KR20200143375A - 시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법 - Google Patents

시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법 Download PDF

Info

Publication number
KR20200143375A
KR20200143375A KR1020207029015A KR20207029015A KR20200143375A KR 20200143375 A KR20200143375 A KR 20200143375A KR 1020207029015 A KR1020207029015 A KR 1020207029015A KR 20207029015 A KR20207029015 A KR 20207029015A KR 20200143375 A KR20200143375 A KR 20200143375A
Authority
KR
South Korea
Prior art keywords
reaction
cyclohexanedicarboxylic
dicyanocyclohexanes
catalyst
acid
Prior art date
Application number
KR1020207029015A
Other languages
English (en)
Inventor
아오이 야마조에
유타 오모리
아키후미 이이다
유타카 칸바라
Original Assignee
미쯔비시 가스 케미칼 컴파니, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 filed Critical 미쯔비시 가스 케미칼 컴파니, 인코포레이티드
Publication of KR20200143375A publication Critical patent/KR20200143375A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/18Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing at least two amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/22Preparation of carboxylic acid nitriles by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/46Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/18Azelaic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

암모니아수용액 중의 프탈산류를 반응기 중에서 고정상촉매의 존재하, 수소와 접촉시킴으로써 시클로헥산디카르본산류, 또는, 시클로헥산디카르본산류 암모니아수용액을 얻는 공정을 갖는, 시클로헥산디카르본산류의 제조방법.

Description

시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법
본 발명은, 시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법에 관한 것이다.
비스(아미노메틸)시클로헥산류는, 에폭시경화제, 폴리아미드, 폴리우레탄 등의 원료로서 사용되는 공업적으로 중요한 화합물이다.
비스(아미노메틸)시클로헥산류의 제조방법으로는 몇 가지를 들 수 있다. 구체적인 제조방법으로는, 프탈산류에 대하여 수소첨가반응을 행하여 시클로헥산디카르본산류로 하고, 시클로헥산디카르본산류에 대하여 아미드화 및 탈수반응을 행하여 디시아노시클로헥산류로 하고, 디시아노시클로헥산류에 대하여 수소첨가반응을 행함으로써 비스(아미노메틸)시클로헥산류를 제조하는 방법이 알려져 있다. 여기서, 시클로헥산디카르본산류를 제조하기 위해서는, 특허문헌 1~3에 기재된 바와 같은 방법이 이용되고 있다.
일본특허공개 2011-006382호 공보 일본특허공표 H07-507041호 공보 일본특허공개 2002-020346호 공보
특허문헌 1에는, 물 등의 범용 용매에 대한 테레프탈산 또는 그의 유도체의 용해도가 높지 않으므로, 반응방식은 액상현탁반응방식이 바람직한 것이 기재되어 있다. 그러나, 이러한 방식에서는, 반응 후의 반응액에 촉매가 대량으로 혼재되어 있으므로, 촉매를 여과하여 제거하기에 수고를 필요로 한다. 또한, 생성물의 반응액에 대한 용해성이 낮은 것에 기인하여, 열여과, 또는 알칼리염으로 유도하고 나서의 여과를 행할 필요가 있어 제조효율이 충분하지는 않다.
한편, 특허문헌 2 및 3에서는, 프탈산 또는 그의 유도체의 용해성을 개선하기 위해 알칼리염으로 하는 것이 기재되어 있다. 그러나, 이 경우, 반응 후에 중화하는 공정이 필요하고, 이 방법에 따르더라도 제조효율은 충분하지는 않다.
본 발명은, 상기 사정을 감안하여 이루어진 것으로, 신규한 시클로헥산디카르본산류의 제조방법으로서, 제조효율이 우수한 제조방법을 제공하는 것을 목적으로 한다. 나아가 본 발명은, 그의 제조방법에 의해 얻어지는 디시아노시클로헥산류 및 비스(아미노메틸)시클로헥산류의 제조방법을 제공하는 것을 목적으로 한다.
본 발명자들은, 상기 목적을 달성하기 위해 예의 연구를 거듭한 결과, 암모니아수용액 중의 프탈산류를 반응기 중에서 수소 및 고정상촉매와 접촉시킴으로써, 상기 목적을 달성할 수 있는 것을 발견하여, 본 발명을 완성하기에 이르렀다.
즉, 본 발명은 하기와 같다.
(1)
암모니아수용액 중의 프탈산류를 반응기 중에서 고정상촉매의 존재하, 수소와 접촉시킴으로써 시클로헥산디카르본산류, 또는, 시클로헥산디카르본산류 암모니아수용액을 얻는 공정을 갖는, 시클로헥산디카르본산류의 제조방법.
(2)
(1)의 시클로헥산디카르본산류의 제조방법에 의해 얻어진 상기 시클로헥산디카르본산류 또는, 시클로헥산디카르본산류 암모니아수용액의 가열농축물을 시아노화반응시킴으로써, 디시아노시클로헥산류를 얻는 공정을 갖는, 디시아노시클로헥산류의 제조방법.
(3)
상기 시클로헥산디카르본산류를 얻는 공정에 있어서 얻어진 상기 시클로헥산디카르본산류 암모니아수용액의 적어도 일부를, 상기 디시아노시클로헥산류를 얻는 공정의 암모니아원으로서 이용하는, (2)의 디시아노시클로헥산류의 제조방법.
(4)
상기 시클로헥산디카르본산류 암모니아수용액을, 100~200℃로 가열하여, 물의 적어도 일부를 제거함으로써, 상기 가열농축물을 얻는 공정을 추가로 갖는, (2) 또는 (3)의 디시아노시클로헥산류의 제조방법.
(5)
(2)~(4) 중 어느 하나의 제조방법에 의해 얻어진 디시아노시클로헥산류를 수소첨가반응시킴으로써, 비스(아미노메틸)시클로헥산류를 얻는 공정을 갖는, 비스(아미노메틸)시클로헥산류의 제조방법.
본 발명에 따르면, 신규한 시클로헥산디카르본산류의 제조방법으로서, 제조효율이 우수한 제조방법을 제공할 수 있다. 그리고, 본 발명에 따르면, 그의 제조방법에 의해 얻어지는 디시아노시클로헥산류 및 비스(아미노메틸)시클로헥산류의 제조방법을 제공할 수 있다.
이하, 본 발명을 실시하기 위한 형태(이하, 간단히 「본 실시형태」라고 한다.)에 대하여 상세히 설명하나, 본 발명은 하기 본 실시형태로 한정되는 것은 아니다. 본 발명은, 그 요지를 일탈하지 않는 범위에서 다양한 변형이 가능하다.
[시클로헥산디카르본산류의 제조방법]
본 실시형태의 시클로헥산디카르본산류의 제조방법(이하, 「CHDA제조방법」라고도 한다.)은, 암모니아수용액 중의 프탈산류를, 반응기 중에서 고정상촉매의 존재하, 수소와 접촉시킴으로써, 시클로헥산디카르본산류, 또는, 시클로헥산디카르본산류 암모니아수용액을 얻는 공정(이하, 「핵수첨공정」이라고도 한다.)을 갖는다. 본 실시형태의 제조방법에서는, 프탈산류를 암모니아수용액 중에서 암모늄염으로 함으로써, 물에 대한 용해도가 향상되고, 그 결과, 고정상식에서의 반응이 가능해진다. 이 때문에, 촉매를 여과하기 위한 공정이 불필요해져, 제조효율이 우수하다. 또한, 프탈산류를 암모늄염 그대로 취출하고, 다음 공정인 시아노화공정에 이용함으로써, 중화의 공정을 필요로 하지 않고, 암모니아의 유효활용도 가능해지므로, 제조효율이 한층 우수하다.
본 실시형태에 있어서, 「시클로헥산디카르본산류」이란, 시클로헥산디카르본산 및 그의 유도체를 포함하는 개념을 말하고, 시클로헥산디카르본산유도체는, 염의 형태도 포함한다. 시클로헥산디카르본산으로는, 1,2-시클로헥산디카르본산, 1,3-시클로헥산디카르본산, 및 1,4-시클로헥산디카르본산을 들 수 있다. 시클로헥산디카르본산의 유도체로는, 1,2-시클로헥산디카르본산암모늄염, 1,3-시클로헥산디카르본산암모늄염, 1,4-시클로헥산디카르본산암모늄염 등의 시클로헥산디카르본산암모늄염, 2-카르복사미드시클로헥산-1-카르본산, 3-카르복사미드시클로헥산-1-카르본산, 4-카르복사미드시클로헥산-1-카르본산 등의 카르복사미드시클로헥산카르본산을 들 수 있다.
한편, 시클로헥산디카르본산의 유도체로는, 1,2-시클로헥산디카르복사미드, 1,3-시클로헥산디카르복사미드, 1,4-시클로헥산디카르복사미드 등의 분자 중에 카르복사미드기를 2개 갖는 유도체를 들 수 있으나, 상기 카르복사미드기를 2개 갖는 유도체는, 융점이 높아 시아노화반응시에 용해되기 어려우므로, 반응성의 저하로 이어진다. 그 결과, 고비(高沸)를 형성하기 쉬워, 수율이 악화되는 경향이 있다. 이 때문에, 시클로헥산디카르본산류 중의 상기 카르복사미드기를 2개 갖는 유도체의 함유량은, 10질량% 이하인 것이 바람직하고, 5질량% 이하인 것이 보다 바람직하고, 1질량% 이하인 것이 더욱 바람직하다. 한편, 시클로헥산디카르본산류 중의 시클로헥산디카르본산, 시클로헥산디카르본산암모늄염, 및 카르복사미드시클로헥산카르본산의 합계의 함유량은, 수율 및 반응성의 관점에서, 90질량% 이상인 것이 바람직하고, 95질량% 이상인 것이 보다 바람직하고, 99질량% 이상인 것이 더욱 바람직하다.
본 실시형태에 있어서, 「프탈산류」란, 프탈산, 무수프탈산, 이소프탈산 및 테레프탈산 및 이들의 유도체를 말하고, 더 나아가 염의 형태(예를 들어, 암모늄염)도 포함하는 개념을 말한다.
핵수첨공정에서는, 예를 들어, 우선, 반응기에 촉매를 충전한다. 반응기로는, 액체반응액이 촉매의 위를 통과하여 기체, 액체, 고체물질이동상태를 부여하는 고정상으로서 탑이 기능하는 한, 특별히 한정되지 않는다. 또한, 여기서 말하는 촉매로는, 예를 들어, 통상의 핵수첨반응에 이용되는 촉매를, 공지의 방법에 의해 환원시킨 것일 수도 있고, 환원 전의 것일 수도 있다. 촉매로는, 예를 들어, 통상의 핵수첨반응에 이용되는 촉매를 채용할 수 있고, 구체적으로는, Ru, Pd, Pt 및 Rh와 같은 1종 또는 2종 이상의 금속촉매, 혹은 귀금속촉매가 이용된다. 또한, 촉매는, 상기의 금속촉매가, 카본, Al2O3, SiO2, SiO2-Al2O3, TiO2, 및 ZrO2와 같은 통상 이용되는 1종 또는 2종 이상의 담체 상에 담지된 형태를 가질 수도 있다. 담체를 이용한 경우의 촉매의 담지량은, 담체 100질량%에 대하여, 0.1~10질량%이면 바람직하다.
핵수첨공정에서는, 이어서, 수소가스를 소정의 압력이 될 때까지 도입하고, 소정온도까지 승온한다. 수소가스는, 그 후, 소정유량으로 반응기 내에 도입한다. 반응관 내의 압력은 상압일 수도, 가압일 수도 있다. 가압하는 경우의 계내의 압력은 0.5~15MPa이면 바람직하고, 반응온도는, 40~150℃이면 바람직하다. 수소의 유량은 단위시간에 촉매와 접촉하는 프탈산류 100몰%에 대하여, 수소가 300~1000몰%가 되는 양이면 바람직하고, 300~600몰%이면 보다 바람직하다.
핵수첨공정에서는, 이어서, 프탈산류의 암모니아수용액(이하, 「반응액」이라고도 한다.)을 조합하고, 펌프를 이용하여 반응기 내에 반응액을 유통시킨다. 프탈산류의 투입량은, 반응액 전체에 대하여 2~20질량%이면 바람직하다. 또한, 암모니아수용액 중의 암모니아의 투입량은, 프탈산류 100몰%에 대하여, 200~400몰%이면 바람직하다. 여기서, 프탈산류가 암모늄염인 경우에는, 암모니아의 투입량(몰%)은 프탈산류 중에 포함되는 암모니아의 양도 포함한다. 촉매의 사용량에 제한은 없고, 담지되어 있는 금속촉매의 함유량과 반응에 이용하는 프탈산류의 양을 감안하여, 목적의 전화율이 되도록 적당히 결정하면 된다. 또한, 반응시간은, 핵수첨반응이 충분히 진행되는 시간이면 된다. 각 반응조건을 상기의 범위 내로 조정함으로써, 얻어지는 시클로헥산디카르본산류의 수율 및 선택율을 높일 수 있는 경향이 있다.
상술한 바와 같이 하여 시클로헥산디카르본산류를 제조한 경우, 반응액은, 암모니아수용액과, 생성된 시클로헥산디카르본산류를 포함한다.
본 실시형태의 디시아노시클로헥산류의 제조방법(이하, 「CHDN제조방법」이라고도 한다.)은, 상술의 본 실시형태의 시클로헥산디카르본산류의 제조방법에 의해 얻어진 시클로헥산디카르본산류, 또는 시클로헥산디카르본산류 암모니아수용액의 가열농축물(이하, 간단히 「가열농축물」이라고도 한다.)을 시아노화반응시킴으로써, 디시아노시클로헥산류를 얻는 공정(이하, 「시아노화공정」이라고도 한다.)을 갖는다. 여기서, 가열농축물은, 시클로헥산디카르본산류의 암모니아수용액, 또는 여과하여 얻은 결정, 및 이들의 혼합물(슬러리)을 포함하는 개념을 말한다.
가열농축물을 시아노화공정에 이용함으로써, 예를 들어 암모니아가스를 계내에 도입하는 것만으로 인해 시아노화시키는 경우와 대비하여, 디시아노시클로헥산류의 수율을 높일 수 있다. 그 요인은, 이것으로 한정되지 않으나, 후술하는 가열농축공정에 있어서 가열함으로써 가열농축물 중에 중간체가 생성되고, 그 중간체가 시아노화반응에 기여하기 때문으로 생각된다.
본 실시형태에 있어서, 「디시아노시클로헥산류」란, 디시아노시클로헥산 및 그의 유도체를 포함하는 개념을 말한다. 디시아노시클로헥산류로는, 1,2-디시아노시클로헥산, 1,3-디시아노시클로헥산, 및 1,4-디시아노시클로헥산을 들 수 있다.
본 실시형태의 CHDN제조방법은, 시클로헥산디카르본산류를 얻는 공정에 있어서 얻어진 시클로헥산디카르본산암모니아수용액의 일부를, 디시아노시클로헥산류를 얻는 공정의 암모니아원으로서 이용하는 것이 바람직하다. 이로 인해, 암모니아의 유효활용이 가능해진다. 특히, 암모니아의 유효활용의 관점에서, 얻어진 시클로헥산디카르본산암모니아수용액의 5~25질량%를 암모니아원으로서 이용하는 것이 바람직하다.
본 실시형태의 CHDN제조방법은, 시클로헥산디카르본산류 암모니아수용액을 가열하여, 물의 적어도 일부를 제거함으로써, 가열농축물을 얻는 공정(이하, 「가열농축공정」이라고도 한다.)을 추가로 갖는 것이 바람직하다. 이에 따라, 시아노화공정에서의 디시아노시클로헥산류의 수율이 보다 높아지는 경향이 있다. 가열농축시의 온도(가열온도)는, 30~200℃인 것이 바람직하다. 가열온도가 상기 범위 내임으로써, 암모니아수용액으로부터 물을 휘발에 의해 유효하게 제거할 수 있고, 그 결과, 후술하는 시아노화공정에서의 디시아노시클로헥산의 수율이 한층 높아지는 경향이 있다. 동일한 관점에서, 가열온도는, 50~200℃인 것이 보다 바람직하고, 100~200℃인 것이 더욱 바람직하다. 한편, 시클로헥산디카르본산유도체가 1,4-시클로헥산디카르본산유도체인 경우에는, 1,4-시클로헥산디카르본산유도체의 트랜스체의 함유량을 높이는 관점에서, 120~200℃인 것이 바람직하고, 140~200℃인 것이 보다 바람직하다. 압력은 상압이어도 가압이어도 된다. 가열농축시의 압력은, 암모니아수용액으로부터 물을 휘발에 의해 유효하게 제거하는 관점에서, 0.003~2MPa인 것이 바람직하다.
또한, 본 실시형태에 있어서, 상기 가열농축물을 시아노화공정에 이용하는 것은, 그 가열농축물 중에 존재하는 암모니아를 유효하게 시아노화반응의 원료로서 이용할 수 있는 점에서 유용하다.
본 실시형태의 CHDN제조방법에 있어서, 가열농축공정은, 시아노화공정에 앞서 행해도 된다. 가열농축공정에 있어서, 가열농축 후의 암모니아수용액 중의 시클로헥산디카르본산류의 농도는, 암모니아 100몰%에 대하여, 25~100몰%이면 바람직하다.
가열농축공정에 있어서, 가열농축하는 방법은 시클로헥산디카르본산류의 암모니아수용액으로부터 물을 휘발에 의해 제거할 수 있는 방법이면, 특별히 한정되지 않는다. 가열농축하는 방법은, 시클로헥산디카르본산류의 암모니아수용액으로부터 물을 휘발에 의해, 적극적으로 계외로 제거하는 관점에서 개방계를 이용하는 방법이 바람직하다.
가열농축공정은, 그 후의 시아노화공정과 연속적으로 행해도 된다. 즉, 우선 반응기 내에, 시클로헥산디카르본산류의 암모니아수용액과, 필요에 따라 물과, 촉매를 투입하고, 계내의 압력이 소정의 압력이 될 때까지 불활성가스, 및 필요에 따라 암모니아가스를 도입한다. 그 후, 반응기 내를 바람직하게는 100℃~200℃의 범위내로 유지함과 함께, 반응기 내의 압력이 일정의 범위 내를 유지하도록, 적당히 불활성가스를 반응기 내에 도입하거나, 반응기 내의 가스를 배출하거나 하면서, 가열농축물을 얻는다.
그 후, 필요에 따라 암모니아가스를 반응기 내에 도입하고, 그 반응기 내의 온도 및 압력을, 시아노화공정에 필요한 온도 및 압력으로 조정하여, 시아노화반응을 진행시켜도 된다. 이 경우, 암모니아가스를 도입하는 기회를, 가열농축물을 얻은 후로 하면, 암모니아를 보다 효율적으로 이용할 수 있으므로 바람직하다. 상기의 불활성가스로는, 예를 들어, 질소가스, 그리고 아르곤 및 헬륨과 같은 희가스를 들 수 있다. 단, 계내에 불활성가스를 도입하지 않아도 된다.
또한, 가열농축공정에 있어서, 가열농축물로부터 결정을 취출하고, 그 후의 시아노화공정의 원료로서 이용할 수도 있다. 회수하는 방법으로는, 예를 들어, 가열농축물을 여과함으로써 결정을 회수하는 방법을 들 수 있다. 여과 후의 1,4-시클로헥산디카르본산유도체 중의 모액의 함액률은, 조작성의 관점에서 5~35질량%가 바람직하고, 10~25질량%인 것이 보다 바람직하다. 여과 후의 1,4-시클로헥산디카르본산유도체는 모액을 함액한 상태로 다음 공정에 제공할 수도 있고, 일단 결정을 취출하고, 건조한 후에 다음 공정에 제공할 수도 있다. 또한, 가열농축공정의 횟수는, 1회일 수도 있고, 복수회일 수도 있다. 본 실시형태의 제조방법에서는, 1회째의 가열농축공정에 의해 결정을 회수한 후의 암모니아수용액을, 추가로 결정을 회수하기 위해 2회째 이후의 가열농축공정에 반복하여 이용할 수 있다. 본 실시형태의 제조방법은, 가열농축공정의 횟수가 복수회임으로써, 시클로헥산디카르본산류를 누설없이 회수할 수 있으므로, 시클로헥산디카르본산류의 수율이 한층 우수한 경향이 있다.
시아노화공정에 있어서는, 우선, 반응기 내에 가열농축물과, 필요에 따라 물과, 촉매를 투입하고, 계내의 압력이 소정의 압력이 될 때까지 불활성가스를 도입한다. 그 후, 반응기 내를 소정의 온도가 될 때까지 가열하여, 반응기 내의 압력이 일정의 범위 내를 유지하도록, 적당히 불활성가스를 반응기 내에 도입하면서, 또한 반응기 내를 교반하면서, 시아노화반응을 진행시킨다.
촉매는, 균일계 촉매여도 불균일계 촉매여도 사용할 수 있다. 촉매로는, 통상의 시아노화반응에 이용되는 촉매를 채용할 수도 있고, 구체적으로는, 실리카겔, 알루미나, 실리카알루미나, 산화아연, 산화주석, 산화철, 산화티탄, 산화지르코늄, 산화하프늄, 산화망간, 산화텅스텐, 오산화바나듐, 오산화니오븀, 산화탄탈, 산화갈륨, 산화인듐, 산화스칸듐 등의 금속산화물이며, 이들은 단체여도 복합산화물이어도 담지한 것이어도 된다. 담지성분으로는, 예를 들어, 나트륨, 리튬, 칼륨, 루비듐, 세슘 등의 알칼리금속, 주석, 레늄, 망간, 몰리브덴, 텅스텐, 바나듐, 철, 니켈, 크롬, 붕산, 염산, 인산 등을 들 수 있다. 또한, 촉매로는, 과레늄산이나 산화레늄 등의 레늄 화합물, 산화디부틸주석 등의 유기주석 화합물, 디클로로트리스(트리페닐포스핀)루테늄(II) 등의 루테늄 화합물, 및 산화코발트 등도 들 수 있다. 이들 중에서도, 시아노화반응을 보다 유효하고 또한 확실히 진행시키는 관점에서, 산화아연 및 산화주석이 바람직하다. 촉매는, 1종을 단독으로 또는 2종 이상을 조합하여 이용된다. 나아가, 촉매의 사용량은, 시클로헥산디카르본산류 100질량%에 대하여, 0.5~20질량%이면 바람직하다. 촉매를 상기의 범위 내의 양이 되도록 이용함으로써, 얻어지는 디시아노시클로헥산류의 수율 및 선택율을 높일 수 있는 경향이 있다.
시아노화공정에 있어서는 무용매, 혹은 용매를 이용해도 되고, 바람직하게는 비점이 600℃ 이하인 용매, 보다 바람직하게는 비점이 500℃ 이하인 용매, 더욱 바람직하게는 비점이 420℃ 이하인 용매를 이용한다. 또한, 시아노화반응의 반응온도 이상인 용매의 비점은, 바람직하게는 250℃ 이상이며, 보다 바람직하게는 270℃ 이상이며, 더욱 바람직하게는 300℃ 이상이다. 비점이 300℃ 이상임으로써, 시아노화반응이 원활하게 진행되고, 또한, 디시아노시클로헥산의 삼량체와 같은 불순물의 생성을 억제할 수 있는 경향이 있다. 시아노화공정에 있어서 이용되는 용매로서, 헵타데칸, 노나데칸, 도코산 등의 지방족 알칸; 헵타데센, 노나데센, 도코센 등의 지방족 알켄; 헵타데신, 노나데신, 도코신 등의 지방족 알킨; 운데실벤젠, 트리데실벤젠, 테트라데실벤젠 등의 알킬벤젠, 디알킬벤젠 및 알킬나프탈렌 등의 알킬치환방향족; 2,5-디클로로안식향산, 테트라클로로프탈산무수물 등의 산 또는 산무수물; 운데칸아미드, 라우르산아미드, 스테아르산아미드 등의 아미드 화합물; 테트라데칸니트릴, 헥사데칸니트릴, 2-나프틸아세토니트릴, 스테아로니트릴, 1,4-디시아노시클로헥산 등의 니트릴 화합물; p-클로로디페닐포스핀, 아인산트리페닐 등의 인 화합물; 1,2-디페닐에틸아민, 트리옥틸아민 등의 아민; 2,2’-비페놀, 트리페닐메탄올 등의 수산화물; 안식향산벤질, 프탈산디옥틸 등의 에스테르; 4-디브로모페닐에테르 등의 에테르; 1,2,4,5-테트라클로로-3-니트로벤젠, 4,4’-디클로로벤조페논 등의 할로겐화벤젠; 2-페닐아세토페논, 안트라퀴논 등의 케톤 그리고 트리페닐메탄; 등을 들 수 있다. 이들 중, 알킬나프탈렌, 트리페닐메탄, 또는 디시아노시클로헥산이 시아노화반응의 진행을 방해하기 어렵다는 관점에서 바람직하다.
또한, 반응기 내에 암모니아가스를 적당히 도입할 수도 있다. 그 유량은 반응의 스케일 등에 따라 적당히 조정하면 되고, 통상 시클로헥산디카르본산류 1몰에 대하여 1시간당 0.1~5배몰이며, 바람직하게는 1시간당 0.3~4배몰이며, 보다 바람직하게는 1시간당 0.5~3배몰이다. 암모니아가스의 사용량은, 시클로헥산디카르본산류 100몰%에 대하여, 200~1000몰%이면 바람직하다. 이에 따라, 얻어지는 디시아노시클로헥산류의 수율 및 선택율을 높일 수 있는 경향이 있다.
본 실시형태의 제조방법에 있어서의 반응온도는, 시아노화반응이 진행되는 온도이면 특별히 제한되지 않고, 바람직하게는 270~400℃이며, 보다 바람직하게는 280℃~380℃이며, 더욱 바람직하게는 290℃~350℃이다. 본 실시형태의 제조방법에 있어서의 반응압력은, 음압이어도 상압이어도 양압이어도 된다. 반응시간은, 시아노화반응이 충분히 진행되는 시간이면 된다. 각 원료의 농도나 반응조건을 상술의 범위 내로 조정함으로써, 디시아노시클로헥산류의 수율을 높일 수 있는 경향이 있다.
이와 같이 하여 얻어진 디시아노시클로헥산류를 포함하는 반응액을, 필요에 따라 증류함으로써, 디시아노시클로헥산류를 회수할 수도 있다(이하, 이 공정을 「증류공정」이라고 한다.). 증류는, 예를 들어, 증류기의 계내의 압력이 3.0kPA~4.0kPA, 온도가 180~230℃가 되도록 증류기를 바닥부로부터 가열함과 함께 꼭대기부에서 냉각을 함으로써, 기내에 있어서 기액접촉시킴으로써 행해진다. 이에 따라, 증류기의 꼭대기부로부터 디시아노시클로헥산류를 선택적으로 발출하여 회수할 수 있다.
본 실시형태의 비스(아미노메틸)시클로헥산류의 제조방법은, 상술한 바와 같이 하여 얻어진 디시아노시클로헥산류를 수소첨가반응(이하, 「니트릴수첨반응」이라고도 한다.)시킴으로써, 비스(아미노메틸)시클로헥산류를 얻는 공정(이하, 간단히 「니트릴수첨공정」이라고도 한다.)을 갖는다.
본 실시형태에 있어서, 「비스(아미노메틸)시클로헥산류」란, 비스(아미노메틸)시클로헥산 및 그의 유도체를 포함하는 개념을 말한다. 비스(아미노메틸)시클로헥산으로는, 1,2-비스(아미노메틸)시클로헥산, 1,3-비스(아미노메틸)시클로헥산, 및 1,4-비스(아미노메틸)시클로헥산을 들 수 있다.
니트릴수첨공정에 있어서는, 우선, 반응기 내에 디시아노시클로헥산류와, 용매와, 촉매를 투입하고, 계내의 압력이 소정의 압력이 될 때까지 수소가스를 도입한다. 그 후, 반응기 내를 소정의 온도가 될 때까지 가열하고, 반응기 내의 압력이 일정의 범위 내를 유지하도록, 적당히 수소가스를 반응기 내에 도입하면서, 니트릴수첨반응을 진행시킨다.
용매로는, 통상의 니트릴수첨반응에 이용되는 용매를 채용할 수도 있고, 구체적으로는, 메탄올, 에탄올, 1-프로판올, 2-프로판올, 1-부탄올, 2-부탄올, 및 tert-부탄올 등의 알코올, 메타자일렌, 메시틸렌, 및 슈도쿠멘과 같은 방향족 탄화수소, 액체암모니아, 및 암모니아수를 들 수 있다. 용매는 1종을 단독으로 또는 2종 이상을 조합하여 이용된다. 또한, 촉매로는, 통상의 니트릴수첨반응에 이용되는 촉매를 채용할 수도 있고, 구체적으로는, Ni 및/또는 Co를 함유하는 촉매를 이용할 수 있다. 일반적으로는, Ni 및/또는 Co를, Al2O3, SiO2, 규조토, SiO2-Al2O3, 및 ZrO2에 침전법으로 담지한 촉매, 레이니니켈, 혹은 레이니코발트가 촉매로서 호적하게 이용된다. 이들 중에서는, 니트릴수첨반응을 보다 유효하고 또한 확실히 진행시키는 관점에서, 레이니코발트촉매 및 레이니니켈촉매가 바람직하다. 촉매는 1종을 단독으로 또는 2종 이상을 조합하여 이용된다. 나아가, 촉매의 사용량은, CHDN 100질량%에 대하여, 0.1~150질량%이면 바람직하고, 0.1~20질량%이면 보다 바람직하고, 0.5~15질량%이면 더욱 바람직하다. 촉매를 상기의 범위 내의 양이 되도록 이용함으로써, 얻어지는 비스(아미노메틸)시클로헥산류의 수율 및 선택율을 높일 수 있는 경향이 있다.
니트릴수첨공정에 있어서의, 디시아노시클로헥산류의 농도는, 반응효율의 관점에서, 반응액의 전체량에 대하여, 1~50질량%이면 바람직하고, 2~40질량%이면 보다 바람직하다. 또한, 니트릴수첨공정에 있어서의 반응온도는, 40~150℃이면 바람직하고, 반응압력은, 수소분압에서 0.5~15MPa이면 바람직하다. 한편, 반응시간은, 니트릴수첨반응이 충분히 진행되는 시간이면 된다. 반응조건을 상술의 범위 내로 조정함으로써, 얻어지는 비스(아미노메틸)시클로헥산류의 수율 및 선택율을 높일 수 있는 경향이 있다.
실시예
이하, 실시예에 의해 본 발명을 더욱 상세히 설명하나, 본 발명은 이들 실시예로 한정되는 것은 아니다.
(실시예 1)
(핵수첨공정의 제1 단계)
17mm의 내경을 갖는 관형 반응기에, 고정상촉매로서 2% Ru/C촉매(평균입자경(체적기준): 0.84~2.00mm) 12.63g을 충전하였다. 한편, 상기 촉매는, 소정의 환원장치에서 250℃, 2시간 환원시킨 후의 것을 이용하였다. 충전탑 내의 압력이 7MPaG가 되도록 수소가스를 도입하고, 반응 중에는 수소유량이 15NmL/min가 되도록 도입하였다. 반응온도는 90℃로 하고, 8질량%의 농도를 갖는 테레프탈산의 28% 암모니아수용액을, 15.44g/시간의 속도로 충전탑 내에 연속적으로 60시간 송액하였다. 한편, 테레프탈산의 고정상촉매에 대한 공급속도는, 1.235g(0.0074mol)/시간이었다. 60시간 후의 반응액을 HPLC(시마즈제작소주식회사제품의 「Prominence」, 칼럼: 쇼덱스제 형식명 「VG-50 4E」, 조건: 용리액: 암모니아 0.25질량%수용액, 유속 0.6mL/min, 칼럼온도 50℃, 포토다이오드어레이검출기)에 의해 분석하였다. 그 결과, 테레프탈산의 전화율은, 100%이며, 1,4-시클로헥산디카르본산의 선택율은 99.9%이며, 수율은, 99.9%이며, 1,4-시클로헥산디카르본산의 트랜스체의 비율(트랜스비)은, 24%였다.
(핵수첨공정의 제2 단계)
계속해서, 온도를 60℃로 하고, 압력을 8MPaG로 하고, 수소유량은 15NmL/min, 원료공급속도를 15.22g/시간으로 한 것 이외는, 상기 제1 단계부터 계속해서 100시간 송액하였다. 한편, 송액 중의 PTA의 비율은, 1.345g(0.0081mol)/시간이었다. 제1 단계의 유통개시로부터 160시간 후의 반응액을 분석한 결과, 테레프탈산의 전화율은, 100%이며, 1,4-시클로헥산디카르본산의 선택율은, 99.8%이며, 수율은 99.9%이며, 1,4-시클로헥산디카르본산의 트랜스체의 비율(트랜스비)은, 20%였다.
(핵수첨공정의 제3 단계)
계속해서, 온도를 70℃로 하고, 압력을 3MPaG로 하고, 수소유량은 15NmL/min, 원료공급속도를 15.30g/시간으로 한 것 이외는, 상기 제2 단계부터 계속해서 76시간 송액하였다. 한편, 송액 중의 PTA의 비율은, 1.510g(0.0091mol)/시간이었다. 제1 단계의 유통개시로부터 236시간 후의 반응액을 분석한 결과, 테레프탈산의 전화율은, 100%이며, 1,4-시클로헥산디카르본산의 선택율은, 99.9%이며, 수율은 97.3%이며, 1,4-시클로헥산디카르본산의 트랜스체의 비율(트랜스비)은, 22%였다.
(핵수첨공정의 제4 단계)
계속해서, 온도를 75℃로 하고, 압력을 5MPaG로 하고, 수소유량은 18NmL/min, 원료공급속도를 26.60g/시간으로 한 것 이외는, 상기 제3 단계부터 계속해서 1115시간 송액하였다. 한편, 송액 중의 PTA의 비율은, 1.609g(0.0097mol)/시간이었다. 제1 단계의 유통개시로부터 1351시간 후의 반응액을 분석한 결과, 테레프탈산의 전화율은, 100%이며, 1,4-시클로헥산디카르본산의 선택율은, 99.9%이며, 수율은 99.9%이며, 1,4-시클로헥산디카르본산의 트랜스체의 비율(트랜스비)은, 22%였다.
(가열농축공정)
교반날개, 열전대, 압력계, 냉각기, 및 수기(受器)를 갖는 300ml의 SUS316제의 내압용기 내에 실시예 1에서 제조한 반응액 155.58g을 투입하였다. 600rpm으로 교반하면서, 내온이 180℃에 도달할 때까지 승온하였다. 180℃ 도달 후, 퍼지밸브를 미개(微開)로 하고, 가스성분을 냉각기로 응축시켜 유분을 취득하였다. 180℃ 도달 후의 내압은 0.91MPaG이며, 유출 중의 내압은 0.71MPaG였다. 유출량이 105.23g이 된 단계에서 가열을 정지하고, 반응액을 45℃까지 냉각하였다. 내온이 45℃ 도달한 후, 반응액을 여과하고, 결정과 모액을 회수하였다. 얻어진 결정의 진공건조 후의 중량은 3.04g, 1,4-시클로헥산디카르본산암모늄염 중의 암모니아의 함유량은, 1,4-시클로헥산디카르본산암모늄염 중의 1,4-시클로헥산디카르본산의 함유량에 대하여, 몰비로 0.06이었다. 1,4-시클로헥산디카르본산유도체 중의 trans체의 함유량은 96%가 되었다. 얻어진 모액의 중량은 40.92g이었다.
(시아노화공정)
[실시예 2]
교반날개, 가스도입관, 열전대 및 탈수장치를 갖는 500mL의 5구 플라스크 내에, 실시예 1에 기재된 방법으로 제조한 1,4-시클로헥산디카르본산의 암모늄염 103.2g(1,4-시클로헥산디카르본산암모늄염 중의 암모니아의 함유량이, 1,4-시클로헥산디카르본산암모늄염 중의 1,4-시클로헥산디카르본산의 함유량에 대하여, 몰비로 0.34), 촉매로서 산화아연(관동화학주식회사제) 0.40g 및 배럴프로세스유 B-28AN(마츠무라석유제) 200g을 투입하였다. 그 후, 가열을 개시하고, 170℃에서 질소가스(유량: 34NmL/min)와, 암모니아가스(유량: 174NmL/min)를 도입하였다. 다시 승온하여, 270℃에서 반응액으로의 버블링을 개시하고, 300℃까지 승온하였다. 300rpm으로 교반하면서 8시간, 시아노화반응을 행하였다. 반응종료 후, 반응생성물을 테트라하이드로푸란에 용해시키고, 다시 액 중의 촉매를 여과로 제거한 후, 가스크로마토그래피(이하, GC라고도 기재한다.)(시마즈제작소사제 형식명 「GC2010 PLUS」, 칼럼: 제품명 「HP-5ms」, 애질런트·테크놀로지주식회사제, 길이 30m×내경 0.25mm, 막두께 0.25μm)에 의해 분석하였다. 그 결과, 1,4-디시아노시클로헥산의 수율은 92.1%였다.
[실시예 3]
교반날개, 가스도입관, 열전대 및 탈수장치를 갖는 300mL의 5구 플라스크 내에, 실시예 1에 기재된 방법으로 제조한 1,4-시클로헥산디카르본산의 암모늄염 51.6g(1,4-시클로헥산디카르본산암모늄염 중의 암모니아의 함유량이, 1,4-시클로헥산디카르본산암모늄염 중의 1,4-시클로헥산디카르본산의 함유량에 대하여, 몰비로 0.34), 촉매로서 산화아연(관동화학주식회사제) 0.20g 및 1,4-디시아노시클로헥산 50g을 투입하였다. 그 후, 가열을 개시하고, 170℃에서 질소가스(유량: 34NmL/min)와, 암모니아가스(유량: 174NmL/min)를 도입하였다. 다시 승온하여, 270℃에서 반응액으로의 버블링을 개시하고, 300℃까지 승온하였다. 300rpm으로 교반하면서 7시간, 시아노화반응을 행하였다. 반응종료 후, 실시예 2와 동일한 조작을 행하고, GC에 의해 분석을 행하였다. 1,4-디시아노시클로헥산의 수율은 90.8%였다.
[실시예 4]
교반날개, 가스도입관, 열전대 및 탈수장치를 갖는 100mL의 5구 플라스크 내에, 실시예 1에 기재된 방법으로 제조한 1,4-시클로헥산디카르본산의 암모늄염 51.6g(1,4-시클로헥산디카르본산암모늄염 중의 암모니아의 함유량이, 1,4-시클로헥산디카르본산암모늄염 중의 1,4-시클로헥산디카르본산의 함유량에 대하여, 몰비로 0.34), 촉매로서 산화아연(관동화학주식회사제) 0.20g을 투입하였다. 그 후, 가열을 개시하고, 170℃에서 질소가스(유량: 34NmL/min)와, 암모니아가스(유량: 174NmL/min)를 도입하였다. 다시 승온하여, 270℃에서 반응액으로의 버블링을 개시하고, 300℃까지 승온하였다. 300rpm으로 교반하면서 7시간, 시아노화반응을 행하였다. 반응종료 후, 실시예 2와 동일한 조작을 행하고, GC에 의해 분석을 행하였다. 1,4-디시아노시클로헥산의 수율은 92.8%였다.
[실시예 5]
실시예 1과 동일하게 하여 핵수첨반응을 진행시켜, 1,4-시클로헥산디카르본산을 30.11g(0.174mol; 8질량%) 포함하는 암모니아수용액을 얻었다. 이어서, 교반날개, 가스도입관, 열전대 및 탈수장치를 갖는 100mL의 4구 플라스크 내에, 상기 암모니아수용액을 적당히 첨가하고, 300rpm으로 교반하면서 플라스크 내를 상압에서 가열하고, 110℃에서 3.5시간에 걸쳐, 1,4-시클로헥산디카르본산의 농도가 50질량%가 될 때까지 농축하였다. 그 후, 그 4구 플라스크 내에, 촉매로서 산화아연(관동화학주식회사제) 0.24g을 투입하고, 110℃에서부터 170℃까지 49분에 걸쳐 승온하면서 농축하여, 가열농축물을 얻었다. 얻어진 가열농축물을 플라스크 내에 남긴 채로, 그 플라스크 내에 질소가스를 20mL/min, 암모니아가스를 52mL/min로 도입하고, 교반을 계속하면서, 플라스크 내를 상압에서 계속해서 가열하여, 280℃까지 15분에 걸쳐 승온하고, 다시 그 온도에서 6.4시간 유지하여, 시아노화반응을 진행시켰다. 반응종료 후, 합성예 2와 동일한 조작을 행하고, GC에 의해 분석을 행하였다. 1,4-디시아노시클로헥산의 수율은 89.1%였다.
한편, GC의 분석조건은 이하와 같았다.
캐리어가스: He(constant pressure: 73.9kPa)
주입구온도: 300℃
검출기: FID
검출기온도: 300℃
칼럼오븐온도: 100℃에서 개시하고, 10℃/min로 300℃까지 승온하여 300℃에서 30분간 유지)
(니트릴수첨공정)
(실시예 6)
300mL의 SUS316제 내압용기 내에, 실시예 2와 동일하게 하여 시아노화반응을 진행시켜 얻은 1,4-디시아노시클로헥산 24.4g, 용매로서의 메탄올 37.3g과 28% 암모니아수(와코순약공업주식회사제) 28.4g, 및, 촉매로서 레이니코발트촉매(와코순약공업주식회사제) 0.56g을 투입하고, 수소가스를 4.5MPa의 반응압력이 될 때까지 도입하였다. 이어서, 용기 내를 80℃의 반응온도까지 가열하여, 온도를 일정하게 유지하고, 용기 내를 전자식 교반날개로 750rpm으로 교반하면서, 수소첨가에 의한 아미노화반응(니트릴수첨반응)을 240분간, 진행시켰다. 그 결과, 1,4-디시아노시클로헥산의 전화율은 100%, 1,4-비스(아미노메틸)시클로헥산의 선택율은 97.0%, 수율은 97.0%였다.
(실시예 7)
300mL의 SUS316제 내압용기 내에, 실시예 2와 동일하게 하여 시아노화반응을 진행시켜 얻은 1,4-디시아노시클로헥산 38.2g, 용매로서의 액체암모니아 111.6g, 및, 촉매로서 레이니코발트촉매(와코순약공업주식회사제) 3.31g을 투입하고, 수소가스를 8.0MPa의 반응압력이 될 때까지 도입하였다. 이어서, 용기 내를 90℃의 반응온도까지 가열하여, 온도를 일정하게 유지하고, 용기 내를 전자식 교반날개로 750rpm으로 교반하면서, 수소첨가에 의한 아미노화반응(니트릴수첨반응)을 60분간, 진행시켰다. 그 결과, 1,4-디시아노시클로헥산의 전화율은 100%, 1,4-비스(아미노메틸)시클로헥산의 선택율은 99.4%, 수율은 99.4%였다.
반응종료 후, 반응액을 MeOH로 희석하고, GC(시마즈사이언스사제 형식명 「GC-2010」, 칼럼: 제품명 「HP-5MS」, 애질런트·테크놀로지주식회사제, 길이 30m×내경 0.25mm, 막두께 0.25μm, 조건…캐리어가스: He(constant pressure: 73.9kPa), 주입구온도: 300℃, 검출기: FID, 검출기온도: 330℃, 칼럼오븐온도: 120℃에서 개시하여 10분간 유지하고, 10℃/min로 300℃까지 승온하여 300℃에서 30분간 유지)에 의해 분석하였다.
본 출원은, 2018년 4월 11일에 일본국특허청에 출원된 일본특허출원(특원 2018-076283호)에 기초한 것이며, 그 내용은 여기에 참조로서 편입된다.
산업상 이용가능성
본 발명의 시클로헥산디카르본산류는, 폴리아미드, 폴리우레탄 등을 이용하는 플라스틱렌즈, 프리즘, 광화이버, 정보기록기판, 필터 등의 광학재료로서 유효한 비스(아미노메틸)시클로헥산의 원료가 되므로, 그러한 분야에 있어서, 산업상 이용가능성이 있다.

Claims (5)

  1. 암모니아수용액 중의 프탈산류를, 반응기 중에서 고정상촉매의 존재하, 수소와 접촉시킴으로써 시클로헥산디카르본산류, 또는, 시클로헥산디카르본산류 암모니아수용액을 얻는 공정을 갖는, 시클로헥산디카르본산류의 제조방법.
  2. 제1항에 기재된 시클로헥산디카르본산류의 제조방법에 의해 얻어진 상기 시클로헥산디카르본산류, 또는, 시클로헥산디카르본산류 암모니아수용액의 가열농축물을 시아노화반응시킴으로써, 디시아노시클로헥산류를 얻는 공정을 갖는, 디시아노시클로헥산류의 제조방법.
  3. 제2항에 있어서,
    상기 시클로헥산디카르본산류를 얻는 공정에 있어서 얻어진 상기 시클로헥산디카르본산류 암모니아수용액의 적어도 일부를, 상기 디시아노시클로헥산류를 얻는 공정의 암모니아원으로서 이용하는, 디시아노시클로헥산류의 제조방법.
  4. 제2항 또는 제3항에 있어서,
    상기 시클로헥산디카르본산류 암모니아수용액을, 100~200℃로 가열하여, 물의 적어도 일부를 제거함으로써, 상기 가열농축물을 얻는 공정을 추가로 갖는, 디시아노시클로헥산류의 제조방법.
  5. 제2항 내지 제4항 중 어느 한 항에 기재된 제조방법에 의해 얻어진 디시아노시클로헥산류를 수소첨가반응시킴으로써, 비스(아미노메틸)시클로헥산류를 얻는 공정을 갖는, 비스(아미노메틸)시클로헥산류의 제조방법.
KR1020207029015A 2018-04-11 2019-04-11 시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법 KR20200143375A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-076283 2018-04-11
JP2018076283 2018-04-11
PCT/JP2019/015724 WO2019198778A1 (ja) 2018-04-11 2019-04-11 シクロヘキサンジカルボン酸類、ジシアノシクロヘキサン類、及びビス(アミノメチル)シクロヘキサン類の製造方法

Publications (1)

Publication Number Publication Date
KR20200143375A true KR20200143375A (ko) 2020-12-23

Family

ID=68164355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207029015A KR20200143375A (ko) 2018-04-11 2019-04-11 시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법

Country Status (8)

Country Link
US (1) US11584705B2 (ko)
EP (1) EP3778543B1 (ko)
JP (1) JP7335555B2 (ko)
KR (1) KR20200143375A (ko)
CN (1) CN111886217A (ko)
ES (1) ES2957320T3 (ko)
TW (1) TWI822756B (ko)
WO (1) WO2019198778A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507041A (ja) 1991-09-16 1995-08-03 イーストマン ケミカル カンパニー シクロヘキサンジカルボン酸の製造方法
JP2002020346A (ja) 2000-07-04 2002-01-23 Mitsubishi Chemicals Corp シクロヘキサンカルボン酸類の製造方法
JP2011006382A (ja) 2009-04-09 2011-01-13 Mitsui Chemicals Inc トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118841A (en) * 1990-09-27 1992-06-02 Eastman Kodak Company Process for preparation of cyclohexanedicarboxylic acid
DE60118510T2 (de) * 2000-12-26 2006-08-24 Mitsubishi Gas Chemical Co., Inc. Verfahren zur Herstellung von einem Hydrierungsprodukt einer aromatischen Carbonsäure
CN101591237A (zh) * 2009-05-21 2009-12-02 江苏康恒化工有限公司 反式-1,4-环己烷二甲酸的合成方法
US8865938B2 (en) 2010-10-07 2014-10-21 Mitsui Chemicals, Inc. Method for producing bis(aminomethyl)cyclohexanes
KR101486682B1 (ko) 2010-10-07 2015-01-26 미쓰이 가가쿠 가부시키가이샤 트랜스-1,4-비스(아미노메틸)사이클로헥세인의 제조 방법
JP6078158B2 (ja) 2013-08-01 2017-02-08 三井化学株式会社 トランス−ビス(アミノメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサンの製造方法、ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物およびポリウレタン樹脂
CN105016944B (zh) 2014-04-16 2017-10-10 中国石化扬子石油化工有限公司 腈及其相应胺的制造方法
JP6414366B2 (ja) 2016-10-04 2018-10-31 三菱瓦斯化学株式会社 1,4−ジシアノシクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、及び1,4−シクロヘキサンジカルボン酸の製造方法
JP2018076283A (ja) 2016-11-02 2018-05-17 ロート製薬株式会社 有機紫外線吸収剤の光耐久性向上剤
ES2915501T3 (es) 2017-08-18 2022-06-22 Mitsubishi Gas Chemical Co Método para producir dicianociclohexano
WO2019131746A1 (ja) * 2017-12-27 2019-07-04 三菱瓦斯化学株式会社 ジシアノシクロヘキサン、及びビス(アミノメチル)シクロヘキサンの製造方法
US11472765B2 (en) * 2018-04-11 2022-10-18 Mitsubishi Gas Chemical Company, Inc. Production method for 1,4-cyclohexanedicarboxylic acid derivative, 1,4-dicyanocyclohexane and 1,4-bis(aminomethyl)cyclohexane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507041A (ja) 1991-09-16 1995-08-03 イーストマン ケミカル カンパニー シクロヘキサンジカルボン酸の製造方法
JP2002020346A (ja) 2000-07-04 2002-01-23 Mitsubishi Chemicals Corp シクロヘキサンカルボン酸類の製造方法
JP2011006382A (ja) 2009-04-09 2011-01-13 Mitsui Chemicals Inc トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法

Also Published As

Publication number Publication date
EP3778543A1 (en) 2021-02-17
EP3778543B1 (en) 2023-09-06
US11584705B2 (en) 2023-02-21
TWI822756B (zh) 2023-11-21
CN111886217A (zh) 2020-11-03
JPWO2019198778A1 (ja) 2021-05-13
EP3778543C0 (en) 2023-09-06
EP3778543A4 (en) 2021-06-02
WO2019198778A1 (ja) 2019-10-17
JP7335555B2 (ja) 2023-08-30
US20210024445A1 (en) 2021-01-28
ES2957320T3 (es) 2024-01-17
TW201943685A (zh) 2019-11-16

Similar Documents

Publication Publication Date Title
JP5448987B2 (ja) トランス−1,4−ビス(アミノメチル)シクロヘキサンの製造方法
EP2671864B1 (en) Method for producing xylylenediamine
EP2626343B1 (en) Method for producing bis(aminomethyl)cyclohexanes
JP7184039B2 (ja) ジシアノシクロヘキサンの製造方法
JP7306274B2 (ja) ジシアノシクロヘキサン、及びビス(アミノメチル)シクロヘキサンの製造方法
KR20200143375A (ko) 시클로헥산디카르본산류, 디시아노시클로헥산류, 및 비스(아미노메틸)시클로헥산류의 제조방법
CN111954656B (zh) 1,4-环己烷二羧酸衍生物、1,4-二氰基环己烷和1,4-双(氨基甲基)环己烷的制造方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal