KR20190104241A - 다가 폐렴구균 다당류-단백질 접합체 조성물 - Google Patents

다가 폐렴구균 다당류-단백질 접합체 조성물 Download PDF

Info

Publication number
KR20190104241A
KR20190104241A KR1020197025300A KR20197025300A KR20190104241A KR 20190104241 A KR20190104241 A KR 20190104241A KR 1020197025300 A KR1020197025300 A KR 1020197025300A KR 20197025300 A KR20197025300 A KR 20197025300A KR 20190104241 A KR20190104241 A KR 20190104241A
Authority
KR
South Korea
Prior art keywords
polysaccharide
serotypes
serotype
solution
filter
Prior art date
Application number
KR1020197025300A
Other languages
English (en)
Other versions
KR102220506B1 (ko
Inventor
윌리엄 피. 하우스도르프
조지 레이너 사이버
피터 알. 파라디소
Original Assignee
와이어쓰 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36709976&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20190104241(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 와이어쓰 엘엘씨 filed Critical 와이어쓰 엘엘씨
Priority to KR1020217005073A priority Critical patent/KR102378962B1/ko
Publication of KR20190104241A publication Critical patent/KR20190104241A/ko
Application granted granted Critical
Publication of KR102220506B1 publication Critical patent/KR102220506B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • A61K39/092Streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/295Polyvalent viral antigens; Mixtures of viral and bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine

Abstract

13개의 다른 다당류-단백질 접합체 및 임의로 알루미늄계 애쥬번트를 갖는 면역원성 조성물을 기술한다. 각 접합체는 운반체 단백질에 접합된 상이한 혈청형의 스트렙토코커스 뉴모니애(1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F)로부터 제조된 협막 다당류를 함유한다. 백신으로 제형화된 면역원성 조성물은 전세계적으로 유아 및 소아에서 폐렴구균 질환에 대한 적용범위를 증가시키고, 혈청그룹 교차 보호의 한계에 의존적이지 않는 혈청형 6A 및 19A에 대한 적용범위를 제공한다.

Description

다가 폐렴구균 다당류-단백질 접합체 조성물{Multivalent pneumococcal polysaccharide-protein conjugate composition}
본 발명은 일반적으로 의학 분야, 특히 미생물학, 면역학, 백신과 관련이 있으며, 면역접종으로 세균 병원체에 의한 감염을 예방하는 것에 관한 것이다.
스트렙토코커스 뉴모니애(Streptococcus pneumoniae)는 전세계에서 유아 및 소아의 뇌막염, 폐렴 및 심각한 침습성 질환의 주요 원인이다. 다가 폐렴구균 다당류 백신은 수년 동안 승인되어 왔고, 노인 및 고위험 환자에서 폐렴구균 질환을 예방하는데 있어서 유용한 것으로 입증되었다. 그러나, 유아 및 소아는 대부분의 폐렴구균 다당류에 대해 불량하게 반응한다. 7가 폐렴구균 접합체 백신(7vPnC, 프레브나(Prevnar)®)은 유아 및 소아에서 침습성 질환 및 중이염에 대해 면역원성이 높고 효과적인 것으로, 이러한 종류의 백신 중 최초로 증명되었다. 이 백신은 현재 전세계의 여러 국가에서 승인되어 있다. 프레브나는, CRM197이라는 운반체 단백질에 각각 접합된, 혈청형 4, 6B, 9V, 14, 18C, 19F 및 23F 유래의 협막 다당류(capsular polysaccharide)를 함유한다. 프레브나는 미국, 유럽 및 전세계의 다른 지역에서 침습성 폐렴구균 질환(IPD)의 대략 80 내지 90%, 60 내지 80%, 및 40 내지 80%를 각각 감당한다 [1,2]. 프레브나의 도입 이후에 수년간 축적된 감시(surveillance) 데이터에서는, 예상된 바와 같이, 미국 유아에서의 침습성 폐렴구균 질환의 감소가 명확히 증명되었다 (도 1) [3,4].
프레브나의 도입 이전에 미국 유아에서 수행된 IPD의 감시에서는, 혈청그룹 6 및 19로 인한 질병의 상당한 비율이 6A (대략 1/3) 및 19A (대략 1/4) 혈청형 때문인 것으로 증명되었다 [5,6]. 프레브나의 인가 이후에 미국에서 수행된 폐렴구균 침습성 질환 감시는, 질병의 큰 부담이 여전히 혈청형 6A 및 19A로 인한 것이라는 것을 시사한다(도 1) [3]. 게다가, 이 두가지 혈청형은 1, 3, 5 및 7F 혈청형을 합한 것보다 침습성 질환의 더 많은 증례를 차지한다(8.2명 대 3.3명의 환자/2세 이하의 소아 100,000명). 또한, 혈청형 6A 및 19A는 높은 항생제 내성률과 관련되어 있다 (도 2) [7,8,9]. 더 많은 소아들이 면역접종을 받을수록 혈청그룹 교차 보호의 결과로서 혈청형 6A 및 19A 질환이 감소할 수 있지만, 감소에 한계가 있을 것이며 이들 혈청형으로 인한 상당한 질병 부담이 여전히 남아 있을 것임을 시사하는 증거가 있다. (하기 참조).
혈청형 1, 3, 5, 6A, 7F 및 19A로 인한 침습성 폐렴구균 질환의 상대적인 부담 및 중요성이 주어진 경우, 이들 혈청형을 프레브나 제형에 추가하면 침습성 질환에 대한 적용범위가 미국 및 유럽에서는 90% 이상으로, 그리고 아시아 및 라틴 아메리카에서는 70% 내지 80% 정도로 증가할 것이다. 이 백신은 프레브나의 적용범위를 넘어 적용범위를 상당히 확장시킬 것이고, 혈청그룹 교차 보호의 한계에 의존적이지 않는 6A 및 19A에 대한 적용범위를 제공할 것이다.
발명의 요약
따라서, 본 발명은 일반적으로, 생리학적으로 허용되는 비히클과 함께, 13개의 다른 다당류-단백질 접합체를 포함하고, 이때 각각의 접합체가 운반체 단백질에 접합된 상이한 혈청형의 스트렙토코커스 뉴모니애 유래의 협막 다당류를 함유하는, 다가 면역원성 조성물을 제공한다. 임의로, 알루미늄계 애쥬번트와 같은 애쥬번트가 제형에 포함된다. 보다 구체적으로, 본 발명은 7vPnC 백신 중의 7개의 혈청형(4, 6B, 9V, 14, 18C, 19F 및 23F) 및 6개의 추가적인 혈청형(1, 3, 5, 6A, 7F 및 19A)을 포함하는 13가 폐렴구균 접합체(13vPnC) 조성물을 제공한다.
본 발명은 또한, 협막 다당류가 스트렙토코커스 뉴모니애의 혈청형 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F로부터 유래하고 운반체 단백질이 CRM197인, 다가 면역원성 조성물을 제공한다.
본 발명은, 협막 다당류가 혈청형 1, 3, 4, 5, 6A, 6B, 7F, 9v, 14, 18C, 19A, 19F 및 23F의 스트렙토코커스 뉴모니애로부터 유래하고, 운반체 단백질이 CRM197이며, 애쥬번트가 알루미늄 포스페이트, 알루미늄 설페이트 및 알루미늄 하이드록사이드와 같은 알루미늄계 애쥬번트인, 다가 면역원성 조성물을 추가로 제공한다. 본 발명의 특정한 양태에서, 애쥬번트는 알루미늄 포스페이트이다.
본 발명은 또한, 생리학적으로 허용되는 비히클과 함께 다당류-단백질 접합체를 포함하고, 이때 각각의 접합체가 운반체 단백질에 접합된 상이한 혈청형의 스트렙토코커스 뉴모니애 유래의 협막 다당류를 포함하며 상기 협막 다당류가 혈청형 3 및 하나 이상의 추가적인 혈청형으로부터 제조되는, 다가 면역원성 조성물을 제공한다.
상기 다가 면역원성 조성물의 한가지 양태에서, 추가적인 혈청형은 혈청형 1, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F로 이루어진 그룹으로부터 선택된다. 다른 양태에서, 운반체 단백질은 CRM197이다. 또 다른 양태에서, 상기 조성물은 알루미늄 포스페이트, 알루미늄 설페이트 및 알루미늄 하이드록사이드로부터 선택되는 알루미늄계 애쥬번트와 같은 애쥬번트를 포함한다. 특정 양태에서, 애쥬번트는 알루미늄 포스페이트이다.
본 발명은 또한, 생리학적으로 허용되는 비히클과 함께 다당류-단백질 접합체를 포함하고, 이때 각각의 접합체가 운반체 단백질에 접합된 상이한 혈청형의 스트렙토코커스 뉴모니애 유래의 협막 다당류를 포함하며 상기 협막 다당류가 혈청형 4, 6B, 9V, 14, 18C, 19F, 23F 및 하나 이상의 추가적인 혈청형으로부터 제조되는, 다가 면역원성 조성물을 제공한다.
상기 다가 면역원성 조성물의 한가지 양태에서, 추가적인 혈청형은 혈청형 1, 3, 5, 6A, 7F 및 19A로 이루어진 그룹으로부터 선택된다. 다른 양태에서, 운반체 단백질은 CRM197이다. 또 다른 양태에서, 상기 조성물은 알루미늄 포스페이트, 알루미늄 설페이트 및 알루미늄 하이드록사이드로부터 선택되는 알루미늄계 애쥬번트와 같은 애쥬번트를 포함한다. 특정 양태에서, 애쥬번트는 알루미늄 포스페이트이다.
본 발명은 또한, 앞서 기술된 임의의 면역원성 조성물의 면역학적 유효량을 사람에게 투여함을 포함하여, 스트렙토코커스 뉴모니애 협막 다당류 접합체에 대한 면역 반응을 유도하는 방법을 제공한다.
본 발명은, 투여되는 임의의 면역원성 조성물이, 2㎍의 각 당류, 단 6B는 4㎍; 대략 29㎍ CRM197 운반체 단백질; 0.125mg의 알루미늄 원소(0.5mg 알루미늄 포스페이트) 애쥬번트; 및 부형제로서 염화나트륨 및 나트륨 석시네이트 완충액을 함유하도록 제형화된 단일 0.5mL 용량임을 추가로 제공한다.
본 발명에 따른 백신은 프레브나의 적용범위를 넘어 적용범위를 상당히 확장시킬 것이고, 혈청그룹 교차 보호의 한계에 의존적이지 않는 6A 및 19A에 대한 적용범위를 제공할 것이다.
도 1은 기준선(1998/1999년)부터 2001년까지 2세 미만의 미국 소아에서 혈청형에 따른 IPD 발병률의 변화를 나타낸다.
도 2는 5세 미만의 소아에서 페니실린(PCN)에 대한 내성이 있는 폐렴구균 분리주의 분포를 나타낸다(1998년).
도 3은 D118-P16 프레브나 시험으로부터 수득한 3차 투여 후 OPA의 역 누적 분포 곡선(RCDC)을 나타낸다.
프레브나 혈청형 4, 6B, 9V, 14, 18C, 19F, 23F의 포함
1995년부터 1998년까지 IPD 감시로부터 수득한 데이터에서는, 프레브나 중의 7개의 혈청형이 2세 미만의 소아에서 IPD의 약 82%의 원인이었던 것으로 추정되었다 [5]. 효능 시험 지역이었던, 북부 캘리포니아에서, 프레브나 혈청형이 유아 및 소아에서 IPD의 모든 증례의 90%를 차지하였다 [10]. 2000년에 프레브나 백신이 도입된 이래, 백신 혈청형으로 인한 질병이 감소함으로써 전체 IPD 발병률이 상당히 감소하였다 [3,4]. 그러므로, 현재는 차세대 폐렴구균 접합체 백신으로부터 어떤 프레브나 혈청형도 제거시킬 이유가 없으며 오히려 혈청형을 추가하여 적용범위를 더 넓혀야 한다.
혈청형 1, 3, 5 및 7F의 포함
미국에서, 5세 미만의 소아에서 혈청형 1에 의해서 발생하는 IPD의 발병률은 2% 미만이고, 3 및 7F 형의 각 경우도 거의 동일하다 [1,6]. 혈청형 1 및 5는 침습성 폐렴구균 질환에 대한 고위험 미국 집단에서 더 높은 IPD 발병률을 차지한다. 구체적으로, 혈청형 1은 2세 미만의 알래스카 태생의 소아에서 IPD의 3.5%, 그리고 2 내지 4세의 소아에서 IPD의 18%를 일으킨다 [11]. 혈청형 1 및 혈청형 5는 둘다 전세계의 다른 지역에서 그리고 선진국에 있는 토착 집단에서 질병을 상당히 일으킨다 [12,13,14].
혈청형 1은 다른 폐렴구균 혈청형과 비교하여 더 심각한 질환과 관련될 수도 있다 [15]. 이러한 관찰은 미국과 유럽 간의 증례 확인 비율의 차이 및 관련된 의료 관행의 차이에 의한 것이다. 전체적으로, IPD의 발병률은 미국보다 유럽에서 더 낮다. 하지만, 유럽에서 혈청형 1에 의해 발생하는 IPD의 비율은 미국에서보다 불균형적으로 더 높다(각각 6 내지 7% 대 1 내지 2%). 유럽에서는, 혈액 배양물을 입원한 소아로부터 주로 수득한다. 미국에서는, 39℃ 이상의 열을 나타내고 백혈구 수가 증가한 소아로부터 외래 환자 시설에서 혈액 배양물을 수득하는 것이 의료 관행이다. 의료 관행의 차이를 생각하면, 미국에서 혈청형 1에 의해 발생하는 질병의 비율이 더 낮은 것은 보다 약한 질병을 일으키는 다른 혈청형의 비율이 더 높기 때문에 낮아진 것일 수 있으며, 반면에 유럽에서 비율이 더 높은 것은 보다 심각한 질병을 반영하는 것이라고 추정된다. 또한, 복합 폐렴에 걸린 소아를 대상으로 한 혈청역학 연구에서 혈청형 1이 불균형적으로 나타난다는 것이 증명된다 [16,17,18]. 이것은 혈청형 1을 포함시키면 심각한 폐렴구균 질환의 수가 감소할 수 있을 뿐만 아니라, 전체 침습성 폐렴구균 질환의 감소에도 기여할 수 있음을 시사한다.
혈청형 3 및 7F를 추가시키면 IPD에 대한 적용범위가 전세계의 대부분 지역에서 대략 3% 내지 7%까지, 그리고 아시아에서 약 9%까지 증가할 것이다. 따라서, 11가 백신은 아시아에서 IPD의 50%를, 그리고 기타 모든 지역에서 IPD의 약 80%를 감당할 것이다 [1,2]. 이들 혈청형은 중이염 적용범위에 대해서도 중요하다 [19]. 중이염을 일으키는 폐렴구균 혈청형의 다국적 연구에서, 하우스도르프(Hausdorff) 등은 혈청형 3이 전체에서 8번째로 가장 흔한 중이액 분리주라는 것을 밝혔다 [20]. 혈청형 3은 중이염과 관련된 폐렴구균 혈청형의 최대 8.7%까지 차지한다. 따라서, IPD에서 뿐만 아니라 중이염에서도 3 및 7F 형이 중요하므로 이들을 폐렴구균 접합체 백신에 포함시키는 것이 당연하다.
하지만, 혈청형 3 다당류에 대해서 상당한 면역원성을 나타내는 다가 폐렴구균 접합체 백신을 생산하려는 시도는 성공적이지 못했다. 예를 들면, 11가 폐렴구균 단백질 D 접합체 백신(11-Pn-PD)의 면역원성 및 안전성 연구에서, 이 백신을 3회 투여받은 후에 동일한 백신 또는 폐렴구균 다당류 백신을 부스터(booster) 투여받은 유아에서 혈청형 3에 대한 초회항원자극 효과(priming effect)가 관찰되지 않았다[참조: Nurkka et al. (2004) Ped. Inf. Dis. J., 23:1008-1014]. 다른 연구에서는, 11-Pn-PD를 투여받은 유아로부터 수득한 옵소노파고시토시스 분석(OPA; OpsonoPhagocytic Assay) 결과는, 시험된 다른 혈청형과 비슷한 수준으로 혈청형 3에 대한 항체 반응을 나타내지 못하였다[참조: Gatchalian et al., 17th Annual Meeting of the Eur. Soc. Paed. Inf. Dis. (ESPID), Poster No. 4, P1A Poster Session 1, Istanbul Turkey, Mar. 27, 2001]. 급성 중이염의 예방에 있어서 11-Pn-PD의 효능을 평가한 또다른 연구에서, 상기 백신은 혈청형 3에 의해서 발생하는 에피소드에 대한 보호를 제공하지 못했다[참조: Prymula et al. www.thelancet.com , Vol. 367:740-748 (March 4, 2006)]. 따라서, 혈청형 3 유래의 협막 다당류를 포함하고 혈청형 3 다당류에 대한 면역원성 반응을 유도할 수 있는 폐렴구균 접합체 백신은 당업계의 현행 기술 수준 이상으로 상당한 개선을 제공한다.
혈청형 6A 및 19A의 포함
a. 혈청형 6A 및 19A의 역학
문헌에 제시된 감시 데이터는 혈청형 6A 및 19A가 혈청형 1, 3, 5 및 7F를 합한 것보다 2세 미만의 미국 소아에서 더 많은 침습성 폐렴구균 질환의 원인이라는 것을 시사한다(도 1) [1,5]. 게다가, 이들 혈청형은 흔히 항생제 내성과 관련되어 있고(도 2), 중이염에서 중요한 역할을 한다 [6,19,20]. 현재의 프레브나 백신이 6A 및 19A로 인한 질병에 대해서 보호하는 능력은 명확하지 않다. 13vPnC 백신에 6A 및 19A 성분을 포함시키는 근거는 아래에 논의되어 있다.
b. 6B 및 19F 다당류에 의해 유도되는 6A 및 19A에 대한 반응
인가된 비접합 폐렴구균 다당류 백신(2세 이상의 소아용)은 6A 또는 6B 협막 다당류를 함유하지만 둘다 함유하지는 않았다 [21]. 23가 폐렴구균 다당류 백신이 제형화된 시기에 작성된 면역원성 데이터에서, 6B 일가 백신이 6A 및 6B 협막 둘다에 대해 항체를 유도하였음이 증명되었다. 유리 다당류 및 폐렴구균 접합체 백신을 사용하여 다양한 집단에서 IgG 및 옵소노파고시토시스 분석(OPA) 반응을 평가하는 몇 번의 시험으로부터 수득한 데이터는, 6A에 대한 IgG 반응이 6B 항원에 의해서 유도되지만, 이 반응이 일반적으로 더 낮으며, 6A 유기체와의 OPA 활성이 6B 유기체와의 OPA 활성과 상이하다는 것을 시사하였다 [22,23,24,25]. 또한, 6B 항체와 고수준으로 반응하는 피험자가 6A에 대한 활성이 거의 없거나 전혀 없을 수도 있다.
6A 및 6B 협막 다당류의 화학적 조성이 고도로 유사한 것과는 대조적으로, 19A 다당류에 2개의 추가적인 측쇄의 존재로 인해 19A 및 19F 협막은 매우 상이하다. 놀랍지 않게도, 19F 다당류 백신으로 면역접종된 사람 지원자에서 측정된 면역 반응에서, 19F에 대한 반응은 피험자의 80%에서 유도되었지만, 피험자의 20%만 19A에 대한 반응이 있었음이 나타났다 [26]. 19F 다당류로 면역접종된 후에 혈청형 19A에 대한 교차-반응성 IgG 및 OPA 반응 수준이 낮다는 것은, 접합체 백신을 이용한 시험에서도 또한 증명되었다 [24,26].
미국 유아에서 실시한 7vPnC 가교 시험(D118-P16)으로부터, 6A 및 19A에 대한 교차-반응성 OPA 반응에 관한 내부 데이터가 작성되었다 (도 3). 이 연구는 다른 사람들의 연구결과와 일치하며, 6B 다당류로 면역접종된 후 6A 다당류에 대한 교차-반응성 기능성 항체가 유도되기는 하지만 낮은 수준으로 유도되고, 19F로 면역접종된 후에는 19A에 대한 기능성 항체가 거의 유도되지 않는다는 것이 증명된다.
동물 모델에서 6A 및 19A에 대한 6B 및 19F 면역접종의 영향
동물 모델을 사용하여 다당류 면역접종을 이용한 교차 보호의 가능성을 평가하였다. 기빙크(Giebink) 등에 의해서 개발된 중이염 모델에서, 4가 다당류 외막 단백질(OMP) 접합체 백신(6B, 14, 19F, 23F 당류를 함유함) 또는 위약으로 친칠라를 면역접종시켰다 [27]. 이 시험에서 6A에 대한 다소의 교차 보호가 있는 것처럼 보였지만, 통계적 유의성에 도달하지 못했으며 보호 수준이 6B 중이염에 대한 보호 수준보다 더 낮았다. 동일한 이 모델에서 19F 중이염에 대해서는 100% 보호되었지만, 19A 중이염에 대해서는 17%만 보호되었다.
샐랜드(Saeland) 등은 8가 폐렴구균 파상풍 접합체 백신(6B 및 19F를 함유함)으로 면역접종된 유아로부터 수득한 혈청을 사용하여, 폐 감염 모델에서, 6A 유기체로 비강내 챌린지를 하기 전에 마우스를 수동 면역화시켰다 [28]. 59개의 혈청 샘플 중에, 53%는 6B 균혈증에 대해 마우스를 보호하였고 37%는 6A에 대해서 보호하였다. 11가 폐렴구균 접합체 백신(파상풍 톡소이드(tetanus toxoid)에 접합된 19F를 함유함) 4회 투여로 면역접종된 유아로부터 수득한 혈청으로 수동 면역화시킨 마우스를 동일한 모델에서 19A 유기체로 비강내 챌린지하였다 [29]. 수동 면역화된 후에 챌린지된 100마리의 마우스 중에, 60마리의 마우스는 폐 조직에서 19A 유기체가 발견되지 않았지만, 식염수 위약을 투여받은 모든 마우스에서는 유기체가 확인되었다. 하지만, 이 모델에서 수동 면역화는 19F 유기체를 이용한 챌린지에 대한 보호를 나타내지 않았다; 그러므로, 혈청그룹 19에 대한 모델의 적절성이 의심된다. 일반적으로 이들 모델은 6A 유기체에 대한 6B 면역접종의 다소의 생물학적 영향의 증거를 제공하지만 이형 혈청형에 대한 효과는 동형 혈청형을 사용하여 관찰된 것만큼 크지 않았다. 19A 유기체에 대한 19F 면역접종의 영향은 이들 모델로부터 잘 이해되지 않는다.
효능/유효성 시험에서 6A 및 19A 질환에 대한 6B 및 19F 다당류 접합체 면역접종의 영향
7vPnC 및 9vPnC(7vPnC + 혈청형 1 및 5) 효능 시험에서 6B, 6A, 19F 및 19A 혈청형으로 인한 질환의 증례 수는 표 1에 기록되어 있다[30,10,31]. 침습성 질환의 증례 수가 너무 적어서 혈청형 6A 및 19A에 대한 어떤 결론도 이끌어 낼 수 없다. 하지만, 핀란드의 중이염 시험에서 많은 수의 폐렴구균 분리주가 수득되었다 [32]. 계획서 순응 피험자군 분석(per protocol analysis)에서 7vPnC는 혈청형 6B로 인한 중이염에 대해 84% (95% 신뢰구간: 62% 내지 93%) 효능이 있었고 혈청형 6A로 인한 중이염에 대해 57% (95% 신뢰구간: 24% 내지 76%) 효능이 있었다 (표 1). 이와 대조적으로, 7vPnC를 사용한 혈청형-특이적 효능이 19F 또는 19A로 인한 중이염에 대해서는 증명되지 않았다.
Figure pat00001
시판 후 IPD 감시 데이터는 프레브나의 유효성을 평가하기 위하여 기관[Centers for Disease Control]에 의해서 수행된 환자-대조군 시험(case-control trial)으로부터도 입수할 수 있다 [33]. 3 내지 23월령의 소아에서 발생하는 침습성 폐렴구균 질환의 증례가 감시 연구소에서 확인되었고 나이 및 집 코드(zip code)에 따라 3개의 대조군과 매치시켰다. 동의를 수득한 후에, 환자 및 대조군의 부모 및 의료 제공자로부터 병력 및 면역접종력(피험자가 프레브나를 1회 이상 투여받은 경우, 면역접종된 것으로 간주하였다)을 입수하였다. 2003 ICAAC 학회에서 예비 결과가 발표되었고 6B, 19F, 19A 및 6A 질환에 대한 연구결과의 요약은 표 2에 제시되어 있다. 이 데이터는, 혈청형 6B 질환보다 다소 낮을 수 있는 수준에서이기는 하지만, 프레브나가 6A로 인한 질환을 예방할 수 있음을 나타낸다. 이 데이터는 또한, 19A로 인한 침습성 질환에 대한 교차 보호에 한계가 있음을 나타낸다.
Figure pat00002
프레브나를 사용한 공개된 분석 [3]은 또한, 혈청형 6B 및 19F가 2세 미만의 소아 중에서 혈청형 6A 및 19A에 의해서 발생하는 IPD를 다소 감소시켰다는 것을 나타낸다 ([3]의 표 1). 면역접종받지 않은 성인 중에서 혈청형 6A, 9A, 9L, 9N, 18A, 18B, 18F, 19A, 19B, 19C, 23A 및 23B("모든 백신-관련 혈청형")에 의해서 발생하는 질병률이 다소 감소하였다 ([3]의 표 2). 이 데이터는, 2세 미만의 소아에서 프레브나의 사용으로부터 생긴 집단 면역이 혈청형 6A 및 19A에 대하여 적당하였음을 입증하고, 본 발명의 13vPnC 백신에 혈청형 6A 및 19A를 포함시켜야 하는 근거를 제공한다.
6A 및 19A의 추가에 대한 결론
도 1 및 표 2에 기록된, 7vPnC 백신을 사용한 시판 후 감시 데이터 및 환자-대조군 연구 결과는, 위에 기술된 동물 모델에서의 면역 반응 및 수행에 관한 다른 정보와 일관되게, 6B 질환에 대한 보호보다는 더 작은 정도이기는 하지만, 6A 질환에 대한 어느 정도의 교차 보호가 있을 수 있음을 시사한다. 게다가, 19A에 대한 보호에 한계가 있는 것 같다. 그러므로, 혈청형 6A 및 19A를 함유하는 13vPnC 백신은, 혈청형 6B 및 19F에 의한 혈청그룹 교차 보호의 한계에 의존적이지 않는 적용범위를 제공한다.
따라서, 본 발명은, 생리학적으로 허용되는 비히클과 함께, 13개의 다른 다당류-단백질 접합체를 포함하고, 이때 각각의 접합체가 운반체 단백질에 접합된 상이한 협막 다당류를 함유하며, 또한 상기 협막 다당류가 스트렙토코커스 뉴모니애의 혈청형 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F로부터 제조되는, 다가 면역원성 조성물을 제공한다. 한가지 이러한 운반체 단백질은 CRM197로 명명된 디프테리아 톡소이드이다. 면역원성 조성물은, 애쥬번트, 예를 들면, 알루미늄 포스페이트, 알루미늄 설페이트 및 알루미늄 하이드록사이드와 같은 알루미늄계 애쥬번트를 추가로 포함할 수 있다.
협막 다당류는 당업자에게 공지된 표준 기술에 의해서 제조된다. 본 발명에서, 협막 다당류는 스트렙토코커스 뉴모니애의 혈청형 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F로부터 제조된다. 이 폐렴구균 접합체들은 별개의 과정에 의해서 제조되고 단일 투여 제형으로 제형화된다. 예를 들면, 한가지 양태에서, 각 폐렴구균 다당류 혈청형을 대두-기제 배지에서 증식시킨다. 이어서, 개개의 다당류를 원심분리, 침전, 한외여과 및 칼럼 크로마토그래피를 통해서 정제한다. 정제된 다당류를 화학적으로 활성화시켜 당류가 운반체 단백질과 반응할 수 있도록 한다.
일단 활성화되면, 각 협막 다당류를 운반체 단백질에 하나씩 접합시켜서 당접합체(glycoconjugate)를 형성한다. 한가지 양태에서, 각 협막 다당류를 동일한 운반체 단백질에 접합시킨다. 당해 양태에서, 접합은 환원적 아미노화에 의해서 이루어진다.
다당류의 화학적 활성화 및 그 후 운반체 단백질에 접합시키는 것은 통상적인 수단에 의해서 이루어진다[참조: 미국특허 제4,673,574호 및 제4,902,506호] [34,35].
운반체 단백질은 바람직하게는 무독성이고 비반응원성이며 충분한 양 및 순도로 수득할 수 있는 단백질이다. 운반체 단백질은 표준 접합 방법에 적절해야 한다. 본 발명의 특정 양태에서, CRM197이 운반체 단백질로서 사용된다.
CRM197[판매원: Wyeth, Sanford, NC]은 카사미노산 및 효모 추출물-기제 배지에서 증식시킨 코리네박테리움 디프테리아(Corynebacterium diphtheria) 균주 C7 (β197)의 배양물로부터 분리된 디프테리아 독소의 무독성 변이체(즉, 톡소이드)이다. CRM197은 한외여과, 암모늄 설페이트 침전 및 이온 교환 크로마토그래피를 통해서 정제된다. 대안으로, CRM197은 본원에 참조로서 인용된 미국특허 제5,614,382호에 따라 재조합적으로 제조된다. 다른 디프테리아 톡소이드도 또한 운반체 단백질로서 사용하기에 적당하다.
다른 적당한 운반체 단백질에는, 파상풍 톡소이드, 백일해 톡소이드, 콜레라 톡소이드(참조: 국제공개공보 제WO2004/083251 [38]), 이.콜라이(E. coli) LT, 이.콜라이 ST, 및 슈도모나스 애루지노사(Pseudomonas aeruginosa) 유래의 외독소 A와 같은 불활성화된 세균 독소가 포함된다. 세균 외막 단백질, 예를 들면, 외막 복합체 c (OMPC), 포린, 트랜스페린 결합 단백질, 뉴모리신, 폐렴구균 표면 단백질 A(PspA), 폐렴구균 어드헤신(adhesin) 단백질(PsaA), 그룹 A 또는 그룹 B 연쇄구균 유래의 C5a 펩티다제, 또는 헤모필러스 인플루엔자(Haemophilus influenzae) 단백질 D도 또한 사용될 수 있다. 난알부민, 키홀 림펫 헤모시아닌(KLH), 소 혈청 알부민(BSA) 또는 투베르쿨린의 정제된 단백질 유도체(PPD)와 같은 다른 단백질도 또한 운반체 단백질로서 사용될 수 있다.
협막 다당류를 운반체 단백질에 접합시킨 후에, 다양한 기술에 의해서 다당류-단백질 접합체를 정제한다(다당류-단백질 접합체의 양에 대해 농축시킨다). 이러한 기술에는 농축/투석여과 작업, 침전/용출, 칼럼 크로마토그래피 및 다층 여과가 포함된다(아래의 실시예 참조).
개개의 당접합체를 정제한 후에, 이들을 혼합하여 (compounded) 본 발명의 면역원성 조성물을 제형화하고, 이를 백신으로서 사용할 수 있다. 당업계에서 인정된 방법을 사용하여 본 발명의 면역원성 조성물의 제형화를 수행할 수 있다. 예를 들면, 13개의 개개의 폐렴구균 접합체를 생리학적으로 허용되는 비히클과 함께 제형화하여 조성물을 제조할 수 있다. 이러한 비히클의 예에는, 물, 완충 식염수, 폴리올(예: 글리세롤, 프로필렌 글리콜, 액체 폴리에틸렌 글리콜) 및 덱스트로스 용액이 포함되지만, 이에 제한되는 것은 아니다.
특정 양태에서, 면역원성 조성물은 하나 이상의 애쥬번트를 포함할 것이다. 본원에서 정의되는 "애쥬번트"는 본 발명의 면역원성 조성물의 면역원성을 증가시키는데 사용되는 물질이다. 따라서, 애쥬번트는 종종 면역 반응을 부스터하기 위하여 제공되고 당업자에게 익히 공지되어 있다. 조성물의 유효성을 증가시키기에 적당한 애쥬번트에는,
(1) 알루미늄 염(명반) (예: 알루미늄 하이드록사이드, 알루미늄 포스페이트, 알루미늄 설페이트 등);
(2) 수중유형 에멀젼 제형(무라밀 펩티드(아래에서 정의됨) 또는 세균 세포벽 성분과 같은 다른 특정한 면역자극제를 함유하거나 함유하지 않음), 예를 들면,
(a) MF59 [참조: PCT 국제공개공보 제WO 90/14837호]: 5% 스쿠알렌(Squalene), 0.5% 트윈(Tween) 80 및 0.5% 스판(Span) 85를 함유하며(임의로 다양한 양의 MTP-PE(필요하지는 않지만, 아래를 참조)를 함유함), Model 110Y 마이크로플루이다이저(microfluidizer)[판매원: Microfluidics, Newton, MA]와 같은 마이크로플루이다이저를 사용하여 서브마이크론 입자로 제형화됨,
(b) SAF: 10% 스쿠알렌, 0.4% 트윈 80, 5% 플루로닉(pluronic)-블럭 중합체 L121 및 thr-MDP(아래를 참조)를 함유하며, 서브마이크론 에멀젼으로 미세유동화(microfluidization)되거나, 와동시켜 큰 입자 크기의 에멀젼을 형성시킴, 및
(c) 리비(Ribi)™ 애쥬번트 시스템(RAS) [판매원: Corixa, Hamilton, MT]: 2% 스쿠알렌, 0.2% 트윈 80 및, 미국특허 제4,912,094호에 기술된 3-O-탈아실화된 모노포스포릴 지질 A(MPL™)[판매원: Corixa], 트레할로스 디미콜레이트(TDM) 및 세포벽 골격(CWS)으로 이루어진 그룹으로부터의 하나 이상의 세균 세포벽 성분, 바람직하게는 MPL + CWS (디톡스(Detox)™)를 함유함;
(3) 퀼 에이(Quil A) 또는 스티뮬론(STIMULON)™ QS-21[판매원: Antigenics, Framingham, MA][참조: 미국특허 제5,057,540호]과 같은 사포닌 애쥬번트가 사용되거나 이로부터 생성된 입자(예: ISCOM(면역자극 복합체));
(4) 세균 지질다당류, 합성 지질 A 동족체 (예: 아미노알킬 글루코스아민 포스페이트 화합물(AGP)), 또는 이의 유도체 또는 동족체 [이는 판매원[Corixa]으로부터 구입할 수 있고, 미국특허 제6,113,918호에 기술되어 있음; 한가지 이러한 AGP는 2-[(R)-3-테트라데카노일옥시테트라데카노일아미노]에틸 2-데옥시-4-O-포스포노-3-O-[(R)-3-테트라데카노일옥시테트라데카노일]-2-[(R)-3-테트라데카노일옥시테트라데카노일아미노]-b-D-글루코피라노시드이고, 이는 또한 529로도 알려져 있으며(이전에는 RC529로 알려짐), 이는 수성형 또는 안정한 에멀젼으로서 제형화됨], 합성 폴리뉴클레오타이드 (예: CpG 모티프를 함유하는 올리고뉴클레오타이드[참조: 미국특허 제6,207,646호]);
(5) 사이토카인, 예를 들어, 인터루킨(예: IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, IL-15, IL-18 등), 인터페론(예: 감마 인터페론), 과립구 대식세포 콜로니 자극 인자(GM-CSF), 대식세포 콜로니 자극 인자(M-CSF), 종양 괴사 인자(TNF), 공동자극 분자 B7-1 및 B7-2 등;
(6) 야생형 콜레라 독소(CT) 또는, 예를 들면, 국제공개공보 제WO 00/18434호에 따라 아미노산 29번 위치에 있는 글루탐산이 다른 아미노산, 바람직하게는 히스티딘으로 치환된, 돌연변이형 콜레라 독소 [참조: 국제공개공보 제WO 02/098368호 및 제WO 02/098369호], 백일해 독소(PT), 또는 이.콜라이 열-불안정성 독소(LT), 특히 LT-K63, LT-R72, CT-S109, PT-K9/G129 [참조: 국제공개공보 제WO 93/13302호 및 제WO 92/19265호]와 같은 세균 ADP-리보실화 독소의 무독화된 돌연변이체; 및
(7) 면역자극제로서 작용하여 조성물의 유효성을 증가시키는 다른 물질
이 포함되지만, 이에 제한되는 것은 아니다.
무라밀 펩티드에는 N-아세틸-무라밀-L-트레오닐-D-이소글루타민(thr-MDP), N-아세틸-노르무라밀-L-알라닌-2-(1'-2' 디팔미토일-sn-글리세로-3-하이드록시포스포릴옥시)-에틸아민 (MTP-PE) 등이 포함되지만, 이에 제한되는 것은 아니다.
본 발명의 백신 제형은, 전신 또는 점막 경로로 백신을 투여함으로써, 폐렴구균에 감염되기 쉬운 사람을 보호 또는 치료하는데 사용될 수 있다. 투여에는 근육내, 복강내, 피내 또는 피하 경로를 통한 주사; 또는 구강/소화관, 기도관 또는 비뇨생식관으로의 점막 투여가 포함될 수 있다. 한가지 양태에서, 폐렴 또는 중이염의 치료를 위하여 비내 투여가 사용된다 (폐렴구균의 비인두 보균을 보다 효과적으로 예방하여, 초기 단계에서 감염을 약화시킬 수 있기 때문이다).
각 백신 용량에서 접합체의 양은, 상당한 부작용 없이 면역보호 반응을 유도하는 양으로 선택된다. 이러한 양은 폐렴구균의 혈청형에 따라 달라질 수 있다. 일반적으로, 각 용량은 0.1 내지 100㎍, 특히 0.1 내지 10㎍, 그리고 보다 특히 1 내지 5㎍의 다당류를 포함할 것이다.
특정 백신에 대한 성분의 최적량은 피험자에서 적당한 면역 반응의 관찰을 포함하는 표준 연구에 의해서 확인될 수 있다. 최초 백신접종 후에, 피험자는 적당한 간격으로 1회 또는 수회의 부스터 면역접종을 받을 수 있다.
본 발명의 특정 양태에서, 13vPnC 백신은 각각 CRM197에 접합된 혈청형 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F의 폐렴구균 협막 다당류의 멸균 액체 제형이다. 각 0.5mL 용량에, 2㎍의 각 당류, 단 6B는 4㎍; 대략 29㎍ CRM197 운반체 단백질; 0.125mg의 알루미늄 원소(0.5mg 알루미늄 포스페이트) 애쥬번트; 및 부형제로서 염화나트륨 및 나트륨 석시네이트 완충액이 함유되도록 제형화한다. 상기 액체를 보존제 없이 단일 용량 주사기 속에 충전한다. 진탕하고 나면, 즉시 근육내 투여할 수 있는 균질한 백색 현탁액의 백신이 된다.
13vPnC 백신의 용량 수준은 시판된 7vPnC 백신(프레브나)과 유사하게 선택된다. 모든 혈청형의 경우 2㎍ 당류 용량 수준이 선택되었고, 예외적으로 6B는 용량 당 4㎍으로 선택되었다. 7vPnC 백신은, 혈청형 4, 9V, 14, 18C, 19F 및 23F의 경우 2㎍ 당류 용량 수준에서, 그리고 6B의 경우 4㎍ 용량에서, IPD에 대해 바람직한 안전성, 면역원성 및 효능을 나타내었다.
면역접종 계획은 7vPnC 백신에 대해 명시된 것을 따를 수 있다. 예를 들면, 13vPnC 백신에 포함된 혈청형으로 인한 에스.뉴모니애에 의해서 발생하는 침습성 질환에 대해 유아 (infant) 및 영아 (toddler)를 대상으로 한 정기접종 계획은 생후 2, 4, 6 및 12 내지 15개월이다. 본 발명의 조성물은 또한 어린이, 청소년 및 성인을 대상으로 사용하기에도 적당하다.
본 발명의 조성물은 다른 세균에 감염되어 발생하는 중이염에 대해 사용하기 위한 하나 이상의 추가적인 항원을 추가로 포함할 수 있다. 이러한 세균에는 형별불능(nontypable) 헤모필러스 인플루엔자, 모락셀라 카타랄리스(Moraxella catarrhalis)(이전에는 브라나멜라 카타랄리스(Branhamella catarrhalis)로 알려짐) 및 알로이오코커스 오티티디스(Alloiococcus otitidis)가 포함된다.
포함시키기에 적당한 형별불능 헤모필러스 인플루엔자 항원의 예에는 P4 단백질(단백질 "e"로도 알려져 있음)[참조: 미국특허 제5,601,831호, 국제공개공보 제WO 03/078453호], P6 단백질(PAL 또는 PBOMP-1 단백질로도 알려져 있음)[참조: 미국특허 제5,110,908호, 국제공개공보 제WO 0100790호], P5 단백질[참조: 미국 재발행 특허 제37,741호], 헤모필러스 부착 및 침투 단백질[참조: 미국특허 제6,245,337호 및 제6,676,948호], LKP 팁 어드헤신 단백질[참조: 미국특허 제5,643,725호] 및 NucA 단백질[참조: 미국특허 제6,221,365호]이 포함된다.
포함시키기에 적당한 모락셀라 카타랄리스 항원의 예에는 UspA2 단백질[참조: 미국특허 제5,552,146호, 제6,310,190호], CD 단백질[참조: 미국특허 제5,725,862호], E 단백질[참조: 미국특허 제5,948,412호] 및 74 킬로달톤 외막 단백질[참조: 미국특허 제6,899,885호]이 포함된다.
포함시키기에 적당한 알로이오코커스 오티티디스 항원의 예에는 국제공개공보 제WO 03/048304호에서 동정된 항원이 포함된다.
본 발명의 조성물은 또한 스트렙토코커스 뉴모니애 유래의 하나 이상의 단백질을 포함할 수 있다. 포함시키기에 적당한 스트렙토코커스 뉴모니애 단백질의 예에는 국제공개공보 제WO 02/053761호에 기술된 단백질 뿐만 아니라, 국제공개공보 제WO 02/083855호에서 동정된 단백질도 포함된다.
본 발명의 조성물은 나이세리아 메닌지티디스(Neisseria meningitidis) 타입 B 유래의 하나 이상의 단백질을 추가로 포함할 수 있다. 포함시키기에 적당한 나이세리아 메닌지티디스 타입 B 단백질의 예에는 국제공개공보 제WO 03/063766호, 제WO 2004/094596호, 제WO 01/85772호, 제WO 02/16612호 및 제WO 01/87939호에서 동정된 단백질이 포함된다.
앞서 본원에서는 본 발명을 일반적으로 기술하였다. 다음의 구체적인 실시예를 참조함으로써 보다 완전한 이해가 가능하다. 이들 실시예는 설명 목적으로만 기술되어 있으며 본 발명의 범위를 한정하기 위한 것이 아니다.
[실시예]
실시예 1
에스.뉴모니애 협막 다당류 혈청형 1의 제조
마스터 및 제조용 세포 은행의 제조
에스.뉴모니애 혈청형 1을 수탁기관[American Type Culture Collection (ATCC)](균주 6301)로부터 입수하였다. 균주를 증대시키고 동물성 기원의 성분을 제거하기 위하여 원종균(seed stock)을 여러 세대 배양하였다(F1, F2 및 F3 세대). 원종균을 추가적으로 두 세대 더 배양하였다. 추가적인 제1세대는 F3 바이알로부터 배양하였고, 후속 세대는 추가적인 제1세대의 바이알로부터 배양하였다. 냉동보존제로서 합성 글리세롤과 함께 종균 바이알을 냉동보관하였다(<-70℃). 냉동 바이알 외에도, F4 세대의 경우 동결건조 바이알을 제조하였다. 세포 은행 제조를 위하여, 모든 배양물을 대두-기제 배지에서 증식시켰다. 냉동시키기 전에, 원심분리에 의해서 세포를 농축시키고, 사용된 배지를 제거한 후, 냉동보존제(예: 합성 글리세롤)를 함유하는 새로운 배지에 세포 펠릿을 재현탁시켰다.
발효 및 회수
제조용 세포 은행 유래의 배양물을 사용하여 대두-기제 배지를 함유하는 종균병(seed bottle)에 접종하였다. 성장 요건이 충족될 때까지 교반하지 않으면서 종균병을 36℃±2℃에서 배양하였다. 종균병을 사용하여 대두-기제 배지를 함유하는 종균 발효기에 접종하였다. 멸균 탄산나트륨 용액을 사용하여 약 7.0의 pH를 유지하였다. 목표 흡광도에 도달한 후에, 종균 발효기를 사용하여 대두-기제 배지를 함유하는 생산 발효기에 접종하였다. 멸균 탄산나트륨 용액을 사용하여 pH를 유지하였다. 성장이 중단된 후 또는 발효기의 작업 용량에 도달했을 때 발효를 종결시켰다. 적당한 양의 멸균된 12% 나트륨 데옥시콜레이트를 배양물에 첨가하여 세균 세포를 용해(lysis)시키고 세포-결합된 다당류를 유리시켰다. 용해시킨 후에, 발효기 내용물을 냉각시켰다. 용해된 배양물 브로쓰의 pH를, 아세트산을 사용하여 대략 pH 6.6으로 조절하였다. 연속 흐름 원심분리를 한 후 다층 여과 및 0.45㎛ 미세여과를 함으로써 용해물을 정화시켰다.
대안적 방법에서는, 3N NaOH를 사용하여 약 7.0의 발효 pH를 유지하였다. 목표 흡광도에 도달한 후에, 종균 발효기를 사용하여 대두-기제 배지를 함유하는 생산 발효기에 접종하였다. 3N NaOH를 사용하여 pH를 유지하였다. 성장이 중단된 후 또는 발효기의 작업 용량에 도달했을 때 발효를 종결시켰다. 브로쓰에서 0.12% 농도가 되도록 적당한 양의 멸균된 12% 나트륨 데옥시콜레이트를 배양물에 첨가하여, 세균 세포를 용해시키고 세포-결합된 다당류를 유리시켰다. 용해시킨 후에, 완전한 세포 용해 및 다당류 유리가 확실하게 일어나도록, 7℃ 내지 13℃의 온도에서 8 내지 24시간 동안, 교반하면서, 발효기 내용물을 유지하였다. 이 유지 기간 동안에 교반을 하여 용해 침전물이 발효기 벽 및 pH 탐침에 들러붙지 못하게 함으로써, pH 탐침이 그대로 유지되게 하였다. 그 다음, 용해된 배양물 브로쓰의 pH를, 50% 아세트산을 사용하여 대략 pH 5.0으로 조절하였다. 15℃ 내지 25℃의 온도에서 12 내지 24시간 동안 교반하지 않으면서 유지시킨 후, 용액 중에 남아있는 다당류의 손실 또는 분해가 거의 일어나지 않으면서, 이전에 가용성이었던 단백질의 상당한 부분이 용액으로부터 고체 침전물로 가라앉았다. 이어서, 연속 흐름 원심분리를 한 후 다층 여과 및 0.45㎛ 미세여과를 함으로써 침전물이 있는 용액을 정화시켰다.
정제
폐렴구균 다당류의 정제는 수회의 농축/투석여과 작업, 침전/용출, 칼럼 크로마토그래피 및 다층 여과 단계로 이루어졌다. 달리 명시하지 않은 경우, 모든 절차는 실온에서 수행하였다.
에스.뉴모니애 혈청형 1의 발효기 배양물로부터 정화된 브로쓰를, 100 kDa MWCO(킬로달톤 분자량 컷오프) 필터를 사용하여 농축 및 투석여과시켰다. 투석여과는 인산나트륨 완충액을 사용하여 중성 pH에서 수행하였다. 투석여과를 통해서 핵산, 단백질 및 다당류와 같은 고분자량 생중합체로부터 저분자량 배지 성분이 제거되었다.
최종 농도가 1% HB (w/v)가 되도록 원액의 헥사데실트리메틸 암모늄 브로마이드(HB)를 첨가함으로써, 다당류를 농축 및 투석여과된 용액으로부터 침전시켰다. 다당류/HB 침전물을 다층 필터 상에 포획하고 여과액을 폐기하였다. 침전물 함유 다층 필터를 통하여 염화나트륨 용액을 재순환시킴으로써 다당류 침전물을 재용해화 및 용출시켰다. 이어서 추가적인 염화나트륨 용액을 사용하여 필터를 헹궜다.
최종 농도가 0.5%가 되도록 요오드화나트륨(NaI) 원액으로부터의 NaI를 다당류 용액에 첨가하여 HB를 침전시켰다. 침전물을 다층 여과에 의해 제거하였다. 여과액에는 표적 다당류가 함유되었다. NaCl/NaI 용액을 사용하여 침전 용기 및 필터를 헹구고 헹군물을 부분 정제된 다당류 용액과 배합하였다. 필터를 폐기하였다. 그리고 0.2㎛ 필터를 통해서 다당류를 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고 염화나트륨 용액으로 투석여과시켰다.
부분 정제된 다당류 용액을 활성 탄소가 함침된 다층 필터를 통해 여과시킴으로써 추가로 정제하였다. 여과시킨 후에, 염화나트륨 용액을 사용하여 탄소 필터를 헹궜다. 헹군물을 다당류 용액과 합하고, 0.2㎛ 필터를 통해서 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고, 최종 농도가 0.025M 인산나트륨이 되도록 1M 인산나트륨 완충액을 사용하여 조절하였다. pH를 체크하고 7.0±0.2로 조절하였다.
염화나트륨을 함유하는 인산나트륨 완충액을 사용하여 수산화인회석(HA) 세라믹 칼럼을 평형화시켜 적당한 전도도(<15μS)를 갖게 하였다. 이어서, 다당류 용액을 칼럼 상에 로딩하였다. 이러한 조건 하에서, 불순물은 수지에 결합하고 다당류는 칼럼을 통과하여 흘러나와 회수되었다. 칼럼의 앞뒤에 위치한 0.2㎛ 인라인 필터를 통해서 다당류 용액을 여과시켰다.
다당류 용액을 30 kDa MWCO 필터를 사용하여 농축시켰다. 이어서, 주사용수(WFI)를 사용하여 농축액을 투석여과시켰다.
투석여과된 다당류 용액을 0.2㎛ 막필터를 통해서 폴리프로필렌 병 속에 여과시켰다. 방출 시험(release testing)을 위하여 샘플을 채취하고 정제된 다당류를 -25℃±5℃에서 냉동 보관하였다.
특성규명
1H-NMR 데이터는 다당류 분자의 양성자에 부여된 시그날의 배정에 따른 화학 구조와 일치하였다. 1H-NMR 스펙트럼에서, 다당류에 있는 O-아세틸 작용 그룹의 정량화를 위한 일련의 고해상 시그날(메틸 그룹 유래의 양성자)이 나타났다.
특이적 항혈청을 사용한 역류 면역전기영동에 의해서 일가 다당류의 실체를 확인하였다.
샘플 농축과 함께, 굴절률 및 다각도 레이저 광 산란(MALLS) 검출기와 결합된 고성능 겔 여과 크로마토그래피를 사용하여 분자량을 계산하였다.
크기 배제 크로마토그래피 매질(CL-4B)을 사용하여 다당류의 상대적인 분자 크기 분포를 프로파일링하였다.
실시예 2
혈청형 1 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 및 접합
정제된 다당류의 용기를 해동시키고 반응 용기 속에서 배합하였다. 반응 용기에 0.2M 탄산나트륨(pH 9.0)을 첨가하여 50℃에서 3시간 동안 부분 탈아세틸화(가수분해)시켰다. 반응을 20℃로 냉각시키고 0.2M 아세트산으로 중화시켰다. 2 내지 8℃에서 항온처리하여 과요오드산나트륨의 존재 하에서 산화시키고, 혼합물을 15 내지 21시간 동안 교반하였다.
30K MWCO 막을 사용하여 0.9% NaCl로 활성화 반응 혼합물을 10배 농축 및 투석여과시켰다. 잔류액을 0.2㎛ 여과하였다. 활성화된 당류를 100mL 동결건조 유리병 속에 충전하여 -75℃에서 쉘-냉동(shell-freezing)하고 동결건조시켰다.
"쉘-냉동"은 동결건조(냉동건조)를 위한 샘플을 제조하는 방법이다. 알콜 또는 임의의 다른 적당한 유체를 함유하는 냉동조에서 모터로 구동되는 롤러에 의해 플라스크가 자동으로 회전한다. 플라스크의 내부 "쉘" 주위로 산물의 얇은 코팅이 고르게 냉동되어, 대량의 물질이 각 냉동건조 작업 동안에 안전하게 처리된다. 이러한 자동 냉동 장치는 동시에 많은 플라스크를 예비냉동시키는 간단하고 효율적인 수단을 제공하며, 내부에 목적하는 코팅을 생성시키고, 효율적인 냉동건조를 위한 충분한 표면적을 제공한다.
동결건조된 물질의 병을 실온이 되게 하여, 2:1의 당류/단백질 비율로 CRM197 용액에 재현탁시켰다. 최종적으로 0.2M의 이온 농도 및 7.5의 pH가 되도록 1M 인산나트륨 완충액을 당류/단백질 혼합물에 첨가하고, 이어서 나트륨 시아노보로하이드라이드를 첨가하였다. 반응물을 23℃에서 18시간 동안 항온처리하고, 37℃에서 72시간 동안 2차 항온처리하였다. 시아노보로하이드라이드 항온처리 후에, 냉 식염수를 사용하여 반응 혼합물을 희석시키고 나서, 1M 탄산나트륨을 첨가하여 반응 혼합물을 pH 9.0으로 조절하였다. 나트륨 보로하이드라이드를 첨가하고 23℃에서 3 내지 6시간 동안 항온처리함으로써, 미반응 알데히드를 소거하였다.
식염수를 사용하여 반응 혼합물을 2배 희석시키고 0.45 내지 5㎛ 예비필터를 통해서 잔류액 용기 내로 이동시켰다. 반응 혼합물을, 0.15M 인산염 완충액(pH 6)을 사용하여 30배, 그리고 식염수를 사용하여 20배 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
접합체 용액을 0.9% 식염수 중의 0.5mg/mL의 목표 농도로 희석시키고 클래스 100 후드에서 최종 벌크 농축액(FBC) 용기 내로 멸균 여과시켰다. 접합체를 2 내지 8℃에서 보관하였다.
특성규명
크기 배제 크로마토그래피 매질(CL-4B)을 사용하여 접합체의 상대적인 분자 크기 분포를 프로파일링하였다.
특이적 항혈청을 사용한 슬롯-블롯 분석에 의해서 접합체의 실체를 확인하였다.
당류 및 단백질 농도를 각각 우론산 및 로우리(Lowry) 분석법으로 측정하였다. 공유 결합된 접합체 복합체에서 단백질에 대한 당류의 비율을 다음의 계산식에 따라 구하였다:
㎍/mL 당류
비율 = ------------
㎍/mL 단백질
O-아세틸 함량을 헤스트린(Hestrin) 방법에 의해서 측정하였다[참조: Hestrin et. al., J. Biol. Chem. 1949, 180, p. 249]. 총 당류 농도에 대한 O-아세틸 농도의 비율은 "마이크로몰 O-아세틸/mg 당류"로 주어졌다.
실시예 3
에스.뉴모니애 협막 다당류 혈청형 3의 제조
마스터 및 제조용 세포 은행의 제조
에스.뉴모니애 혈청형 3을 로버트 오스트리안 박사(Dr. Robert Austrian, University of Pennsylvania, Philadelphia, Pennsylvania)로부터 입수하였다. 세포 은행 시스템의 제조에 관해서는 실시예 1을 참조한다.
발효 및 회수
제조용 세포 은행 유래의 배양물을 사용하여 대두-기제 배지를 함유하는 종균병에 접종하였다. 성장 요건이 충족될 때까지 교반하지 않으면서 종균병을 36℃±2℃에서 배양하였다. 종균병을 사용하여 대두-기제 배지를 함유하는 종균 발효기에 접종하였다. 멸균 탄산나트륨 용액을 사용하여 약 7.0의 pH를 유지하였다. 목표 흡광도에 도달한 후에, 종균 발효기를 사용하여 중간 종균 발효기에 접종하였다. 목표 흡광도에 도달한 후에, 중간 종균 발효기를 사용하여 생산 발효기에 접종하였다. 멸균 탄산나트륨 용액을 사용하여 pH를 유지하였다. 발효기의 작업 용량에 도달한 후, 발효를 종결시켰다. 적당한 양의 멸균된 12% 나트륨 데옥시콜레이트를 배양물에 첨가하여 세균 세포를 용해시키고 세포-결합된 다당류를 유리시켰다. 용해시킨 후에, 발효기 내용물을 냉각시켰다. 용해된 배양물 브로쓰의 pH를, 아세트산을 사용하여 대략 pH 6.6으로 조절하였다. 연속 흐름 원심분리를 한 후 다층 여과 및 0.45㎛ 미세여과를 함으로써 용해물을 정화시켰다.
정제
폐렴구균 다당류의 정제는 수회의 농축/투석여과 작업, 침전/용출, 칼럼 크로마토그래피 및 다층 여과 단계로 이루어졌다. 달리 명시하지 않은 경우, 모든 절차는 실온에서 수행하였다.
에스.뉴모니애 혈청형 3의 발효기 배양물로부터 정화된 브로쓰를, 100 kDa MWCO 필터를 사용하여 농축 및 투석여과시켰다. 투석여과는 인산나트륨 완충액을 사용하여 중성 pH에서 수행하였다. 투석여과를 통해서 핵산, 단백질 및 다당류와 같은 고분자량 생중합체로부터 저분자량 배지 성분을 제거하였다.
헥사데실트리메틸 암모늄 브로마이드(HB)를 첨가하기 전에, 계산된 양의 NaCl 원액을 최종 농도가 0.25M NaCl이 되도록, 농축 및 투석여과된 다당류 용액에 첨가하였다. 이어서, 최종 농도가 1% HB (w/v)가 되도록 원액의 HB를 첨가함으로써 다당류를 침전시켰다. 다당류/HB 침전물을 다층 필터 상에 포획하고 여과액을 폐기하였다. 침전물 함유 다층 필터를 통하여 염화나트륨 용액을 재순환시킴으로써 다당류 침전물을 재용해화 및 용출시켰다. 이어서, 추가적인 염화나트륨 용액을 사용하여 필터를 헹궜다.
최종 농도가 0.5%가 되도록 요오드화나트륨(NaI) 원액으로부터의 NaI를 다당류 용액에 첨가하여 HB를 침전시켰다. 침전물을 다층 여과에 의해 제거하였다. 여과액에는 표적 다당류가 함유되었다. NaCl/NaI 용액을 사용하여 침전 용기 및 필터를 헹구고 헹군물을 부분 정제된 다당류 용액과 배합하였다. 필터를 폐기하였다. 이어서, 0.2㎛ 필터를 통해서 다당류를 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고 염화나트륨 용액으로 투석여과시켰다.
부분 정제된 다당류 용액을 활성 탄소가 함침된 다층 필터를 통해 여과시킴으로써 추가로 정제하였다. 여과시킨 후에, 염화나트륨 용액을 사용하여 탄소 필터를 헹궜다. 헹군물을 다당류 용액과 합하고, 0.2㎛ 필터를 통해서 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고, 최종 농도가 0.025M 인산나트륨이 되도록 1M 인산나트륨 완충액을 사용하여 조절하였다. pH를 체크하고 7.0±0.2로 조절하였다.
염화나트륨을 함유하는 인산나트륨 완충액을 사용하여 수산화인회석(HA) 세라믹 칼럼을 평형화시켜 적당한 전도도(15μS)를 갖게 하였다. 이어서, 다당류 용액을 칼럼 상에 로딩하였다. 이러한 조건 하에서, 불순물은 수지에 결합하고 다당류는 칼럼을 통과하여 흘러나와 회수되었다. 완충액을 사용하여 칼럼을 통해 다당류를 씻어내리고 0.2㎛ 필터를 통해서 여과시켰다.
다당류 용액을 30 kDa MWCO 필터를 사용하여 농축시켰다. 이어서, WFI를 사용하여 농축액을 투석여과시켰다.
투석여과된 다당류 용액을 0.2㎛ 막필터를 통해서 스테인리스 강 용기 내로 여과시켰다. 방출 시험을 위하여 샘플을 채취하고 정제된 다당류를 -25℃±5℃에서 냉동 보관하였다.
특성규명
1H-NMR 데이터는 다당류 분자의 양성자에 부여된 시그날의 배정에 따른 화학 구조와 일치하였다.
특이적 항혈청을 사용한 역류 면역전기영동에 의해서 일가 다당류의 실체를 확인하였다.
샘플 농축과 함께, 굴절률 및 다각도 레이저 광 산란(MALLS) 검출기와 결합된 고성능 겔 여과 크로마토그래피를 사용하여 분자량을 계산하였다.
크기 배제 크로마토그래피 매질(CL-4B)을 사용하여 다당류의 상대적인 분자 크기 분포를 프로파일링하였다.
실시예 4
혈청형 3 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 및 접합
정제된 혈청형 3 당류의 용기를 해동시키고 반응 용기에서 배합하였다. 최종 농도가 0.2M 및 2mg/mL 당류가 되도록 반응 용기에 WFI 및 2M 아세트산을 첨가하였다. 용액의 온도를 1시간 동안 85℃로 상승시켜서 다당류를 가수분해시켰다. 반응을 25℃ 이하로 냉각시키고 최종 농도가 0.1M이 되도록 1M 염화마그네슘을 첨가하였다. 23℃에서 16 내지 24시간 동안 항온처리하여 과요오드산나트륨의 존재 하에서 산화시켰다.
100K MWCO 막을 사용하여 WFI로 활성화 반응 혼합물을 10배 농축 및 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
혼합을 위하여, 최종적으로 10mM의 농도 및 6.0 내지 6.5의 pH가 되도록 0.2M 인산나트륨(pH 7.0)을 활성화된 당류에 첨가하였다. CRM197 1g 당 당류 2g의 비율로 CRM197 운반체 단백질을 당류 용액과 혼합하였다. 배합된 당류/단백질 용액을 50mL 목표 충전량으로 100mL 동결건조 유리병 속에 충전하여 -75℃에서 쉘-냉동하고 동결건조시켰다.
동시-동결건조된 당류/단백질 물질의 병을 실온이 되게 하여, 최종 당류 농도가 20mg/mL이 되도록 0.1M 인산나트륨 완충액(pH 7.0)에 재현탁시켰다. pH를 6.5로 조절하고 0.5 몰당량의 나트륨 시아노보로하이드라이드를 첨가하였다. 반응물을 37℃에서 48시간 동안 항온처리하였다. 시아노보로하이드라이드 항온처리 후에, 냉 5mM 석시네이트/0.9% 식염수 완충액을 사용하여 반응 혼합물을 희석시켰다. 나트륨 보로하이드라이드를 첨가하고 23℃에서 3 내지 6시간 동안 항온처리함으로써, 미반응 알데히드를 소거하였다. 0.45 내지 5㎛ 예비필터를 통해서 반응 혼합물을 잔류액 용기 속으로 이동시켰다.
반응 혼합물을, 0.1M 인산염 완충액(pH 9)을 사용하여 30배, 0.15M 인산염 완충액(pH 6)을 사용하여 20배, 그리고 5mM 석시네이트/0.9% 식염수를 사용하여 20배 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
접합체 용액을 0.5mg/mL의 당류 목표 농도로 희석시키고, 클래스 100 후드에서 FBC 용기 내로 멸균 여과시켰다. 접합체를 2 내지 8℃에서 보관하였다.
특성규명
크기 배제 크로마토그래피 매질(CL-4B)을 사용하여 접합체의 상대적인 분자 크기 분포를 프로파일링하였다.
특이적 항혈청을 사용한 슬롯-블롯 분석에 의해서 접합체의 실체를 확인하였다.
당류 및 단백질 농도를 각각 안트론(Anthrone) 및 로우리(Lowry) 분석법으로 측정하였다. 공유 결합된 접합체 복합체에서 단백질에 대한 당류의 비율을 다음의 계산식에 따라 구하였다:
㎍/mL 당류
비율 = ------------
㎍/mL 단백질
실시예 5
에스.뉴모니애 협막 다당류 혈청형 5의 제조
에스.뉴모니애 혈청형 5를 게랄트 쉬프만 박사(Dr. Gerald Schiffman, State University of New York, Brooklyn, New York)로부터 입수하였다. 세포 은행 시스템의 제조에 관해서는 실시예 1을 참조한다. 다당류의 발효, 회수, 정제 및 특성규명에 관해서는 실시예 1을 참조한다.
대안적 발효 방법
제조용 세포 은행 유래의 배양물을 사용하여 대두-기제 배지 및 10mM 멸균 NaHCO3 용액을 함유하는 종균병에 접종하였다. 성장 요건이 충족될 때까지 교반하지 않으면서 종균병을 36℃±2℃에서 배양하였다. 종균병을 사용하여 대두-기제 배지 및 10mM 멸균 NaHCO3 용액을 함유하는 종균 발효기에 접종하였다. 3N NaOH를 사용하여 약 7.0의 pH를 유지하였다. 목표 흡광도에 도달한 후에, 종균 발효기를 사용하여 NaHCO3 농도가 10mM인 대두-기제 배지를 함유하는 생산 발효기에 접종하였다. 3N NaOH를 사용하여 pH를 유지하였다. 성장이 중단된 후 또는 발효기의 작업 용량에 도달했을 때 발효를 종결시켰다. 브로쓰에서 0.12% 농도가 되도록 적당한 양의 멸균된 12% 나트륨 데옥시콜레이트를 배양물에 첨가하여, 세균 세포를 용해시키고 세포-결합된 다당류를 유리시켰다. 용해시킨 후에, 완전한 세포 용해 및 다당류 유리가 확실하게 일어나도록, 7℃ 내지 13℃의 온도에서 8 내지 24시간 동안, 교반하면서, 발효기 내용물을 유지하였다. 이 유지 기간 동안에 교반을 하여 용해 침전물이 발효기 벽 및 pH 탐침에 들러붙지 못하게 함으로써, pH 탐침이 그대로 유지되게 하였다. 그 다음, 용해된 배양물 브로쓰의 pH를, 50% 아세트산을 사용하여 대략 pH 4.5로 조절하였다. 15℃ 내지 25℃의 온도에서 12 내지 24시간 동안 교반하지 않으면서 유지시킨 후, 용액 중에 남아있는 다당류의 손실 또는 분해가 거의 일어나지 않으면서, 이전에 가용성이었던 단백질의 상당한 부분이 용액으로부터 고체 침전물로 가라앉았다. 이어서, 연속 흐름 원심분리를 한 후 다층 여과 및 0.45㎛ 미세여과를 함으로써 침전물이 있는 용액을 정화시켰다.
실시예 6
혈청형 5 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 및 접합
혈청형 5 당류의 용기를 해동시키고 반응 용기에서 배합하였다. 반응 용기에 0.1M 아세트산나트륨(pH 4.7)을 첨가한 후, 23℃에서 16 내지 22시간 동안 항온처리하여 과요오드산나트륨의 존재 하에서 산화시켰다.
100K MWCO 막을 사용하여 WFI로 활성화 반응 혼합물을 10배 농축 및 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
0.8:1의 비율로 혈청형 5 활성화된 당류를 CRM197과 배합하였다. 배합된 당류/단백질 용액을 100mL 동결건조 유리병 속에 충전하여(50mL 목표 충전량), -75℃에서 쉘-냉동하고, 공동-동결건조시켰다.
동시-동결건조된 물질의 병을 실온이 되게 하여 0.1M 인산나트륨(pH 7.5)에 재현탁시키고, 나트륨 시아노보로하이드라이드를 첨가하였다. 반응물을 30℃에서 72시간 동안 항온처리한 후, 시아노보로하이드라이드를 2차 첨가하고 30℃에서 20 내지 28시간 동안 항온처리하였다.
시아노보로하이드라이드 항온처리 후에, 식염수를 사용하여 반응 혼합물을 2배 희석시키고 0.45 내지 5㎛ 예비필터를 통해서 잔류액 용기 속으로 이동시켰다. 반응 혼합물을, 0.01M 인산염 완충액(pH 8)을 사용하여 30배, 0.15M 인산염 완충액(pH 6)을 사용하여 20배, 그리고 식염수를 사용하여 20배 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
접합체 용액을 0.5mg/mL의 당류 목표 농도로 희석시키고, 클래스 100 후드에서 FBC 용기 내로 멸균 여과시켰다. 접합체를 2 내지 8℃에서 보관하였다.
접합체의 특성규명에 관해서는 실시예 2를 참조한다.
실시예 7
에스.뉴모니애 협막 다당류 혈청형 6A의 제조
에스.뉴모니애 혈청형 6A를 게랄트 쉬프만 박사(Dr. Gerald Schiffman, State University of New York, Brooklyn, New York)로부터 입수하였다. 세포 은행 시스템의 제조에 관해서는 실시예 1을 참조한다. 다당류의 발효, 회수 및 정제에 관해서는 실시예 1을 참조한다. (예외: 정제 과정에서, 크로마토그래피 단계 전에, 30kDa MWCO 농축 단계를 생략한다)
실시예 8
혈청형 6A 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 및 접합
혈청형 6A 다당류는 고분자량 중합체이기 때문에 산화시키기 전에 크기를 감소시켜야 한다. 혈청형 6A 당류의 용기를 해동시키고 반응 용기에서 배합하였다. 최종 농도가 0.1M이 되도록 반응 용기에 2M 아세트산을 첨가하여 60℃에서 1.5시간 동안 가수분해시켰다. 반응을 23℃로 냉각시키고 1M NaOH를 사용하여 pH 6으로 조절함으로써 반응 혼합물을 중화시켰다. 23℃에서 14 내지 22시간 동안 항온처리하여 과요오드산나트륨의 존재 하에서 산화시켰다.
100K MWCO 막을 사용하여 WFI로 활성화 반응 혼합물을 10배 농축 및 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
혈청형 6A를 슈크로스와 혼합하고 100mL 동결건조 유리병 속에 충전하여(50mL 목표 충전량) -75℃에서 쉘-냉동하고 동결건조시켰다.
동결건조된 물질의 병을 실온이 되게 하여 1:1의 당류/단백질 비율로 디메틸설폭사이드(DMSO)에 재현탁시켰다. 나트륨 시아노보로하이드라이드를 첨가한 후에, 반응 혼합물을 23℃에서 18시간 동안 항온처리하였다. 시아노보로하이드라이드 항온처리 후에, 냉 식염수를 사용하여 반응 혼합물을 희석시켰다. 나트륨 보로하이드라이드를 첨가하고 23℃에서 3 내지 20시간 동안 항온처리함으로써, 미반응 알데히드를 소거하였다.
희석된 반응 혼합물을 5㎛ 예비필터를 통해서 잔류액 용기 속으로 이동시켰다. 반응 혼합물을, 0.9% NaCl을 사용하여 10배, 그리고 석시네이트-완충된 NaCl을 사용하여 30배 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
접합체 용액을 0.5mg/mL의 당류 목표 농도로 희석시키고, 클래스 100 후드에서 FBC 용기 내로 멸균 여과시켰다. 접합체를 2 내지 8℃에서 보관하였다.
접합체의 특성규명에 관해서는 실시예 2를 참조한다.
실시예 9
에스.뉴모니애 협막 다당류 혈청형 7F의 제조
에스.뉴모니애 혈청형 7F를 게랄트 쉬프만 박사(Dr. Gerald Schiffman, State University of New York, Brooklyn, New York)로부터 입수하였다. 세포 은행 시스템의 제조, 및 다당류의 발효 및 회수에 관해서는 실시예 3을 참조한다. 대안적 발효 및 회수 방법에 관해서는 실시예 1에 기술된 대안적 방법을 참조한다.
정제
폐렴구균 다당류의 정제는 수회의 농축/투석여과 작업, 침전/용출, 칼럼 크로마토그래피 및 다층 여과 단계로 이루어졌다. 달리 명시하지 않은 경우, 모든 절차는 실온에서 수행하였다.
에스.뉴모니애 혈청형 7F의 발효기 배양물로부터 정화된 브로쓰를, 100 kDa MWCO 필터를 사용하여 농축 및 투석여과시켰다. 투석여과는 인산나트륨 완충액을 사용하여 중성 pH에서 수행하였다. 투석여과를 통해서 핵산, 단백질 및 다당류와 같은 고분자량 생중합체로부터 저분자량 배지 성분을 제거하였다.
혈청형 7F는 HB와 침전물을 형성하지 않는다. 대신에, 최종 농도가 1% HB가 되도록 원액의 HB를 첨가함으로써 농축 및 투석여과된 용액으로부터 불순물을 침전시켰다. 침전물을 다층 필터 상에 포획하고 필터를 폐기하였다. 여과액에는 다당류가 함유되었다.
최종 농도가 0.5%가 되도록 요오드화나트륨(NaI) 원액으로부터의 NaI를 다당류 용액에 첨가하여 HB를 침전시켰다. 침전물을 다층 여과에 의해 제거하였다. 여과액에는 표적 다당류가 함유되었다. NaCl/NaI 용액을 사용하여 침전 용기 및 필터를 헹구고 헹군물을 부분 정제된 다당류 용액과 배합하였다. 필터를 폐기하였다. 이어서, 0.2㎛ 필터를 통해서 다당류를 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고 염화나트륨 용액으로 투석여과시켰다.
부분 정제된 다당류 용액을 활성 탄소가 함침된 다층 필터를 통해 여과시킴으로써 추가로 정제하였다. 여과시킨 후에, 염화나트륨 용액을 사용하여 탄소 필터를 헹궜다. 헹군물을 다당류 용액과 배합하고, 0.2㎛ 필터를 통해서 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고, 최종 농도가 0.025M 인산나트륨이 되도록 1M 인산나트륨 완충액을 사용하여 조절하였다. pH를 체크하고 7.0±0.2로 조절하였다.
염화나트륨을 함유하는 인산나트륨 완충액을 사용하여 수산화인회석(HA) 세라믹 칼럼을 평형화시켜 적당한 전도도(15μS)를 갖게 하였다. 이어서, 다당류 용액을 칼럼 상에 로딩하였다. 이러한 조건 하에서, 불순물은 수지에 결합하고 다당류는 칼럼을 통과하여 흘러나와 회수되었다. 완충액을 사용하여 칼럼을 통해 다당류를 씻어내리고 0.2㎛ 필터를 통해서 여과시켰다.
30 kDa MWCO 필터를 사용하여 다당류 용액을 농축시켰다. 이어서, 농축액을 WFI로 투석여과시켰다.
투석여과된 다당류 용액을 0.2㎛ 막필터를 통해서 스테인리스 강 용기 내로 여과시켰다. 방출 시험을 위하여 샘플을 채취하고 정제된 다당류를 2℃ 내지 8℃에서 보관하였다.
다당류의 특성규명에 관해서는 실시예 3을 참조한다.
실시예 10
혈청형 7F 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 및 접합
23℃에서 16 내지 24시간 동안 항온처리하여 과요오드산나트륨의 존재 하에서 산화시켰다.
100K MWCO 막을 사용하여 10mM NaOAc(pH 4.5)로 활성화 반응 혼합물을 10배 농축 및 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
혈청형 7F를 100mL 동결건조 유리병 속에 충전하여(50mL 목표 충전량) -75℃에서 쉘-냉동하고 동결건조시켰다.
동결건조된 혈청형 7F 및 CRM197의 병을 실온이 되게 하여 1.5:1의 당류/단백질 비율로 DMSO에 재현탁시켰다. 나트륨 시아노보로하이드라이드를 첨가한 후에, 반응물을 23℃에서 8 내지 10시간 동안 항온처리하였다. 나트륨 보로하이드라이드를 첨가하고 23℃에서 16시간 동안 항온처리함으로써, 미반응 알데히드를 소거하였다.
냉 식염수를 사용하여 반응 혼합물을 10배 희석시키고 5㎛ 예비필터를 통해서 잔류액 용기 속으로 이동시켰다. 반응 혼합물을, 0.9% 식염수를 사용하여 10배, 그리고 석시네이트-완충된 식염수를 사용하여 30배 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
접합체 용액을 0.5mg/mL 0.9% 식염수의 당류 목표 농도로 희석시키고, 클래스 100 후드에서 FBC 용기 내로 멸균 여과시켰다. 접합체를 2 내지 8℃에서 보관하였다.
접합체의 특성규명에 관해서는 실시예 4를 참조한다.
실시예 11
에스.뉴모니애 협막 다당류 혈청형 19A의 제조
에스.뉴모니애 혈청형 19A를 게랄트 쉬프만 박사(Dr. Gerald Schiffman, State University of New York, Brooklyn, New York)로부터 입수하였다. 세포 은행 시스템의 제조에 관해서는 실시예 1을 참조한다. 다당류의 발효, 회수 및 정제에 관해서는 실시예 7을 참조한다. 특성규명에 관해서는 실시예 3을 참조한다.
실시예 12
혈청형 19A 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 및 접합
혈청형 19A 당류의 용기를 해동시키고 반응 용기에서 배합하였다. 아세트산나트륨을 10mM(pH 5.0)로 첨가하고, 23℃에서 16 내지 24시간 동안 항온처리하여 과요오드산나트륨의 존재 하에서 산화시켰다.
100K MWCO 막을 사용하여 10mM 아세테이트(pH 5.0)로 활성화 반응 혼합물을 10배 농축 및 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
활성화된 당류를 슈크로스와 혼합한 후 CRM197을 첨가하였다. 혈청형 19A 활성화된 당류 및 CRM197 혼합물(0.8:1 비율)을 100mL 동결건조 유리병 속에 충전하여(50mL 목표 충전량) -75℃에서 쉘-냉동하고 동결건조시켰다.
동결건조된 물질의 병을 실온이 되게 하여 DMSO에 재현탁시켰다. 당류/단백질 혼합물에 나트륨 시아노보로하이드라이드 (100mg/ml)를 첨가하였다. 반응물을 23℃에서 15시간 동안 항온처리하였다. 시아노보로하이드라이드 항온처리 후에, 나트륨 보로하이드라이드를 첨가하고 23℃에서 3 내지 20시간 동안 항온처리함으로써, 미반응 알데히드를 소거하였다.
냉 식염수를 사용하여 반응 혼합물을 10배 희석시키고 5㎛ 예비필터를 통해서 잔류액 용기 속으로 이동시켰다. 0.9% NaCl을 사용하여 반응 혼합물을 10배 투석여과시키고, 0.45㎛ 여과한 후, 5mM 석시네이트/0.9% NaCl 완충액(pH 6)을 사용하여 30배 투석여과시켰다. 잔류액을 0.2㎛ 필터를 통해서 여과시켰다.
5mM 석시네이트/0.9% 식염수를 사용하여 접합체 용액을 0.5mg/mL의 목표 농도로 희석시키고, 이어서 클래스 100 후드에서 FBC 용기 내로 멸균 여과시켰다. 접합체를 2 내지 8℃에서 보관하였다.
접합체의 특성규명에 관해서는 실시예 4를 참조한다.
실시예 13
에스.뉴모니애 협막 다당류 혈청형 4, 6B, 9V, 14, 18C, 19F 및 23F의 제조
에스.뉴모니애 종균 배양물의 제조
에스.뉴모니애 혈청형 4, 6B, 9V, 18C, 19F 및 23F를 게랄트 쉬프만 박사(Dr. Gerald Schiffman, State University of New York, Brooklyn, New York)로부터 입수하였다. 에스.뉴모니애 혈청형 14를 ATCC(균주 6314)로부터 입수하였다.
개별적으로, 스트렙토코커스 뉴모니애의 각각의 목적하는 혈청형의 1개의 바이알을 사용하여 발효 배치(fermentation batch)를 개시시켰다. 대두-기제 배지 및 페놀 레드를 함유하는 2개의 병을 탄산나트륨을 사용하여 7.4±0.2 범위의 pH로 조절하고, 이어서 필요한 양의 50% 덱스트로스/1% 황산마그네슘 용액을 병에 첨가하였다. 2개의 병에 상이한 양의 종균을 접종하였다. 배지가 황색으로 변할 때까지 36℃±2℃에서 병을 항온처리하였다. 항온처리 후에, 각 병으로부터 샘플을 채취하여 흡광도 (OD) (0.3 내지 0.9) 및 pH (4.6 내지 5.5)를 검사하였다. 종균 발효기에 접종하기 위하여 2개의 병 중 1개를 선택하였다.
대두-기제 배지를 종균 발효기로 이동시키고 멸균시켰다. 이어서, 다량의 50% 덱스트로스/1% 황산마그네슘 용액을 발효기에 첨가하였다. 종균 발효기의 pH 및 교반을 모니터하고 제어하였다 (pH 6.7 내지 7.4). 온도를 36℃±2℃로 유지하였다. 종균 발효기에 종균 접종물(병)을 무균적으로 연결하고 접종물을 이동시켰다. 발효기의 pH 제어를 유지하고 샘플을 주기적으로 채취하여 OD 및 pH를 검사하였다. 목적하는 OD값, 즉 600nm에서 0.5에 도달했을 때, 종균 발효기로부터의 발효 브로쓰를 중간 발효기에 접종하였다.
대두-기제 배지를 중간 발효기로 이동시키고 멸균시켰다. 이어서, 다량의 50% 덱스트로스/1% 황산마그네슘 용액을 발효기에 첨가하였다. 중간 발효기의 pH 및 교반을 모니터하고 제어하였다 (pH 6.7 내지 7.4). 온도를 36℃±2℃로 유지하였다. 종균 발효기의 내용물을 중간 발효기로 이동시켰다. 발효기의 pH 제어를 유지하고 샘플을 주기적으로 채취하여 OD 및 pH를 검사하였다. 목적하는 OD값, 즉 600nm에서 0.5에 도달했을 때, 중간 발효기로부터의 발효 브로쓰를 생산 발효기에 접종하였다.
대두-기제 배지를 생산 발효기로 이동시키고 멸균시켰다. 이어서, 다량의 50% 덱스트로스/1% 황산마그네슘 용액을 발효기에 첨가하였다. 생산 발효기의 pH 및 교반을 모니터하고 제어하였다 (pH 6.7 내지 7.4). 온도를 36℃±2℃로 유지하였다. 발효가 완료될 때까지, 발효기의 pH 제어를 유지하고 샘플을 주기적으로 채취하여 OD 및 pH를 검사하였다.
최종 농도가 대략 0.12% w/v가 되도록 데옥시콜산나트륨을 발효기에 첨가하였다. 배양물을 최소 30분 동안 혼합하고 온도 설정값을 10℃로 낮추었다. 배양물을 하룻밤 동안 항온처리하고 불활성화를 확인한 후, 필요한 경우, 50% 아세트산을 사용하여 배양물의 pH를 6.4 내지 6.8로 조절하였다. 발효기의 온도를 20℃±5℃로 상승시키고 내용물을 정화 유지 탱크로 이동시켰다.
시간 당 25 내지 600리터의 유속으로 원심분리기를 통해서 정화 유지 탱크의 내용물(세포 잔해물을 포함함)을 처리하였다 (예외: 혈청형 4의 경우, 세포 잔해물을 폐기하고 유속을 시간 당 25 내지 250리터로 엄격히 하였다). 상청액의 샘플을 채취하고 OD를 검사하였다. 원심분리하는 동안 목적하는 OD값은 0.15 이하였다.
처음에는, OD값이 0.05±0.03에 도달할 때까지 다층 필터 조립체를 통해서 상청액을 재순환시켰다. 이어서, 다층 필터 조립체 및 0.45㎛ 막필터를 통해 상청액을 통과시켜 유지 탱크를 여과하였다.
그 다음에, 산물을 처리하기 위하여 폐관을 통해서 정제 구역으로 이동시켰다.
위의 모든 작업(원심분리, 여과 및 이동)은 10℃ 내지 30℃에서 수행하였다.
혈청형 4 및 6B에 대한 대안적 발효 및 회수 방법에 관해서는 실시예 1에 기술된 대안적 방법을 참조한다.
정제
각 폐렴구균 다당류의 정제는 수회의 농축/투석여과 작업, 침전/용출, 칼럼 크로마토그래피 및 다층 여과 단계로 이루어졌다. 달리 명시하지 않은 경우, 모든 절차는 실온에서 수행하였다.
목적하는 에스.뉴모니애 혈청형의 발효기 배양물로부터 정화된 브로쓰를, 100 kDa MWCO 필터를 사용하여 농축 및 투석여과시켰다. 투석여과는 인산나트륨 완충액을 사용하여 9.0 미만의 pH에서 수행하였다. 투석여과를 통해서 핵산, 단백질 및 다당류와 같은 고분자량 생중합체로부터 저분자량 배지 성분을 제거하였다.
최종 농도가 1% HB (w/v)가 되도록 원액의 HB를 첨가함으로써 농축 및 투석여과된 용액으로부터 다당류를 침전시켰다 (예외: 혈청형 23F의 경우, 최종 농도를 2.5%로 하였다). 다당류/HB 침전물을 다층 필터 상에 포획하고 여과액을 폐기하였다. (주의: 혈청형 14는 침전하지 않으므로 여과액이 보존되었다.) 침전물 함유 다층 필터를 통하여 염화나트륨 용액을 재순환시킴으로써 다당류 침전물을 재용해화 및 용출시켰다. 이어서, 추가적인 염화나트륨 용액을 사용하여 필터를 헹궜다.
최종 농도가 0.5%가 되도록 요오드화나트륨(NaI) 원액으로부터의 NaI를 다당류 용액에 첨가하여 HB를 침전시켰다 (예외: 혈청형 6B의 경우, 최종 농도를 0.25%로 하였다). 침전물을 다층 여과에 의해 제거하였다. 여과액에는 표적 다당류가 함유되었다. 필터를 폐기하였다. 이어서, 0.2㎛ 필터를 통해서 다당류를 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고 염화나트륨 용액으로 투석여과시켰다.
부분 정제된 다당류 용액을 활성 탄소가 함침된 다층 필터를 통해 여과시킴으로써 추가로 정제하였다. 여과시킨 후에, 염화나트륨 용액을 사용하여 탄소 필터를 헹궜다. 헹군물을 다당류 용액과 배합하고, 0.2㎛ 필터를 통해서 여과시켰다.
다당류 용액을 30 kDa MWCO 한외여과필터에 농축시키고 염화나트륨 용액을 사용하여 필터를 헹궜다. pH를 체크하고 7.0±0.3으로 조절하였다.
pH가 7.0±0.3이 되고 전도도가 26±4μS가 될 때까지, 염화나트륨을 함유하는 인산나트륨 완충액을 사용하여 수산화인회석(HA) 세라믹 칼럼을 평형화시켰다. 이어서, 다당류 용액을 칼럼 상에 로딩하였다. 이러한 조건 하에서, 불순물은 수지에 결합하고 다당류는 칼럼을 통과하여 흘러나와 회수되었다. 0.2㎛ 필터를 통해서 다당류 용액을 여과시켰다.
30 kDa MWCO 필터를 사용하여 다당류 용액을 농축시켰다. 이어서, 전도도가 15μS 미만이 될 때까지, 농축액을 WFI로 투석여과시켰다.
투석여과된 다당류 용액을 0.2㎛ 막필터를 통해서 벌크 용기 내로 여과시키고 2 내지 8℃에서 보관하였다.
실시예 14
혈청형 4, 6B, 9V, 14, 18C, 19F 및 23F에 대한 폐렴구균 당류 - CRM 197 접합체의 제조
활성화 방법
상이한 혈청형 당류는 이 실시예에 기술된 바와 같이 활성화(활성화시키기 전에 가수분해를 하거나 하지 않음) 및 접합(수성 또는 DMSO 반응)에서 상이한 경로를 따른다.
다당류를 벌크 용기로부터 반응기 용기로 이동시켰다. 이어서, 최종 농도 범위가 1.6 내지 2.4mg/mL이 되도록 다당류를 WFI 및 인산나트륨에 희석시켰다.
단계 1.
혈청형 6B, 9V, 14, 19F 및 23F의 경우, pH를 pH 6.0±0.3으로 조절하였다.
혈청형 4의 경우, 염산(0.01M 최종 산 농도)을 첨가하고 45℃±2℃에서 25 내지 35분 동안 용액을 항온처리하였다. 21 내지 25℃로 냉각시키고 6.7±0.2의 목표 pH로 1M 인산나트륨을 첨가함으로써 가수분해를 중지시켰다. 제조과정 중 시험을 실시하여 탈피루빌화의 적당한 수준을 확인하였다.
혈청형 18C의 경우, 빙초산(0.2M 최종 산 농도)을 첨가하고 94℃±2℃에서 205 내지 215분 동안 용액을 항온처리하였다. 이어서, 온도를 21 내지 25℃로 낮추고 6.8±0.2의 목표 pH가 되도록 1 내지 2M 인산나트륨을 첨가하였다.
단계 2: 과요오드산염 반응
폐렴구균 당류 활성화에 필요한 과요오드산나트륨 몰당량을 총 당류 함량(혈청형 4 제외)을 사용하여 측정하였다. 혈청형 4의 경우, 당류 1몰 당 과요오드산나트륨 0.8 내지 1.2몰의 비율을 사용하였다. 완전히 혼합하면서, 모든 혈청형에 대해 21 내지 25℃에서 16 내지 20시간 동안 산화 반응을 진행시켰다 (예외: 19F의 경우, 온도를 15℃ 이하로 하였음).
단계 3: 한외여과
산화된 당류를, 100 kDa MWCO 한외여과필터에(18C의 경우, 5 kDa 한외여과필터에) WFI로(혈청형 19F의 경우, 0.01M 인산나트륨 완충액(pH 6.0)으로) 농축 및 투석여과시켰다. 투과액을 폐기하고 잔류액을 0.22㎛ 필터를 통해서 여과시켰다.
단계 4: 동결건조
혈청형 4, 9V 및 14의 경우, 농축된 당류를 CRM197 운반체 단백질과 혼합하여, 유리병 속에 충전하고, 쉘-냉동하여 -65℃ 이하에서 보관하였다. 냉동된 농축 당류-CRM197을 동결건조시킨 다음, -25℃±5℃에서 보관하였다.
혈청형 6B, 19F 및 23F의 경우, 접합체 반응 혼합물에서 5%±3% 슈크로스 농도에 도달하도록 계산된 특정량의 슈크로스를 첨가하였다. 혈청형 18C는 슈크로스 첨가를 요구하지 않았다. 농축된 당류를 유리병 속에 충전하고, 쉘-냉동하여 -65℃ 이하에서 보관하였다. 냉동된 농축 당류를 동결건조시킨 다음, -25℃±5℃에서 보관하였다.
접합 방법
두가지 접합 방법을 사용하였다: 혈청형 4, 9V, 14 및 18C의 경우 수성 접합을 사용하고, 혈청형 6B, 19F 및 23F의 경우 DMSO 접합을 사용하였다.
수성 접합
단계 1: 용해
혈청형 4, 9V 및 14의 경우, 동결건조된 활성화된 당류-CRM197 혼합물을 해동시키고 실온에서 평형화시켰다. 이어서, 동결건조된 활성화된 당류-CRM197을 다음의 일반적인 비율로 0.1M 인산나트륨 완충액에 재구성시켰다:
● 혈청형 4 및 9V의 경우, 당류 16 내지 24g 당 완충액 1L
● 혈청형 14의 경우, 당류 6 내지 10g 당 완충액 1L
완전히 용해될 때까지, 혈청형 9V의 경우 37℃±2℃에서, 그리고 혈청형 4 및 14의 경우 23℃±2℃에서 반응 혼합물을 항온처리하였다.
혈청형 18C의 경우, 동결건조된 당류를 CRM197 용액 1L 당 인산나트륨 0.11L의 통상적 비율로 1M 2염기성 인산나트륨 중의 CRM197 용액에 재구성시켰다. 완전히 용해될 때까지 반응 혼합물(8 내지 12g/L 당류 농도)을 23℃±2℃에서 항온처리하였다.
이 단계에서 제조과정 중 제어로서 pH를 검사하였다.
단계 2: 접합 반응
혈청형 4 및 9V의 경우, 당류 1몰 당 나트륨 시아노보로하이드라이드 1.0 내지 1.4몰이 되도록 나트륨 시아노보로하이드라이드 용액(100mg/mL)을 첨가함으로써 접합 반응을 개시시켰다. 반응 혼합물을 37℃±2℃에서 44 내지 52시간 동안 항온처리하였다. 이어서, 온도를 23℃±2℃로 낮추고 염화나트륨 0.9%를 반응기에 첨가하였다. 당류 1몰 당 나트륨 보로하이드라이드 1.8 내지 2.2 몰당량이 되도록 나트륨 보로하이드라이드 용액(100mg/mL)을 첨가하였다. 혼합물을 23℃±2℃에서 3 내지 6시간 동안 항온처리하였다. 염화나트륨 0.9%를 사용하여 혼합물을 희석시키고 반응기를 헹궜다. 희석된 접합 혼합물을 1.2㎛ 예비필터를 사용하여 유지 용기 속으로 여과시켰다.
혈청형 14 및 18C의 경우, 당류 1몰 당 나트륨 시아노보로하이드라이드 1.0 내지 1.4몰이 되도록 시아노보로하이드라이드 용액(100mg/mL)을 첨가함으로써 접합 반응을 개시시켰다. 반응 혼합물을 23℃±2℃에서 12 내지 24시간 동안 항온처리하였다. 온도를 37℃±2℃로 상승시키고 반응물을 72 내지 96시간 동안 항온처리하였다. 이어서, 온도를 23℃±2℃로 낮추고 0.9% 염화나트륨을 반응기에 첨가하였다. 당류 1몰 당 나트륨 보로하이드라이드 1.8 내지 2.2 몰당량이 되도록 나트륨 보로하이드라이드 용액(100mg/mL)을 첨가하였다. 혼합물을 23℃±2℃에서 3 내지 6시간 동안 항온처리하였다. 0.9% 염화나트륨을 사용하여 혼합물을 희석시키고 반응기를 헹궜다. 희석된 접합 혼합물을 1.2㎛ 예비필터를 사용하여 유지 용기 속으로 여과시켰다.
단계 3: 한외여과 100 kDa
희석된 접합 혼합물을 최소 15 용적(혈청형 4) 또는 40 용적(혈청형 9V, 14 및 18C)의 0.9% 염화나트륨을 사용하여 100 kDa MWCO 한외여과필터에 농축 및 투석여과시켰다.
투과액을 폐기하였다.
혈청형 4의 경우, 잔류액을 0.45㎛ 필터를 통해서 여과시켰다.
이 단계에서 제조과정 중 제어(당류 함량)를 실시하였다.
단계 4: HA 칼럼 정제
이 단계는 혈청형 4 접합체의 경우에만 수행하였다.
0.5M 인산나트륨 완충액(pH 7.0±0.3)을 사용하여 HA 칼럼을 먼저 중화시키고 나서 0.9% 염화나트륨으로 평형화시켰다. 여과시킨 잔류액(혈청형 4)을 1.0L/분의 유속으로 칼럼 상에 로딩하였다. 0.9% 염화나트륨을 사용하여 2.0L/분 이하의 유속으로 칼럼을 세척하였다. 이어서, 0.5M 인산나트륨 완충액을 사용하여 2.0L/분 이하의 유속으로 산물을 용출시켰다.
이어서, HA 분획물을 최소 20 용적의 0.9% 염화나트륨을 사용하여 100 kDa MWCO 막에 농축 및 투석여과시켰다. 투과액을 폐기하였다.
단계 5: 멸균 여과
100 kDa MWCO 투석여과 후의 잔류액을 0.22㎛ 필터를 통해서 여과시켰다. 여과된 산물에 대해 제조과정 중 제어(당류 함량, 유리 단백질, 유리 당류 및 시아나이드)를 실시하였다. 여과시킨 잔류액에 대해 제조과정 중 제어를 실시하여, FBC 목표를 충족시키기 위한 추가적인 농축, 투석여과 및/또는 희석이 필요한지의 여부를 결정하였다. FBC 샘플에서 상기 시험 및 추가적인 시험을 반복하였다.
필요한 경우, 여과된 접합체를 최종 농도가 0.55g/L 미만이 되도록 0.9% 염화나트륨을 사용하여 희석시켰다. 이 단계에서 당류 함량, 단백질 함량 및 당류:단백질 비에 대한 방출 시험을 실시하였다.
마지막으로, 접합체를 여과시키고(0.22㎛) 2.64g/통의 통상적인 양으로 10L 스테인리스 강 통 속에 충전하였다. 이 단계에서, 제조과정 중 제어로서 수율, 당류 함량, 단백질 함량, pH, 당류:단백질 비 및 리신 함량 시험을 실시하였다. 이 단계에서 방출 시험(외관, 유리 단백질, 유리 당류, 내독소, 분자 크기 결정, 잔여 시아나이드, 당류 실체, CRM197 실체)을 실시하였다.
DMSO 접합
단계 I: 용해
동결건조된 활성화된 당류 혈청형 6B, 19F, 23F 및 동결건조된 CRM197 운반체 단백질을 실온에서 평형화시키고 DMSO에 재구성시켰다. 용해 농도는 통상적으로 DMSO 1L 당 당류 2 내지 3g (단백질 2 내지 2.5g)의 범위였다.
단계 II: 접합 반응
활성화된 당류 및 CRM197 운반체 단백질을, 혈청형 6B 및 19F의 경우, 0.6 내지 1.0g 당류/g CRM197, 또는 혈청형 23F의 경우, 1.2 내지 1.8g 당류/g CRM197 범위의 비로 23℃±2℃에서 60 내지 75분 동안 혼합하였다.
활성화된 당류 1몰에 대해 나트륨 시아노보로하이드라이드 0.8 내지 1.2 몰당량의 비로 나트륨 시아노보로하이드라이드 용액(100mg/mL)을 첨가함으로써 접합 반응을 개시시켰다. 1%(v/v)의 목표 농도로 WFI를 반응 혼합물에 첨가하고 혼합물을 23℃±2℃에서 40시간 이상 항온처리하였다.
100mg/mL의 나트륨 보로하이드라이드 용액(활성화된 당류 1몰 당 통상적으로 나트륨 보로하이드라이드 1.8 내지 2.2 몰당량) 및 WFI(목표 농도 5% v/v)를 반응물에 첨가하고 혼합물을 23℃±2℃에서 3 내지 6시간 동안 항온처리하였다. 이 과정을 통해서, 당류에 존재하는 반응하지 않은 임의의 알데히드를 환원시켰다. 이어서, 반응 혼합물을 15℃ 미만에서 0.9% 염화나트륨을 함유하는 희석 탱크로 이동시켰다.
단계 III: 100 kDa 한외여과
희석된 접합체 혼합물을 1.2㎛ 필터를 통해서 여과시키고 최소 15 용적의 0.9% 염화나트륨을 사용하여 100 kDa MWCO 막에 농축 및 투석여과시켰다(혈청형 23F의 경우, 0.01M 인산나트륨/0.05M NaCl 완충액을 사용하였다). 투과액을 폐기하였다. 잔류액을 0.45㎛ 필터를 통해서 여과시켰다. 이 단계에서 제조과정 중 당류 함량 샘플을 채취하였다.
단계 IV: DEAE 칼럼 정제
이 단계는 혈청형 23F의 경우에만 수행하였다.
0.01M 인산나트륨/0.05M 염화나트륨 완충액을 사용하여 DEAE 칼럼을 평형화시켰다. 여과시킨 잔류액(혈청형 23F)을 칼럼 상에 로딩하고 0.01M 인산나트륨/0.05M 염화나트륨 완충액을 사용하여 세척하였다. 이어서, 0.01M 인산나트륨/0.9% NaCl 완충액을 사용하여 칼럼을 세척하였다. 이어서, 0.01M 인산나트륨/0.5M 염화나트륨 완충액을 사용하여 산물을 용출시켰다.
단계 V: 100 kDa 한외여과
30 용적 이상의 0.9% 염화나트륨을 사용하여 6B 및 19F 유래의 잔류액을 농축 및 투석여과시켰다. 투과액을 폐기하였다.
최소 20 용적의 0.9% 염화나트륨을 사용하여 혈청형 23F 유래의 용출액을 농축 및 투석여과시켰다. 투과액을 폐기하였다.
단계 VI: 멸균 여과
100 kDa MWCO 투석여과 후의 잔류액을 0.22㎛ 필터를 통해서 여과시켰다. 여과된 산물에 대해 제조과정 중 제어(당류 함량, 유리 단백질, 유리 당류, 잔여 DMSO 및 잔여 시아나이드)를 실시하였다. 여과시킨 잔류액에 대해 제조과정 중 제어를 실시하여, FBC 목표를 충족시키기 위한 추가적인 농축, 투석여과 및/또는 희석이 필요한지의 여부를 결정하였다. FBC 샘플에서 상기 시험 및 추가적인 시험을 반복하였다.
필요한 경우, 여과된 접합체를 최종 농도가 0.55g/L 미만이 되도록 0.9% 염화나트륨을 사용하여 희석시켰다. 이 단계에서 당류 함량, 단백질 함량 및 당류:단백질 비에 대한 방출 시험을 실시하였다.
마지막으로, 접합체를 여과시키고(0.22㎛) 2.64g/통의 양으로 10L 스테인리스 강 통 속에 충전하였다. 이 단계에서, 제조과정 중 제어로서 수율, 당류 함량, 단백질 함량, pH, 당류:단백질 비 및 리신 함량 시험을 실시하였다. 이 단계에서 방출 시험(외관, 유리 단백질, 유리 당류, 내독소, 분자 크기 결정, 잔여 시아나이드, 잔여 DMSO, 당류 실체 및 CRM197 실체)을 실시하였다.
실시예 15
다가 폐렴구균 접합체 백신의 제형화
13개 접합체의 최종 벌크 농축액은 0.85% 염화나트륨을 함유한다. 3, 6A, 7F 및 19A형 벌크 농축액은 또한 5mM 나트륨 석시네이트 완충액(pH 5.8)을 함유한다. 배치 용적(batch volume) 및 벌크 당류 농도를 기준으로 하여 벌크 농축액의 필요량을 계산하였다. 0.85% 염화나트륨(생리 식염수)의 80% 및 필요량의 석시네이트 완충액을 미리 라벨링한 제형화 용기에 첨가한 후에, 벌크 농축액을 첨가하였다. 이어서, 밀리포어 듀라포어(Millipore Durapore) 막필터 장치를 사용함으로써 상기 제제를 0.22㎛ 막을 통해서 두번째 용기 내로 멸균 여과시켰다. 남아있는 20%의 0.85% 염화나트륨을 사용하여 첫번째 용기를 세척하고 동일한 필터를 통해서 용액을 통과시켜 두번째 용기 속에 수집하였다. 벌크 알루미늄 포스페이트의 첨가 중 및 후에 제형화된 벌크액을 서서히 혼합하였다. pH를 체크하고 필요한 경우에 조절하였다. 제형화된 벌크 제품을 2 내지 8℃에서 보관하였다.
제형화된 벌크 제품을 판매원[Becton Dickinson]으로부터 구입한 1형 보로실리케이트 유리 주사기 속에 충전하였다. 일정한 간격으로 백신의 탁도를 모니터하여 충전 작업의 균일성을 확실하게 하였다. 충전된 백신(최종 제품)을 2 내지 8℃에서 보관하였다.
실시예 16
13가 접합체 백신의 면역원성
현재까지, 래빗에서 13vPnC 백신에 대한 전임상 연구가 수행되었다. 연구 #HT01-0021 및 #HT01-0036은, 에스.뉴모니애 유래의 협막 다당류(PS)를 CRM197에 화학적으로 접합시키는 것의 효과 및 알루미늄 포스페이트(AlPO4) 애쥬번트가 래빗에서 13vPnC 백신에 대한 면역 반응에 미치는 효과를, 독립적으로 조사하기 위하여 계획되었다. 이러한 효과를, 혈청 IgG 농도의 경우 항원-특이적 ELISA에 의해서, 그리고 항체 기능의 경우 옵소노파고시토시스 분석(OPA)에 의해서 특성화시켰다.
연구 #HT01-0021
연구 #HT01-0021에서는 AlPO4 애쥬번트를 함유하는 13vPnC 백신이 백신 혈청형-특이적 면역 반응을 유도하는 능력을 조사하였다. 13vPnC 백신에 나타낸 폐렴구균 혈청형에는 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 및 23F 형이 포함된다. 2차 목적에는 항체 반응의 반응속도론(kinetics) 및 지속기간의 평가가 포함되었다. AlPO4 (100㎍/용량)의 존재 또는 부재하에 제형화된 각 다당류의 계획된 사람 임상 용량(각 PS 2㎍, 예외: 6B 4㎍)을 사용하여 0주차 및 2주차에 뉴질랜드 화이트(New Zealand White) 래빗을 근육내로 면역접종시켰다. 여러 시점에 혈청을 채취하였다. ELISA에 의해서 혈청형 특이적 IgG를 측정하고 OPA에 의해서 기능 활성을 평가하였다.
표 3에는, 13vPnC 백신을 2회 투여한 후, 풀링된(pooled) 혈청 샘플에서 측정된 기하 평균 역가(GMT; Geometric Mean Titer)가 제시되어 있다. IgG GMT의 비를 사용하여 4주차 때의 반응을 0주차에 대하여 비교하였다. 이 데이터는, AlPO4를 13vPnC 제형에 포함시키면 애쥬번트를 함유하지 않는 동일한 백신과 비교하여 더 높은 수준의 IgG 항체가 유도된다는 것을 증명한다. 제형에 AlPO4가 포함된 경우에 항체 반응이 더 컸지만, 통계적으로 유의하게 증가하지는 않았다.
두가지 13vPnC 제형을 사용하여 면역접종시킨 후에, 기능적 항체 반응을 또한 래빗에서 평가하였다 (표 4). 애쥬번트가 존재 또는 부재하는 백신 제형을 비교하였을 때, 13vPnC + AlPO4 백신 처리 그룹에서 더 높은 OPA GMT가 관찰되었다. 두 그룹에서 모든 백신 혈청형에 대해 4주차 혈청 풀(serum pool)에서 OPA 역가가 검출되었다. 대부분의 혈청형의 경우, 4주차 때 측정된 OPA 역가가 0주차(기저선)보다 적어도 4배 더 높았다.
각각의 13vPnC 백신 혈청형에 대한 속도론적 반응을 두 처리 그룹의 혈청 풀로부터 평가하였다. 0주차 및 1, 2, 3, 4, 8, 12, 26 및 39주차에 채취된 혈액으로부터 각 혈청형에 대한 IgG 역가를 측정한 다음, 비교하였다. 혈청형 1을 제외하고, 애쥬번트가 함유된 백신을 투여받은 동물에서의 항체 반응은, 애쥬번트가 함유되지 않은 백신을 투여받은 동물에서보다 더 높았고, 면역접종 계획의 2주차에 피크에 도달했다(데이터 제시되지 않음).
전체적으로, 상기 데이터는, 알루미늄 포스페이트와 함께 제형화된 13vPnC 백신이 래빗에서 면역원성이고, 백신에 함유된 폐렴구균 협막 다당류에 대해 실질적인 항체 반응을 유도하며, 이러한 반응이 기능 활성과 관련되어 있음을 나타낸다. 13vPnC + AlPO4를 사용하여 면역접종시킨 후 7개의 핵심 혈청형에 대해 관찰된 반응은, 7가 제형에 대한 래빗의 과거 반응과 일치한다.
Figure pat00003
Figure pat00004
연구 #HT01-0036
연구 #HT01-0036에서는, CRM197 단백질에 접합시키거나 접합시키지 않은 13vPnC 백신을 사용하여 면역접종시킨 후에, 백신에 함유된 다당류(PS)에 대한 래빗의 면역 반응을 비교하였다. 2.2㎍의 각 PS의 용량(예외: 4.4㎍의 6B)을 사용하여 0주차 및 2주차에 뉴질랜드 화이트 래빗을 근육내로 면역접종시켰다. 다음의 세가지 백신 제제 중 하나를 동물에 투여하였다: (a) 13vPnC (PS가 CRM197에 직접 접합됨), (b) 13vPnPS (유리 PS) 또는 (c) 13vPnPS + CRM197 (유리 PS를 CRM197과 혼합함). 모든 백신 제제에는 애쥬번트로서 AlPO4가 125㎍/용량으로 함유되었다.
모든 백신 제제에 대한 혈청형 특이적 면역 반응을 IgG ELISA 및 기능적 항체를 측정하는 보체-매개 OPA로 평가하였다. 처리 그룹 간에 면역 반응을 비교하였다.
표 5에는 4주차 혈액을 항원 특이적 IgG ELISA로 분석하여 수득한 GMT 데이터를 나타내고 있다. 추가적인 분석으로 0주차에 대한 4주차에서의 GMT 값의 비가 제시되어 있다. 상기 데이터는, 접합체 백신 제제가 유리 PS 또는 유리 PS + CRM197 백신보다 더 높은 혈청 IgG 역가를 유도하였음을 나타낸다. 에스.뉴모니애 14형을 제외하고, 13vPnC 백신은 OPA에서 에스.뉴모니애의 대표적인 균주에 대해 기능적 항체를 유도할 수 있었다 (표 6). 13vPnPS 또는 13vPnPS + CRM197 백신을 사용하여 2회 면역접종시킨 후, 측정된 13개의 혈청형 중 10개의 혈청형의 경우, 어느 것도 0주차와 비교하여 4주차 때 8배 이상의 OPA 역가를 유도하지 못했다 (표 6).
결론적으로, 이러한 결과는, 13가 폐렴구균 백신 다당류를 접합시키면, 유리 다당류를 단독으로 사용하거나 비접합 CRM197과 혼합시켰을 때보다 혈청 IgG 역가가 더 높아지고 전반적으로 기능적 항체 활성이 더 커진다는 것을 나타낸다.
Figure pat00005
Figure pat00006
전술한 논의 및 실시예는 단지 특정 양태의 상세한 설명을 나타낸다는 것을 이해해야 한다. 그러므로, 본 발명의 취지 및 범위로부터 벗어나지 않으면서 다양한 변형물 및 균등물이 가능하다는 것이 당업자에게는 명백할 것이다.
본 특허 출원에서 확인한 모든 저널 논문, 다른 참조문헌, 특허 및 특허 출원은 그 전문이 참조로서 인용된다.
참조문헌
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00010
34. 미국특허 제4,673,574호
35. 미국특허 제4,902,506호

Claims (9)

  1. 정제된 협막 폐렴구균 다당류가 운반체 단백질과 반응할 수 있도록 과요오드산나트륨 존재 하에서 산화에 의해 정제된 협막 폐렴구균 다당류를 화학적으로 활성화하는 단계 및
    나트륨 시아노보로하이드라이드의 첨가에 의해 상기 운반체 단백질에 상기 활성화된 다당류를 접합하여 당접합체를 형성하고, 상기 접합은 디메틸설폭사이드(DMSO)에서 수행되는 것인 단계
    를 포함하는, 폐렴구균 접합체의 제조방법.
  2. 제1항에 있어서, 협막 다당류가 스트렙토코커스 뉴모니애(Streptococcus pneumoniae) 혈청형 6A로부터 유래된 것인 방법.
  3. 제1항에 있어서, 협막 다당류가 스트렙토코커스 뉴모니애 혈청형 7F로부터 유래된 것인 방법.
  4. 제1항에 있어서, 협막 다당류가 스트렙토코커스 뉴모니애 혈청형 19A로부터 유래된 것인 방법.
  5. 제1항에 있어서, 협막 다당류가 스트렙토코커스 뉴모니애 혈청형 6B로부터 유래된 것인 방법.
  6. 제1항에 있어서, 협막 다당류가 스트렙토코커스 뉴모니애 혈청형 19F로부터 유래된 것인 방법.
  7. 제1항에 있어서, 협막 다당류가 스트렙토코커스 뉴모니애 혈청형 23F로부터 유래된 것인 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 운반체 단백질이 CRM197인 방법.
  9. 제1항 내지 제7항 중 어느 한 항에 있어서, 접합 후 다당류-단백질 접합체를 정제하는 방법.
KR1020197025300A 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물 KR102220506B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217005073A KR102378962B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66960505P 2005-04-08 2005-04-08
US60/669,605 2005-04-08
PCT/US2006/012354 WO2006110381A1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020177019847A Division KR102017842B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217005073A Division KR102378962B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물

Publications (2)

Publication Number Publication Date
KR20190104241A true KR20190104241A (ko) 2019-09-06
KR102220506B1 KR102220506B1 (ko) 2021-03-02

Family

ID=36709976

Family Applications (11)

Application Number Title Priority Date Filing Date
KR1020157012734A KR101730748B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020157012735A KR20150061019A (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020177019847A KR102017842B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020197025300A KR102220506B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020227009488A KR102564388B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020077025884A KR101298053B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020137007564A KR101588939B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020157012736A KR101730749B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020157012737A KR101730750B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020217005073A KR102378962B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020237026417A KR102611449B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020157012734A KR101730748B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020157012735A KR20150061019A (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020177019847A KR102017842B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물

Family Applications After (7)

Application Number Title Priority Date Filing Date
KR1020227009488A KR102564388B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020077025884A KR101298053B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020137007564A KR101588939B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020157012736A KR101730749B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020157012737A KR101730750B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020217005073A KR102378962B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물
KR1020237026417A KR102611449B1 (ko) 2005-04-08 2006-03-31 다가 폐렴구균 다당류-단백질 접합체 조성물

Country Status (29)

Country Link
US (9) US20060228380A1 (ko)
EP (9) EP4005595A1 (ko)
JP (3) JP4472770B2 (ko)
KR (11) KR101730748B1 (ko)
CN (6) CN102716480B (ko)
AR (2) AR053354A1 (ko)
AT (1) ATE548051T1 (ko)
AU (1) AU2006235013B2 (ko)
BR (1) BRPI0607025B8 (ko)
CA (4) CA2878579C (ko)
CL (2) CL2016000566A1 (ko)
CY (1) CY1112777T1 (ko)
DK (1) DK1868645T3 (ko)
ES (1) ES2382048T3 (ko)
HK (3) HK1120416A1 (ko)
HR (1) HRP20120278T1 (ko)
IL (5) IL308456A (ko)
ME (1) ME01334B (ko)
MX (3) MX2007012336A (ko)
MY (1) MY145150A (ko)
NZ (1) NZ562406A (ko)
PL (1) PL1868645T3 (ko)
PT (1) PT1868645E (ko)
RS (1) RS52249B (ko)
SA (1) SA06270323B1 (ko)
SI (1) SI1868645T1 (ko)
TW (3) TWI445545B (ko)
WO (1) WO2006110381A1 (ko)
ZA (1) ZA200709483B (ko)

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2878579C (en) 2005-04-08 2018-01-23 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
US7709001B2 (en) * 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US20070184072A1 (en) * 2005-04-08 2007-08-09 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
US7955605B2 (en) * 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
EP1896064A2 (en) 2005-06-27 2008-03-12 GlaxoSmithKline Biologicals S.A. Immunogenic composition
CN101378778B (zh) 2005-12-22 2013-02-06 葛兰素史密丝克莱恩生物有限公司 肺炎球菌多糖缀合物疫苗
GB0607088D0 (en) * 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
AU2013200552B9 (en) * 2006-04-07 2014-07-03 Glaxosmithkline Biologicals S.A. Conjugate vaccines
AU2012216628B9 (en) * 2006-04-26 2021-10-21 Wyeth Llc Novel Formulations which Stabilize and Inhibit Precipitation of Immunogenic Compositions
AU2016204760A1 (en) * 2006-04-26 2016-07-28 Wyeth Llc Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
TW200806315A (en) 2006-04-26 2008-02-01 Wyeth Corp Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
US8808707B1 (en) 2006-05-08 2014-08-19 Wyeth Llc Pneumococcal dosing regimen
PL2129693T3 (pl) * 2007-03-23 2017-07-31 Wyeth Llc Skrócony sposób oczyszczania do wytwarzania polisacharydów otoczkowych Streptococcus pneumoniae
WO2008129559A2 (en) 2007-04-23 2008-10-30 Serum Institute Of India Ltd Antigenic polysaccharides and process for their preparation
PE20090212A1 (es) * 2007-05-02 2009-03-30 Glaxosmithkline Biolog Sa Kit de vacuna para la inmunizacion primaria
JP2010531330A (ja) * 2007-06-26 2010-09-24 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 肺炎連鎖球菌莢膜多糖コンジュゲートを含むワクチン
GB0713880D0 (en) * 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
GB0818453D0 (en) * 2008-10-08 2008-11-12 Novartis Ag Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom
WO2009106085A1 (en) * 2008-02-28 2009-09-03 Nordic Vaccine A/S Vaccine compositions comprising saccharide antigens
US9125863B2 (en) * 2008-05-22 2015-09-08 Children's Medical Center Corporation Synergistic immunogenic fusion protein-polysaccharide conjugate
GB0822634D0 (en) 2008-12-11 2009-01-21 Novartis Ag Meningitis vaccines
EP2379734B1 (en) 2008-12-18 2018-03-21 Wyeth LLC Method for controlling streptococcus pneumoniae serotype 19a polysaccharide molecular weight
PL2385981T3 (pl) 2008-12-18 2020-01-31 Wyeth Llc Sposób kontroli masy cząsteczkowej polisacharydów streptococcus pneumoniae z zastosowaniem węgla
US20120070458A1 (en) 2009-03-24 2012-03-22 Novartis Ag Adjuvanting meningococcal factor h binding protein
NZ595291A (en) 2009-03-24 2013-08-30 Novartis Ag Combinations of meningococcal factor h binding protein and pneumococcal saccharide conjugates
ES2552153T3 (es) * 2009-04-30 2015-11-26 Coley Pharmaceutical Group, Inc. Vacuna neumocócica y usos de la misma
TW201136603A (en) * 2010-02-09 2011-11-01 Merck Sharp & Amp Dohme Corp 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
CN101785857B (zh) * 2010-03-05 2012-09-26 成都安特金生物技术有限公司 一种新的肺炎球菌结合疫苗及其制备方法
GB201003922D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Conjugation process
GB201003924D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Immunogenic composition
WO2011148382A1 (en) 2010-05-28 2011-12-01 Biological E Limited An improved process for the purification of capsular polysaccharides of haemophilus influenza - b, neisseria meningitis such as serotypes a, c, y and w-135, and other similar related capsular polysaccharides produced from both gram negative and gram positive microorganisms using aluminium phosphate with alcohol.
DK2575870T3 (en) 2010-06-04 2017-02-13 Wyeth Llc vaccine Formulations
EP2585106A1 (en) 2010-06-25 2013-05-01 Novartis AG Combinations of meningococcal factor h binding proteins
WO2012117377A1 (en) 2011-03-02 2012-09-07 Novartis Ag Combination vaccines with lower doses of antigen and/or adjuvant
KR101315599B1 (ko) * 2011-10-25 2013-10-10 건국대학교 산학협력단 폐렴균점막다당질 유형14 (cps14)와 호스래디시 퍼옥시다제의 당단백중합체
JP2015505309A (ja) 2011-12-29 2015-02-19 ノバルティス アーゲー 髄膜炎菌h因子結合タンパク質のアジュバントされた組み合わせ
US20150132339A1 (en) 2012-03-07 2015-05-14 Novartis Ag Adjuvanted formulations of streptococcus pneumoniae antigens
EP2822584A1 (en) 2012-03-08 2015-01-14 Novartis AG Combination vaccines with tlr4 agonists
KR102057217B1 (ko) * 2012-06-20 2020-01-22 에스케이바이오사이언스 주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
CN104487086B (zh) * 2012-07-07 2019-08-30 巴拉特生物技术国际有限公司 无动物源的不含酒精的疫苗组合物及其制备方法
DK2885007T3 (en) 2012-08-16 2018-12-03 Pfizer Methods for glycoconjugation and compositions
RU2015106930A (ru) 2012-09-06 2016-10-20 Новартис Аг Комбинированные вакцины с менингококком серогруппы в и к/д/с
MX363051B (es) * 2012-09-07 2019-03-06 Sk Bioscience Co Ltd Metodo para producir un polisacárido capsular con un serotipo de neumococo.
KR20140075196A (ko) 2012-12-11 2014-06-19 에스케이케미칼주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
KR20140075201A (ko) * 2012-12-11 2014-06-19 에스케이케미칼주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
CA2894260A1 (en) 2012-12-18 2014-06-26 Glaxosmithkline Biologicals S.A. Conjugates for protecting against diphtheria and/or tetanus
ITMI20130142A1 (it) 2013-01-31 2014-08-01 Biosynth Srl Vaccini glicoconiugati comprendenti unita' di base di un costrutto molecolare esprimente epitopi multipli incorporati
CN104151426A (zh) * 2013-05-14 2014-11-19 北京天成新脉生物技术有限公司 肺炎链球菌十三种荚膜多糖单克隆抗体及其应用
CN103495161B (zh) * 2013-10-08 2019-06-18 江苏康泰生物医学技术有限公司 一种多元肺炎球菌荚膜多糖-蛋白质结合物的混合物及其制备方法
RU2743793C1 (ru) 2014-01-21 2021-02-26 Пфайзер Инк. Капсульные полисахариды Streptococcus pneumoniae и их конъюгаты
AU2015208821B2 (en) * 2014-01-21 2017-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
AU2015208820B2 (en) 2014-01-21 2020-05-14 Pfizer Inc. Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
EP3443983B1 (en) 2014-02-14 2022-07-20 Pfizer Inc. Immunogenic glycoprotein conjugates
US9815886B2 (en) 2014-10-28 2017-11-14 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
DK3244917T3 (da) 2015-01-15 2023-05-22 Pfizer Immunogene sammensætninger til anvendelse i pneumokokvacciner
PE20180172A1 (es) * 2015-05-04 2018-01-22 Pfizer Conjugados proteina-polisacarido de estreptococo grupo b, metodos para producir conjugados, composiciones inmunogenas que comprenden conjugados y sus usos
ES2857474T3 (es) 2015-06-23 2021-09-29 Biological E Ltd Vacuna conjugada neumocócica multivalente
NZ739007A (en) 2015-07-21 2022-08-26 Pfizer Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
EP3347042A4 (en) * 2015-09-10 2019-02-20 Inventprise, LLC. MULTIVALENT CONJUGATES WITH VIRUSUAL PARTICLES
EP3377098A1 (en) 2015-11-20 2018-09-26 Pfizer Inc Immunogenic compositions for use in pneumococcal vaccines
JP7001687B2 (ja) 2016-08-05 2022-02-04 サノフィ パスツール インコーポレイティッド 多価肺炎球菌多糖体-タンパク質コンジュゲート組成物
MX2019001341A (es) 2016-08-05 2019-07-04 Sanofi Pasteur Inc Composicion de conjugado de polisacarido neumococico multivalente-proteina.
KR101991457B1 (ko) * 2016-09-06 2019-09-30 주식회사 엘지화학 다가 협막 다당류-운반 단백질을 포함하는 조성물 및 이의 용도
EP3518965A1 (en) * 2016-09-30 2019-08-07 Biological E Limited Multivalent pneumococcal vaccine compositions comprising polysaccharide-protein conjugates
US10751402B2 (en) 2016-11-09 2020-08-25 Pfizer Inc. Immunogenic compositions and uses thereof
US20180333484A1 (en) * 2016-12-30 2018-11-22 Sutrovax, Inc. Polypeptide-Antigen Conjugates with Non-Natural Amino Acids
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
ES2911490T3 (es) * 2017-01-20 2022-05-19 Pfizer Composiciones inmunogénicas para su uso en vacunas antineumocócicas
WO2018144439A1 (en) 2017-01-31 2018-08-09 Merck Sharp & Dohme Corp. Methods for making polysaccharide-protein conjugates
US20200222550A1 (en) 2017-01-31 2020-07-16 Merck Sharp & Dohme Corp. Methods for production of capsular polysaccharide protein conjugates from streptococcus pneumoniae serotype 19f
WO2018144799A1 (en) 2017-02-03 2018-08-09 SCHADECK, Eva, Barbara Haemophilus influenzae saccharide-carrier conjugate compositions and uses thereof
CA3050120A1 (en) 2017-02-24 2018-08-30 Merck Sharp & Dohme Corp. Enhancing immunogenicity of streptococcus pneumoniae polysaccharide-protein conjugates
CN110392690B (zh) * 2017-02-24 2024-01-30 默沙东有限责任公司 肺炎球菌缀合物疫苗制剂
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
KR102028693B1 (ko) * 2017-04-27 2019-10-04 주식회사 유바이오로직스 스트렙토코커스 뉴모니아 협막 다당체의 생산방법
EP3634481A4 (en) 2017-06-10 2021-07-21 Inventprise, LLC. MULTIVALENT CONJUGATE VACCINES WITH BIVALENT OR MULTIVALENT CONJUGATE POLYSACCHARIDES THAT CONFIRM ENHANCED IMMUNOGENICITY AND AVIDITY
US10729763B2 (en) 2017-06-10 2020-08-04 Inventprise, Llc Mixtures of polysaccharide-protein pegylated compounds
BR112019027387A8 (pt) 2017-06-23 2022-12-06 Univ Maryland Composições imunogênicas
EP3431168A1 (en) * 2017-07-19 2019-01-23 Bayer Aktiengesellschaft Élimination de médicament non lié après couplage conjugué anticorps-médicament
WO2019050813A1 (en) 2017-09-07 2019-03-14 Merck Sharp & Dohme Corp. ANTI-PNEUMOCOCCAL POLYSACCHARIDES AND THEIR USE IN IMMUNOGENIC CONJUGATES POLYSACCHARIDE-PROTEIN CARRIER
CA3074708A1 (en) 2017-09-07 2019-03-14 Merck Sharp & Dohme Corp. Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
BR112020004502A8 (pt) 2017-09-07 2022-11-01 Merck Sharp & Dohme Polissacarídeos pneumocócicos e uso dos mesmos em conjugados imunogênicos polissacarídeo-proteína carreadora
CN111065388A (zh) * 2017-09-07 2020-04-24 默沙东公司 肺炎球菌多糖及其在免疫原性多糖-载体蛋白缀合物中的用途
PE20201338A1 (es) 2017-12-06 2020-11-25 Merck Sharp & Dohme Composiciones que comprenden conjugados de polisacarido de streptococcus pneumoniae con proteina y metodos de uso de estos
IL276230B2 (en) 2018-02-05 2024-01-01 Sanofi Pasteur Inc A multivalent pneumococcal protein-polysaccharide conjugate preparation
IL276229B2 (en) * 2018-02-05 2024-01-01 Sanofi Pasteur Inc A multivalent pneumococcal protein-polysaccharide conjugate preparation
CN111989114A (zh) * 2018-04-18 2020-11-24 Sk生物科学株式会社 肺炎链球菌的荚膜多糖以及其免疫原性缀合物
US20210236646A1 (en) * 2018-04-30 2021-08-05 Merck Sharp & Dohme Corp. Methods for producing streptococcus pneumoniae capsular polysaccharide carrier protein conjugates from lyospheres
EP3788143B1 (en) 2018-04-30 2023-06-28 Merck Sharp & Dohme LLC Methods for providing a homogenous solution of lyophilized mutant diptheria toxin in dimethylsulfoxide
WO2019220304A1 (en) * 2018-05-14 2019-11-21 Tergene Biotech Pvt. Ltd. 15 valent pneumococcal polysaccharide conjugate vaccine
WO2020010000A1 (en) 2018-07-04 2020-01-09 Sutrovax, Inc. Improved methods for the preparation of immunogenic conjugates
WO2020010016A1 (en) 2018-07-04 2020-01-09 Sutrovax, Inc. Self-adjuvanted immunogenic conjugates
EP3817775A1 (en) 2018-07-04 2021-05-12 Vaxcyte, Inc. Improvements in immunogenic conjugates
US11260119B2 (en) 2018-08-24 2022-03-01 Pfizer Inc. Escherichia coli compositions and methods thereof
BR112021004193A2 (pt) * 2018-09-12 2021-05-25 Affinivax, Inc. vacinas pneumocócicas multivalentes
WO2020075201A1 (en) * 2018-10-12 2020-04-16 Biological E Limited Multivalent pneumococcal polysaccharide-protein conjugate vaccine
EP3893926A1 (en) 2018-12-12 2021-10-20 Pfizer Inc. Immunogenic multiple hetero-antigen polysaccharide-protein conjugates and uses thereof
AU2019401535B2 (en) 2018-12-19 2023-12-14 Merck Sharp & Dohme Llc Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
JP7239509B6 (ja) 2019-02-22 2023-03-28 ファイザー・インク 細菌多糖類を精製するための方法
CA3136278A1 (en) 2019-04-10 2020-10-15 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
CN110302375A (zh) * 2019-06-27 2019-10-08 康希诺生物股份公司 一种糖缀合物及其用途
CN114728050A (zh) 2019-07-31 2022-07-08 圣诺菲·帕斯图尔公司 多价肺炎球菌多糖-蛋白质缀合物组合物及其使用方法
CN112741901A (zh) * 2019-10-31 2021-05-04 北京科兴中维生物技术有限公司 一种含有5型肺炎链球菌荚膜多糖的疫苗及其制备方法
WO2021084429A1 (en) 2019-11-01 2021-05-06 Pfizer Inc. Escherichia coli compositions and methods thereof
AU2021207701A1 (en) * 2020-01-17 2022-09-15 Bill & Melinda Gates Foundation Multivalent Streptococcus vaccines
IL295713A (en) 2020-02-21 2022-10-01 Pfizer Isolation of saccharides
PE20230170A1 (es) 2020-02-23 2023-02-01 Pfizer Composiciones de escherichia coli y sus metodos
AU2021332183A1 (en) 2020-08-26 2023-03-02 Pfizer Inc. Group B streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
GB202016165D0 (en) 2020-10-12 2020-11-25 Optivalent Ltd Vaccine
US20230383324A1 (en) 2020-10-22 2023-11-30 Pfizer Inc. Methods for purifying bacterial polysaccharides
PE20231934A1 (es) 2020-10-27 2023-12-01 Pfizer Composiciones de escherichia coli y metodos de las mismas
JP2022075575A (ja) 2020-11-04 2022-05-18 ファイザー・インク 肺炎球菌ワクチンにおける使用のための免疫原性組成物
CA3200968A1 (en) 2020-11-10 2022-05-19 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US20220202923A1 (en) 2020-12-23 2022-06-30 Pfizer Inc. E. coli fimh mutants and uses thereof
KR102610292B1 (ko) * 2021-02-10 2023-12-04 에스케이바이오사이언스(주) 스트랩토코커스 뉴모니애 다당류와 운반체 단백질의 접합체 제조 방법
WO2022234416A1 (en) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination against pneumoccocal and covid-19 infections
EP4333879A1 (en) 2021-05-03 2024-03-13 Pfizer Inc. Vaccination against bacterial and betacoronavirus infections
BR112023023671A2 (pt) 2021-05-28 2024-02-06 Pfizer Composições imunogênicas compreendendo antígenos de sacarídeo capsular conjugados e usos dos mesmos
US20220387576A1 (en) 2021-05-28 2022-12-08 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
CN114106210A (zh) * 2021-11-09 2022-03-01 北京智飞绿竹生物制药有限公司 一种23价肺炎球菌多糖疫苗的生产工艺
WO2023135515A1 (en) 2022-01-13 2023-07-20 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
GB2614916A (en) 2022-01-25 2023-07-26 Optivalent Ltd Intradermal vaccine complement
WO2023161817A1 (en) 2022-02-25 2023-08-31 Pfizer Inc. Methods for incorporating azido groups in bacterial capsular polysaccharides
WO2023218322A1 (en) 2022-05-11 2023-11-16 Pfizer Inc. Process for producing of vaccine formulations with preservatives
WO2024062494A1 (en) 2022-09-19 2024-03-28 Biological E Limited Method for the purification of capsular polysaccharides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006838A1 (en) * 1986-05-05 1987-11-19 Praxis Biologics, Inc. Immunogenic conjugates
US6168796B1 (en) * 1995-06-07 2001-01-02 Alberta Research Council Immunostimulating activity of Streptococcus pneumoniae serotype 8 oligosaccharides

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US37741A (en) 1863-02-24 Improvement in bee-hives
US4097666A (en) 1976-04-29 1978-06-27 The Institute Of Paper Chemistry Solvent system for polysaccharides
CA1115210A (en) 1977-11-28 1981-12-29 Dennis J. Carlo Pneumococcal vaccine
US4372945A (en) 1979-11-13 1983-02-08 Likhite Vilas V Antigen compounds
US4356170A (en) 1981-05-27 1982-10-26 Canadian Patents & Development Ltd. Immunogenic polysaccharide-protein conjugates
BE889979A (fr) 1981-08-14 1982-02-15 Smith Kline Rit Procede de preparation de polysaccharides bacteriens capsulaires antigeniques purifies, produits obtenus et leur utilisation
US5360897A (en) * 1981-08-31 1994-11-01 The University Of Rochester Immunogenic conjugates of streptococcus pneumonial capsular polymer and toxin or in toxiad
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
US5097020A (en) 1983-07-05 1992-03-17 The University Of Rochester Immunogenic conjugates
US4619828A (en) 1982-07-06 1986-10-28 Connaught Laboratories, Inc. Polysaccharide exotoxoid conjugate vaccines
CH660375A5 (it) 1983-02-08 1987-04-15 Sclavo Spa Procedimento per la produzione di proteine correlate alla tossina difterica.
US4761283A (en) * 1983-07-05 1988-08-02 The University Of Rochester Immunogenic conjugates
US4762713A (en) * 1983-07-05 1988-08-09 The University Of Rochester Boosting of immunogenic conjugate vaccinations by unconjugated bacterial capsular polymers
US4808700A (en) * 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
IT1187753B (it) 1985-07-05 1987-12-23 Sclavo Spa Coniugati glicoproteici ad attivita' immunogenica trivalente
US5110908A (en) 1986-12-31 1992-05-05 Praxis Biologics, Inc. Haemophilus influenzae peptides and proteins
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
ATE110965T1 (de) 1989-03-09 1994-09-15 Praxis Biolog Inc Impfstoffe gegen hämophilus influenzae.
HU212924B (en) 1989-05-25 1996-12-30 Chiron Corp Adjuvant formulation comprising a submicron oil droplet emulsion
SE466259B (sv) 1990-05-31 1992-01-20 Arne Forsgren Protein d - ett igd-bindande protein fraan haemophilus influenzae, samt anvaendning av detta foer analys, vacciner och uppreningsaendamaal
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
CA2059693C (en) * 1991-01-28 2003-08-19 Peter J. Kniskern Polysaccharide antigens from streptococcus pneumoniae
CA2059692C (en) * 1991-01-28 2004-11-16 Peter J. Kniskern Pneumoccoccal polysaccharide conjugate vaccine
IL101715A (en) 1991-05-02 2005-06-19 Amgen Inc Recombinant dna-derived cholera toxin subunit analogs
US5552146A (en) 1991-08-15 1996-09-03 Board Of Regents, The University Of Texas System Methods and compositions relating to useful antigens of Moraxella catarrhalis
US5769047A (en) 1991-12-23 1998-06-23 Zoche; Michael Engine with oil separator
IT1253009B (it) 1991-12-31 1995-07-10 Sclavo Ricerca S R L Mutanti immunogenici detossificati della tossina colerica e della tossina lt, loro preparazione ed uso per la preparazione di vaccini
DE69434079T2 (de) 1993-03-05 2005-02-24 Wyeth Holdings Corp. Plasmid zur Herstellung von CRM-Protein und Diphtherie-Toxin
NZ274376A (en) 1993-09-22 1997-11-24 Jackson H M Found Military Med Activating soluble carbohydrate using cyanylating reagents for the production of immunogenic constructs
US5712118A (en) 1993-09-29 1998-01-27 Research Foundation Of State University Of New York Vaccine for branhamella catarrhalis
US5770213A (en) 1994-05-05 1998-06-23 American Cyanamid Company Purified nontypable haemophilus influenzae P5 protein as a vaccine for nontypable haemophilus influenzae infection
US5607846A (en) 1994-05-17 1997-03-04 Research Foundation Of State University Of New York Vaccine for moraxella catarrhalis
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5643725A (en) 1994-07-19 1997-07-01 American Cyanamid Company Sequence and analysis of LKP pilin structural genes and the LKP pili operon of nontypable haemophilus influenzae
US5565204A (en) 1994-08-24 1996-10-15 American Cyanamid Company Pneumococcal polysaccharide-recombinant pneumolysin conjugate vaccines for immunization against pneumococcal infections
US6676948B2 (en) 1994-08-25 2004-01-13 Washington University Haemophilus adherence and penetration proteins
US6245337B1 (en) 1994-08-25 2001-06-12 Washington University Haemophilus adherence and penetration proteins
US5714354A (en) 1995-06-06 1998-02-03 American Home Products Corporation Alcohol-free pneumococcal polysaccharide purification process
US7341727B1 (en) 1996-05-03 2008-03-11 Emergent Product Development Gaithersburg Inc. M. catarrhalis outer membrane protein-106 polypeptide, methods of eliciting an immune response comprising same
WO1998004703A1 (en) 1996-07-26 1998-02-05 American Cyanamid Company THE NucA PROTEIN OF HAEMOPHILUS INFLUENZAE AND THE GENE ENCODING THAT PROTEIN
KR100615109B1 (ko) 1996-12-20 2006-08-22 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 모렉셀라 카타르할리스의 uspa1, uspa2 항원
ATE335761T1 (de) 1997-01-31 2006-09-15 Wyeth Corp Das 74 kilodalton protein der äusseren membran von moraxella catarrhalis
US6113918A (en) 1997-05-08 2000-09-05 Ribi Immunochem Research, Inc. Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
FR2763244B1 (fr) 1997-05-14 2003-08-01 Pasteur Merieux Serums Vacc Composition vaccinale multivalente a porteur mixte
JP4435413B2 (ja) * 1997-12-23 2010-03-17 バクスター・ヘルスケヤー・ソシエテ・アノニム ワクチンとしてまたは結合体ワクチンとしてタンパク質に連結して使用するための細菌莢膜多糖の抽出および単離法
BR9907884A (pt) * 1998-02-12 2000-10-24 American Cyanamid Co Composição de vacina, processos para gerar uma resposta imune em um antìgeno pneumocócico, para aumentar resposta de ifn-gama em uma vacina pneumocócica, e para gerar anticorpos de fixação complementar para uma resposta protetora a um patógeno, composição imunogênica, e, processo para gerar uma resposta imune em um antìgeno meningocócico
US7018637B2 (en) 1998-02-23 2006-03-28 Aventis Pasteur, Inc Multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
CA2233725A1 (en) * 1998-03-31 1999-09-30 Hemosol Inc. Hemoglobin-hydroxyethyl starch complexes
US7227011B2 (en) 1998-06-04 2007-06-05 United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
CN1352691A (zh) 1998-09-24 2002-06-05 美国明尼苏达州大学 来自肺炎链球菌的人补体c3降解性多肽
IL142231A0 (en) 1998-09-30 2002-03-10 American Cyanamid Co Mutant cholera holotoxin as an adjuvant
EP1034792A1 (en) 1999-03-11 2000-09-13 Pasteur Merieux Serums Et Vaccins Intranasal delivery of pneumococcal polysaccharide vaccines
EP1035137A1 (en) 1999-03-12 2000-09-13 Pasteur Merieux Serums Et Vaccins Method for the reductive amination of polysaccharides
GB9909077D0 (en) * 1999-04-20 1999-06-16 Smithkline Beecham Biolog Novel compositions
SI1163000T1 (sl) * 1999-03-19 2008-06-30 Glaxosmithkline Biolog Sa Vakcina proti antigenom iz bakterij
MXPA01013253A (es) 1999-06-25 2002-06-04 American Cyanamid Co Produccion de la forma lipidica de las lipoproteinas asociadas a los peptidoglicanos de bacterias gram negativas.
GB0011108D0 (en) 2000-05-08 2000-06-28 Microscience Ltd Virulence gene and protein and their use
GB0012079D0 (en) 2000-05-18 2000-07-12 Microscience Ltd Virulence gene and protein, and their use
US20030180316A1 (en) * 2000-06-29 2003-09-25 Dominique Boutriau Multivalent vaccine composition
GB0108364D0 (en) 2001-04-03 2001-05-23 Glaxosmithkline Biolog Sa Vaccine composition
GB0020952D0 (en) 2000-08-24 2000-10-11 Microscience Ltd Genes and proteins and their uses
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
TW546250B (en) 2000-12-13 2003-08-11 Sca Hygiene Prod Zeist Bv Recovery process for spent periodate
IL155726A0 (en) 2000-12-28 2003-11-23 Wyeth Corp Recombinant protective protein from streptococcus pneumoniae
EP1572868A4 (en) 2001-04-16 2007-04-04 Wyeth Corp NOVEL OPEN READING FRAMES OF STREPTOCOCCUS PNEUMONIAE ENCODING POLYPEPTIDE ANTIGENS AND USES THEREOF
EP1404368B1 (en) 2001-06-07 2009-12-09 Wyeth Holdings Corporation Mutant forms of cholera holotoxin as an adjuvant
CN1541111A (zh) 2001-06-07 2004-10-27 ���Ͽع����޹�˾ 作为佐剂的霍乱全毒素的突变形式
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
AU2002330681C1 (en) 2001-07-26 2015-04-02 Glaxosmithkline Biologicals S.A. Vaccines comprising aluminium adjuvants and histidine
MX339524B (es) 2001-10-11 2016-05-30 Wyeth Corp Composiciones inmunogenicas novedosas para la prevencion y tratamiento de enfermedad meningococica.
CA2473883A1 (en) 2001-11-29 2003-06-12 Wyeth Holdings Corporation Alloiococcus otitidis open reading frames (orfs) encoding polypeptide antigens, immunogenic compositions and uses thereof
GB0130215D0 (en) * 2001-12-18 2002-02-06 Glaxosmithkline Biolog Sa Vaccine
KR100981471B1 (ko) 2002-03-15 2010-09-10 더 큐레이터스 오브 더 유니버시티 오브 미주리 효소 활성이 감소된 형별불능 헤모필러스 인플루엔자의p4 변형 단백질
AU2002309259A1 (en) 2002-05-09 2003-11-11 Massimo Porro Improved polysaccharide and glycoconjugate vaccines_____________
AU2003257003A1 (en) * 2002-07-30 2004-02-16 Baxter Healthcare S.A. Chimeric multivalent polysaccharide conjugate vaccines
EP1549135A4 (en) 2002-09-20 2006-01-11 Us Agriculture VACCINE AND ADJUVANT COMPOSITIONS
FR2850106B1 (fr) 2003-01-17 2005-02-25 Aventis Pasteur Conjugues obtenus par amination reductrice du polysaccharide capsulaire du pneumocoque de serotype 5
CA2519511A1 (en) 2003-03-17 2004-09-30 Wyeth Holdings Corporation Mutant cholera holotoxin as an adjuvant and an antigen carrier protein
CA2522751A1 (en) 2003-04-16 2004-11-04 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
CN1241937C (zh) * 2003-07-04 2006-02-15 上海健益科技发展有限公司 多价肺炎球菌多糖结合疫苗
EP2366404B1 (en) 2003-08-06 2014-11-19 The Government of The United States of America, as represented by The Secretary, Department of Health and Human Services Polysaccharide-protein conjugate vaccines
ATE460498T1 (de) 2003-09-11 2010-03-15 Staat Der Nederlanden Vert Doo Verfahren zur herstellung eines kapselpolysaccharids zur verwendung in konjugat- impfstoffen
FR2857364B1 (fr) 2003-12-08 2005-09-23 Aventis Pasteur Dosage des acides techoiques des bacteries gram+
AU2004299501B2 (en) 2003-12-17 2010-12-23 Wyeth Llc Immunogenic peptide carrier conjugates and methods of producing same
US20060022838A1 (en) 2004-07-27 2006-02-02 Fisher Richard A Speed limit indicia for traffic signals
CA2878579C (en) * 2005-04-08 2018-01-23 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
US7955605B2 (en) 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US7709001B2 (en) 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US20070184072A1 (en) 2005-04-08 2007-08-09 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
CN101378778B (zh) 2005-12-22 2013-02-06 葛兰素史密丝克莱恩生物有限公司 肺炎球菌多糖缀合物疫苗
CA2664799C (en) 2006-09-29 2016-01-05 Japan Poliomyelitis Research Institute Ipv-dpt vaccine
JP2010531330A (ja) 2007-06-26 2010-09-24 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 肺炎連鎖球菌莢膜多糖コンジュゲートを含むワクチン
CA2710600C (en) 2007-12-24 2017-06-06 Id Biomedical Corporation Of Quebec Recombinant rsv antigens
TW201136603A (en) 2010-02-09 2011-11-01 Merck Sharp & Amp Dohme Corp 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
KR102057217B1 (ko) 2012-06-20 2020-01-22 에스케이바이오사이언스 주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
KR20140075196A (ko) 2012-12-11 2014-06-19 에스케이케미칼주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
KR20140075201A (ko) 2012-12-11 2014-06-19 에스케이케미칼주식회사 다가 폐렴구균 다당류-단백질 접합체 조성물
AU2015208821B2 (en) 2014-01-21 2017-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
CA3050120A1 (en) * 2017-02-24 2018-08-30 Merck Sharp & Dohme Corp. Enhancing immunogenicity of streptococcus pneumoniae polysaccharide-protein conjugates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006838A1 (en) * 1986-05-05 1987-11-19 Praxis Biologics, Inc. Immunogenic conjugates
US6168796B1 (en) * 1995-06-07 2001-01-02 Alberta Research Council Immunostimulating activity of Streptococcus pneumoniae serotype 8 oligosaccharides

Also Published As

Publication number Publication date
US11191830B2 (en) 2021-12-07
IL267125A (en) 2019-08-29
MX2007012336A (es) 2007-11-21
CN113198012A (zh) 2021-08-03
KR101298053B1 (ko) 2013-08-20
CA2986862C (en) 2022-09-27
NZ562406A (en) 2009-09-25
KR101730750B1 (ko) 2017-04-26
EP1868645B1 (en) 2012-03-07
TW201438734A (zh) 2014-10-16
US20210283247A1 (en) 2021-09-16
US8808708B2 (en) 2014-08-19
JP2008535838A (ja) 2008-09-04
KR102564388B1 (ko) 2023-08-08
AU2006235013B2 (en) 2011-11-03
IL228035A0 (en) 2013-09-30
SI1868645T1 (sl) 2012-04-30
CA2604363A1 (en) 2006-10-19
IL308456A (en) 2024-01-01
MX2019008863A (es) 2019-09-13
CN101180079B (zh) 2012-07-18
CN108404126A (zh) 2018-08-17
JP5173920B2 (ja) 2013-04-03
KR20220042483A (ko) 2022-04-05
EP2425851A1 (en) 2012-03-07
CL2017002206A1 (es) 2018-03-23
KR20210022768A (ko) 2021-03-03
CL2016000566A1 (es) 2016-10-28
KR102378962B1 (ko) 2022-03-28
JP2009161567A (ja) 2009-07-23
KR102611449B1 (ko) 2023-12-06
EP2425854A1 (en) 2012-03-07
DK1868645T3 (da) 2012-04-10
US20140314805A1 (en) 2014-10-23
TW200719911A (en) 2007-06-01
IL267125B (en) 2021-05-31
US10716848B2 (en) 2020-07-21
HK1213184A1 (zh) 2016-06-30
KR20150061020A (ko) 2015-06-03
US20120237542A1 (en) 2012-09-20
US9981035B2 (en) 2018-05-29
EP1868645A1 (en) 2007-12-26
EP2425856A1 (en) 2012-03-07
PL1868645T3 (pl) 2012-07-31
HRP20120278T1 (hr) 2012-04-30
KR20130048262A (ko) 2013-05-09
KR20150061019A (ko) 2015-06-03
RS52249B (en) 2012-10-31
ATE548051T1 (de) 2012-03-15
CN108404126B (zh) 2022-10-18
JP4472770B2 (ja) 2010-06-02
AR053354A1 (es) 2007-05-02
KR101588939B1 (ko) 2016-01-26
CN102716480A (zh) 2012-10-10
TWI511739B (zh) 2015-12-11
MX358148B (es) 2018-08-07
CN113198013B (zh) 2024-02-20
CN104815327A (zh) 2015-08-05
PT1868645E (pt) 2012-05-17
MY145150A (en) 2011-12-30
BRPI0607025A2 (pt) 2009-07-28
EP3311836A1 (en) 2018-04-25
KR20150061021A (ko) 2015-06-03
AR107018A2 (es) 2018-03-14
US20200179508A1 (en) 2020-06-11
HK1120416A1 (en) 2009-04-03
EP2425852A1 (en) 2012-03-07
CA2604363C (en) 2015-06-16
AU2006235013A1 (en) 2006-10-19
US8895024B2 (en) 2014-11-25
KR102220506B1 (ko) 2021-03-02
TWI386222B (zh) 2013-02-21
KR20230118200A (ko) 2023-08-10
CA3165042A1 (en) 2006-10-19
TW201212937A (en) 2012-04-01
CA2878579A1 (en) 2006-10-19
US20180250390A1 (en) 2018-09-06
US20190388537A1 (en) 2019-12-26
CN102716480B (zh) 2023-03-21
KR101730748B1 (ko) 2017-04-26
BRPI0607025B8 (pt) 2021-05-25
TWI445545B (zh) 2014-07-21
BRPI0607025B1 (pt) 2019-11-12
HK1257962A1 (zh) 2019-11-01
JP2013006881A (ja) 2013-01-10
CN101180079A (zh) 2008-05-14
IL186367A0 (en) 2008-01-20
US9399060B2 (en) 2016-07-26
KR20170086139A (ko) 2017-07-25
CY1112777T1 (el) 2016-02-10
KR102017842B1 (ko) 2019-09-03
US10780160B2 (en) 2020-09-22
US20060228380A1 (en) 2006-10-12
US20160158345A1 (en) 2016-06-09
IL282638A (en) 2021-06-30
EP2425855A1 (en) 2012-03-07
IL186367A (en) 2013-09-30
CA2878579C (en) 2018-01-23
KR101730749B1 (ko) 2017-04-26
KR20070118700A (ko) 2007-12-17
CN113198013A (zh) 2021-08-03
EP4005595A1 (en) 2022-06-01
ZA200709483B (en) 2009-03-25
KR20150061018A (ko) 2015-06-03
EP2425853A1 (en) 2012-03-07
ES2382048T3 (es) 2012-06-04
CA2986862A1 (en) 2006-10-19
WO2006110381A1 (en) 2006-10-19
US20090130137A1 (en) 2009-05-21
ME01334B (me) 2013-12-20
JP5730261B2 (ja) 2015-06-03
SA06270323B1 (ar) 2010-10-05

Similar Documents

Publication Publication Date Title
KR102017842B1 (ko) 다가 폐렴구균 다당류-단백질 접합체 조성물
KR101511393B1 (ko) 다가 폐렴구균 다당류-단백질 접합체 조성물
KR101511392B1 (ko) 다가 폐렴구균 다당류-단백질 접합체 조성물
KR20090094163A (ko) 다가 폐렴구균 다당류-단백질 접합체 조성물
AU2018213968A1 (en) Multivalent pneumococcal polysaccharide-protein conjugate composition

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right