KR20180024532A - 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 - Google Patents
리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- KR20180024532A KR20180024532A KR1020160110913A KR20160110913A KR20180024532A KR 20180024532 A KR20180024532 A KR 20180024532A KR 1020160110913 A KR1020160110913 A KR 1020160110913A KR 20160110913 A KR20160110913 A KR 20160110913A KR 20180024532 A KR20180024532 A KR 20180024532A
- Authority
- KR
- South Korea
- Prior art keywords
- secondary battery
- separator
- sulfonic acid
- lithium secondary
- acid group
- Prior art date
Links
Images
Classifications
-
- H01M2/1686—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H01M2/145—
-
- H01M2/1653—
-
- H01M2/166—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y02E60/122—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
다공성 기재, 및 상기 다공성 기재의 적어도 일면에 위치하는 내열 다공층을 포함하고, 상기 내열 다공층은 설폰산기 함유 폴리설폰을 포함하는 리튬 이차 전지용 분리막, 상기 분리막의 제조 방법, 및 상기 분리막을 포함하는 리튬 이차 전지에 관한 것이다.
Description
리튬 이차 전지용 분리막, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
전기 화학 전지용 분리막은 전지 내에서 양극과 음극을 격리하면서 이온 전도도를 지속적으로 유지시켜 주어 전지의 충전과 방전이 가능하게 하지만 낮은 온도에서의 용융 특성으로 인해 기계적으로 수축되거나 손상을 입게 된다. 이 경우 양극과 음극이 서로 접촉하여 전지가 발화되는 현상이 일어나기도 한다. 이러한 문제를 극복하기 위해 고온에서 분리막이 수축하는 것을 억제하는 기술이 필요하다. 분리막의 수축을 억제하는 대표적인 방법으로는 열적 저항이 큰 무기입자를 접착성이 있는 유기 바인더와 혼합하여 분리막에 코팅함으로써, 분리막의 열적 저항성을 높이는 방법이 있다.
이와 같이 의도하지 않은 환경에서 전지 내부의 온도가 과도하게 상승하여도 분리막이 수축되지 않도록 하여 양극과 음극이 직접적으로 접촉되는 현상을 억제함으로써 전지의 안전성을 향상시키고, 동시에 분리막의 접착력과 가공성 등을 개선하는 연구가 활발히 진행되고 있다.
한편, 대용량 전지에 대한 개발이 요구되면서 분리막의 역할이 증대되었다. 대용량 전지에서 분리막은 높은 열적 안정성을 가져야 할 뿐만 아니라 전지의 전기화학적 안전성과 성능을 개선할 수 있도록 설계될 것이 요구되고 있다.
양극에서 용출된 금속 이온을 효과적으로 포착하여 상기 금속 이온이 음극에 침적되는 문제를 방지할 수 있고, 내열성이 뛰어난 분리막과 이의 제조 방법을 제공한다. 또한 상기 분리막을 포함하여, 안전성과 수명 특성 등의 성능이 향상된 리튬 이차 전지를 제공한다.
일 구현예에서는 다공성 기재, 및 상기 다공성 기재의 적어도 일면에 위치하는 내열 다공층을 포함하고, 상기 내열 다공층은 설폰산기 함유 폴리설폰을 포함하는 리튬 이차 전지용 분리막 제공한다.
일 구현예에서는 설폰산기 함유 폴리설폰을 저비점 용매에 나노 사이즈로 분산시켜 나노 분산액을 준비하고, 상기 나노 분산액을 다공성 기재의 적어도 일면에 적용하고, 상기 다공성 기재의 적어도 일면에 설폰산기 함유 폴리설폰을 포함하는 내열 다공층이 형성된 분리막을 수득하는 것을 포함하는 리튬 이차 전지용 분리막의 제조 방법을 제공한다.
일 구현예에서는 양극, 음극, 및 상기 양극과 상기 음극 사이에 위치하는 상기 분리막을 포함하는 리튬 이차 전지를 제공한다.
일 구현예에 따른 리튬 이차 전지용 분리막은 양극에서 용출된 금속 이온을 효과적으로 포착하여 상기 금속 이온이 음극에 침적되는 문제를 방지할 수 있고, 내열성이 뛰어나다. 상기 분리막을 포함하는 리튬 이차 전지는 안전성과 수명 특성 등의 성능이 우수하다.
도 1은 일 구현예에 따른 리튬 이차 전지용 분리막의 단면을 보여주는 도면이다.
도 2는 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다.
도 3은 실시예 1에서 제조한 리튬 이차 전지용 분리막의 일면에 대한 주사전자현미경 사진이다.
도 4는 실시예 2에서 제조한 리튬 이차 전지용 분리막의 일면에 대한 주사전자현미경 사진이다.
도 5는 제조예 1 및 비교제조예 1에서 제조한 리튬 이차 전지의 수명 특성을 보여주는 그래프이다.
도 6은 제조예 2 및 비교제조예 4에서 제조한 리튬 이차 전지의 수명 특성을 보여주는 그래프이다.
도 2는 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다.
도 3은 실시예 1에서 제조한 리튬 이차 전지용 분리막의 일면에 대한 주사전자현미경 사진이다.
도 4는 실시예 2에서 제조한 리튬 이차 전지용 분리막의 일면에 대한 주사전자현미경 사진이다.
도 5는 제조예 1 및 비교제조예 1에서 제조한 리튬 이차 전지의 수명 특성을 보여주는 그래프이다.
도 6은 제조예 2 및 비교제조예 4에서 제조한 리튬 이차 전지의 수명 특성을 보여주는 그래프이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
이하 일 구현예에 따른 이차 전지용 분리막을 설명한다. 도 1은 일 구현예에 따른 이차 전지용 분리막의 단면을 보여주는 도면이다. 도 1을 참고하면, 일 구현예에 따른 이차 전지용 분리막(10)은 다공성 기재(20), 그리고 다공성 기재(20)의 일면 또는 양면에 위치하는 내열 다공층(30)을 포함한다.
상기 다공성 기재(20)는 다수의 기공을 가지며 통상 전기화학소자에 사용되는 기재일 수 있다. 다공성 기재는 비제한적으로 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리에테르에테르케톤, 폴리아릴에테르케톤, 폴리에테르이미드, 폴리아미드이미드, 폴리벤즈이미다졸, 폴리에테르설폰, 폴리페닐렌옥사이드, 사이클릭 올레핀 코폴리머, 폴리페닐렌설파이드, 폴리에틸렌나프탈레이트, 유리 섬유, 테프론, 및 폴리테트라플루오로에틸렌으로 이루어진 군으로부터 선택된 어느 하나의 고분자, 또는 이들 중 2종 이상의 공중합체 또는 혼합물로 형성된 고분자막일 수 있다.
상기 다공성 기재는 일 예로 폴리올레핀을 포함하는 폴리올레핀계 기재일 수 있고, 상기 폴리올레핀계 기재는 셧 다운(shut down) 기능이 우수하여 전지의 안전성 향상에 기여할 수 있다. 상기 폴리올레핀계 기재는 예를 들어 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌/폴리프로필렌 이중막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중막 및 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중막에서 선택될 수 있다. 또한, 상기 폴리올레핀계 수지는 올레핀 수지 외에 비올레핀 수지를 포함하거나, 올레핀과 비올레핀 모노머의 공중합체를 포함할 수 있다.
상기 다공성 기재는 약 1 ㎛ 내지 40 ㎛의 두께를 가질 수 있으며, 예컨대 1 ㎛ 내지 30 ㎛, 1 ㎛ 내지 20 ㎛, 5 ㎛ 내지 15 ㎛, 또는 5 ㎛ 내지 10 ㎛의 두께를 가질 수 있다.
일 구현예에 따른 내열 다공층(30)은 설폰산기 함유 폴리설폰(sulfonated polysulfone)을 포함한다. 상기 설폰산기는 -SO3H, -SO3 -, 또는 -SO3 -M+ 등을 의미하고, 여기서 M+은 Li+, Na+, K+, Rb+, NH4 + 등 1가 양이온 원소 또는 화합물이다. 상기 폴리설폰은 주쇄에 설폰기, 즉 -S(=O)2- 를 포함하고 있는 폴리머를 말한다. 상기 설폰산기 함유 폴리설폰은 주쇄에 설폰기를 가지고 있고 설폰산기가 도입된 구조의 폴리머를 의미할 수 있다.
상기 리튬 이차 전지용 분리막의 내열 다공층(30)에서, 상기 설폰산기 함유 폴리설폰은 -SO2- 결합을 가지는 폴리설폰 주쇄를 가짐으로써 우수한 내열성을 구현할 수 있고, 또한 설폰산기를 포함함으로써, 양극에서 용출되는 금속 이온을 효과적으로 포착하여 상기 금속 이온이 음극에 침적되는 문제를 방지할 수 있어, 리튬 이차 전지의 안전성과 성능을 획기적으로 개선할 수 있다.
일 예로, 니켈을 포함하는 양극 활물질을 적용한 대용량 리튬 이차 전지의 경우, 양극에서 용출된 니켈 이온이 음극에 침적되어 전지의 성능이 저하되는 문제가 발생한다. 이러한 전지에 일 구현예에 따른 분리막을 적용할 경우, 상기 분리막은 용출된 니켈 이온을 효과적으로 포착(trap)함으로써 상기 니켈 이온이 음극에 침적되는 문제를 방지할 수 있고, 우수한 내열성도 확보할 수 있다. 이에 따라 대용량 전지의 안전성과 성능이 개선될 수 있다.
상기 설폰산기 함유 폴리설폰은 일 예로 하기 화학식 1로 표시되는 단위를 포함할 수 있다.
[화학식 1]
상기 화학식 1에서, a 및 b는 각각 독립적으로 0 내지 4의 수이고, a 및 b의 합은 1 이상이다. a 및 b는 예를 들어, 각각 독립적으로, 0 내지 2의 수, 또는 0 내지 1의 수일 수 있고, a 및 b의 합은 예를 들어 1 이상 8이하, 또는 1 이상 4 이하, 또는 1 이상 3 이하, 또는 1 이상 2 이하일 수 있다. 일 예로, a 및 b 는 각각 1일 수 있다.
상기 화학식 1과 후술할 화학식들에서, -SO3 -는 -SO3H 또는 -SO3 -M+ 등의 형태로 존재할 수 있다. M+에 대한 설명은 전술한 바와 같다.
상기 화학식 1로 표시되는 단위를 포함하는 설폰산기 함유 폴리설폰은 내열 다공층(30)에서, 우수한 내열성을 나타내고 용출된 금속 이온을 효과적으로 포착할 수 있다.
상기 화학식 1로 표시되는 단위는 예를 들어 하기 화학식 1-1로 표시될 수 있다.
[화학식 1-1]
상기 화학식 1-1로 표시되는 단위를 포함하는 설폰산기 함유 폴리설폰을 내열 다공층에 도입한 리튬 이차 전지용 분리막은 우수한 내열성과 금속 이온 포착 능력을 나타낼 수 있다.
상기 설폰산기 함유 폴리설폰은 일 예로, 설폰산기 함유 폴리아릴렌에터설폰 (sulfonated poly arylene ether sulfone)일 수 있다. 예를 들어, 상기 설폰산기 함유 폴리설폰은 하기 화학식 2로 표시되는 단위를 포함할 수 있다.
[화학식 2]
상기 화학식 2에서, a 및 b는 각각 독립적으로 0 내지 4의 수이고, a 및 b의 합은 1 이상이고, R1은 C3 내지 C30 방향족 고리를 포함하는 2가의 작용기로, 방향족 고리가 단독으로 존재하거나, 2개 이상의 방향족 고리가 단일결합, -O-, -S-, -C(=O)-, -CH(OH)-, -S(=O)2-, -NH-, -Si(CH3)2-, -(CH2)p- (여기서 1≤p≤10), -(CF2)q- (여기서 1≤q≤10), -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH에 의해 연결되어 있다.
상기 C3 내지 C30 방향족 고리는 방향성을 띠는 고리모양의 화합물로, 예를 들어, 벤젠, 피롤, 퓨란, 티오펜, 피리딘, 피라진, 나프탈렌, 퀴놀린, 안트라센, 또는 페난트렌 등일 수 있다.
상기 분리막의 내열 다공층이 상기 화학식 2로 표시되는 단위를 포함하는 설폰산기 함유 폴리설폰을 포함하는 경우, 상기 분리막은 우수한 내열성과 금속 이온 포착 능력을 나타낼 수 있다.
일 예로, 상기 설폰산기 함유 폴리설폰은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
상기 화학식 3에서, a 및 b는 각각 독립적으로 0 내지 4의 수이고, a 및 b의 합은 1 이상이고, R1 및 R2는 동일하거나 상이하고, 각각 독립적으로 C3 내지 C30 방향족 고리를 포함하는 2가의 작용기로, 방향족 고리가 단독으로 존재하거나, 2개 이상의 방향족 고리가 단일결합, -O-, -S-, -C(=O)-, -CH(OH)-, -S(=O)2-, -NH-, -Si(CH3)2-, -(CH2)p- (여기서 1≤p≤10), -(CF2)q- (여기서 1≤q≤10), -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH-에 의해 연결되어 있고, 0<x≤1이다.
상기 리튬 이차 전지용 분리막의 내열 다공층이 상기 화학식 3으로 표시되는 설폰산기 함유 폴리설폰을 포함하는 경우, 상기 분리막은 우수한 내열성을 가지고, 용출된 금속 이온을 효과적으로 포착하여 전지의 성능을 개선할 수 있다.
상기 화학식 3에서 x는 설폰산기가 치환된 단위 (또는 친수성 단위)의 몰 비율을 의미하고, 예를 들어 0<x<1, 0<x≤0.9, 0<x≤0.8, 또는 0.1≤x≤0.7일 수 있다.
상기 화학식 2 및 화학식 3에서 a와 b에 대한 구체적인 예는 화학식 1에서 설명한 바와 같다.
상기 화학식 2의 R1과 상기 화학식 3의 R1 및 R2는 예를 들어, C6 내지 C30 아릴렌기 또는 C3 내지 C30 헤테로 고리기일 수 있다. 예를 들어, 상기 화학식 2의 R1과 상기 화학식 3의 R1 및 R2는 각각 독립적으로, 아래의 구조식에서 선택되는 것일 수 있다.
상기 구조식에서, X1 및 X2는 동일하거나 상이하고, 각각 독립적으로, O, S, C(=O), CH(OH), S(=O)2, NH, Si(CH3)2, (CH2)p (여기서 1≤p≤10), (CF2)q (여기서 1≤q≤10), C(CH3)2, C(CF3)2, 또는 C(=O)NH이다. 상기 구조식에서, Z1은 O, S, CR101R102, 또는 NR103이고, 여기서 R101, R102, 및 R103은 각각 독립적으로 수소 또는 C1 내지 C5 알킬기이다. 상기 구조식에서, Z2는 N 또는 CR104이고, R104는 수소 또는 C1 내지 C5 알킬기이다.
일 예로, 상기 화학식 2의 R1과 상기 화학식 3의 R1 및 R2는 아래의 구조식에서 선택되는 것일 수 있다.
상기 설폰산기 함유 폴리설폰의 중량 평균 분자량은 10,000 g/mol 내지 500,000 g/mol일 수 있고, 예를 들어 20,000 g/mol 내지 200,000 g/mol일 수 있다. 상기 설폰산기 함유 폴리설폰이 상기 범위의 중량 평균 분자량을 만족할 경우, 이를 포함하는 내열 다공층은 우수한 내열성과 금속 이온 포착 능력을 나타낼 수 있다. 상기 중량 평균 분자량은 겔투과 크로마토그래피를 사용하여 측정한 폴리스티렌 환산 평균 분자량일 수 있다.
상기 설폰산기 함유 폴리설폰은 유화중합, 현탁중합, 괴상중합, 용액중합, 또는 벌크중합 등 공지된 다양한 방법에 의해 제조될 수 있다.
상기 설폰산기 함유 폴리설폰은 내열 다공층(30)에 대하여 0.1 중량% 내지 100 중량%로 포함될 수 있고, 예를 들어 0.1 중량% 내지 80 중량%, 0.1 중량% 내지 60 중량%, 0.1 중량% 내지 50 중량%, 또는 1 중량% 내지 40 중량% 등으로 포함될 수 있다. 또한 상기 설폰산기 함유 폴리설폰은 리튬 이차 전지용 분리막(10)에 대하여 0.01 중량% 내지 10 중량%로 포함될 수 있고, 예를 들어 0.01 중량% 내지 7중량%, 또는 0.01 중량% 내지 5중량%로 포함될 수 있다.
일 구현예에 따른 내열 다공층(30)은 상기 설폰산기 함유 폴리설폰 이외에 필러를 더 포함할 수 있다. 내열 다공층(30)이 상기 설폰산기 함유 폴리설폰 및 상기 필러를 포함할 경우, 상기 설폰산기 함유 폴리설폰은 일종의 바인더의 역할을 할 수 있다.
상기 필러는 상기 분리막의 내열성을 개성하여 온도 상승에 의해 분리막이 급격히 수축되거나 변형되는 것을 방지할 수 있다. 상기 필러는 예컨대 무기 필러, 유기 필러, 유무기 복합 필러 또는 이들의 조합일 수 있다. 상기 무기 필러는 내열성을 개선할 수 있는 세라믹 물질일 수 있으며, 예컨대 금속 산화물, 준금속 산화물, 금속 불화물, 금속 수산화물 또는 이들의 조합을 포함할 수 있다. 상기 무기 필러는 예를 들어, Al2O3, SiO2, TiO2, SnO2, CeO2, MgO, NiO, CaO, GaO, ZnO, ZrO2, Y2O3, SrTiO3, BaTiO3, Mg(OH)2, 베마이트 (boehmite) 또는 이들의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다. 상기 유기 필러는 아크릴 화합물, 이미드 화합물, 아미드 화합물 또는 이들의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다. 상기 유기 필러는 코어쉘 구조를 가질 수 있으나, 이에 한정되는 것은 아니다.
상기 필러는 구형 또는 판상일 수 있다. 상기 필러의 평균 입경은 약 1 nm 내지 2500 nm 일 수 있고, 상기 범위 내에서 20 nm 내지 2000 nm, 또는 30 nm 내지 1000 nm일 수 있으며, 예를 들어 약 50 nm 내지 800 nm, 또는 50nm 내지 500 nm일 수 있다. 상기 필러의 평균 입경은 레이저 입도 분석기 또는 전기저항 입도 분석기를 사용하여 측정한 수평균 입자 지름일 수 있다. 상기 범위의 평균 입경을 가지는 필러를 사용함으로써 상기 내열 다공층에 적절한 강도를 부여하여, 상기 분리막의 내열성, 내구성 및 안정성을 향상시킬 수 있다. 상기 필러는 종류가 상이하거나 크기가 상이한 2종 이상을 혼합하여 사용할 수 있다.
상기 필러는 내열 다공층(30)에 대하여 50 중량% 내지 99 중량%로 포함될 수 있다. 일 구현예에서 상기 필러는 내열 다공층(30)에 대하여 60 중량% 내지 99 중량%로 포함될 수 있고, 예를 들어 70 중량% 내지 99 중량%, 75 중량% 내지 99 중량%, 또는 80 중량% 내지 99 중량% 로 포함될 수 있다. 상기 필러가 상기 범위로 포함될 경우 일 구현예에 따른 이차 전지용 분리막은 우수한 내열성, 내구성, 및 안정성을 나타낼 수 있다.
상기 설폰산기 함유 폴리설폰 및 상기 필러의 전체 중량을 기준으로, 상기 설폰산기 함유 폴리설폰은 0.1 % 내지 40 % 포함될 수 있고, 상기 필러는 60 % 내지 99.9 %로 포함될 수 있다. 예를 들어, 상기 설폰산기 함유 폴리설폰 및 상기 필러의 전체 중량을 기준으로, 상기 설폰산기 함유 폴리설폰은 0.1 % 내지 30 %, 또는 0.1 % 내지 20 %로 포함될 수 있고, 상기 필러는 70 % 내지 99.9 %, 또는 80 % 내지 99.9 %로 포함될 수 있다. 내열 다공층(30)에 상기 설폰산기 함유 폴리설폰과 상기 필러가 상기 범위로 포함될 경우, 상기 내열 다공층(30)을 포함하는 리튬 이차 전지용 분리막은 뛰어난 내열성을 나타낼 수 있고, 동시에 용출된 금속 이온을 효과적으로 포착하여 리튬 이차 전지의 성능을 개선할 수 있다.
상기 내열 다공층(30)은 상기 설폰산기 함유 폴리설폰과 필러 이외에 추가적인 바인더를 더 포함할 수 있다. 추가되는 바인더는 상기 필러를 다공성 기재(20) 위에 고정하는 역할을 하는 동시에, 내열 다공층(30)이 다공성 기재(20) 및 전극에 잘 부착되도록 접착력을 제공할 수 있다.
상기 추가되는 바인더는 가교 바인더이거나 또는 비가교 바인더일 수 있다.
상기 가교 바인더는 열 및/또는 광에 반응할 수 있는 경화성 작용기를 가지는 모노머, 올리고머 및/또는 폴리머로부터 얻어질 수 있으며, 예컨대 적어도 2개의 경화성 작용기를 가지는 다관능 모노머, 다관능 올리고머 및/또는 다관능 폴리머로부터 얻어질 수 있다. 상기 경화성 작용기는 비닐기, (메타)아크릴레이트기, 에폭시기, 옥세탄기, 에테르기, 시아네이트기, 이소시아네이트기, 히드록시기, 카르복실기, 티올기, 아미노기, 알콕시기 또는 이들의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 가교 바인더는 일 예로, 적어도 2개의 (메타)아크릴레이트 기를 가지는 모노머, 올리고머 및/또는 폴리머를 경화하여 얻을 수 있으며, 예컨대 에틸렌글리콜 디(메타)아크릴레이트, 프로필렌글리콜 디(메타)아크릴레이트, 폴리에틸렌글리콜 디(메타)아크릴레이트, 폴리프로필렌글리콜 디(메타)아크릴레이트, 부탄디올 디(메타)아크릴레이트, 헥사메틸렌 글리콜 디(메타)아크릴레이트, 트리메틸올프로판 트리(메타)아크릴레이트, 글리세린 트리(메타)아크릴레이트, 펜타에리스리톨 테트라(메타)아크릴레이트, 디글리세린 헥사(메타)아크릴레이트 또는 이들의 조합을 경화하여 얻을 수 있다.
일 예로, 상기 가교 바인더는 적어도 2개의 에폭시기를 가지는 모노머, 올리고머 및/또는 폴리머를 경화하여 얻을 수 있으며, 예컨대 비스페놀 A 디글리시딜 에테르, 비스페놀 F 디글리시딜 에테르, 헥사하이드로프탈산 글리시딜 에스테르 또는 이들의 조합을 경화하여 얻을 수 있다.
일 예로, 상기 가교 바인더는 적어도 2개의 이소시아네이트 기를 가지는 모노머, 올리고머 및/또는 폴리머를 경화하여 얻을 수 있으며, 예컨대 디페닐메탄 디이소시아네이트, 1,6-헥사메틸렌 디이소시아네이트, 2,2,4(2,2,4)-트리메틸헥사메틸렌 디이소시아네이트, 페닐렌 디이소시아네이트, 4,4'-디사이클로헥실메탄 디이소시아네이트, 3,3'-디메틸디페닐-4,4'-디이소시아네이트, 크실렌 디이소시아네이트, 나프탈렌 디이소시아네이트, 1,4-사이클로헥실 디이소시아네이트 또는 이들의 조합을 경화하여 얻을 수 있다.
상기 비가교 바인더는 예를 들어 비닐리덴플루오라이드계 중합체, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 폴리비닐알코올, 폴리에틸렌-비닐아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알코올, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복시메틸셀룰로오스, 아크릴로니트릴-스티렌-부타디엔 공중합체 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 비닐리덴플루오라이드계 중합체는 구체적으로, 비닐리덴플루오라이드 모노머 유래 단위만을 포함하는 호모폴리머, 또는 비닐리덴플루오라이드 유래 단위와 다른 모노머 유래 단위와의 코폴리머일 수 있다. 상기 코폴리머는 구체적으로 비닐리덴플루오라이드 유래 단위와 클로로트리플루오로에틸렌, 트리플루오로에틸렌, 헥사플루오로프로필렌, 에틸렌 테트라플루오라이드 및 에틸렌 모노머에서 유래한 단위 중 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 코폴리머는 비닐리덴플루오라이드 모노머 유래 단위와 헥사플루오로프로필렌 모노머 유래 단위를 포함하는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌(PVdF-HFP) 코폴리머일 수 있다.
내열 다공층(30)은 약 0.01 ㎛ 내지 20 ㎛의 두께를 가질 수 있으며, 상기 범위 내에서 약 1 ㎛ 내지 10 ㎛, 또는 약 1 ㎛ 내지 8 ㎛의 두께를 가질 수 있다.
일 구현예에 따른 리튬 이차 전지용 분리막은 내열성이 뛰어나고, 예를 들어 200℃에서 10분동안 방치한 후의, 종방향 (machine direction, MD) 및 횡방향 (traverse direction, TD)으로의 수축률은 5% 이하일 수 있고, 예를 들어 3% 이하일 수 있다.
다른 일 구현예에서는 리튬 이차 전지용 분리막의 제조 방법을 제공한다. 상기 제조 방법은 설폰산기 함유 폴리설폰을 저비점 용매에 나노 사이즈로 분산시켜 나노 분산액을 준비하고, 상기 나노 분산액을 다공성 기재의 적어도 일면에 적용하는 것을 포함한다.
상기 설폰산기 함유 폴리설폰은 저비점 용매에 용해되지 않으며, 비점이 150 ℃를 초과하는 고비점 용매, 예를 들어 N-메틸피롤리돈 (NMP), 다이메틸포름아마이드 (DMF), 다이메틸설폭사이드 (DMSO) 등에만 용해된다. 일반적으로, 상기 설폰산기 함유 폴리설폰과 같이 고비점 용매에만 용해되는 화합물은 리튬 이차 전지용 분리막의 내열 다공층에 적용되기 어렵다. 왜냐하면, 다공성 기재의 표면에 고비점 용매에 용해된 화합물을 도포한 후, 상기 고비점 용매를 증발시켜 제거해야 하는데, 이때 150℃ 이상의 고온을 가해야 하고, 이 과정에서 분리막의 변형과 손상이 발생할 수 있으며 비용과 시간이 많이 든다는 문제가 있기 때문이다.
일 구현예에 따르면, 상기 설폰산기 함유 폴리설폰을 저비점 용매에 나노 크기로 분산시킨 후, 나노 분산액을 다공성 기재의 표면에 적용함으로써, 저비점 용매에 용해되지 않는 설폰산기 함유 폴리설폰을 내열 다공층에 도입할 수 있다.
상기 설폰산기 함유 폴리설폰을 저비점 용매에 나노 크기로 분산시키는 것은 초임계 (supercritical) 반응을 통해 수행될 수 있다. 상기 초임계 반응은 초임계 조건에서 반응을 진행하는 것을 의미하고, 고온 고압 반응 장치를 사용하여 수행할 수 있다. 예를 들어, 상기 초임계 반응은 약 80℃ 내지 500℃의 온도와 약 10 bar 내지 200 bar의 압력 조건에서 수행될 수 있다. 일 예로, 고온 고압 반응기 안에 저비점 용매를 넣고 건조 상태의 설폰산기 함유 폴리설폰을 20 중량% 이하로 넣은 후 약 200℃, 약 60 bar에서 대략 2시간 동안 초임계 반응을 시킬 수 있다.
상기 나노 분산액에서, 설폰산기 함유 폴리설폰의 평균 크기는 약 1 nm 내지 900 nm일 수 있고 예를 들어 1 nm 내지 800 nm, 또는 10 nm 내지 800 nm 일 수 있다.
상기 저비점 용매는 비점이 약 150℃ 이하인 용매, 또는 비점이 약 100℃ 이하인 용매일 수 있고, 예를 들어 비점이 약 30℃ 이상 100℃ 이하인 용매일 수 있다. 예를 들어 상기 저비점 용매는 물, 알코올, 아세톤, 메틸에틸케톤, 테트라하이드로퓨란, 디메틸포름알데히드, 사이클로헥산, 또는 이들의 조합일 수 있다.
상기 저비점 용매는 상기 나노 분산액을 다공성 기재의 적어도 일면에 적용한 이후에, 100℃ 이하의 온도에서 쉽게 제거될 수 있어, 분리막의 제조 방법을 용이하게 하고, 상기 설폰산기 함유 폴리설폰을 내열 다공층에 도입하는 것을 가능하게 한다.
상기 리튬 이차 전지용 분리막의 제조 방법에서, 상기 나노 분산액을 다공성 기재의 적어도 일면에 적용하는 것은 예를 들어, 상기 나노 분산액을 다공성 기재의 적어도 일면에 도포하는 것일 수 있다. 상기 도포는 예컨대 스핀 코팅, 딥 코팅, 바 코팅, 다이 코팅, 슬릿 코팅, 롤 코팅, 잉크젯 인쇄 등에 의해 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬 이차 전지용 분리막의 제조 방법은 상기 나노 분산액을 다공성 기재의 적어도 일면에 적용한 이후에, 저비점 용매를 제거하는 것을 더 포함할 수 있다. 상기 저비점 용매를 제거하는 것은 건조 공정에 의해 수행될 수 있고, 상기 건조는 예컨대 자연 건조, 온풍, 열풍 또는 저습풍에 의한 건조, 진공 건조, 원적외선, 전자선 등의 조사에 의한 방법으로 수행될 수 있으나, 이에 한정되지 않는다.
일 구현예에 따른 리튬 이차 전지용 분리막의 제조 방법은 상기 나노 분산액에 필러를 첨가하는 것을 포함할 수 있다. 즉, 상기 분리막의 제조 방법은 설폰산기 함유 폴리설폰을 저비점 용매에 나노 사이즈로 분산시켜 나노 분산액을 준비하고, 상기 나노 분산액에 필러를 첨가하고, 상기 필러가 첨가된 나노 분산액을 다공성 기재의 적어도 일면에 적용하는 것을 포함할 수 있다. 이 경우 다공성 기재의 적어도 일면에, 설폰산기 함유 폴리설폰 및 필러를 포함하는 내열 다공층이 형성된 분리막을 제조할 수 있다. 필러에 대한 설명은 전술한 바와 같다.
또한 상기 분리막의 제조 방법은 상기 나노 분산액에 추가적인 바인더를 첨가하는 것을 포함할 수 있고, 이 경우 내열 다공층의 접착력을 더욱 향상시킬 수 있다. 추가적인 바인더에 대한 설명은 전술한 바와 같다.
이하 상기 리튬 이차 전지용 분리막을 포함하는 리튬 이차 전지에 대하여 설명한다.
리튬 이차 전지는 사용하는 분리막과 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지 등으로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
여기서는 리튬 이차 전지의 일 예로 각형 리튬 이차 전지를 예시적으로 설명한다. 도 2는 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다. 도 2를 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(40)과 음극(50) 사이에 분리막(10)를 개재하여 귄취된 전극 조립체(60)와 전극 조립체(60)가 내장되는 케이스(70)를 포함한다.
전극 조립체(60)는 예컨대 분리막(10)을 사이에 두고 양극(40)과 음극(50)을 감아 형성한 젤리 롤(jelly roll) 형태일 수 있다.
양극(40), 음극(50) 및 분리막(10)은 전해액(미도시)에 함침되어 있다.
양극(40)은 양극 집전체 및 상기 양극 집전체 위에 형성되는 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 양극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다.
상기 양극 집전체로는 알루미늄, 니켈 등을 사용할 수 있으나, 이에 한정되지 않는다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로 상기 양극 활물질로 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 1종 이상을 사용할 수 있다. 예를 들어, 상기 양극 활물질은 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 또는 이들의 조합일 수 있다.
일 구현예에서, 상기 양극 활물질은 니켈을 포함할 수 있다. 니켈을 포함하는 양극 활물질은 고용량을 구현할 수 있고, 성능이 우수한 대용량의 전지의 제조를 가능하게 한다. 상기 양극 활물질은 예를 들어, 리튬 니켈 산화물, 리튬 니켈 망간 산화물, 리튬 니켈 코발트 산화물, 리튬 니켈 알루미늄 산화물, 리튬 니켈 코발트 망간 산화물, 또는 리튬 니켈 코발트 알루미늄 산화물 등을 포함할 수 있다.
상기 양극 활물질에서, 상기 니켈은 리튬을 제외한 금속 성분의 전체량에 대하여, 60 몰% 이상 포함될 수 있고, 예를 들어 70 몰% 이상, 80 몰% 이상, 또는 90 몰% 이상 포함될 수 있고, 99 몰% 이하 또는 90 몰% 이하 포함될 수 있다.
니켈 함량이 높은 리튬 니켈계 산화물을 포함하는 양극 활물질은 고용량을 구현할 수 있고 전지의 전기화학적 성질을 향상시킬 수 있다. 다만, 니켈계 양극 활물질을 적용한 리튬 이차 전지의 경우, 전지의 작동 중에 양극에서 니켈 이온이 용출되는 문제가 발생할 수 있고, 양극에서 용출된 니켈 이온은 음극에 침적되어 전지의 안전성을 저해하고, 전지의 충방전 효율과 수명 특성 등의 성능을 악화시킬 수 있다. 일 구현예에서는 양극에 니켈계 양극 활물질을 적용하여 고용량화를 구현하면서, 동시에 전술한 분리막을 적용함으로써, 니켈 용출에 따른 문제를 해소하여, 전지의 안전성과 성능을 향상시킬 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시킬 뿐 아니라 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드 함유 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 도전재는 전극에 도전성을 부여하는 것으로, 그 예로 천연흑연, 인조흑연, 카본블랙, 탄소섬유, 금속 분말, 금속 섬유 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 혼합되어 사용될 수 있다. 상기 금속 분말과 상기 금속 섬유는 구리, 니켈, 알루미늄, 은 등의 금속일 수 있다.
음극(50)은 음극 집전체 및 상기 음극 집전체 위에 형성되는 음극 활물질층을 포함할 수 있다.
상기 음극 집전체로는 구리, 금, 니켈, 구리 합금 등을 사용할 수 있으나, 이에 한정되지 않는다.
상기 음극 활물질층은 음극 활물질, 바인더 및 선택적으로 도전재를 포함할 수 있다. 상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이금속 산화물 또는 이들의 조합을 사용할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 물질로는 탄소계 물질을 들 수 있으며, 그 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 들 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상 (plate-shape), 인편상(flake-shape), 구형 또는 섬유형의 천연흑연 또는 인조흑연을 들 수 있다. 상기 비정질 탄소의 예로는 소프트 카본 또는 하드 카본, 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. 상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다. 상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x<2), Si-C 복합체, Si-Y 합금, Sn, SnO2, Sn-C 복합체, Sn-Y 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 상기 전이금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극에 사용되는 바인더와 도전재의 종류는 전술한 양극에서 사용되는 바인더와 도전재와 같을 수 있다.
양극(40)과 음극(50)은 각각의 활물질 및 바인더와 선택적으로 도전재를 용매 중에 혼합하여 각 활물질 조성물을 제조하고, 상기 활물질 조성물을 각각의 집전체에 도포하여 제조할 수 있다. 이때 상기 용매는 N-메틸피롤리돈 등을 사용할 수 있으나, 이에 한정되지 않는다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다.
상기 전해액은 유기 용매와 리튬염을 포함한다.
상기 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 유기 용매로는 예컨대 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향족 고리 또는 에테르 결합을 포함할 수 있음) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란(sulfolane)류 등이 사용될 수 있다.
상기 유기 용매는 단독으로 또는 2종 이상 혼합하여 사용할 수 있으며, 2종 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.
상기 리튬염은 유기용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진시키는 물질이다. 상기 리튬염의 예로는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiN(CF3SO2)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2 또는 이들의 조합을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위 내인 경우, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
이하, 실시예를 통하여 상술한 본 발명의 측면들을 더욱 상세하게 설명한다. 다만, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본 발명의 범위를 제한하는 것은 아니다.
실시예
: 분리막의 제조
실시예
1
4,4'-다이클로로다이페닐설폰 (DCDPS), 4,4'-다이하이드록시바이페닐(BP), 및 3,3'-다이설포네이트-4,4'-다이클로로다이페닐설폰 (SDCDPS)을 각각 50/100/50의 몰비로 준비하여, N-메틸피롤리돈, 톨루엔 및 K2CO3를 포함하는 3구 플라스크에 투입한 후, 160℃에서 4시간 리플럭스시키고, 190℃에서 16시간 동안 반응시킨다. 생성물을 세정한 후, 0.1M 끓는 황산에서 2시간, 끓는 물에서 2시간 동안 반응시켜, Na형(-SO3Na)과 K형(-SO3K)이 혼합된 술폰산염을 H형(-SO3H)으로 전환시킨다. 이후, 생성물을 0.1 M LiCl 용액에서 48시간 동안 처리하고 초순수에서 48시간 처리하여, Li형(-SO3Li)의 설폰산기 함유 폴리설폰을 수득한다. 수득한 화합물은 4,4'-바이페놀계 다이설폰화 폴리아릴렌에터설폰으로, 아래 화학식 11로 표시될 수 있다.
[화학식 11]
상기 화학식 11에서 x는 약 0.5이고, M+은 Li+이다.
물과 이소프로필알코올을 75/25의 부피비로 혼합한 용매에, 상기에서 수득한 설폰산기 함유 폴리설폰 5 중량%를 투입한 후, 약 200℃, 60bar의 조건에서 2시간 동안 초임계 반응을 수행하여 나노 분산액을 제조한다.
고체 함량이 0.5 중량%가 되도록 상기 나노 분산액을 아세톤에 희석하고, 폴리에틸렌 다공성 기재 (SKI 612HS)에 상기 희석액을 딥코팅 방식으로 코팅한 후, 80℃에서 10분 동안 건조하여, 설폰산기 함유 폴리설폰이 포함된 내열 다공층이 형성된 리튬 이차 전지용 분리막을 제조한다.
도 3은 실시예 1에서 제조한 리튬 이차 전지용 분리막의 일면에 대한 주사전자현미경 (SEM) 사진이다. 도 3에서, 상기 설폰산기 함유 폴리설폰이 코팅된 분리막의 표면을 확인할 수 있다.
실시예
2
상기 실시예 1에서 제조한, 설폰산기 함유 폴리설폰의 나노 분산액에, 상기 설폰산기 함유 폴리설폰의 10 중량%에 해당하는 양의 폴리비닐알코올(PVA)을 첨가하고, 상기 설폰산기 함유 폴리설폰과 폴리비닐알코올의 총중량과 무기입자의 중량의 비율이 1:10이 되도록, 무기입자 (보헤마이트)를 첨가한다.
상기 설폰산기 함유 폴리설폰 나노 입자와 폴리비닐알코올 및 무기입자가 분산되어 있는 분산액을 폴리에틸렌 다공성 기재(SKI 612HS)의 단면에 바코팅 방식으로 도포한 후 건조하여, 리튬 이차 전지용 분리막을 제조한다.
상기 실시예 2에서 제조한 리튬 이차 전지용 분리막의 일면에 대한 주사전자현미경 사진을 도 4에 나타내었다.
비교예
1
폴리에틸렌 다공성 기재(SKI 612HS)를 리튬 이차 전지용 분리막으로 사용한다.
비교예
2
상기 실시예 1의 나노 분산액 대신에, 상기 화학식 11로 표시되는 설폰산기 함유 폴리설폰을 물과 이소프로필알코올의 혼합 용매에 투입하되 나노 입자로 분산시키지 않은 용액을 사용한다. 그 외에는 실시예 1과 동일한 방법으로 리튬 이차 전지용 분리막을 제조한다.
비교예
3
상기 실시예 2의 나노 분산액 대신에, 상기 화학식 11로 표시되는 설폰산기 함유 폴리설폰을 물과 이소프로필알코올의 혼합 용매에 투입하되 나노 입자로 분산시키지 않은 용액을 사용한다. 그 외에는 실시예 2와 동일한 방법으로 리튬 이차 전지용 분리막을 제조한다.
비교예
4
설폰산기 함유 폴리설폰 대신에 카르복시메틸셀룰로오스 나트륨염(CMC, sigma-aldrich)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 리튬 이차 전지용 분리막을 제조한다.
비교예
5
설폰산기 함유 폴리설폰 대신에 폴리(나트륨 4-스티렌설포네이트) (PSS, sigma-aldrich)을 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 리튬 이차 전지용 분리막을 제조한다.
비교예
6
설폰산기 함유 폴리설폰 대신에 폴리(비닐설폰산 나트륨염) (PVS, sigma-aldrich)을 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 리튬 이차 전지용 분리막을 제조한다.
비교예
7
설폰산기 함유 폴리설폰 대신에 폴리아크릴산 리튬염 (PAA, 폴리아크릴산 (sigma-aldrich)과 LiOH를 반응하여 사용)을 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 리튬 이차 전지용 분리막을 제조한다.
하기 표 1은 실시예 1 내지 2 및 비교예 1 내지 7에서 제조한 분리막의 내열 다공층의 조성을 간략히 표시한 것이다.
제1 유기물 | 제2 유기물 | 필러 | 조액상 고체 함량 (중량%) | 유기물: 무기물 중량비 |
비고 | |
실시예 1 | 화학식11 (나노분산액) |
- | - | 0.5 | - | 딥코팅 |
실시예 2 | 화학식 11 (나노분산액) |
PVA | 보헤마이트 | 13 | 1:10 | 단면 바코팅 |
비교예 1 | - | - | - | - | - | 폴리에틸렌 기재 |
비교예 2 | 화학식 11 | - | - | 0.5 | - | 딥코팅 |
비교예 3 | 화학식 11 | PVA | 보헤마이트 | 13 | 1:10 | 단면 바코팅 |
비교예 4 | CMC | PVA | 보헤마이트 | 13 | 1:10 | 단면 바코팅 |
비교예 5 | PSS | PVA | 보헤마이트 | 13 | 1:10 | 단면 바코팅 |
비교예 6 | PVS | PVA | 보헤마이트 | 13 | 1:10 | 단면 바코팅 |
비교예 7 | PAA | PVA | 보헤마이트 | 13 | 1:10 | 단면 바코팅 |
평가예
1: 분리막의
니켈 이온 흡착
능력
Ni(ClO4)2를 전해액에 10mM로 녹인 용액에, 실시예 1 및 2와 비교예 1 내지 4에서 제조한 분리막을 넣어 2시간 동안 교반하고 디메틸카보네이트(DMC)로 3번 세정한 후 분리막에 남아있는 니켈 함량을 분석하였고, 그 결과를 아래 표 2에 나타내었다. 여기서 전해액은 에틸렌 카보네이트, 에틸메틸 카보네이트 및 디에틸 카보네이트를 3:5:2의 부피비로 혼합한 용매에 1.15M의 LiPF6를 첨가한 용액이다.
구분 | 분리막의 니켈 이온 흡착량 (ppm) |
실시예 1 | 1600 |
실시예 2 | 1490 |
비교예 1 | 0 |
비교예 2 | - |
비교예 3 | - |
비교예 4 | 560 |
상기 평가예 1 및 아래의 평가예들에서, 비교예 2 및 비교예 3은 조액 형성이 안되어 코팅이 불균일하고 분리막의 통기도 제어가 불가하여, 실험 결과를 얻을 수 없었다.
상기 표 2를 참조하면, 실시예 1 내지 2의 분리막의 니켈 이온 흡착 능력은 비교예 1 내지 4의 경우에 비하여 월등히 높다는 것을 확인할 수 있다.
평가예
2: 내열성 평가
실시예 2 및 비교예 4 내지 7에서 제조한 분리막을 200℃에서 10분 동안 방치한 후 종방향 및 횡방향으로 수축률을 측정하였고, 그 결과를 아래 표 3에 나타내었다.
구분 | 열 수축률 (%) | |
종방향(MD) | 횡방향(TD) | |
실시예 2 | <2 | <2 |
비교예 4 | 18 | 20 |
비교예 5 | 16 | 20 |
비교예 6 | 20 | 23 |
비교예 7 | >50 | >50 |
상기 표 3을 참조하면, 실시예 2의 분리막은 비교예 4 내지 7에 비하여 종방향 및 횡방향으로의 열 수축률이 현저히 낮아 내열성이 우수하다는 것을 확인할 수 있다.
제조예
1 내지 2 및 비교
제조예
1 내지 4: 리튬 이차 전지의 제조
NCA 활물질 LiNi0 . 88Co0 . 105Al0 . 015O2, 폴리비닐리덴플루오라이드 및 카본블랙을 92:4:4의 중량비로 N-메틸피롤리돈 용매에 첨가하여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 박막에 도포 및 건조하고 압연하여 양극을 제조하였다.
그라파이트, 스티렌 부타디엔 고무 (SBR) 및 카르복시메틸셀룰로오스 나트륨염 (CMC)를 97.5:1.5:1의 중량비로 물에 첨가하여 슬러리를 제조하였다. 상기 슬러리를 구리 호일에 도포 및 건조하고 압연하여 음극을 제조하였다.
상기 제조된 양극과 음극 사이에, 상기 실시예 1 내지 2 및 비교예 1 내지 4에서 제조한 분리막을 각각 개재한 후, 에틸렌 카보네이트, 에틸메틸 카보네이트 및 디에틸 카보네이트를 3:5:2의 부피비로 혼합한 용매에 1.15M의 LiPF6를 첨가한 전해액을 주입하여 2032 코인셀을 제조하였다.
평가예
3: 음극에 용출된 니켈 함량
제조예 1 내지 2 및 비교제조예 1 내지 4에서 제조한 리튬 이차 전지에 대해 2.8 V 내지 4.35 V에서 100 사이클을 진행 후, 전지를 해체하여 음극을 디메틸카보네이트(DMC)로 충분히 세정하여 음극에 침적된 니켈의 함량을 측정하였고, 그 결과를 아래 표 4에 나타내었다.
평가예
4: 리튬 이차 전지의 수명 특성
제조예 1 내지 2 및 비교제조예 1 내지 4에서 제조한 리튬 이차 전지에 대해 2.8 V 내지 4.35 V에서 100 사이클을 진행 후 용량 보존률을 계산하여, 그 결과를 아래 표 4에 나타내었다. 또한, 제조예 1 및 비교제조예 1의 수명 특성을 비교한 그래프를 도 5에 나타내었고, 제조예2 및 비교제조예 2의 수명 특성을 비교한 그래프를 도 6에 나타내었다.
구분 | 음극에 침적된 니켈 함량 (ppm) | 100사이클 후의 용량 보존률 (%) |
제조예 1 | 90 | 90.8 |
제조예 2 | 110 | 89.3 |
비교제조예 1 | 160 | 88.4 |
비교제조예 2 | - | - |
비교제조예 3 | - | - |
비교제조예 4 | 140 | 87.5 |
상기 표 4를 참조하면, 제조예 1 내지 2의 리튬 이차 전지의 경우 비교제조예들에 비하여, 음극에 침적된 니켈의 함량이 현저히 낮았다. 이는 실시예의 분리막의 내열 다공층에 도입한 설폰산기 함유 폴리설폰이 양극에서 용출된 니켈 이온을 효과적으로 포착함으로써, 니켈 이온이 음극에 침적되는 현상을 해소한 것으로 볼 수 있다.
또한, 상기 표 4와 도 5 및 도 6을 참조하면, 제조예 1 내지 2의 리튬 이차 전지의 경우 비교제조예들에 비하여 수명 특성이 우수하였다. 이를 통해 실시예의 분리막을 적용함으로써, 리튬 이차 전지의 성능이 개선된다는 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
10: 분리막
20: 다공성 기재
30: 내열 다공층
40: 양극
50: 음극
60: 전극 조립체
70: 케이스
20: 다공성 기재
30: 내열 다공층
40: 양극
50: 음극
60: 전극 조립체
70: 케이스
Claims (15)
- 다공성 기재, 및 상기 다공성 기재의 적어도 일면에 위치하는 내열 다공층을 포함하고,
상기 내열 다공층은 설폰산기 함유 폴리설폰 (sulfonated polysulfone)을 포함하는 리튬 이차 전지용 분리막. - 제1항에서, 상기 설폰산기 함유 폴리설폰은 설폰산기 함유 폴리아릴렌에터설폰 (sulfonated poly(arylene ether sulfone))인 리튬 이차 전지용 분리막.
- 제1항에서, 상기 설폰산기 함유 폴리설폰은 하기 화학식 2로 표시되는 단위를 포함하는 리튬 이차 전지용 분리막:
[화학식 2]
상기 화학식 2에서,
a 및 b는 각각 독립적으로 0 내지 4의 수이고, a 및 b의 합은 1 이상이고,
R1은 C3 내지 C30 방향족 고리를 포함하는 2가의 작용기로, 방향족 고리가 단독으로 존재하거나, 2개 이상의 방향족 고리가 단일결합, -O-, -S-, -C(=O)-, -CH(OH)-, -S(=O)2-, -NH-, -Si(CH3)2-, -(CH2)p- (여기서 1≤p≤10), -(CF2)q- (여기서 1≤q≤10), -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH-에 의해 연결되어 있다. - 제1항에서, 상기 설폰산기 함유 폴리설폰은 하기 화학식 3으로 표시되는 리튬 이차 전지용 분리막:
[화학식 3]
상기 화학식 3에서,
a 및 b는 각각 독립적으로 0 내지 4의 수이고, a 및 b의 합은 1 이상이고,
R1 및 R2는 동일하거나 상이하고, 각각 독립적으로 C3 내지 C30 방향족 고리를 포함하는 2가의 작용기로, 방향족 고리가 단독으로 존재하거나, 2개 이상의 방향족 고리가 단일결합, -O-, -S-, -C(=O)-, -CH(OH)-, -S(=O)2-, -NH-, -Si(CH3)2-, -(CH2)p- (여기서 1≤p≤10), -(CF2)q- (여기서 1≤q≤10), -C(CH3)2-, -C(CF3)2-, 또는 -C(=O)NH-에 의해 연결되어 있고,
0<x≤1이다. - 제1항에서, 상기 설폰산기 함유 폴리설폰의 중량 평균 분자량은 20,000 g/mol 내지 200,000 g/mol인 리튬 이차 전지용 분리막.
- 제1항에서, 상기 내열 다공층은 필러를 더 포함하는 리튬 이차 전지용 분리막.
- 제7항에서, 상기 필러는 Al2O3, SiO2, TiO2, SnO2, CeO2, MgO, NiO, CaO, GaO, ZnO, ZrO2, Y2O3, SrTiO3, BaTiO3, Mg(OH)2, 베마이트 또는 이들의 조합을 포함하는 리튬 이차 전지용 분리막.
- 제7항에서, 상기 설폰산기 함유 폴리설폰 및 상기 필러의 전체 중량을 기준으로, 상기 설폰산기 함유 폴리설폰은 0.1 % 내지 40 % 포함되고, 상기 필러는 60 % 내지 99.9 %로 포함되는 리튬 이차 전지용 분리막.
- 설폰산기 함유 폴리설폰을 저비점 용매에 나노 사이즈로 분산시켜 나노 분산액을 준비하고,
상기 나노 분산액을 다공성 기재의 적어도 일면에 적용하고,
상기 다공성 기재의 적어도 일면에 설폰산기 함유 폴리설폰을 포함하는 내열 다공층이 형성된 분리막을 수득하는 것을 포함하는 리튬 이차 전지용 분리막의 제조 방법. - 제10항에서, 상기 설폰산기 함유 폴리설폰을 저비점 용매에 나노 사이즈로 분산시키는 것은 초임계 반응을 통하여 수행되는 것인 리튬 이차 전지용 분리막의 제조 방법.
- 제10항에서, 상기 제조 방법은 상기 나노 분산액에 필러를 첨가하는 것을 더 포함하는 리튬 이차 전지용 분리막의 제조 방법.
- 양극, 음극, 및 상기 양극과 상기 음극 사이에 위치하는 제1항 내지 제9항 중 어느 한 항에 따른 이차 전지용 분리막을 포함하는 리튬 이차 전지.
- 제13항에서, 상기 양극은 집전체 및 양극 활물질을 포함하고, 상기 양극 활물질은 니켈을 포함하는 리튬 이차 전지.
- 제14항에서, 상기 양극 활물질에서 상기 니켈은 리튬을 제외한 금속 성분 전체량을 기준으로 60 몰% 이상 포함되는 리튬 이차 전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160110913A KR102146393B1 (ko) | 2016-08-30 | 2016-08-30 | 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
US16/326,885 US10985426B2 (en) | 2016-08-30 | 2017-08-29 | Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same |
CN201780052871.XA CN109690821B (zh) | 2016-08-30 | 2017-08-29 | 用于锂二次电池的隔板、隔板的制造方法以及锂二次电池 |
PCT/KR2017/009438 WO2018044046A1 (ko) | 2016-08-30 | 2017-08-29 | 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160110913A KR102146393B1 (ko) | 2016-08-30 | 2016-08-30 | 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180024532A true KR20180024532A (ko) | 2018-03-08 |
KR102146393B1 KR102146393B1 (ko) | 2020-08-20 |
Family
ID=61301883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160110913A KR102146393B1 (ko) | 2016-08-30 | 2016-08-30 | 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10985426B2 (ko) |
KR (1) | KR102146393B1 (ko) |
CN (1) | CN109690821B (ko) |
WO (1) | WO2018044046A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102039160B1 (ko) * | 2018-10-29 | 2019-10-31 | 상명대학교 천안산학협력단 | 세공 충진 전해질 막, 이를 포함하는 전기변색소자 및 고분자 겔 전해질 조성물 |
CN112310559A (zh) * | 2019-07-26 | 2021-02-02 | 宁德时代新能源科技股份有限公司 | 功能化隔离膜及锂金属电池 |
KR20240031126A (ko) * | 2022-08-29 | 2024-03-07 | 주식회사 엘지에너지솔루션 | 전기화학소자용 분리막 및 이를 구비하는 전기화학소자 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3043911A1 (en) | 2007-12-04 | 2009-07-02 | Arbutus Biopharma Corporation | Targeting lipids |
JP2019050192A (ja) * | 2017-09-11 | 2019-03-28 | パナソニックIpマネジメント株式会社 | リチウムイオン伝導体、フロー電池用隔離部材、およびフロー電池 |
EP3796444A4 (en) * | 2018-05-17 | 2021-06-30 | Panasonic Intellectual Property Management Co., Ltd. | CIRCULATING BATTERY |
US10833346B2 (en) * | 2018-05-17 | 2020-11-10 | Panasonic Intellectual Property Management Co., Ltd. | Flow battery |
JP7358620B2 (ja) * | 2019-08-16 | 2023-10-10 | エルジー エナジー ソリューション リミテッド | 耐熱層を含む電気化学素子用分離膜及びそれを含む二次電池 |
CA3155063A1 (en) * | 2019-09-20 | 2021-03-25 | Li-S Energy Limited | Flexible lithium-sulfur batteries |
KR102467973B1 (ko) | 2020-09-15 | 2022-11-17 | 명성티엔에스주식회사 | 리튬이차전지 분리막 필름 건조시스템 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012522333A (ja) * | 2009-03-27 | 2012-09-20 | ゼットパワー, エルエルシー | 電極用のセパレーター |
KR101348865B1 (ko) * | 2010-05-28 | 2014-01-07 | 울산대학교 산학협력단 | 젤화물질을 이용한 나노 구조 복합체의 제조방법 |
KR20140139135A (ko) * | 2012-04-13 | 2014-12-04 | 바스프 에스이 | 전기화학 전지용 층 시스템 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5420938B2 (ko) | 1974-01-14 | 1979-07-26 | ||
JP2000268799A (ja) | 1999-03-15 | 2000-09-29 | Mitsubishi Chemicals Corp | リチウムイオン二次電池 |
KR100551006B1 (ko) | 2003-09-26 | 2006-02-13 | 삼성에스디아이 주식회사 | 리튬 이온 이차 전지 |
KR100727248B1 (ko) | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자 |
JP2010123383A (ja) | 2008-11-19 | 2010-06-03 | Teijin Ltd | 非水系二次電池用セパレータ、その製造方法および非水系二次電池 |
KR101070015B1 (ko) * | 2009-02-27 | 2011-10-04 | 고려대학교 산학협력단 | 고분자 전해질 복합막 제조 방법 및 이를 이용하여 형성한 고분자 전해질 복합막을 포함하는 고분자 전해질 연료전지 |
JP5420938B2 (ja) | 2009-03-13 | 2014-02-19 | 帝人株式会社 | 非水系二次電池用セパレータおよび非水系二次電池 |
KR101560422B1 (ko) | 2010-05-25 | 2015-10-14 | 코오롱패션머티리얼 (주) | 다공성 나노섬유 웹 |
JP5734708B2 (ja) | 2011-03-14 | 2015-06-17 | 日立マクセル株式会社 | 非水電解液二次電池およびその製造方法 |
WO2012165624A1 (ja) | 2011-06-03 | 2012-12-06 | 富士シリシア化学株式会社 | セパレータ、電気化学素子、及びセパレータの製造方法 |
KR20130083211A (ko) | 2012-01-12 | 2013-07-22 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 |
KR101759336B1 (ko) * | 2013-10-02 | 2017-07-18 | 주식회사 엘지화학 | 다공성 코팅층을 갖는 다공성 분리막 및 이의 제조방법 |
KR101748484B1 (ko) * | 2014-06-13 | 2017-06-19 | 주식회사 엘지화학 | 폴리(아릴렌 에테르 술폰) 공중합체 및 이를 포함하는 고분자 전해질막 |
CN105226224B (zh) | 2014-07-03 | 2018-01-02 | 中国科学院大连化学物理研究所 | 一种多孔离子传导膜在锂硫电池中的应用 |
JP6654793B2 (ja) | 2014-07-17 | 2020-02-26 | マクセルホールディングス株式会社 | 非水電解質二次電池用正極、非水電解質二次電池およびそのシステム |
KR101494289B1 (ko) | 2014-08-20 | 2015-02-17 | 전남대학교산학협력단 | 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치 |
KR101820459B1 (ko) | 2014-08-22 | 2018-01-19 | 주식회사 엘지화학 | 분산성이 우수한 분산제를 포함하는 이차전지용 분리막 및 이를 포함하는 이차전지 |
KR20160054937A (ko) * | 2014-11-07 | 2016-05-17 | 주식회사 엘지화학 | 세퍼레이터 및 이의 제조방법 |
KR20160080778A (ko) * | 2014-12-30 | 2016-07-08 | 한국화학연구원 | 불소계 탄화수소 고분자를 함유하는 접합층을 포함하는 탄화수소계 막-전극 접합체 및 이의 제조방법 |
CN107820502B (zh) | 2015-04-28 | 2021-07-23 | 檀国大学天安校区产学合作团 | 全氟离聚物纳米粒子分散液及其制造方法 |
KR101762307B1 (ko) | 2015-04-28 | 2017-07-28 | 단국대학교 천안캠퍼스 산학협력단 | 이오노머 나노 입자 분산액의 제조방법 |
KR101688625B1 (ko) | 2015-04-28 | 2016-12-21 | 단국대학교 천안캠퍼스 산학협력단 | 이오노머 나노 분산액 |
KR102546315B1 (ko) * | 2015-09-25 | 2023-06-21 | 삼성전자주식회사 | 리튬전지용 전극 복합분리막 어셈블리 및 이를 포함한 리튬전지 |
KR101834911B1 (ko) | 2016-03-29 | 2018-03-07 | 단국대학교 천안캠퍼스 산학협력단 | 탄화수소계 또는 부분불소계 이오노머 나노 입자 분산액의 제조방법 |
KR101912654B1 (ko) | 2016-03-29 | 2018-10-30 | 단국대학교 천안캠퍼스 산학협력단 | 탄화수소계 또는 부분불소계 이오노머 나노 분산액 |
-
2016
- 2016-08-30 KR KR1020160110913A patent/KR102146393B1/ko active IP Right Grant
-
2017
- 2017-08-29 US US16/326,885 patent/US10985426B2/en active Active
- 2017-08-29 CN CN201780052871.XA patent/CN109690821B/zh active Active
- 2017-08-29 WO PCT/KR2017/009438 patent/WO2018044046A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012522333A (ja) * | 2009-03-27 | 2012-09-20 | ゼットパワー, エルエルシー | 電極用のセパレーター |
KR101348865B1 (ko) * | 2010-05-28 | 2014-01-07 | 울산대학교 산학협력단 | 젤화물질을 이용한 나노 구조 복합체의 제조방법 |
KR20140139135A (ko) * | 2012-04-13 | 2014-12-04 | 바스프 에스이 | 전기화학 전지용 층 시스템 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102039160B1 (ko) * | 2018-10-29 | 2019-10-31 | 상명대학교 천안산학협력단 | 세공 충진 전해질 막, 이를 포함하는 전기변색소자 및 고분자 겔 전해질 조성물 |
CN112310559A (zh) * | 2019-07-26 | 2021-02-02 | 宁德时代新能源科技股份有限公司 | 功能化隔离膜及锂金属电池 |
CN112310559B (zh) * | 2019-07-26 | 2021-11-23 | 宁德时代新能源科技股份有限公司 | 功能化隔离膜及锂金属电池 |
KR20240031126A (ko) * | 2022-08-29 | 2024-03-07 | 주식회사 엘지에너지솔루션 | 전기화학소자용 분리막 및 이를 구비하는 전기화학소자 |
Also Published As
Publication number | Publication date |
---|---|
US10985426B2 (en) | 2021-04-20 |
US20190189987A1 (en) | 2019-06-20 |
CN109690821B (zh) | 2022-02-08 |
CN109690821A (zh) | 2019-04-26 |
WO2018044046A1 (ko) | 2018-03-08 |
KR102146393B1 (ko) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102146393B1 (ko) | 리튬 이차 전지용 분리막, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
US10707467B2 (en) | Separator for rechargeable battery and rechargeable lithium battery including the same | |
KR101690515B1 (ko) | 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지 | |
KR20170129644A (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
KR102005869B1 (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
KR101792681B1 (ko) | 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 | |
KR102011906B1 (ko) | 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지 | |
CN113169417A (zh) | 用于锂二次电池的隔板和包括其的锂二次电池 | |
KR101334888B1 (ko) | 리튬 이차전지용 분리막 및 그 제조방법 | |
KR102229625B1 (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
CN113273027A (zh) | 用于锂二次电池的隔板和包括其的锂二次电池 | |
CN112640195A (zh) | 用于锂二次电池的隔板以及包括该隔板的锂二次电池 | |
KR20170075490A (ko) | 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 | |
KR101792682B1 (ko) | 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 | |
CN112400254B (zh) | 用于可再充电电池的隔板和包括该隔板的可再充电锂电池 | |
CN113228399A (zh) | 用于锂二次电池的隔板和包括其的锂二次电池 | |
KR20180063649A (ko) | 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 | |
KR102232529B1 (ko) | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
KR20180023340A (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
KR102138821B1 (ko) | 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 | |
CN114072964B (zh) | 用于二次电池的隔板和包含该隔板的锂二次电池 | |
KR20160149734A (ko) | 고내열성 분리막 및 이를 포함하는 전기 화학 전지 | |
CN113169421A (zh) | 用于锂二次电池的隔板和包括其的锂二次电池 | |
KR20170075493A (ko) | 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 | |
KR101937320B1 (ko) | 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |