갖는 초고분자량 에티렌/α-올레핀 공중합체로 조성물을 구성하되, 상기 α-오레핀은 적어도 3 탄소원자를 갖고 있고 또한, 상기 α-올레핀의 함량은 상기 공중합체중의 1000 탄소원자당 α-올레핀의 측쇄의 수가 평균적으로 0.5∼10인 그러한 것으로 하며, 또한 상기 중합체와 공중합체의 중량비를 10/90∼90/10으로 하여 구성되는 조성물을 회석제의 존제하에서 용융혼련시킨 다음, 그 용융혼합물을 방사하고, 그 다음 적어도 10의 연신비로 방사하여 얻은 섬유를 연신하는 방법이다.
실온에서 파괴하중의 30%에 상당하는 부하를 본 발명의 폴리올레핀섬유의 1cm 길이의 샘플에 70℃의 온도분위기에서 가할때, 부하의 초기의 시점으로부터 60초후의 초기신도를 5% 이하였고 또한, 하중인가 개시후 90초 시점부터 하중인가 개시후 180초 시점까지의 기간동안 평균 크리프속도가 1×10-4sec-1이하였다.
본 발명의 섬유의 이들 특성들은 아주 놀랄정도로 좋았다.
본 발명은 초고분자량 폴리에티렌과 에티렌과 적어도 3 탄소원자를 갖는 α-올레핀과의 초고분자량 공중합체(이후 "초고분자량 에티렌/α-올레핀 공중합체"로 칭함)를 적당한 혼합비로 하여 구성되는 조성물은 방사성과 연신성이 우수하므로 강연신 성형체로 쉽게 성형될 수 있으며, 또한 이 연신성형체는 아주 높은 탄성계수와 강도를 갖고 있을 뿐만 아니라 우수한 내크리프성을 갖고 있으며, 또한 이 연신성형체에서 초기 신도가 아주 저레벨로 조절된다는 고찰에 근거하였다.
초고분자량 폴리에티렌은 고연신비로 연신될 수 있으므로 그렇게 얻은 섬유는 고강도와 고탄성계수를 나타내지만 연신섬유는 내크리성이 불량한 결함이 있다. 다른 한편, 초고분자량 에티렌/α-올레핀 공중합체의 섬유는 우수한 내크리프성을 갖고 있지만, 연신성이 불충분하여 고강도와 고탄성계수를 갖는 사를 얻기 어렵다. 본 발명에 의한 초고분자량 폴리에티렌과 초고분자량 에티렌/α-올레핀 공중합체를 어떤 중량비로 하여 구성되는 고연신섬유는 강도와 탄성계수가 높은 전자중합체와 내크리프성이 높은 후자중합체를 협력적으로 갖고 있으며, 어우기 초기신도를 이 연신섬유에서 급격히 감소된다. 이 특성들은 아주 놀랄정도로 좋다.
제 1 도는 하중인가후의 시간경과와 크리프신도간의 관계를 나타내며, 이로부터 실온에서 파괴하중의 30%에 상당하는 하중이 70℃의 온도분위기에서 1cm 길이의 샘플에 가해질 때 여러 가지의 높게 연신된 폴리올레핀섬유들에 대해 관측할 수 있다. 제 1 도에서, 샘플(4)는 초고분자량 폴리에티렌섬유이며, 샘플(5)는 초고분자량 에티렌/부텐-1 공중합체 섬유이며, 또한 샘플(1), (2) 및 (3)은 상술한 초고분자량 폴리에티렌과 초고분자량 에티렌/부텐-1 공중합체를 각각 10/20, 15/15 및 20/10의 중량비로 구성한 조성물의 섬유들이다. 간단히, 제 1 도에서 이 섬유들의 크리프특성을 알 수 있다. 그밖의 각 샘플들은 이후 주어지는 실시예들에 상세히 기재된다.
제 1 도에 보인 결과로부터, 본 발명의 조성물의 섬유에서는 초기신도(하중인가 초기시점으로부터 60초후의 신도)가 각 성분들 단독으로 구성되는 섬유들에서보다 70℃의 가속조건하에서 조차 훨씬 낮은 레벨로 조절됐음을 알 수 있다.
제 2, 3, 4, 5 및 6 도는 0.2mm의 두께를 갖는 알루미늄쉬트상에 샘플을 감고 단부를 구속시킨 상태에서 제 1 도의 측정에 사용된 샘플들(1)∼(5)의 섬유들(멀티필라멘트들)에 대해 시차주사 칼로리메터에 의해 측정한 hs도-용융 열곡선들이다. 본 발명에 의한 샘플들(1)∼(3)의 결정용융온도(Tm)은 제2온도상승으로서 주용융 흡열피이크로서 측정하여 135.0·C, 135.6·C, 및 136.2·C이었다. 따라서, 본 발명의 섬유는 구석상태에서 Tm 보다 적어도 15·C높은 온도영역세서만 결정용융 피이크를 갖고 있으며, 또한 이 피이크는 서로 인접한 적어도 2개의 피이크들로서 나타남을 알 수 있다. 이 결정용융 특성은 초기신도의 급격한 감소와 밀접한 관계를 갖고 있다.
본 발명의 폴리오레핀섬유에서는 두 성분을 혼합함으로서 초기신도가 아주 작은 값으로 조절된다는 사실을 우연히 한 현상으로서 밝혀냈으며, 그 이유는 여전히 모르고 있다. 그러나, 그 이유는 후술되는 이유에 구속되지는 않지만, 아마 다음과 같은 것으로 추축된다. 일반적으로 연신섬유는 중합체쇄가 결정형 영역과 무정형 영역을 교호로 통과하고, 또한 결정형 영역이 연신방향으로 배향되는 구조를 갖고 있으며 또한, 그것은 섬유의 초기신도에 영향을 주는 무정형 영역인 것으로 생각된다. 본 발명의 폴리올레핀섬유에서는 섬유가 초고분자량 폴리에티렌과 초고분자량에티렌/α-올레핀 공중합체로 구성되기 때문에, 폴리에티렌 결정으로부터 상이한 결정구조는 무정형 영역으로 고유하게 형성될 부분속으로 도입되거나 또는 무정형 영역의 길이가 짧아진다. 이러한 이유 때문에, 초기신도가 감소될 수 있는 것으로 생각되나. 앞에서 지적된 바와 같이, 본 발명의 폴리올레핀섬유의 시차열분석의 결과는 용융피이크가 상이한 두 결정상이 생성됨을 나타낸다.
섬유의 기계특성면에서 볼 때, 전체로서 본 발명의 섬유를 구성하는 폴리올레핀 조성물은 적어도 5dl/g, 특히 7∼30l/g의 고유점도를 가져야 한다는 것이 중요하다. 분자말단들은 섬유의 강도에 관여되지 않고, 또한 분자말단들의 수는 분자량(점도)의 역수이기 때문에 고유점도[η]가 높을수록 강도가 더 높아짐을 알 수 있다.
본 발명에서는 폴리올레핀 조성물은 그 조성물중 1000 탄소원자당 분기쇄의 수가 평균하여 0.2∼3.0이 되는 양으로 초고분자량 에티렌/α-올레핀 공중합체를 포함해야만 하는 것이 중요하다. 만일, 분기쇄의 수가 너무 작거나 상술한 버위 이하일 경우, 초기신도를 감소시키고, 또한 내크리프성을 개선하는데 유효하도록 섬유의 내부구조를 형성하기 어렵다. 반대로, 만일 분기쇄의 수가 지나치게 커서 상술한 범위를 초과할 경우, 결정도는 급격히 저하되므로, 고탄성계수와 강도를 얻기 어렵다. 본 발명에서 조성물의 분기쇄의 측정은 적외선 스펙트로포토스카피(니뽄 분꼬 고교에 의해 공급됨)을 사용하여 수행된다. 좀더 구체적으로, 에티렌쇄내에 도입된 α-올레핀의 분기의 말단에서 메틸구릅의 변각진동을 기준으로 하여 1378cm-1에서 흡수성을 측정했고, 또한 1000 탄소원자당 분기 메틸구룹들의 수는13C 핵 자기공명자치내의 모델화합물을 사용하여 사전에 얻은 교정곡선을 참조하여 측정된 값으로부터 쉽게 얻을 수 있다.
본 발며을 이하에 상세히 설명한다.
[출발물질]
본 발명에 사용되는 초고분자량 폴리에티렌은 공지된 것으로 고지된 중합체를 임의로 사용할 수 있다. 고강도와 고탄성계수를 갖는 섬유를 얻기 위해, 초고분자량 폴리에티렌의 고유점도는 적어도 5dl/g, 특히 7∼30dl/g인 것이 좋다. 동일한 관점에서 다른 성분인 초고분자량 에티렌/α-올레핀 공중합체는 적어도 5dl/g, 특히 7∼30dl/g의 고유점도[η]를 가져야 한다. 여기서, 고려해야 되는 것은 초고분자량 폴리에티렌과 초고분자량 에티렌/α-올레핀 공중합체간의 분자량의 차가 너무 클 경우, 최종섬유의 내크리프성은 감소하는 경향이 있다는 것이다. 따라서, 두 수지간의 고유점도의 차는 5dl/g, 특히 3dl/g보다 작은 것이 좋다.
적어도 3 탄소원자를 갖는 올레핀으로서는,프로피렌, 부텐-1, 4-메틸펜텐-1, 헥센-1, 헤텐-1 및 옥텐-1과 같은 모노-올레핀으로부터 선택된 적어도 하나가 사용될 수 있다. 또한, 분자내에 적어도 두 불포화결합들, 바람직하게는 적어도 2개의 2중결합들을 갖는 탄화수소가 사용될 수 있다. 예를들면 1.3-부타디엔, 2-메틸-2,4-펜타디엔, 2,3-디메틸-1,3-부타디엔, 2,4-헥사디엔, 3-메틸-2,4-헥사디엔, 1,3-펜타디엔 및 2-메틸-1,3-부타디엔등의 공역디엔형 탄화수소화합물과, 1,4-펜타디엔, 1,5-헥사디엔, 1,6-헵타디엔, 1,7-옥타디엔, 2,5-디메틸-1,5-헥다디엔, 4-메틸-1,4-헵타디엔, 4-에텔-1,4-헵타디엔, 5-메틸-1,4-헵타디엔, 4-에틸-1,4-옥타디엔, 5-메틸-1,4-옥타디엔 및 4-n-프로필-1,4-데카디엔 등의 비공격 디엔형 탄화수소화합물과, 1,3,5-헥사트리엔, 1,3,5,77-옥타테트라엔 및 2, -비닐-1,3-부타디엔등의 공역 폴리올레핀형 탄화수소화합물과, 그리고 디비닐벤젠 및 비닐노르보르넨으로부터 선택된 적어도 하나를 사용할 수 있다.
본 발명에 사용된 초고분자량 에티렌/α-올레핀 공중합체는 에티렌과 공중합용 단량체로서 적어도 3 탄소원자를 갖는 α-올레핀을 지글러형 축매를 사용하여 유기용제중에서 슬러리 중합으로 얻어진다.
이 경우에, 올레핀 공중합용 단량체의 사용량은 최종 조성물중의 1,000 탄소원자당 측쇄(분기쇄)의 수가 0.2∼5, 특히 0.5∼3이 되는 그러한 정도이어야 한다.
본 발명의 목적을 얻기 위해 가장 효과적인 에티렌/α-올레핀 공중합체는 에티렌/부텐-1 공중합체이며, 에티렌/4-메틸-펜텐-1 공중합체, 에티렌/헥센-1 공중합체, 에티렌/옥텐-1 공중합체, 에티렌/프로피렌 공중합체, 에티렌/프로피렌/4-메틸렌텐-1 공중합체 및 에티렌/1,5-헥사디엔 공중합체가 유리하게 사용된다. 이들 초고분자량 에티렌/α-올레핀 공중합체는 단독 또는 그들 둘 이상의 혼합물의 형으로 사용될 수 있다.
[제조방법]
본 발명에서, 초고분자량 폴리에티렌(A)는 초고분자량 에티렌/α-올레핀 공중합체(B)와 (A)/(B)의 혼합비를 10/90∼90/10, 특히 20/80∼80/20의 비로 하여, 적어도 3 탄소원자를 갖는 α-올레핀의 함량이 1000 탄소원자당 분기쇄의 수가 상술한 범위내가 되는 정도가 되도록 조합된다.
초고분자량 올레핀수지의 용융성형을 가능하게 하기 위해, 희석제가 본 발명의 조성물내에 혼합된다. 희석제로는 초고분자량 올레핀수지 조성물의 용제와 이것과 상용성을 갖는 각종 왁스상 물질이 사용된다.
상술한 공중합체의 용융점보다 높은 비등점 적어도 20℃ 높은 비등점을 갖는 용제를 사용하는 것이 좋다.
용제의 구체적인 예로서 n-노나, n-데칸, n-운데칸, n-도데칸, n-테트라데카느 n-옥타데칸, 액상파라핀 및 케로센등의 지방족 탄화수소용제류, 크시렌, 나프타렌테트라린, 부틸벤젠, p-시멘, 시클로헥실벤젠, 이에틸벤젠, 페틸벤젠, 도데실벤젠, 바이시클로헥실, 데카린, 메틸나프타렌 및 에틸나프타렌등의 방향족 탄화수소용제류, 그의 수소화유도체류, 1,1,2,2-테트라클로로에탄, 펜타클로로에탄, 헥사클로로에탄, 1,2,3-트리클로로프로판, 디클로로벤젠, 1,2,4-트리클로로프로판, 및 브로모벤젠등의 할로겐화 탄화수소용제류, 그리고 파라핀형 프로세스오일 나프텐형 프로세스오일 및 방향족 프로세스오일 등의 미네랄오일류를 들 수 있다.
왁스로는 지방족 탄화수소화합물과 그의 유도체가 사용된다.
지방족 탄화수소화합물은 주로 포화지방족 탄화수소화합물로 구성되며, 또한 2,000 이하, 바람직하게는 1000 이하, 특히 바람직하게는 800 이하의 분자량을 갖는 소위 파라핀왁스이다. 지방족 탄화수소화합물의 구체적인 예를들면 도코산, 트리코산, 테트라코산 및 트리아코탄등의 적어도 22 탄소원자를 갖는 n-알칸류, 주성분으로서 상술한 바와 같은 n-알칸, 그리고 원유로부터 분리정제한 파라핀왁스류라고 하는 저급 n-알칸, 에티렌을 중합하거나 또는 에티렌과 다른 α-올레핀을 공중합하여 얻은 저분자량 중합체인 저압 및 중압 폴리올레핀왁스류, 고압 폴리에티렌왁스류, 에티렌 공중합체 왁스류, 중압, 저압 및 고압 폴리에티렌등의 폴리에티렌의 분자량을 열감퇴등에 의해 감소시켜 얻은 왁스류, 그리고 전술한 왁스류를 산화시키거나 말레인산으로 변성시켜 얻은 산화왁스류 및 말레인산 변성왁스류를 들 수 있다.
탄화수소 유도체로서, 지방산류, 지방족 알콜류, 지방산 아미드류, 지방산 에스테르류, 지방족 머캅탄류, 지방족 알데히드류 및 적어도 8 탄소원자, 바람직하게는 15∼50 탄소원자 또는 130∼2,000, 바람직하게는 200∼800의 분자량을 갖는 지방족 케톤류가 있는데, 이들은 카복실기, 하이드록실기, 카바모일기, 에스테르, 머캅토기 및 카보닐기등의 관능기능들중 적어도 하나, 바람직하게는 하나 또는 둘 특히 바람직하게는 하나를 지방족 탄화수소기(알킬 또는 알케닐기등)의 말단에 또는 그의 내부에 갖는 화합물류이다.
구체적으로 예를들면, 카프린산, 라우린산, 미리스틴산, 팔미틴산, 스테아린산 및 올레인산 등의 지방산류, 라우릴알콜, 미리스틸알콜, 세티알콜 및 스테아릴알콜등의 지방족 알콜류, 카르릴아미드, 라우릴아미드, 팔미틸아미드 및 스테아릴아미등의 지방산 아미드류, 그리고 스테아릴 아세테이트등의 지방산 에스테르류를 들 수 있다.
초고분자 올레핀수지 조성물과 희석제간의 비는 그들의 종류에 따라 다르지만 일반적으로 상술한 범위는 3/97∼80/20, 특히 15/85∼60/40이 좋다. 만일, 희석제의 양이 너무 작아 상술한 범위 이하일 경우, 용융점도가 너무 높아지게 되므로, 용융혼련 또는 용융성형이 어려워지게 되어 성형체의 표면이 거칠어지고, 또한 연신단계에서 파괴되는 곤란성이 자주 발생한다. 만일, 희석제의 양이 너무 많아 상술한 범위를 초과할 경우, 용융혼련이 어려워 성형체의 연신성이 불량하다.
용융혼련은 150∼300℃, 특히 170∼270℃에서 수행되는 것이 좋다. 만일 온도가 너무 낮아 상술한 범위 이하일 경우, 용융점도가 너무높으므로 용융성형이 어려워진다. 만일, 온도가 너무 높아 상술한 범위를 초과할 경우, 초고분자량 올레핀 조성물의 분자량이 열감퇴에 의해 감소되어 고탄성계수와 고강도를 갖는 성형체를 얻을 수 없다. 혼합은 헨첼믹서 또는 v-형 혼합기를 사용하는 건식혼합에 의해 또는 단스크류 또는 다스크류 압출기를 사용하는 용융혼합에 의해 달성될 수 있다.
용융성형은 일반적으로 용융 압출 성형법에 의해 성취된다. 예를들어 연신할 필라멘트는 방사금구를 통한 용융압출에 의해 얻을 수 있다 이 경우에, 방사금구로부터 압출되는 용융물은 드라프트, 즉 용융상태에서 연신될 수 있다. 드리프트비는 다음식으로 정의될 수 있다.
드라프트비=V/Vo (1)
식중, Vo는 다이올리피스내의 용융수지의 압출속도를 나타내며, V는 냉각 및 고형화된 비연신체의 권취속도를 나타낸다.
드라프트비는 혼합물의 온도, 초고분자량 올레핀수지 조성물의 분자량등에 따라 변동되나 통상적으로 적어도 3, 바람직하게는 적어도 6으로 조절될 수 있다.
초고분자량 올레핀수지 조성물로 얻어진 비연신성형체는 연신공정을 거친다. 연신도는 물론, 분자배향이 초고분자량 올레핀 조성물의 연신섬유의 적어도 일축방향으로 효과적으로 주어지는 그러한 정도이다.
일반적으로, 초고분자량 올레핀수지 조성물의 성형체의 연신은 40∼160℃, 특히 80∼145℃에서 수행되는 것이 좋다. 상술한 온도로 비연신성형체를 가열 및 유지시켜 주기위한 가열메체로서 공기, 증기 및 액상메체가 사용될 수 있다. 만일, 연신조작이 가열매체로서 상술한 희석제를 추출 제거할 수 있을 뿐만 아니라, 성형체를 구성하는 조성물의 것보다 높은 비등점을 갖는 데카린, 데칸 또는 케로센과 같은 매체를 사용하여 수행될 경우, 희석제의 제거가 가능해지게 되며, 또한 연신불균일성이 연신단계에서 제거될 수 있고 또한, 고연신비가 적용될 수 있다. 따라서, 상술한 매체를 사용하는 것이 좋다.
초고분자량 올레핀수지 조성물로부터 과잉희석제를 제거하기 위한 수단은 상술한 방법에 국한되지 않는다. 예를들어 과잉희석제는 비연신성형체를 헥산, 헵탄, 뜨거운 에탄올, 클로로포름 또는 벤젠등의 용제로 처리한 다음, 연신하는 방법 또는 연신성형체를 헥산, 헵탄 또는 벤젠등의 용제로 처리하는 방법에 의해 효과적으로 제거될 수 있고 그에 의해 고탄성계수와 고강도를 갖는 연신성형체가 얻어질 수 있다.
연신공정은 일단계 또는 둘 이상의 단계로 수행될 수 있다. 연신비는 원하는 분자배향과 분자배향에 의한 용융온도 특성을 개선하는 효과에 따라 다르다. 그러나, 일반적으로 연신비가 5∼80, 특히 10∼50이 되도록 연신공정을 수행하면 만족스러운 결과가 얻어질 수 있다.
일반적으로, 적어도 두 단계로 시행되는 다단계연신이 유리하다. 즉, 1단계에서, 압출성형체내에 합유된 희석제를 추출하면서 80∼120℃의 비교적 낮은 온도에서 연신작업을 수행하고, 2단계와 그 다음 단계들에서, 제1단계에서의 연신온도보다 높은 온도 120∼160℃에서 성형체의 연신을 행하는 것이 좋다.
필라멘트에 대한 단축연신작업은 주위속도가 다른 롤러들간에서 인장-연신시켜 수행될 수 있다.
그렇게 얻은 분자배향성체는 원할 경우, 구속조건하에서 열처리될 수 있다. 이 열처리는 일반적으로 1∼20분, 특히 3∼10분동안 140∼180℃, 특히 150∼175℃의 온도에서 수행된다. 이 열처리에 의해, 배향결정영역의 결정화가 더욱 개선되며, 결정용융온도가 고온측으로 이동되고 또한, 강도 및 탄성계수와 내크리프성이 개선된다.
[연신섬유]
앞에서 지적한 바와 같이, 본 발명의 연신섬유는 시차주사 칼로리메터에 의해 구속상태에서 측정할 때, 제2온도상승에서의 메인용융 흡열피이크로서 측정되는 폴리에티렌의 결정용융온도(Tm)보다 적어도 15℃ 더 높은 온도영역에서 서로 인접한 적어도 두 결정용융 흡열피이크들을 갖고 있는 것이 특징이다. 이러한 특정한 결정구조에 의해 본 발명의 섬유는 실온에서 파괴하중의 30%에 상당하는 하중이 1cm 길이의 샘플에 70。X의 온도분위기에서 가해질 때, 하중인가 초기의 시점으로부터 60초후의 초기신도는 5%, 특히 4% 이하이고, 또한 하중인가 초기후 90초의 시점부터 180초까지의 기간동안 평균 크리프속도는 1×10-4sec-1, 특히 7×10-5sec 보다 낮은 놀라운 특징을 가질 수 있다.
초고분자량 올레핀수지 조성물의 고유결정질 용융온도(Tm)는 성형체를 한번 완전히 용융시킨 다음, 냉각시켜 성형체내의 분자량을 완화하게 한 다음, 다시 온도를 상승시키는 방법으로 소위 시차주사 칼로리메터내세서 제2실행에 의해 측정될 수 있다.
본 발명에서, 용융점 및 결정용융 피이크는 다음과 같은 방법들에따라 측정된다.
용융점은 다음과 같은 방식으로 시차주사 칼로리메터(Perkin-Elner에 의해 공급되는 모델 decII)를 사용하여 측정한다. 약 3mg의 샘플을 4mmX4mmX0.2mm(두께)의 크기를 갖는 알미늄판상에 감아서 샘플을 배향방향으로 구속시킨다. 그 다음, 알미늄판상에 감긴 샘플을 알미늄팬내에 밀봉시켜 측정샘플을 얻는다. 그 알미늄판을 속이빈 알미늄팬내에 밀봉시켜 레퍼린스 홀더내에 넣어줌으로서 열평형을 유지시킨다.
우선, 샘플은 약 1분동안 30℃에 유지시킨 다음, 10℃/분의 온도상승율로 250℃까지 상승시켜 제1온도상승에서 용융점의 측정을 완료한다. 그 다음, 샘플을 10분동안 250℃에 유지시킨 다음, 20℃/분의 온도강하율로 강하하고, 10분동안 30℃에 유지시킨다. 그 다음, 제2온도상승을 10℃/분의 온도상승율로 250℃까지 상승시켜 제2온도상승(제2실행)에서 용융점의 측정을 완료한다. 용융피이크의 최대값은 용융점으로 했다.
피이크가 견부로서 나타날 경우에, 견부의 저온쪽 바로위의 변곡점과 견부의 고은쪽 바로위의 변곡점으로 접선을 그어 그 교차점을 용융점으로 했다.
본 발명의 시차열곡선에서, 고온쪽에 나타나는 흡열피이크(TH)는 결정 폴리에티렌 세그멘트의 고유피이크인 것으로 생각되며, 또한 저온쪽에 나타나는 흡열피이크(TL)은 결정화된 에티렌/α-올레핀 공중합체세그멘트의 고유피이크인 것으로 생각된다. TH와 TL은 혼합비와 배향도에 따라 다르게 나타나지만, 일반적으로 이 온도들은 다음과 같다.
Figure kpo00001
에티렌/α-올레핀 공중합체를 방사한 다음, 그 섬유를 고연신비로 연신하여 얻은 섬유는 두 흡열피이크들을 나타내지만 이 섬유들에서, 고온쪽 피이크(TH)는 본 발명의 섬유의 경우에서보다 더 낮으며, 또한 두 피이크온도가느이 차(TH-TL)는 본 발명의 섬유에서보다 크다.
시차열곡선중 고온쪽 피이크의 높이(IH) 대 저온쪽 피이크이 높이(IL)의 비는 두 수지들의 혼합비에 따라 달라야 하지만 일반적으로 IH/IL비는 1.5∼0.5, 특히 1.4∼0.6의 범위인 것이 좋다.
성형체내의 분자배향도는 X-레이 회절기, 복굴절법, 형광분광법등에 의해 알 수 있다. 본 발명에 의하면, 초고분자량 올레핀수지 조성물의 연신필라멘트는 예를들어 Yukichi Go와 Kiichiro Kubo, Kogyo Kagaku Zasshi, 39, 922(1939)에 상세히 기재된 X-레이 회절기에서 절반쪽에 의한 배향도 즉, 다음과 같은 식으로 정의된 배향도(F)는
배향도
Figure kpo00002
식중, H"는 적도선상의 최강 파라트 루프 평면의 디바이링에 연한 강도분포곡선의 절반쪽( 。)을 나타냄.
적어도 0.90, 바람직하게는 적어도 0.95인 것이 특징이다.
초고분자량 올레핀수지 조성물의 연신필라멘트는 5분동안 170℃의 열이력후, 강도보유비가 적어도 90%, 특히 적어도 95%이고, 탄성계수 보유비가 적어도 90%, 특히 적어도 95%인 내열특성을 갖는다. 이 우수한 내열성은 종래의 연신폴리에티렌 필라멘트들 중에서 얻어지지 않는다.
본 발명의 초고분자량 올레핀수지 조성물의 연신필라멘트는 기계특성이 우수하다. 즉, 본 발명의 초고분자량 올레핀수지 조성물의 연신섬유는 적어도 30Gpa, 특히 적어도 50Gpa의 탄성계수와 적어도 1.5Gpa, 특히 적어도 2.0Gpa의 인장강도를 갖는다.
본 발명의 연신섬유는 코드, 로프, 직물 및 부직포용 스태플, 모노필라멘트 또는 멀티필라멘트형으로 또는 각종 고무, 수지, 세멘트등용 보강재로서 사용될 수 있다.
본 발명에 의한 초고분자량 폴리에티렌과 초고분자량 에티렌/α-올레핀 공중합체로 구성되는 조성물은 양호한 방사성과 연신성을 갖고 있으므로 고도의 연신필라멘트로 성형될 수 있으며, 또한 그렇게 얻은 섬유는 고강도, 고탄성계수 및 고내크리프성이 모두 우수하며, 또한 초기신도가 아주 저레벨로 조절될 수 있다.
그에 따라, 본 발명의 섬유를 섬유보강합성체 또는 기타 합성체의 응력담체로서 사용할 경우, 강도가 높고 탄성계수가 큰 섬유를 효과적으로 사용할 수 있다.
본 발명을 실시예들을 참조하여 설명하면, 다음과 같다. 본 발명의 범위는 다음 실시예로 한정되지 않는다.
[실시예 1]
초고분자량 에티렌 단독중합체 분말[고유점도[η]-8.7g/dl], 초고분자량 에티렌/부텐-1 공중합체 분말[고유점도[η]=9.26g/dl, 1000 탄소원자당 부텐-1 함량=2.4분기쇄] 및 파라핀왁스분말(용융점=69℃, 분자량=490)로 구성되는 혼합물을 후술되는 조건하에 용융방사했다. 출발물질의 혼합비는 표 1에 나타낸다.
[표 1]
Figure kpo00003
방사하지전에 3,5-디메틸-타샤리-부틸-4-하이드록시 토루엔을 그 혼합물내에 프로세스 안정화제로서 0.1중량부의 양으로 균질하게 첨가했다.
그 다음, 그 혼합물을 스크류형 압출기(스크류직경=25mm, L/D=25 : 서모플라스틱사에 의해 판매됨)를 사용하여 190℃의 설정온도에서 용융혼련시킨 다음, 그 용융물을 압출기에 부착되는 오리피스직경이 2mm인 방사다이로부터 용융방사했다. 방사한 섬유를 180mm의 길이의 공극내에서 드라프트하는 조간하에서 권취한 다음, 공기중에서 냉각 고형화하여 표 2에 보인 비연신섬유를 얻었다.
[표 2]
Figure kpo00004
비연신된 섬유를 후술되는 조건하에서 연신하여 배향섬유를 얻었다. 즉, 3단계 연신을 4세트의 고뎃롤을 사용하여 행했다. 이 연신공정에서, 제1 및 제2연신탱크내의 가열매체는 n-데칸이었고, 제1 및 제2탱크내의 온도는 각가 110℃와 120℃이었다. 제3연신탱크이 가열매체는 트리에티렌 글리콜이었고, 제3탱크내의 온도는 145℃이었다. 각 탱크의 실효길이는 50cm이었다. 연신공정에서, 제1고뎃롤의 회전속도는 0.5m/분이었고, 제4고뎃롤의 회전속도를 조절함으로서 원하는 연신비를 갖는 섬유를 얻을 수 있었다. 제2 및 제3고뎃롤의 회전속도를 연신이 안정되게 수행될 수 있는 범위로 적당이 배열했다. 초기단계에서 혼합된 파라핀왁스의 대부분은 n-데칸탱크내에서 추출했다.
그밖에, 제1 및 제4고뎃롤단의 회전속도비로부터 연신비를 계산했다.
(인장특성의 측정)
탄성계수와 인장강도를 인장시험기(시마즈 세이사꾸쇼에 의해 공급되는 모델 DCS-50M)를 사용하여 실온에서 측정했다. 클램프들간의 샘플길이는 100mm이었고, 당기는 속도는 100mm/분이었다. 탄성계수는 탄젠트의 구배를 사용하여 초기 탄성계수로부터 계산했다. 계산에 필요한 섬유의 횡단면적은 섬유의 밀도가 0.960g/cc인 것으로 가정하여 계산했다.
(내크리프특성 및 초기신도의 측정)
크리프시험을 실온에서 파괴하중의 30%에 상당하는 하중을 인가하는 그러한 가중되는 하중조건하에서 열응력의 율측정장치(세이코 덴시사에 의해 제공괴는 모델 TMA/SS10)를 사용하여 70℃의 온도분위기에서 1cm 길이의 샘플로 수행했다. 크리프량과 초기신도를 정량분석적으로 평가하기 위해, 만족스러운 크리프상태로 들어가기전의 초기신도에 상당하는 하중인가 개시후 60초 뒤의 신도 EL-60(%)와 이미 만족스러운 크리프상태가 지나버린 하중인가 개시후 90초로부터 개시후 180초까지의 기간동안의 평균 크리프속도 ε(sec-1)을 측정했다.
샘플의 인장특성과 초기신도 및 크리프특성을 각각 표 3과 4에 나타낸다.
[표 3]
Figure kpo00005
[표 4]
Figure kpo00006
본 실시예에서 얻은 결과와 이후 주어지는 비교실시예에서 얻은 결과를 비교하면 명백히 알 수 있는 바와 같이, 본 발명의 섬유에서는 초기신도가 초고분자량 폴리에티렌 또는 초고분자량 에티렌/부텐-1 공중합체 단독으로 제조된 섬유의 것에 비해 개선되었으며, 또한 샘플 1의 내크리프성이 초고분자량 에티렌/부텐-1 공중합체 단독으로 구성한 섬유에 비해 훨씬 개선되었다. 샘플 1∼3의 조성물의 고유한 메인결정 용융온도(Tm)은 각각 135.0℃, 135.0℃ 및 136.2℃이었고, 샘플 1∼3의 I /I 비는 각각 1.10, 1.28 및 0.73이었다.
[비교실시예 1]
실시예 1에 기재된 초고분자량 에티렌 단독중합체와 초고분자량 에티렌/부텐-1 공중합체를 실시예 1에 기재된 것과 동일한 방식으로 발도로 용융방사했다. 중합체와 왁스간의 혼합비는 표 5에 나타낸다
[표 5]
Figure kpo00007
표 5에 보인 혼합물을 방사하여 얻은 비연신섬유들은 표 6에 나타낸다.
[표 6]
Figure kpo00008
표 6에 보인 비연신섬유들을 연신시켜 얻은 섬유들의 인장특성들은 표 7에 나타낸다. 이 연신섬유들의 초기신도와 크리프특성을 표 8에 나타낸다.
[표 7]
Figure kpo00009
[표 8]
Figure kpo00010
샘플 4 및 5의 조성물의 고유메인 결정용융온도(Tm)은 각각 137.5℃와 134.8℃이었고, 샘플 5의 IH/IL비는 1.45이었다.

Claims (12)

  1. 초고분자량 폴리에틴렌과, 에티렌과 적어도 3 탄소원자를 갖는 올레핀의 초고분자량 공중합체로 구성되는 조성물로 강연신체를 구성하되, 상기 전체 조성물중 적어도 3 탄소원자를 갖는 올레핀의 함량은 상기 조성물중 1000 탄소원자당 측쇄의 수가 평균하여 0.2∼5.0이 되는 그러한 정도가 되는 비로하며, 상기 조성물은 전체적으로 적어도 5dl/g의 고유점도[η]를 가지며, 여기서 상기 강연신체는 시차주사 칼로리케터로 구속상태에서 측정할 때 제2온도상승에서 메인용융 흡열피이크로서 측정되는 조성물의 고유결정 용융온도(Tm)보다 적어도 15℃만큼 더 높은 온도영역에서 서로 인접한 적어도 두 개의 결정용융 흡열온도를 갖고 있는 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  2. 제 1 항에서, 실온에서 파괴하중의 30%에 상당하는 하중이 70℃의 온도분위기에서 1cm의 샘플길이의 섬유에 가해질 때, 하중인가 개시후 60초뒤의 초기신도는 5% 이하이며, 또한 하중인가 개시후 90초로부터 개시후 180℃까지의 기간동안 평균 크리프속도는 1×10-4sec-1이하인 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  3. 제 1 항에서, 에티렌가 적어도 3 탄소원자를 갖는 α-올레핀의 초고분자량 공중합체의 고유점도[η]는 적어도 5dl/g이며, 상기 공중합체중에 α-올레핀의 함량은 공주합체내에서 1000 탄소원자당 측쇄의 수가 평균하여 0.5∼10이 되는 그러한 정도인 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  4. 제 1 항에서, 초고분자량 폴리에티렌의 고유점도는 적어도 5dl/g인 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  5. 제 1 항에서, 초고분자량 폴리에티렌과 초고분자량 에티렌/α-올레핀 공중합체는 10/90∼90/10의 중량비로 존재하는 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  6. 제 1 항에서, 상기 적어도 두 결정용융 흡열피이크들 즉, 고온측 흡열피이크(TH)와 저온측 흡열피이크(TL)은 TH=150∼157℃, TL=149∼155℃ 및 TH-TL=2.5∼0.5℃의 조건을 만족시키는 온도에서 나타나며, 또한 고온쪽 피이크의 높이(IH) 대 저온쪽 피이크이 높이(IL)의 비(TH/TL)은 1.5∼0.5인 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  7. 제 6 항에서, TH와 TL은 TH=151∼156℃ TL=150∼154℃ 및 TH-TL=2.0∼1.0℃의 조건을 만족시키는 온도에서 나타나며 비 IH/IL은 1.4∼0.6인 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  8. 제 1 항에서, 섬유는 5분동안 170℃의 열이력을 받을 때, 강도보유비가 적어도 90%이고 탄성계수가 적어도 90%인것이 특징인 개선된 초기 신도를 갖는 폴리올레핀 섬유.
  9. 제 1 항에서, 적어도 30Gpa의 탄성계수와 적어도 1.5Gpa의 인장강도를 갖는 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유.
  10. 제 1 항의 폴리올레핀섬유로 구성되는 것이 특징인 수지 또는 고무보강재.
  11. 적어도 5dl/g의 고유점도[η]를 갖는 초고분자량 폴리에티렌과 적어도 5dl/g의 고유점도[η]를 갖는 초고분자량 에티렌/α-올레핀 공중합체로 구성하되, 상기 α-올레핀은 적어도 3 탄소원자를 갖고 있으며, 또한 적어도 3 탄소원자를 갖는 상기 α-올레핀의 함량은 상기 공중합체중 1000 탄소원자당 α-올레핀의 측쇄의 수가 평균하여 0.5∼10이 되는 정도인 상기 조성물을 희석제의 존재하에서 10/90∼90/10의 중량비로 용융혼련시키고, 그 용융혼합물을 방사하고, 방사하여 얻은 섬유를 적어도 10의 연신비로 연신하는 것을 포함하는 개선된 초기신도를 갖는 폴리올레핀섬유 제조방법.
  12. 제 1 항에서, 희석제는 왁스이고, 초고분자량 올레핀수지 조성물과 왁스는 15/85∼60/40의 중량비로 사용되는 것이 특징인 개선된 초기신도를 갖는 폴리올레핀섬유 제조방법.
KR1019880016099A 1987-12-03 1988-12-03 개선된 초기신도를 갖는 폴리올레핀섬유 및 그 제조방법 KR910004698B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62304484A JPH089804B2 (ja) 1987-12-03 1987-12-03 初期伸びの改善されたポリオレフィン系繊維及びその製法
JP62-304484 1987-12-03

Publications (2)

Publication Number Publication Date
KR890010295A KR890010295A (ko) 1989-08-08
KR910004698B1 true KR910004698B1 (ko) 1991-07-10

Family

ID=17933587

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880016099A KR910004698B1 (ko) 1987-12-03 1988-12-03 개선된 초기신도를 갖는 폴리올레핀섬유 및 그 제조방법

Country Status (8)

Country Link
US (2) US5015525A (ko)
EP (1) EP0320188B1 (ko)
JP (1) JPH089804B2 (ko)
KR (1) KR910004698B1 (ko)
CN (1) CN1028547C (ko)
AT (1) ATE118826T1 (ko)
CA (1) CA1309817C (ko)
DE (1) DE3853140T2 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205960B1 (en) * 1985-06-17 1990-10-24 AlliedSignal Inc. Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
JP3206204B2 (ja) * 1992-05-22 2001-09-10 株式会社デンソー スロットルポジションセンサ
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US8563623B2 (en) * 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
EP1193335B1 (en) * 1998-06-04 2003-10-15 DSM IP Assets B.V. High-strength polyethylene fiber and process for producing the same
US6680265B1 (en) 1999-02-22 2004-01-20 Kimberly-Clark Worldwide, Inc. Laminates of elastomeric and non-elastomeric polyolefin blend materials
ES2220898T3 (es) 1999-08-11 2004-12-16 Toyo Boseki Kabushiki Kaisha Unmaterial balistico que comprende fibras de polietileno de alta resistencia.
DE19942611C1 (de) * 1999-08-31 2001-07-05 Ethicon Gmbh Verstärktes flächiges Implantat
US7344668B2 (en) 2003-10-31 2008-03-18 Honeywell International Inc. Process for drawing gel-spun polyethylene yarns
DK1699954T3 (da) * 2004-01-01 2012-02-06 Dsm Ip Assets Bv Fremgangsmåde til fremstilling af multifilament polyethylengarn med høj ydeevne
US7846363B2 (en) 2006-08-23 2010-12-07 Honeywell International Inc. Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns
US20090163679A1 (en) * 2007-12-19 2009-06-25 Braskem S.A. Suspension polymerization process for manufacturing ultra high molecular weight polyethylene, a multimodal ultra high molecular weight polyethylene homopolymeric or copolymeric composition, a ultra high molecular weight polyethylene, and their uses
EP2516709A4 (en) * 2009-12-23 2013-11-06 Invista Tech Sarl FABRIC COMPRISING AN ELASTIC FIBER OF POLYOLEFIN
NL2005455C2 (en) * 2010-10-05 2012-04-06 Polymer Res & Dev Process for producing high-performance polymer fibers.
CN102002769B (zh) * 2010-11-08 2012-12-12 宁波大成新材料股份有限公司 超高分子量聚乙烯纤维制备方法
LT2697414T (lt) * 2011-04-13 2017-12-27 Dsm Ip Assets B.V. Optimizuoto valkšnumo uhmwpe pluoštas
US10364512B2 (en) * 2014-03-28 2019-07-30 Toyobo Co., Ltd. Multifilament and braid
EP3124656B1 (en) * 2014-03-28 2021-06-02 Toyobo Co., Ltd. Multifilament and braid
WO2016133102A1 (ja) 2015-02-20 2016-08-25 東洋紡株式会社 マルチフィラメント及びそれを用いた組紐
JP6921823B2 (ja) * 2015-12-15 2021-08-18 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. 低クリープ繊維
CN111210723B (zh) * 2020-01-13 2022-06-03 京东方科技集团股份有限公司 一种柔性显示组件、可卷曲显示装置及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551814A (en) * 1978-10-04 1980-04-15 Mitsui Petrochem Ind Ltd Production of drawn filament yarn having uneven surface
NL177759B (nl) * 1979-06-27 1985-06-17 Stamicarbon Werkwijze ter vervaardiging van een polyetheendraad, en de aldus verkregen polyetheendraad.
JPS5841908A (ja) * 1981-09-04 1983-03-11 Showa Denko Kk 高強力モノフイラメントの製造方法
NL8104728A (nl) * 1981-10-17 1983-05-16 Stamicarbon Werkwijze voor het vervaardigen van polyetheen filamenten met grote treksterkte.
US4455273A (en) * 1982-09-30 1984-06-19 Allied Corporation Producing modified high performance polyolefin fiber
JPS5982406A (ja) * 1982-10-28 1984-05-12 Nippon Petrochem Co Ltd ポリオレフイン糸
DE3363610D1 (en) * 1982-12-28 1986-06-26 Mitsui Petrochemical Ind Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
JPS59187614A (ja) * 1983-04-07 1984-10-24 Mitsui Petrochem Ind Ltd 超高分子量ポリエチレン延伸物の製造法
JPS59130313A (ja) * 1982-12-28 1984-07-26 Mitsui Petrochem Ind Ltd 超高分子量ポリエチレンの延伸物の製造方法
US4737402A (en) * 1985-02-28 1988-04-12 Allied Corporation Complex composite article having improved impact resistance
JPS6241341A (ja) * 1985-08-08 1987-02-23 東洋紡績株式会社 ゲル繊維の高速延伸方法
US4769433A (en) * 1985-11-25 1988-09-06 E. I. Du Pont De Nemours And Company High strength polyolefins
JPH0794565B2 (ja) * 1987-08-04 1995-10-11 東洋紡績株式会社 耐クリ−プ性高強力ポリエチレン成型物およびその製造方法
IN170335B (ko) * 1986-10-31 1992-03-14 Dyneema Vof
DE3850905T2 (de) * 1987-05-06 1994-12-01 Mitsui Petrochemical Ind Molekular orientiertes geformtes Gebilde aus Ethylen-alpha-olefin-copolymer mit ultrahohem Molekulargewicht.
US4842922A (en) * 1987-10-27 1989-06-27 The Dow Chemical Company Polyethylene fibers and spunbonded fabric or web

Also Published As

Publication number Publication date
US5143977A (en) 1992-09-01
CN1028547C (zh) 1995-05-24
CN1034591A (zh) 1989-08-09
JPH01148807A (ja) 1989-06-12
EP0320188A2 (en) 1989-06-14
JPH089804B2 (ja) 1996-01-31
US5015525A (en) 1991-05-14
CA1309817C (en) 1992-11-10
EP0320188A3 (en) 1990-03-21
DE3853140T2 (de) 1995-06-29
DE3853140D1 (de) 1995-03-30
EP0320188B1 (en) 1995-02-22
ATE118826T1 (de) 1995-03-15
KR890010295A (ko) 1989-08-08

Similar Documents

Publication Publication Date Title
KR910004698B1 (ko) 개선된 초기신도를 갖는 폴리올레핀섬유 및 그 제조방법
US5246657A (en) Process of making polyolefin fiber
US5106563A (en) Process for producing highly oriented molded article of ultra-high-molecular-weight polyethylene
KR910003067B1 (ko) 초고분자량 에티렌/폴리엔 공중합체의 분자배향 성형체
KR910008668B1 (ko) 필라멘트 집합체 및 그것으로 구성된 망
US5115067A (en) Molecularly oriented molded body of ultra-high-molecular weight ethylene/α-olefin copolymer
US5430119A (en) Stretched molded article of ultra-high-molecular weight polypropylene and process for the preparation of the same
JP2599751B2 (ja) 窓ブラインド用紐
CA2070925C (en) Stretched molded article of ultra-high-molecular-weight polypropylene and process for the preparation of the same
JP2599750B2 (ja) ロープ
JPH01272843A (ja) ポリエチレン製ロープの強度増加処理方法
JPH04249819A (ja) プルスイッチ作動用紐
JPH086205B2 (ja) 超高分子量エチレン・プロピレン共重合体の分子配向成形体
JPH0261146A (ja) 被覆網体
JPH089803B2 (ja) 超高分子量エチレン−α−オレフィン共重合体の分子配向成形体
JPH0465512A (ja) クリープ特性に優れたポリエチレン分子配向成形体
EP0310423A1 (en) Drawn shaped body of ultra high molecular weight ethylene/alpha-olefin copolymer having a high breaking energy, and process for its preparation
JPH089802B2 (ja) 超高分子量エチレン−α−オレフィン共重合体の分子配向成形体
JPH04250206A (ja) 落石防止用ネット
JPH01260078A (ja) テント固定用ロープ
JPH01256335A (ja) 釣糸
JPH01260079A (ja) 係留用ロープ
JPS63275709A (ja) 超高分子量エチレン・ブテン−1共重合体の分子配向成形体
JPH0252507A (ja) パラボラアンテナ
JPH01260076A (ja) ヨット用ロープ

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060626

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee