KR20190106598A - 산화물층의 형성 방법 및 반도체 소자의 제조 방법 - Google Patents

산화물층의 형성 방법 및 반도체 소자의 제조 방법 Download PDF

Info

Publication number
KR20190106598A
KR20190106598A KR1020180028305A KR20180028305A KR20190106598A KR 20190106598 A KR20190106598 A KR 20190106598A KR 1020180028305 A KR1020180028305 A KR 1020180028305A KR 20180028305 A KR20180028305 A KR 20180028305A KR 20190106598 A KR20190106598 A KR 20190106598A
Authority
KR
South Korea
Prior art keywords
layer
heat treatment
forming
polysiloxane
material layer
Prior art date
Application number
KR1020180028305A
Other languages
English (en)
Other versions
KR102650216B1 (ko
Inventor
박진욱
임태진
조윤정
히로시 모리타
야스히사 후리하타
Original Assignee
삼성전자주식회사
가부시키가이샤 아데카
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 가부시키가이샤 아데카 filed Critical 삼성전자주식회사
Priority to KR1020180028305A priority Critical patent/KR102650216B1/ko
Priority to US16/292,939 priority patent/US10923341B2/en
Priority to JP2019040895A priority patent/JP7319794B2/ja
Priority to CN201910171202.5A priority patent/CN110246750A/zh
Priority to TW108107709A priority patent/TWI829674B/zh
Publication of KR20190106598A publication Critical patent/KR20190106598A/ko
Application granted granted Critical
Publication of KR102650216B1 publication Critical patent/KR102650216B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0715Polysiloxane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

반도체 기판 상에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계; 상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계; 및 상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계를 포함하고, 상기 폴리실록산 물질이 포함하는 Si-H1, Si-H2, Si-H3 본딩 중 Si-H2 본딩의 비율이 약 40% 내지 약 90%인 산화물층의 형성 방법이 제공된다.

Description

산화물층의 형성 방법 및 반도체 소자의 제조 방법 {Method of forming oxide layer and method of fabricating semiconductor device}
본 발명은 산화물층의 형성 방법 및 반도체 소자의 제조 방법에 관한 것으로서, 더욱 구체적으로는 균일하면서도 응력이 현저히 낮은 산화물층을 보이드 없이 제조할 수 있는 산화물층의 형성 방법 및 반도체 소자의 제조 방법에 관한 것이다.
반도체 소자의 크기가 지속적으로 축소됨에 따라, 미세한 갭을 메우는 산화물의 특성에도 개선이 요구되고 있다. 특히, 반도체 소자들을 전기적으로 분리하는 소자 분리막이나 층간 절연막에 있어서 보다 우수한 특성을 갖고 균일하게 제조할 수 있는 산화물 층이 요구되고 있다.
본 발명이 이루고자 하는 첫 번째 기술적 과제는, 균일하면서도 응력이 현저히 낮은 산화물층을 보이드 없이 제조할 수 있는 산화물층의 형성 방법을 제공하는 것이다.
본 발명이 이루고자 하는 두 번째 기술적 과제는, 신뢰성이 높은 반도체 소자를 제공하는 것이다.
본 발명은 상기 첫 번째 기술적 과제를 이루기 위하여 반도체 기판 상에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계; 상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계; 및 상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계를 포함하고, 상기 폴리실록산 물질이 포함하는 Si-H1, Si-H2, Si-H3 본딩 중 Si-H2 본딩의 비율이 약 40% 내지 약 90%인 산화물층의 형성 방법을 제공한다.
본 발명의 다른 태양은 반도체 기판 상에 산화물층을 형성하는 방법으로서, 상기 반도체 기판 상에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계; 상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계; 및 상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계를 포함하고, 상기 폴리실록산 물질은 하기 반응식 1에 의하여 제조된 폴리실록산 물질인 것을 특징으로 하는 산화물층 형성 방법을 제공한다.
<반응식 1>
Figure pat00001
본 발명은 상기 두 번째 기술적 과제를 이루기 위하여, 반도체 기판에 활성 영역을 정의하는 트렌치를 형성하는 단계; 상기 트렌치 내에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계; 상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계; 제 1 열처리된 상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계; 및 상기 활성 영역에 메모리 소자를 형성하는 단계를 포함하고, 상기 폴리실록산 물질의 중량평균 분자량(Mw)이 약 5,000 내지 약 25,000인 반도체 소자의 제조 방법을 제공한다.
본 발명의 실시예들에 따른 산화물층의 형성 방법을 이용하면, 균일하면서도 응력이 현저히 낮은 산화물층을 보이드 없이 제조할 수 있는 효과가 있다. 또한 균일하고 응력이 낮은 산화물층은 신뢰성이 높은 반도체 소자를 제조할 수 있도록 하는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 산화물층의 형성 방법을 나타낸 블록도이다.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 산화물층의 형성 방법을 나타낸 측단면도들이다.
도 3은 본 발명의 일 실시예에 따른 폴리실록산 물질의 1H NMR 분석 결과를 나타낸 NMR 스펙트럼의 일부이다.
도 4는 실시예 1 및 2, 그리고 비교예 1 내지 3의 물질막에 대한 FT-IR 분석 결과이다.
도 5는 도 4의 스펙트럼에서 700 cm-1 내지 약 1500 cm-1의 파수 범위를 보다 상세하게 나타낸 스펙트럼이다.
도 6은 도 4의 스펙트럼에서 -Si-Si- 결합에 대응되는 600 cm-1 내지 약 800 cm-1의 파수 범위를 보다 상세하게 나타낸 스펙트럼이다.
도 7a 내지 도 7c는 각각 실시예 6, 실시예 5, 및 실시예 1의 실록산 물질막에 대하여 제 1 실시예를 수행하기 직전의 모습을 나타낸 이미지들이다.
도 8a 내지 도 8m은 본 발명의 일 실시예에 따른 반도체 소자의 제조 방법을 순서에 따라 나타낸 측단면도들이다.
본 발명의 일 실시예는 기판 상에 산화물층을 형성하는 방법을 제공한다.
도 1은 본 발명의 일 실시예에 따른 산화물층의 형성 방법을 나타낸 블록도이다. 도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 산화물층의 형성 방법을 나타낸 측단면도들이다.
도 1 및 도 2a를 참조하면, 기판(10) 위에 폴리실록산 물질을 포함하는 제 1 물질층(21)을 형성한다(S110).
상기 기판(10)은 반도체 기판일 수 있다. 일부 실시예들에 있어서, 상기 반도체 기판은 Si (silicon), 예를 들면 결정질 Si, 다결정질 Si, 또는 비결정질 Si을 포함할 수 있다. 다른 일부 실시예에서, 상기 반도체 기판은 Ge (germanium)과 같은 반도체, 또는 SiGe (silicon germanium), SiC (silicon carbide), GaAs (gallium arsenide), InAs (indium arsenide), 또는 InP (indium phosphide)와 같은 화합물 반도체를 포함할 수 있다.
일부 실시예들에 있어서, 상기 기판(10)에는 예컨대 트렌치(11)와 같은 구조물이 형성되어 있을 수 있다. 상기 트렌치(11)는 양 측벽과 그 사이에 형성된 바닥면을 가질 수 있다. 상기 양 측벽은 테이퍼진(tapered) 단면을 가질 수 있다. 일부 실시예들에 있어서, 상기 트렌치(11)는 바닥면에 가까울수록 좁은 폭을 가질 수 있다.
상기 기판(10) 상에 제 1 물질층(21)을 형성할 수 있다. 상기 제 1 물질층(21)은 폴리실록산(polysiloxane) 물질을 포함할 수 있다. 상기 제 1 물질층(21)은 스핀 코팅에 의하여 형성될 수 있다.
일부 실시예들에 있어서, 상기 폴리실록산(polysiloxane) 물질은 실리콘(Si), 산소(O), 및 수소(H) 이외의 원자종은 실질적으로 포함하지 않을 수 있다. 여기서 상기 폴리실록산 물질이 다른 원자종을 실질적으로 포함하지 않는다는 것은 다른 원자종의 함량이 실리콘(Si), 산소(O), 및 수소(H)의 함량에 비하여 예를 들면, 1 원자%(at%) 미만, 0.5 at% 미만, 0.1 at% 미만, 또는 0.05 at% 미만과 같이 극히 낮음을 의미하며, 다른 원자종이 절대적으로 부존재함을 의미하는 것은 아니다.
상기 폴리실록산 물질은 하기 화학식 1과 같은 구조를 가질 수 있다. 다만, 하기 화학식 1의 구조는 상기 폴리실록산 물질의 예시적인 모식도에 불과하므로 본 발명이 여기에 한정되는 것은 아니다.
<화학식 1>
Figure pat00002
상기 화학식 1에서 Si 원자들은 산소 원자를 개재하여 서로 연결되거나 수소 원자와 연결되어 종결될 수 있으며, Si 원자들끼리의 직접적인 결합은 실질적으로 부존재할 수 있다. 여기서 Si 원자들끼리의 직접적인 결합은 실질적으로 부존재한다는 것은 Si-Si 결합의 수가 그 외의 결합, 예를 들면 Si-H 결합이나 Si-O 결합의 수에 비하여 1 % 미만, 0.5 % 미만, 0.1 % 미만, 또는 0.05 % 미만과 같이 극히 낮음을 의미하며, Si-Si 결합이 절대적으로 부존재함을 의미하는 것은 아니다.
화학식 1에서 보는 바와 같이 Si 원자들에는 대략 1개 내지 3개의 수소 원자들이 연결될 수 있다. 하나의 Si 원자가 동시에 4개의 산소 원자와 결합하는 것이 전혀 불가능한 것은 아니지만, 수소에 비하여 부피가 큰(bulky) 산소 원자 4개가 동시에 하나의 Si 원자에 결합되는 것은 다른 경우들에 비하여 현저히 드물며(rare) 에너지 측면에서도 불안정하여 이내 다른 결합으로 전환될 수 있다.
이하에서는 하나의 Si 원자에 하나의 수소가 결합된 것을 Si-H1, 하나의 Si 원자에 두 개의 수소가 결합된 것을 Si-H2, 하나의 Si 원자에 세 개의 수소가 결합된 것을 Si-H3로 지칭한다. 또한 이들을 통칭하여 Si-Hn으로 지칭한다.
상기 화학식 1의 폴리실록산 물질에 포함된 Si-Hn 본딩들 중에서 상기 Si-H1 또는 Si-H3의 본딩의 비율에 비하여 Si-H2 본딩의 비율이 현저히 높을 수 있다. 예를 들면, 상기 화학식 1의 폴리실록산 물질에 포함된 Si-Hn 본딩들 중에서 Si-H2 본딩의 비율은 약 40% 내지 약 99%, 약 45 % 내지 약 95%, 약 50% 내지 약 90%, 약 60% 내지 약 90%와 같이 높은 비율을 가질 수 있다.
일부 실시예들에 있어서, Si-Hn 본딩들 중에서 Si-H3 본딩의 비율은 Si-H2 본딩의 비율에 비하여 더 낮을 수 있다. 예를 들면, Si-Hn 본딩들 중에서 Si-H3 본딩의 비율은 약 0.01% 내지 약 15%, 약 0.01% 내지 약 10%, 또는 약 0.05% 내지 약 8%, 또는 약 0.1% 내지 약 5%일 수 있다.
종전에 알려진 실록산 화합물인 수소 실세스퀴옥산(hydrogen silsesquioxane, HSQ)은 하기 화학식 2에 보인 바와 같이 Si-O 결합이 대부분을 이루며 Si-H 결합의 비율이 상당히 낮다. 또한 HSQ는 Si-Hn 본딩들 중에서 실질적으로 S-H1 본딩만을 포함한다.
<화학식 2>
Figure pat00003
이에 비하여, 화학식 1의 폴리실록산 물질은 Si-O 결합과 Si-H 결합이 대등한 수준으로 다수의 결합을 이루며, 경우에 따라 오히려 Si-H 결합이 Si-O 결합에 비하여 더 높은 비율로 존재할 수 있다.
상기 폴리실록산 물질의 Si-H1, Si-H2, Si-H3의 상대적인 비율은 핵자기공명(nuclear magnetic resonance, NMR) 분석에 의하여 측정될 수 있다. 도 3은 본 발명의 일 실시예에 따른 폴리실록산 물질의 1H NMR 분석 결과를 나타낸 NMR 스펙트럼의 일부이다.
도 3을 참조하면, 상기 Si-H1, Si-H2, 및 Si-H3를 대표하는 피크가 각각 4.4 ppm, 4.7 ppm, 및 5.0 ppm에 위치함을 알 수 있다. 또한 통상의 기술자는 상기 Si-H1, Si-H2, Si-H3 본딩의 비율은 해당 피크의 아래 면적의 비율과 일치함을 이해할 것이다. 일부 실시예들에 있어서, 상기 Si-H1, Si-H2, Si-H3 본딩의 비율은 해당 피크의 양 측 경사면의 변곡점에서 접선을 작도하였을 때, 두 접선과 상기 스펙트럼의 베이스라인이 이루는 삼각형의 면적으로 대표될 수 있다.
상기 폴리실록산 물질은 하기 반응식 1에 따라 합성될 수 있다.
<반응식 1>
Figure pat00004
상기 합성은 실온 이하의 온도, 예를 들면 약 -40℃ 내지 25℃의 온도에서 수행될 수 있다. 또한 상기 합성에서 단량체는 용매, 예컨대 iso-노네인(nonane)과 같은 유기 용매 내에 용해된 후 중합될 수 있다. 상기 용매의 함량은 약 10 중량% 내지 약 50 중량%일 수 있다.
상기 합성에 있어서, 생성되는 폴리실록산 물질의 평균 분자량, Si-H1, Si-H2, 및 Si-H3의 조절은 예를 들면 "Cyclic Polysiloxanes from the Hydrolysis of Dichlorosilane", Inorg. Chem,. 1983, 22, p.2163에 상세하게 설명된 방법에 의하여 달성될 수 있다. 또한 상기 반응식 1의 생성물인 폴리실록산 물질은 ADEKA 사로부터 상용으로 입수 가능하다.
상기 폴리실록산 물질은 약 4,000 내지 약 200,000의 중량평균 분자량을 가질 수 있다. 일부 실시예들에 있어서, 상기 폴리실록산 물질은 약 5,000 내지 약 25,000의 중량평균 분자량을 가질 수 있다. 일부 실시예들에 있어서, 상기 폴리실록산 물질은 약 10,000 내지 약 20,000의 중량평균 분자량을 가질 수 있다. 상기 중량평균 분자량은 예를 들면 젤 침투 크로마토그래피(gel permeation chromatography, GPC) 장비를 이용하여 측정될 수 있다.
만일 상기 폴리실록산 물질의 중량평균 분자량이 너무 작으면 코팅 특성이 불량하여 물질막을 제대로 형성하지 못할 수 있다. 예컨대 폴리실록산의 물질층을 형성한 후 상기 물질층이 박리되거나 소실될(lost) 수 있다. 반대로 상기 폴리실록산 물질의 중량평균 분자량이 너무 크면 좁은 간격을 갖는 트렌치를 적절히 매립하지 못할 수 있다. 따라서 반도체 소자들의 임계 치수(critical dimension, CD)가 지속적으로 축소됨에 따라, 소자들을 분리하는 트렌치의 폭도 수 nm 내지 수십 nm로 축소되고 있는데, 과도하게 높은 중량평균 분자량의 폴리실록산 물질은 이러한 트렌치를 불량하게 매립하게 될 수 있다.
기판(10) 상에 형성된 제 1 물질층(21)은 평탄한 상부 표면 위에서 H1의 높이를 가질 수 있다. 앞서 설명한 바와 같이 상기 제 1 물질층(21)은 스핀 코팅에 의하여 형성될 수 있는데, 상기 제 1 물질층(21)의 높이 H1은 스핀 코팅을 위한 기판(10)의 회전 속도, 폴리실록산 물질의 온도 및 점도, 기판(10)의 회전 시간 등을 조절하여 조절 가능하다.
원자 재배열
도 1 및 도 2b를 참조하면, 상기 제 1 물질층(21)에 대하여 제 1 열처리를 수행할 수 있다(S120). 상기 제 1 열처리는 불활성 분위기에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 1 열처리는 질소(N2), 헬륨(He), 네온(Ne), 아르곤(Ar), 이산화탄소(CO2), 또는 이들의 혼합물과 같이 불활성이거나 화학적 반응성이 극히 낮은 기체의 분위기에서 수행될 수 있다.
일부 실시예들에 있어서, 상기 제 1 열처리는 약 500℃ 내지 약 700℃의 온도에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 1 열처리는 약 550℃ 내지 약 700℃의 온도에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 1 열처리는 약 600℃ 내지 약 700℃의 온도에서 수행될 수 있다.
상기 제 1 열처리의 온도가 너무 높으면 실리콘 산화물 막의 균일성이 저하될 수 있다. 상기 제 1 열처리의 온도가 너무 낮으면 생성되는 막질이 불균일하고 취약하게 될 수 있다.
일부 실시예들에 있어서, 상기 제 1 열처리는 약 20분 내지 약 90분 동안 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 1 열처리는 약 30분 내지 약 80분 동안 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 1 열처리는 약 30분 내지 약 60분 동안 수행될 수 있다.
상기 제 1 열처리를 수행하는 시간이 너무 짧으면 실리콘 산화물 막의 균일성이 저하될 수 있다. 상기 제 1 열처리를 수행하는 시간이 너무 길면 경제적으로 불리하다.
상기 제 1 열처리가 수행되면, 상기 제 1 물질층(21a)의 두께는 감소할 수 있다. 즉, 도 2a에 도시된 바와 같이 제 1 물질층(21)은 형성 직후에 평탄한 상부 표면 위에서 H1의 높이를 갖지만, 제 1 열처리 후에는 도 2b에 도시된 바와 같이 평탄한 상부 표면 위에서 H1보다 작은 H2의 높이를 가질 수 있다.
상기 제 1 물질층(21a)은 이와 같이 부피가 감소하면서 동시에 경화되는데 특히 수직 방향으로 수축(shrinkage)이 일어날 수 있다. 일부 실시예들에 있어서, 제 1 열처리에도 불구하고 상기 기판(10)에는 수평 방향으로는 압축 응력이나 인장 응력이 거의 발생하지 않을 수 있다.
상기 제 1 열처리의 결과로서 수평 방향으로 다소간의 응력이 생성될 수 있다. 이러한 수평 방향의 응력이 과도하면 기판(10) 상에 이미 생성되었거나 이후 생성될 구조물들에 손상의 원인을 제공할 수 있다.
본 발명이 특정 이론에 구속되는 것은 아니나, 이상에서 설명한 제 1 열처리는 제 1 물질층 내의 각 원자들의 배열을 재배열하는 역할을 담당할 수 있다. 예컨대, 상기 재배열은 실리콘 산화물을 제조하기 위한 원료 물질인 폴리실록산 물질 내의 -Si-Si- 결합을 끊고 -Si-O-Si- 결합이나 두 개의 -Si-H 결합으로 전환하는 재배열 등일 수 있다. 그러나 본 발명이 여기에 한정되는 것은 아니다.
산화
도 1 및 도 2c를 참조하면, 상기 제 1 물질층(21a)에 대하여 제 2 열처리를 수행할 수 있다(S130). 상기 제 2 열처리는 산화성 분위기에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 1 열처리는 O2, H2O(g), H2O2(g), 및 O3 중 적어도 하나를 포함하는 분위기에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 2 열처리는 도 2b를 참조하여 설명한 제 1 열처리가 종료된 직후에 계속하여 진행할 수 있다.
일부 실시예들에 있어서, 상기 제 2 열처리는 약 500℃ 내지 약 700℃의 온도에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 2 열처리는 약 550℃ 내지 약 700℃의 온도에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 2 열처리는 약 600℃ 내지 약 700℃의 온도에서 수행될 수 있다.
상기 제 2 열처리의 온도가 너무 높으면 실리콘 산화물 막의 균일성이 저하될 수 있다. 상기 제 2 열처리의 온도가 너무 낮으면 생성되는 막질이 불균일하고 취약하게 될 수 있다.
일부 실시예들에 있어서, 상기 제 2 열처리는 약 20분 내지 약 90분 동안 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 2 열처리는 약 30분 내지 약 80분 동안 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 2 열처리는 약 30분 내지 약 60분 동안 수행될 수 있다.
상기 제 1 열처리를 수행하는 시간이 너무 짧으면 실리콘 산화물 막의 균일성이 저하될 수 있다. 상기 제 1 열처리를 수행하는 시간이 너무 길면 경제적으로 불리하다.
상기 제 2 열처리가 수행되면, 상기 제 1 물질층(21b)의 두께는 약간 증가할 수 있다. 즉, 도 2b에 도시된 바와 같이 제 1 물질층(21a)은 제 1 열처리 직후에 평탄한 상부 표면 위에서 H2의 높이를 갖지만, 제 2 열처리 후에는 도 2c에 도시된 바와 같이 평탄한 상부 표면 위에서 H2보다 약간 증가한 H3의 높이를 가질 수 있다.
상기 제 1 물질층(21b)은 제 1 물질층(21a)을 산화성 분위기에서 제 2 열처리함에 따라 약간의 부피 증가를 겪을 수 있다. 그 결과 도 2c의 제 1 물질층(21b)은 도 2b의 제 1 물질층(21a)에 비하여 두께가 약간 증가할 수 있다. 제 2 열처리 후의 제 1 물질층(21b)은 제 1 열처리 직후의 제 1 물질층(21a)에 비하여 수평 방향의 응력이 증가할 수 있다. 일부 실시예들에 있어서, 상기 수평 방향의 응력은 압축성 응력(compressive stress)일 수 있다.
하지만 상기 압축성 응력은 종전의 산화물, 예컨대 과수소화 폴리실라잔(perhydro polysilazane, PHPS)와 같은 물질을 사용하였을 때 얻어지는 실리콘 산화물이 갖는 응력에 비하여 그 크기에 있어서 현저히 낮다. 일부 실시예들에 있어서, 본 발명의 제조 방법에 따라 제조한 실리콘 산화물이 갖는 응력은 PHPS를 사용하여 제조한 실리콘 산화물에 비하여 대략 1/3 이하일 수 있다.
소자 분리막을 제공하기 위하여 형성되는 실리콘 산화물에 과도하게 높은 응력이 갖게 되면, 형성되어 있거나 형성될 구조물이 손상될 가능성이 높아진다. 따라서 실리콘 산화물이 갖는 응력이 더 낮으면, 보다 신뢰성이 높은 반도체 소자들을 얻을 수 있다.
본 발명이 특정 이론에 구속되는 것은 아니나, 이상에서 설명한 제 2 열처리는 산화성 분위기 내의 산화제로부터 산소 원자를 공급받아 제 1 물질층 내에 추가적인 -Si-O-Si- 결합들을 생성하는 것으로 생각된다.
치밀화(densification) (선택적)
일부 실시예들에 있어서, 상기 제 1 물질막(21b)에 대하여 제 3 열처리가 더 수행될 수 있다(S140). 일부 실시예들에 있어서, 상기 제 3 열처리는 불활성 분위기에서 수행될 수 있다. 상기 제 3 열처리는 생성되는 실리콘 산화막의 막질을 보다 치밀하게 만드는 작용을 할 수 있다.
상기 제 3 열처리는 약 700℃ 내지 약 1250℃의 온도 범위에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 3 열처리는 약 800℃ 내지 약 1050℃의 온도 범위에서 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 3 열처리는 약 850℃ 내지 약 950℃의 온도 범위에서 수행될 수 있다.
일부 실시예들에 있어서, 상기 제 3 열처리는 약 20분 내지 약 90분 동안 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 3 열처리는 약 30분 내지 약 80분 동안 수행될 수 있다. 일부 실시예들에 있어서, 상기 제 3 열처리는 약 30분 내지 약 60분 동안 수행될 수 있다.
본 발명이 특정 이론에 구속되는 것은 아니나, 이상에서 설명한 제 3 열처리는 제 1 물질층(21b)을 어닐링하여 보다 치밀한 구조로 원자들이 배열될 수 있도록 하는 것으로 생각된다.
이상에서 설명한 제 1 열처리 및 제 2 열처리를 완료하면 제 1 물질층 내의 -Si-Hn 결합은 거의 사라지며, 실질적으로 부존재하는 상태가 될 수 있다. 여기서, -Si-Hn 결합이 부존재한다는 것은 -Si-O-Si- 결합이 제 1 물질층에 존재하는 결합의 대부분을 차지하고 -Si-O-Si- 결합의 수에 비하여 -Si-Hn 결합의 수가 극히 미미함을 의미하며, -Si-Hn 결합이 절대적으로 부존재함을 의미하는 것은 아니다.
이와 같이 -Si-Hn 결합이 부존재한다는 것은 푸리어 변환 적외선 (Fourier transform infrared, FT-IR) 분광 분석을 통하여 확인할 수 있다. 일부 실시예들에 있어서, FT-IR에서 -Si-H 결합은 대략 2000 cm-1 내지 2400 cm-1의 파수(wavenumber) 범위에서 피크를 갖는데, 상기 파수 범위에서 -Si-H 결합을 나타내는 피크가 나타나지 않음을 통해 -Si-Hn 결합이 부존재함을 확인할 수 있다.
이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다.
실시예 1 및 2, 그리고 비교예 1 및 2는 하기 표 1에서 보는 바와 같이 이상의 각 단계에서 제조된 물질막에 대응될 수 있고, 비교예 3은 제 1 열처리 없이 제 2 열처리만 수행된 물질막에 대응될 수 있다. 도 4는 실시예 1 및 2, 그리고 비교예 1 내지 3의 물질막에 대한 FT-IR 분석 결과이다.
<표 1>
Figure pat00005
표 1과 도 4를 참조하면, 비교예 1의 경우 어느 열처리도 수행하지 않은 물질막을 나타내며 -Si-Hn 결합을 나타내는 약 2000 cm-1 내지 약 2400 cm-1의 파수 범위에서 피크가 확인된다. 반면 비교예 3, 그리고 실시예 1 및 2의 경우는 모두 적어도 1회의 열처리가 완료된 상태이고, 약 2000 cm-1 내지 약 2400 cm-1에 위치하던 피크가 사라진 것이 확인된다.
비교예 2는 제 1 열처리를 수행한 직후의 물질막을 나타내며 약 2000 cm-1 내지 약 2400 cm-1의 파수 범위에서 미약하게나마 피크가 확인된다. 하지만 실시예 1과 2, 그리고 비교예 3의 경우에는 -Si-Hn 결합을 나타내는 약 2000 cm-1 내지 약 2400 cm-1 파수 범위의 피크가 완전히 사라진 것이 확인되며, 이들은 모두 제 2 열처리가 수행된 물질막들이다.
따라서 수증기 분위기에서 수행된 제 2 열처리에 의하여 -Si-Hn 결합이 사라지는 것으로 추정된다.
도 5는 도 4의 스펙트럼에서 -Si-O-Si- 결합에 대응되는 약 700 cm-1 내지 약 1500 cm-1의 파수 범위를 보다 상세하게 나타낸 스펙트럼이다.
도 5를 참조하면, 비교예 1 및 2의 피크에 비하여 비교예 3, 실시예 1, 및 실시예 2의 피크가 증가하였으며, 피크가 증가한 정도는 대략 서로 유사한 것으로 관찰된다.
따라서, -Si-O-Si- 결합은 산화 분위기에서의 제 2 열처리가 수행된 이후에 충분히 생성되는 것을 알 수 있다.
도 6은 도 4의 스펙트럼에서 -Si-Si- 결합에 대응되는 약 600 cm-1 내지 약 800 cm-1의 파수 범위를 보다 상세하게 나타낸 스펙트럼이다.
도 4와 도 6을 참조하면, 비교예 1에 있던 약 600 cm-1 내지 약 800 cm-1의 파수 범위의 피크가 비교예 2 및 3, 실시예 1 및 2에서는 사라진 것을 알 수 있다.
따라서 제 1 열처리에 의하여 원자들이 재배열되고, 특히 -Si-Si- 결합이 -Si-O-Si- 결합 등으로 대체되는 것으로 추정된다.
다시 도 4를 참조하면, 제 1 열처리와 제 2 열처리 중의 어느 하나만 수행한 비교예 2 및 비교예 3의 경우에는 히드록시기(-OH)를 대표하는 약 3000 cm-1 내지 약 3700 cm-1의 파수 범위의 피크가 희미하게 생성된 것이 관찰되었다.
비교예 2의 경우에는 제 1 열처리에 의하여 원자들이 재배열되는 과정에서 -OH기가 일부 생성되는 것으로 추정된다. 비교예 3의 경우에는 산화성 분위기의 제 2 열처리에 의하여 산소 원자가 도입되는 과정에서 -OH기가 일부 생성되는 것으로 추정된다.
반면, 제 1 열처리 및 제 2 열처리를 수행한 실시예 1 및 실시예 2의 경우에는 히드록시기(-OH)를 대표하는 피크가 관찰되지 않는다. 따라서 치밀한 -Si-O-Si- 결합을 얻기 위해서는 제 1 열처리 및 제 2 열처리가 모두 필요하다.
폴리실록산 물질의 분자량을 약 5000 내지 약 25000의 범위로 변화시키면서 실리콘 산화막을 제조하였고, 구체적인 제조 조건은 하기 표 2와 같다(실시예 1, 실시예 3 내지 실시예 7). 폴리실록산 물질 대신 약 6000 및 약 15000의 분자량을 갖는 TOSZ를 사용하여 실리콘 산화막을 제조하였으며, 구체적인 제조 조건은 하기 표 2와 같다(비교예 4, 비교예 5). 폴리실록산 물질로서 종전의 HSQ를 사용하여 실리콘 산화막을 제조하였으며, 구체적인 제조 조건은 하기 표 2와 같다(비교예 6). 상기 TOSZ는 과수소화 폴리실라잔(perhydro polysilazane, PHPS)을 의미한다.
하기 표 2에서 수축율(SHK)(%)은 열처리 전후의 두께 변화를 엘립소미터로 측정하여 계산하였고, 응력은 기판의 워피지(warpage)와의 상관식(correlation)을 통하여 계산하였다. 화학적 기계적 연마(chemical mechanical polishing, CMP) 제거 속도는 동일 CMP 조건 하에서의 막질 제거 속도를 측정하였다. 습식 식각 내성(wet etch resistance, WER)은 평탄한 기판 위에 각 물질막을 형성한 후 습식 식각 속도를 측정하였다.
<표 2>
Figure pat00006
상기 표 2에서 보는 바와 같이 본 발명의 폴리실록산 물질을 이용한 실시예 1, 3 내지 7의 경우 수축율도 대체로 안정되어 있고(약 13%), 응력도 비교적 작은 것으로 나타났다(약 28 내지 33 MPa). 반면 TOSZ(즉, PHPS)를 사용한 비교예 4와 비교예 5의 경우에는 응력이 현저히 더 큰 것으로 나타났다. HSQ를 사용한 비교예 6의 경우, 비교예 4와 비교예 5에 비하여 응력이 다소 감소하였지만 수축율이 다소 컸고 실시예 1, 3 내지 7에 비하면 응력이 현저하게 더 큰 것으로 나타났다.
따라서 본 발명의 실시예의 제조 방법을 따르면 수축율이 낮게 안정화되면서도 응력이 현저히 낮은 실리콘 산화물막을 형성할 수 있음을 알 수 있다.
폴리실록산 내의 -Si-Hn 결합들의 비율에 따른 영향을 알아보기 위하여 SiH2Cl2를 출발 물질로 하여 다양한 비율을 갖는 폴리실록산 물질을 제조하고 이를 이용하여 실리콘 산화물을 제조하였다. 각 실시예의 SiHn의 비율은 하기 표 3과 같다.
<표 3>
Figure pat00007
상기 표 3에서 보는 바와 같이 SiH2의 비율이 43% 내지 96% 에서는 비교적 안정된 수축율과 비교적 낮은 응력(40 MPa 미만)을 보이는 것으로 나타났다. 반면 SiH2의 비율이 40%에 미달하면 수축율이 약간 증가하고 응력이 현저하게 증가하는 것으로 나타났다(50 MPa 초과).
도 7a 내지 도 7c는 각각 실시예 6, 실시예 5, 및 실시예 1의 실록산 물질막에 대하여 제 1 실시예를 수행하기 직전의 모습을 나타낸 이미지들이다. 도 7a를 참조하면, 실시예 6의 경우에는 피막의 모폴로지가 일부 불안정하고 일부 파티클이 발생하는 것이 관찰되었다. 도 7b를 참조하면, 실시예 5의 경우에는 초기에는 모폴로지가 우수하였지만 시간이 지남에 따라 표면에 약간의 파티클이 발생하였다. 도 7c를 참조하면, 실시예 1의 경우에는 모폴로지도 우수하고 파티클도 발생하지 않았다.
<실시예 9 내지 11>
실시예 5에서 사용되었던 폴리실록산 물질(중량평균 분자량 10,000; SiH2 비율 81%)에 대하여 하기 표 4와 같은 조건에서 제 1 열처리 및 제 2 열처리를 수행하고, 습식 식각 내성을 측정하였다.
<표 4>
Figure pat00008
상기 표 4에서 보는 바와 같이 600℃에서 제 1 열처리 및 제 2 열처리를 수행하면(실시예 11) 500℃에서 제 1 열처리 및 제 2 열처리를 수행한 경우(실시예 9 및 10)에 비하여 습식 식각 내성이 더욱 향상되는 것으로 나타났다.
<실시예 12, 비교예 9 내지 11>
실시예 5에서 사용되었던 폴리실록산 물질(중량평균 분자량 10,000; SiH2 비율 81%)에 대하여 하기 표 5와 같은 조건에서 제 1 열처리 및/또는 제 2 열처리를 수행하고, 습식 식각 내성과 응력을 측정하였다.
<표 5>
Figure pat00009
상기 표 5에서 보는 바와 같이 제 2 열처리를 수행하지 않으면(비교예 9) 비록 응력은 낮았지만 습식 식각 내성이 극히 미흡하였다. 또한 제 1 열처리를 수행하지 않으면(비교예 10 및 11) 습식 식각 내성도 미흡하고, 응력도 많이 발생하는 것으로 나타났다.
또한 비교예 9, 비교예 11, 및 실시예 11에 대하여 X-선 반사도 (X-ray reflectivity, XRR) 밀도를 측정하였는데 표 5에 나타낸 바와 같이 제 1 열처리와 제 2 열처리를 모두 수행한 실시예 11이 가장 치밀한 품질을 갖는 것으로 나타났다.
두 개의 실리콘 기판 위에 트렌치를 형성하여 라인-앤-스페이스 구조를 각각 형성하고 이들에 대하여 각각 실시예 1과 비교예 4의 방법에 따라 실리콘 산화물을 형성하였다. 그런 다음 불산 용액을 이용하여 동일한 시간 동안 트렌치 내부의 실리콘 산화물을 식각하여 각각 습식식각된 깊이의 분포를 측정하였다.
비교예 4의 실리콘 산화물은 가장 깊이 식각된 깊이(136.3nm)와 가장 얕게 식각된 깊이(76.05nm)의 차이가 약 60 nm이었고, 실시예 1의 실리콘 산화물은 가장 깊이 식각된 깊이(118.52nm)와 가장 얕게 식각된 깊이(89.38nm)의 차이가 약 29 nm이었다. 따라서 실시예 1의 실리콘 산화물을 이용하면 습식 식각 깊이의 편차도 감소시킬 수 있는 것으로 나타났다.
실리콘 산화물에 대한 습식 식각에서 위치에 따라 습식 식각의 깊이가 달라지고, 상기 실리콘 산화물에 상당한 응력이 존재하는 경우, 이미 형성되었거나 추후 형성될 구조물을 손상시킬 가능성이 있다. 본 발명의 실시예들에 따른 방법에 따라 형성된 실리콘 산화물은 자신의 내부에 응력이 가급적 적게 존재하면서 습식 식각의 균일성이 개선될 수 있기 때문에 신뢰성 높은 반도체 소자를 제조하는 데 도움이 될 수 있다.
도 8a 내지 도 8m은 본 발명의 일 실시예에 따른 반도체 소자(300)의 제조 방법을 순서에 따라 나타낸 측단면도들이다.
도 8a를 참조하면, 복수의 활성 영역(AC)을 포함하는 기판(310) 상에 상기 복수의 활성 영역(AC)을 적어도 부분적으로 노출하도록 패터닝된 층간절연막(320)을 형성할 수 있다. 상기 층간절연막(320)은 상기 활성 영역(AC)을 노출하는 리세스부(RE)를 포함할 수 있다. 상기 리세스부(RE)는 콘택홀일 수도 있고, 트렌치 형태일 수도 있다. 여기서는 상기 리세스부(RE)가 콘택홀인 경우에 대하여 설명하지만 통상의 기술자는 트렌치 형태에 대해서도 동일한 기술적 사상이 적용될 수 있음을 이해할 것이다.
상기 기판(310)은 Si 또는 Ge와 같은 반도체, 또는 SiGe, SiC, GaAs, InAs, 또는 InP와 같은 화합물 반도체를 포함할 수 있다. 일부 실시예들에서, 상기 기판(310)은 III-V 족 물질 및 IV 족 물질 중 적어도 하나로 이루어질 수 있다. 상기 III-V 족 물질은 적어도 하나의 III 족 원자와 적어도 하나의 V족 원자를 포함하는 2 원계, 3 원계, 또는 4 원계 화합물일 수 있다. 상기 III-V 족 물질은 III 족 원자로서 In, Ga 및 Al 중 적어도 하나의 원자와, V 족 원자로서 As, P 및 Sb 중 적어도 하나의 원자를 포함하는 화합물일 수 있다. 예를 들면, 상기 III-V 족 물질은 InP, InzGa1-zAs (0 ≤ z ≤ 1), 및 AlzGa1-zAs (0 ≤ z ≤ 1)로부터 선택될 수 있다. 상기 2 원계 화합물은, 예를 들면 InP, GaAs, InAs, InSb 및 GaSb 중 어느 하나일 수 있다. 상기 3 원계 화합물은 InGaP, InGaAs, AlInAs, InGaSb, GaAsSb 및 GaAsP 중 어느 하나일 수 있다. 상기 IV 족 물질은 Si 또는 Ge일 수 있다. 그러나, 본 발명의 기술적 사상에 의한 집적회로 소자에서 사용 가능한 III-V 족 물질 및 IV 족 물질이 상기 예시한 바에 한정되는 것은 아니다. 다른 예에서, 상기 기판(310)은 SOI (silicon on insulator) 구조를 가질 수 있다. 상기 기판(310)은 도전 영역, 예를 들면 불순물이 도핑된 웰 (well), 또는 불순물이 도핑된 구조물을 포함할 수 있다.
상기 복수의 활성 영역(AC)은 기판(310)에 형성된 복수의 소자분리 영역(312)에 의해 정의될 수 있다. 상기 소자분리 영역(312)은 실리콘 산화막을 포함하며, 필요에 따라 실리콘 질화막, 실리콘 산화질화막, 또는 이들의 조합을 더 포함할 수 있다.
상기 소자분리 영역(312)을 이루는 실리콘 산화막은 도 1 내지 도 2c를 참조하여 설명한 방법에 의하여 형성될 수 있다.
상기 층간절연막(320)은 실리콘 산화막을 포함할 수 있다. 상기 층간절연막(320)을 이루는 실리콘 산화막도 은 도 1 내지 도 2c를 참조하여 설명한 방법에 의하여 형성될 수 있다.
도 8b를 참조하면, 상기 리세스부(RE)의 내부 및 상기 층간절연막(320)의 상부면 전체에 배리어 금속 물질층(322m)을 형성한다. 상기 배리어 금속 물질층(322m)은 원자층 증착법(atomic layer deposition, ALD), 화학 기상 증착(chemical vapor deposition, CVD), 또는 물리 기상 증착(physical vapor deposition, PVD)에 의하여 형성될 수 있다. 상기 배리어 금속 물질층(322m)은, 예를 들면, Ti 및/또는 TiN으로 될 수 있다.
또한 상기 배리어 금속 물질층(322m)의 상부 전면에 도전 물질층(324m)을 형성할 수 있다. 상기 도전 물질층(324m)은 텅스텐(W)으로 될 수 있으며, CVD에 의하여 형성될 수 있다.
도 8c를 참조하면, 상기 도전 물질층(324m)을 상기 리세스부(RE)의 내부로 한정하기 위하여 상기 도전 물질층(324m)에 대하여 화학적 기계적 연마를 수행할 수 있다. 이 때 상기 배리어 금속 물질층(322m)을 연마 정지막으로 활용하여 CMP를 수행할 수 있다.
또한, 금속막에 대하여 화학적 기계적 연마를 수행하는 경우 통상 산성 분위기에서 과산화수소와 같은 산화제를 첨가하여 수행할 수 있다. 일부 실시예들에 있어서, 화학적 기계적 연마용 슬러리 조성물이 상기 도전 물질층(324m)을 연마할 때 상기 슬러리 조성물 내에 산화제 없이 연마가 수행될 수 있다.
도 8d를 참조하면, 노출된 상기 배리어 금속 물질층(322m)에 대하여 CMP를 수행함으로써 각 콘택홀 내에 배리어 금속층(322)을 한정하고 콘택홀들 사이의 완전한 노드 분리를 수행할 수 있다. 이를 위하여 위에서 설명한 바와 같은, 표면이 특정 작용기로 개질된 세라믹 입자들을 포함하는 화학적 기계적 연마용 슬러리 조성물을 이용할 수 있다.
도 8d의 공정에서도 도 8c를 참조하여 설명한 공정에서와 마찬가지로 상기 슬러리 조성물 내에 산화제 없이 연마가 수행될 수 있다.
도 8c와 도 8d에서는 배리어 금속 물질층(322m)과 층간절연막(320)을 각각 연마 정지막으로 활용하는 2단계의 CMP를 수행하는 것으로 예시하였지만, 일부 실시예들에서 층간절연막(320)만을 연마 정지막으로서 활용하여 단일 단계로 CMP 공정을 수행할 수도 있다.
또, 상기 화학적 기계적 연마용 슬러리 조성물은 약 1 내지 약 9의 pH를 갖는 것으로 조절될 수 있지만, 도 8c 및 도 8d에서와 같이 금속을 연마하는 경우에는 pH를 산성으로, 보다 구체적으로는 pH가 1 내지 4가 되도록 조절될 수 있다.
상기 복수의 도전 영역(324)은 기판(310) 상에 형성된 전계효과 트랜지스터와 같은 스위칭 소자(도시 생략)의 일 단자에 연결될 수 있다. 상기 복수의 도전 영역(324)은 폴리실리콘, 금속, 도전성 금속 질화물, 금속 실리사이드, 또는 이들의 조합으로 이루어질 수 있으나, 상기 예시한 바에 한정되는 것은 아니다.
도 8e를 참조하면, 층간절연막(320) 및 복수의 도전 영역(324)을 덮는 절연층(328)을 형성한다. 상기 절연층(328)은 식각 정지층으로 사용될 수 있다.
상기 절연층(328)은 층간절연막(320) 및 후속 공정에서 형성되는 몰드막(330) (도 8f 참조)에 대하여 식각 선택비를 가지는 절연 물질로 이루어질 수 있다. 일부 실시예들에서, 상기 절연층(328)은 실리콘 질화물, 실리콘 산화질화물, 또는 이들의 조합으로 이루어질 수 있다.
일부 실시예들에서, 상기 절연층(328)은 약 100 내지 600 Å의 두께로 형성될 수 있으나, 이에 한정되는 것은 아니다.
도 8f를 참조하면, 절연층(328) 위에 몰드막(330)을 형성한다.
일부 실시예들에서, 상기 몰드막(330)은 산화막으로 이루어질 수 있다. 예를 들면, 상기 몰드막(330)은 실리콘 산화막으로 이루어질 수 있다. 상기 몰드막(330)을 이루는 실리콘 산화막도 은 도 1 내지 도 2c를 참조하여 설명한 방법에 의하여 형성될 수 있다. 일부 실시예들에서, 상기 몰드막(330)은 약 1000 내지 20000 Å의 두께로 형성될 수 있으나, 이에 한정되는 것은 아니다.
일부 실시예들에서, 상기 몰드막(330)은 지지막(도시 생략)을 포함할 수 있다. 상기 지지막은 몰드막(330)에 대하여 식각 선택비를 가지는 물질로 형성될 수 있으며, 약 50 내지 3000 Å의 두께를 가질 수 있다. 상기 지지막은 후속 공정에서 상기 몰드막(330)을 제거할 때 사용되는 식각 분위기, 예를 들면 불화암모늄(NH4F), 불산(HF) 및 물을 포함하는 LAL (Limulus Amoebocyte Lysate) 리프트-오프(lift-off) 공정을 이용하는 경우, LAL에 대하여 식각율이 비교적 낮은 물질로 이루어질 수 있다. 일부 실시예들에서, 상기 지지막은 실리콘 질화물, 실리콘 탄화질화물, 탄탈륨 산화물, 티타늄 산화물, 또는 이들의 조합으로 이루어질 수 있으나, 상기 지지막의 구성 물질이 상기 예시한 바에 한정되는 것은 아니다.
도 8g를 참조하면, 상기 몰드막(330) 위에 희생막(342) 및 마스크 패턴(344)을 차례로 형성한다.
상기 희생막(342)은 BPSG, PSG, USG, SOD, HDP CVD 공정에 의해 형성된 산화막 등과 같은 산화막을 포함할 수 있다. 상기 희생막(342)은 약 500 Å 내지 약 2000 Å의 두께를 가질 수 있다. 상기 희생막(342)은 상기 몰드막(330)에 포함된 지지막을 보호하는 역할을 할 수 있다.
상기 마스크 패턴(344)은 산화막, 질화막, 폴리실리콘막, 포토레지스트막, 또는 이들의 조합으로 이루어질 수 있다. 상기 마스크 패턴(344)에 의해 커패시터의 하부 전극이 형성될 영역이 정의될 수 있다.
도 8h를 참조하면, 마스크 패턴(344)을 식각 마스크로 이용하고 절연층(328)을 식각 정지층으로 이용하여 희생막(342) 및 몰드막(330)을 건식 식각하여, 복수의 홀(H1)을 한정하는 희생 패턴(342P) 및 몰드 패턴(330P)을 형성한다.
이 때, 과도 식각에 의해 상기 절연층(328)도 식각되어 복수의 도전 영역(324)을 노출시키는 절연 패턴(328P)이 형성될 수 있다.
도 8i를 참조하면, 도 8h의 결과물로부터 마스크 패턴(344)을 제거한 후, 복수의 홀(H1) 각각의 내부 측벽과, 절연 패턴(328P)의 노출 표면과, 복수의 홀(H1) 각각의 내부에서 노출되는 상기 복수의 도전 영역(324)의 표면과, 희생 패턴(342P)의 노출 표면을 덮는 하부 전극 형성용 도전막(350)을 형성한다.
상기 하부 전극 형성용 도전막(350)은 상기 복수의 홀(H1) 각각의 내부 공간이 일부 남도록 복수의 홀(H1)의 측벽에 컨포멀(conformal)하게 형성될 수 있다.
일부 실시예들에서, 상기 하부 전극 형성용 도전막(350)은 도핑된 반도체, 도전성 금속 질화물, 금속, 금속 실리사이드, 도전성 산화물, 또는 이들의 조합으로 이루어질 수 있다. 예를 들면, 상기 하부 전극 형성용 도전막(350)은 TiN, TiAlN, TaN, TaAlN, W, WN, Ru, RuO2, Ir, IrO2, Pt, PtO, SRO (SrRuO3), BSRO ((Ba,Sr)RuO3), CRO (CaRuO3), LSCo ((La,Sr)CoO3), 또는 이들의 조합으로 이루어질 수 있으나, 상기 하부 전극 형성용 도전막(350)의 구성 물질이 상기 예시한 바에 한정되는 것은 아니다.
상기 하부 전극 형성용 도전막(350)를 형성하기 위하여, CVD, MOCVD (metal organic CVD), 또는 ALD 공정을 이용할 수 있다. 상기 하부 전극 형성용 도전막(350)은 약 20 내지 100 nm의 두께로 형성될 수 있으나, 이에 한정되는 것은 아니다.
도 8j를 참조하면, 하부 전극 형성용 도전막(350)의 상부를 부분적으로 제거하여 상기 하부 전극 형성용 도전막(350)을 복수의 하부 전극(LE)으로 분리한다.
상기 복수의 하부 전극(LE)을 형성하기 위하여, 몰드 패턴(330P)의 상면이 노출될 때까지 에치백(etchback) 또는 CMP(chemical mechanical polishing) 공정을 이용하여 상기 하부 전극 형성용 도전막(350)의 상부측 일부와 희생 패턴(342P)(도 8i 참조)을 제거할 수 있다.
상기 복수의 하부 전극(LE)은 상기 절연 패턴(328P)을 관통하여 도전 영역(324)에 연결될 수 있다.
도 8k를 참조하면, 몰드 패턴(330P)을 제거하여, 실린더 형상의 복수의 하부 전극(LE)의 외벽면들을 노출시킨다.
상기 몰드 패턴(330P)은 LAL 또는 불산을 이용하는 리프트-오프 공정에 의해 제거될 수 있다.
도 8l를 참조하면, 복수의 하부 전극(LE) 위에 유전막(360)을 형성한다.
상기 유전막(360)은 상기 복수의 하부 전극(LE)의 노출 표면들을 컨포멀하게 덮도록 형성될 수 있다.
상기 유전막(360)은 ALD 공정에 의해 형성될 수 있다.
상기 유전막(360)은 산화물, 금속 산화물, 질화물, 또는 이들의 조합을 포함할 수 있다. 일부 실시예들에서, 상기 유전막(360)은 ZrO2 막을 포함할 수 있다. 예를 들면, 상기 유전막(360)은 ZrO2 막의 단일층으로 이루어지거나, 적어도 하나의 ZrO2 막과 적어도 하나의 Al2O3 막의 조합을 포함하는 다중층으로 이루어질 수 있다.
일부 실시예들에서, 상기 유전막(360)은 약 50 내지 150 Å의 두께를 가질 수 있으나, 예시한 바에 한정되는 것은 아니다.
도 8m을 참조하면, 유전막(360) 상에 상부 전극(UE)을 형성한다.
상기 하부 전극(LE), 유전막(360), 및 상부 전극(UE)에 의해 커패시터(370)가 구성될 수 있다.
상기 상부 전극(UE)은 도핑된 반도체, 도전성 금속 질화물, 금속, 금속 실리사이드, 도전성 산화물, 또는 이들의 조합으로 이루어질 수 있다. 예를 들면, 상기 상부 전극(UE)은 TiN, TiAlN, TaN, TaAlN, W, WN, Ru, RuO2, Ir, IrO2, Pt, PtO, SRO (SrRuO3), BSRO ((Ba,Sr)RuO3), CRO (CaRuO3), LSCo ((La,Sr)CoO3), 또는 이들의 조합으로 이루어질 수 있으나, 상기 상부 전극(UE)의 구성 물질이 상기 예시한 바에 한정되는 것은 아니다.
상기 상부 전극(UE)을 형성하기 위하여, CVD, MOCVD, PVD, 또는 ALD 공정을 이용할 수 있다.
이상, 도 8a 내지 도 8m을 참조하여 실린더형 하부 전극(LE)의 표면을 덮는 유전막(360)을 형성하는 공정을 포함하는 집적회로 소자(300)의 제조 방법에 대하여 설명하였으나, 본 발명의 기술적 사상은 상기 예시한 바에 한정되는 것은 아니다. 예를 들면, 상기 실린더형 하부 전극(LE) 대신 내부 공간이 없는 필라(pillar)형 하부 전극을 형성할 수도 있으며, 상기 유전막(360)은 상기 필라형 하부 전극 위에 형성될 수도 있다.
도 8a 내지 도 8m를 참조하여 설명한 본 발명의 기술적 사상에 의한 실시예들에 따른 집적회로 소자의 제조 방법에 따르면, 배리어 금속층(322) 및 도전 영역(324)을 형성하기 위하여, 본 발명의 기술적 사상에 의한 화학적 기계적 연마용 슬러리 조성물을 사용하여 화학적 기계적 연마를 수행한다.
이상에서 살펴본 바와 같이 본 발명의 실시예들에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.
10: 기판 21: 제 1 물질층
312: 소자 분리 영역 320: 층간 절연막
322m: 배리어 금속 물질층 322: 배리어 금속층
324: 도전 영역 324m: 도전 물질층
328: 절연층 330: 몰드막
342: 희생막 344: 마스크 패턴

Claims (10)

  1. 반도체 기판 상에 산화물층을 형성하는 방법으로서,
    상기 반도체 기판 상에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계;
    상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계; 및
    상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계;
    를 포함하고,
    상기 폴리실록산 물질이 포함하는 Si-H1, Si-H2, Si-H3 본딩 중 Si-H2 본딩의 비율이 약 40% 내지 약 90%인 산화물층 형성 방법.
  2. 제 1 항에 있어서,
    상기 폴리실록산 물질이 포함하는 Si-H1, Si-H2, Si-H3 본딩 중 Si-H3 본딩의 비율이 약 0.01% 내지 약 10%인 것을 특징으로 하는 산화물층 형성 방법.
  3. 제 1 항에 있어서,
    상기 폴리실록산 물질의 중량평균 분자량(Mw)이 약 5,000 내지 약 25,000인 것을 특징으로 하는 산화물층 형성 방법.
  4. 제 1 항에 있어서,
    상기 산화물층 내에 Si-H의 결합이 실질적으로 부존재하는 것을 특징으로 하는 산화물층 형성 방법.
  5. 제 1 항에 있어서,
    상기 산화물층에 대하여 FT-IR 분석을 수행하였을 때 Si-H의 결합에 해당되는 피크가 검출되지 않는 것을 특징으로 하는 산화물층 형성 방법.
  6. 제 1 항에 있어서,
    상기 제 1 열처리 및 상기 제 2 열처리가 각각 독립적으로 약 500℃ 내지 약 700℃의 범위에서 수행되는 것을 특징으로 하는 산화물층 형성 방법.
  7. 제 1 항에 있어서,
    상기 제 2 열처리가 O2, H2O, H2O2, 및 O3 중 적어도 하나를 포함하는 분위기에서 수행되는 것을 특징으로 하는 산화물층 형성 방법.
  8. 반도체 기판에 활성 영역을 정의하는 트렌치를 형성하는 단계;
    상기 트렌치 내에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계;
    상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계;
    제 1 열처리된 상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계; 및
    상기 활성 영역에 메모리 소자를 형성하는 단계;
    를 포함하고,
    상기 폴리실록산 물질의 중량평균 분자량(Mw)이 약 5,000 내지 약 25,000인 반도체 소자의 제조 방법.
  9. 제 8 항에 있어서,
    상기 폴리실록산 물질은, 상기 폴리실록산 물질이 포함하는 Si-H1, Si-H2, Si-H3 본딩 중 Si-H2 본딩의 비율이 약 40% 내지 약 90%인 것을 특징으로 하는 반도체 소자의 제조 방법.
  10. 반도체 기판 상에 산화물층을 형성하는 방법으로서,
    상기 반도체 기판 상에 폴리실록산 물질을 포함하는 제 1 물질층을 형성하는 단계;
    상기 제 1 물질층을 불활성 분위기에서 제 1 열처리하는 단계; 및
    상기 제 1 물질층을 산화성 분위기에서 제 2 열처리하는 단계;
    를 포함하고,
    상기 폴리실록산 물질은 하기 반응식 1에 의하여 제조된 폴리실록산 물질인 것을 특징으로 하는 산화물층 형성 방법.
    <반응식 1>
    Figure pat00010
KR1020180028305A 2018-03-09 2018-03-09 산화물층의 형성 방법 및 반도체 소자의 제조 방법 KR102650216B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020180028305A KR102650216B1 (ko) 2018-03-09 2018-03-09 산화물층의 형성 방법 및 반도체 소자의 제조 방법
US16/292,939 US10923341B2 (en) 2018-03-09 2019-03-05 Method of forming oxide layer and method of fabricating semiconductor device
JP2019040895A JP7319794B2 (ja) 2018-03-09 2019-03-06 酸化物層の形成方法、及び半導体素子の製造方法
CN201910171202.5A CN110246750A (zh) 2018-03-09 2019-03-07 形成氧化物层的方法和制作半导体器件的方法
TW108107709A TWI829674B (zh) 2018-03-09 2019-03-08 形成氧化物層的方法及製造半導體裝置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180028305A KR102650216B1 (ko) 2018-03-09 2018-03-09 산화물층의 형성 방법 및 반도체 소자의 제조 방법

Publications (2)

Publication Number Publication Date
KR20190106598A true KR20190106598A (ko) 2019-09-18
KR102650216B1 KR102650216B1 (ko) 2024-03-21

Family

ID=67842012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180028305A KR102650216B1 (ko) 2018-03-09 2018-03-09 산화물층의 형성 방법 및 반도체 소자의 제조 방법

Country Status (5)

Country Link
US (1) US10923341B2 (ko)
JP (1) JP7319794B2 (ko)
KR (1) KR102650216B1 (ko)
CN (1) CN110246750A (ko)
TW (1) TWI829674B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242488B2 (ja) * 2019-09-17 2023-03-20 株式会社東芝 半導体装置の製造方法
US11764270B2 (en) * 2020-03-19 2023-09-19 Kabushiki Kaisha Toshiba Semiconductor device, method for manufacturing semiconductor device, inverter circuit, drive device, vehicle, and elevator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068672A (ko) * 2001-02-22 2002-08-28 삼성전자 주식회사 층간 절연막 형성방법
JP2006319063A (ja) * 2005-05-11 2006-11-24 Toshiba Corp 半導体装置の製造方法
JP2007111645A (ja) * 2005-10-21 2007-05-10 Dow Corning Toray Co Ltd シリカ系ガラス薄層付き無機質基板、その製造方法、コーテイング剤および半導体装置
KR20090057397A (ko) * 2006-09-21 2009-06-05 제이에스알 가부시끼가이샤 실리콘 수지 조성물 및 트렌치 아이솔레이션의 형성 방법
KR20100027388A (ko) * 2008-09-02 2010-03-11 삼성전자주식회사 반도체 소자의 절연막 및 그를 이용한 반도체 소자의 형성방법
US20130209344A1 (en) * 2012-02-10 2013-08-15 Rohm And Haas Electronic Materials Llc Thermal annealing process
KR20160136303A (ko) * 2014-03-26 2016-11-29 도레이 카부시키가이샤 반도체 장치의 제조 방법 및 반도체 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501407B2 (ja) 1991-12-30 2004-03-02 ソニー株式会社 有機シリコーン系樹脂膜の形成方法、及び半導体装置の製造方法
US6310384B1 (en) 1993-07-02 2001-10-30 Hitachi, Ltd. Low stress semiconductor devices with thermal oxide isolation
KR970010592B1 (ko) * 1993-12-01 1997-06-28 한국과학기술연구원 2-아릴프로필히드로겐폴리실록산 형태의 실리콘 오일 및 그의 제조방법
JP3796796B2 (ja) 1996-02-01 2006-07-12 ソニー株式会社 化学増幅レジストパターンの形成方法および装置
US5786278A (en) 1996-08-27 1998-07-28 Watkins-Johnson Company Method of stress-relieving silicon oxide films
US6448331B1 (en) 1997-07-15 2002-09-10 Asahi Kasei Kabushiki Kaisha Alkoxysilane/organic polymer composition for thin insulating film production and use thereof
EP1197999B1 (en) 1999-12-28 2010-02-17 JGC Catalysts and Chemicals Ltd. Method of forming low-dielectric-constant film, and semiconductor substrate with low-dielectric-constant film
JP2001206710A (ja) 2000-01-20 2001-07-31 Jsr Corp シリカ系膜の形成方法
JP4368498B2 (ja) 2000-05-16 2009-11-18 Necエレクトロニクス株式会社 半導体装置、半導体ウェーハおよびこれらの製造方法
US6780499B2 (en) 2001-05-03 2004-08-24 International Business Machines Corporation Ordered two-phase dielectric film, and semiconductor device containing the same
JP2004311532A (ja) * 2003-04-02 2004-11-04 Semiconductor Leading Edge Technologies Inc 多孔質膜の形成方法
US20060051929A1 (en) * 2004-09-03 2006-03-09 Honeywell International Inc. Electrical properties of shallow trench isolation materials via high temperature annealing in the presence of reactive gases
KR100685734B1 (ko) 2005-06-07 2007-02-26 삼성전자주식회사 다공성 스핀 온 글래스 조성물, 이의 제조 방법 및 이를이용한 다공성 실리콘 산화막 제조 방법
US7244658B2 (en) 2005-10-17 2007-07-17 Applied Materials, Inc. Low stress STI films and methods
JP2008305974A (ja) * 2007-06-07 2008-12-18 Elpida Memory Inc 酸化膜形成用塗布組成物およびそれを用いた半導体装置の製造方法
CN105185837B (zh) * 2009-10-08 2018-08-03 株式会社半导体能源研究所 半导体器件、显示装置和电子电器
CN104900577A (zh) * 2014-03-04 2015-09-09 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068672A (ko) * 2001-02-22 2002-08-28 삼성전자 주식회사 층간 절연막 형성방법
JP2006319063A (ja) * 2005-05-11 2006-11-24 Toshiba Corp 半導体装置の製造方法
JP2007111645A (ja) * 2005-10-21 2007-05-10 Dow Corning Toray Co Ltd シリカ系ガラス薄層付き無機質基板、その製造方法、コーテイング剤および半導体装置
KR20090057397A (ko) * 2006-09-21 2009-06-05 제이에스알 가부시끼가이샤 실리콘 수지 조성물 및 트렌치 아이솔레이션의 형성 방법
KR20100027388A (ko) * 2008-09-02 2010-03-11 삼성전자주식회사 반도체 소자의 절연막 및 그를 이용한 반도체 소자의 형성방법
US20130209344A1 (en) * 2012-02-10 2013-08-15 Rohm And Haas Electronic Materials Llc Thermal annealing process
KR20160136303A (ko) * 2014-03-26 2016-11-29 도레이 카부시키가이샤 반도체 장치의 제조 방법 및 반도체 장치

Also Published As

Publication number Publication date
JP2019161224A (ja) 2019-09-19
US10923341B2 (en) 2021-02-16
TW201946096A (zh) 2019-12-01
CN110246750A (zh) 2019-09-17
JP7319794B2 (ja) 2023-08-02
TWI829674B (zh) 2024-01-21
US20190279862A1 (en) 2019-09-12
KR102650216B1 (ko) 2024-03-21

Similar Documents

Publication Publication Date Title
US7402488B2 (en) Method of manufacturing a semiconductor memory device
US7291531B2 (en) Method of fabricating semiconductor device having capacitor
US9111944B2 (en) Method of fabricating a ferroelectric capacitor
US9548348B2 (en) Methods of fabricating an F-RAM
US7611972B2 (en) Semiconductor devices and methods of manufacture thereof
US6352933B1 (en) Methods of forming insulating materials between conductive components and methods of forming insulating materials around a conductive component
KR100840782B1 (ko) 실록산 폴리머 조성물 및 이를 이용한 커패시터 제조 방법
US20080116543A1 (en) Semiconductor devices and methods of manufacture thereof
US10304731B2 (en) Damascene oxygen barrier and hydrogen barrier for ferroelectric random-access memory
US9305995B1 (en) Methods of fabricating an F-RAM
US20080149980A1 (en) Semiconductor devices and methods of manufacture thereof
US7422943B2 (en) Semiconductor device capacitors with oxide-nitride layers and methods of fabricating such capacitors
KR102650216B1 (ko) 산화물층의 형성 방법 및 반도체 소자의 제조 방법
US7449383B2 (en) Method of manufacturing a capacitor and method of manufacturing a dynamic random access memory device using the same
KR100712525B1 (ko) 반도체 소자의 커패시터 및 그 제조방법
WO2017039854A1 (en) Method for fabricating ferroelectric random-access memory on pre-patterned bottom electrode and oxidation barrier
CN110504155A (zh) 通过氢处理形成低应力氮化硅层
KR100640563B1 (ko) 콘케이브 구조의 캐패시터를 가지는 반도체 소자 및 그제조방법
US11018020B2 (en) Method of fabricating an integrated circuit device by using a block copolymer to form a self-assembly layer
KR20060130791A (ko) 다공성 스핀 온 글래스 조성물, 이의 제조 방법 및 이를이용한 다공성 실리콘 산화막 제조 방법
US20080211065A1 (en) Semiconductor devices and methods of manufacture thereof
KR20120033640A (ko) 텅스텐 갭필을 이용한 반도체장치 제조 방법
KR100654351B1 (ko) 반도체 소자의 제조방법
KR20050024979A (ko) 캐패시터 형성 방법
KR100887052B1 (ko) 반도체소자의 캐패시터 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant