KR20130116162A - 극저온 냉각용 시스템 및 방법 - Google Patents

극저온 냉각용 시스템 및 방법 Download PDF

Info

Publication number
KR20130116162A
KR20130116162A KR1020127032539A KR20127032539A KR20130116162A KR 20130116162 A KR20130116162 A KR 20130116162A KR 1020127032539 A KR1020127032539 A KR 1020127032539A KR 20127032539 A KR20127032539 A KR 20127032539A KR 20130116162 A KR20130116162 A KR 20130116162A
Authority
KR
South Korea
Prior art keywords
rod
cooling
refrigerant
control unit
main
Prior art date
Application number
KR1020127032539A
Other languages
English (en)
Other versions
KR101705032B1 (ko
Inventor
알렌 제이. 바틀렛
윌리엄 존슨
마크 콜린스
세르게이 시소에브
제임스 에이. 오넬
마이클 제이. 주니어. 에아코바치
Original Assignee
브룩스 오토메이션, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브룩스 오토메이션, 인크. filed Critical 브룩스 오토메이션, 인크.
Publication of KR20130116162A publication Critical patent/KR20130116162A/ko
Application granted granted Critical
Publication of KR101705032B1 publication Critical patent/KR101705032B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/34Accessory or component

Abstract

본 발명의 일 실시예에 따르면, 로드를 냉각하기 위한 시스템이 제공된다. 상기 시스템은, 로드를 냉각시키기 위한 시스템으로서, 폐루프 주 냉동 시스템을 포함하며, 상기 폐루프 주 냉동 시스템은, 저압의 주 냉매를 수용하여, 상기 주 냉매를 고압 상태로 배출하는 주 압축기; 상기 주 압축기로부터 고압의 주 냉매를 수용하는 입구와, 저압의 주 냉매를 상기 주 압축기로 복귀시키는 출구를 포함하는 절연 인클로저; 상기 절연 인클로저 내의 하나 이상의 열교환기로서, 고압의 주 냉매를 수용하고, 부 냉동 시스템으로부터의 부 냉매를 사용하여 주 냉매를 냉각시키며, 상기 부 냉매는 상기 하나 이상의 열교환기 내에서 상기 주 냉매와 열교환 관계에 있는, 상기 하나 이상의 열교환기; 상기 절연 인클로저 내의 팽창 유닛으로서, 상기 하나 이상의 열교환기로부터 고압의 주 냉매를 수용하고, 저압의 주 냉매를 배출하는, 상기 팽창 유닛; 및 저압의 주 냉매를 로드로 전달하는 공급 라인 및 상기 로드로부터 상기 주 냉동 시스템으로 주 냉매를 복귀시키는 복귀 라인을 포함한다. 상기 시스템은 하나 이상의 부 극저온 냉동기를 포함하는 부 냉동 시스템을 더 포함한다. 시스템 제어 유닛은, 상기 로드로 전달되는 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어한다.

Description

극저온 냉각용 시스템 및 방법 {SYSTEM AND METHOD FOR CRYOGENIC COOLING}
본 출원은 2010년 7월 12일자로 출원된 미국 가출원 제61/363,514호의 이익을 주장하고, 또한 2010년 5월 12일자로 출원된 미국 가출원 제61/333,801호의 이익을 주장한다. 상기 출원들의 전체 개시내용은 본 명세서에 참고로 포함된다.
반도체 소자의 소형화가 지속됨에 따라, 매우 얕은 접합(ultra-shallow junction)에 대한 요구가 증가되어 왔다. 예를 들어, 현대적인 반도체 소자의 필요를 충족시키기 위해, 보다 활성이 우수하고, 보다 얕으며, 보다 신속한 소스-드레인 확장 접합을 생성하는데 엄청난 노력을 들여 왔다.
이온 주입 동안의 매우 낮은 웨이퍼 온도가 실리콘 웨이퍼의 손상을 최소화하는데 유리하다는 것을 발견하였다. 또한, 광범위한 다른 반도체 공정 및 다른 분야에 있어서 매우 낮은 온도 냉각에 대한 필요성이 대두되고 있다.
본 발명의 일 실시예에 따르면, 로드(load)를 냉각하기 위한 시스템이 제공된다. 상기 시스템은, 폐루프(closed loop) 주 냉동 시스템을 포함하며, 상기 폐루프 주 냉동 시스템은, 저압의 주 냉매를 수용하여, 상기 주 냉매를 고압 상태로 배출하는 주 압축기; 상기 주 압축기로부터 고압의 주 냉매를 수용하는 입구와, 저압의 주 냉매를 상기 주 압축기로 복귀시키는 출구를 포함하는 절연 인클로저(insulated enclosure); 상기 절연 인클로저 내의 하나 이상의 열교환기로서, 고압의 주 냉매를 수용하고, 부 냉동 시스템으로부터의 부 냉매를 사용하여 주 냉매를 냉각시키며, 상기 부 냉매는 상기 하나 이상의 열교환기 내에서 상기 주 냉매와 열교환 관계에 있는, 상기 하나 이상의 열교환기; 상기 절연 인클로저 내의 팽창 유닛으로서, 상기 하나 이상의 열교환기로부터 고압의 주 냉매를 수용하고, 저압의 주 냉매를 배출하는, 상기 팽창 유닛; 및 저압의 주 냉매를 로드로 전달하는 공급 라인 및 상기 로드로부터 상기 주 냉동 시스템으로 주 냉매를 복귀시키는 복귀 라인을 포함한다. 상기 시스템은 하나 이상의 부 극저온 냉동기를 포함하는 부 냉동 시스템을 더 포함한다. 시스템 제어 유닛은, 상기 로드로 전달되는 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어한다.
추가적인 관련 실시예에서, 상기 로드의 하나 이상의 온도는 약 -80℃ 내지 약 -250℃의 온도를 포함한다. 상기 부 냉동 시스템은 상기 로드의 하나 이상의 열전달면에 냉각을 전달하는 제1 채널과, 상기 하나 이상의 열교환기에 상기 부 냉매를 전달하는 제2 채널을 포함할 수 있다. 상기 하나 이상의 열전달면은 열을 이동시켜, 상기 로드의 적어도 일부를 약 -40℃ 내지 약 -100℃ 범위의 온도까지 냉각시킬 수 있다. 상기 하나 이상의 열전달면은 상기 로드의 시스템에 의해 처리될 반도체 기판을 수용하기 위한 챔버의 적어도 일부를 포함할 수 있다. 상기 부 냉동 시스템은 혼합 가스 냉동 시스템을 포함할 수 있다. 상기 혼합 가스 냉동 시스템은 하나 초과의 열교환기 및 하나 이상의 상 분리기(phase separator)를 포함할 수 있다. 부 냉동 시스템은 역 브레이튼 냉동 시스템(reverse Brayton refrigeration system)을 포함할 수 있다. 상기 로드는 예냉 극저온 인터페이스 모듈, 예냉 챔버, 콜드 패드 극저온 인터페이스 모듈, 압반(platen), 정전 척(electrostatic chuck) 및 2개의 별도의 로드 중 하나 이상을 포함할 수 있다.
다른 관련된 실시예에서, 상기 시스템은 상기 로드와 전자적으로 연통하는 전기적 인터페이스 제어 유닛을 더 포함할 수 있다. 상기 전기적 인터페이스 제어 유닛은 상기 로드의 하나 이상의 온도를 나타내는 전자 신호 및/또는 상기 로드의 하나 이상의 설정값 온도를 나타내는 전자 신호를 수신할 수 있다. 상기 전기적 인터페이스 제어 유닛은 상기 로드의 하나 이상의 온도를 제어하기 위해, 상기 부 냉동 시스템의 동작을 제어하기 위한 전기 신호를 출력할 수 있다. 상기 전기적 인터페이스 제어 유닛에 의해 제어된 상기 로드의 하나 이상의 온도는 상기 로드의 하나 이상의 열전달면의 온도를 포함할 수 있다.
추가적인 관련 실시예에서, 상기 시스템 제어 유닛은 상기 로드로 전달되는 주 냉매의 적어도 압력에 기초하여, 상기 로드에 대한 가변적 냉동 용량의 제공을 제어하기 위한 제어 유닛; 상기 주 압축기의 방전율을 제어하기 위한 제어 유닛; 주 압축기의 고압, 저압 및 차압 중 하나 이상을 제어하기 위한 제어 유닛; 상기 주 냉매로 전달될 열을 공급하는 열원을 제어하기 위한 제어 유닛; 조정 가능한 스로틀의 동작을 제어하기 위한 제어 유닛; 상기 하나 이상의 열교환기의 적어도 일부를 우회하도록 상기 주 냉매의 유동을 제어하기 위한 제어 유닛; 상기 주 냉동 시스템의 적어도 일부를 우회하도록 상기 주 냉매의 유동을 제어하기 위한 제어 유닛; 상기 주 냉매의 흐름률을 제어하기 위한 제어 유닛; 상기 부 냉매의 흐름률을 제어하기 위한 제어 유닛; 상기 부 냉동 시스템의 설정값 온도를 제어하기 위한 제어 유닛; 상기 부 냉매로 전달될 열을 공급하는 열원을 제어하기 위한 제어 유닛; 상기 부 냉동 시스템의 부 압축기의 속도를 제어하기 위한 제어 유닛; 상기 부 냉동 시스템의 적어도 일부를 우회하도록 상기 부 냉매의 유동을 제어하기 위한 제어 유닛; 상기 로드의 적어도 일부를 데우기 위해, 상기 주 냉매의 적어도 일부의 유동을 제어하기 위한 제어 유닛 및/또는 상기 로드의 적어도 일부를 데우기 위해, 상기 부 냉매의 적어도 일부의 유동을 제어하기 위한 제어 유닛을 포함할 수 있다.
추가적인 관련 실시예에서, 상기 절연 인클로저는 상기 부 냉동 시스템의 적어도 일부에 통합될 수 있다. 상기 하나 이상의 열교환기는 냉각기를 포함할 수 있다. 상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기의 속도를 조정하기 위한 제어 유닛을 포함할 수 있다. 상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기의 하나 이상의 부 압축기의 속도를 조정하기 위한 제어 유닛을 더 포함할 수 있다. 상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기 중 하나 이상의 전원을 끄기 위한 제어 유닛을 포함할 수 있다. 상기 시스템 제어 유닛은 상기 로드로 흘러들어가는 상기 주 냉매의 액체상 대 가스상의 비율을 변경시키기 위해, 상기 주 냉동 시스템과 상기 부 냉동 시스템 중 하나 이상의 동작을 제어할 수 있다. 상기 시스템은 하나 초과의 부 극저온 냉동기를 포함하며, 상기 시스템 제어 유닛은 서로 상이한 속도로 작동하도록, 또는 서로 동일한 속도로 작동하도록 상기 하나 초과의 부 극저온 냉동기의 동작을 제어하기 위한 제어 유닛을 포함할 수 있다. 상기 시스템 제어 유닛은 상기 로드의 하나 이상의 온도의 실질적으로 일정한 온도를 유지하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어할 수 있다. 상기 시스템 제어 유닛은 상기 로드에 가해지는 냉동을 감소시키기 위해, 상기 주 냉매의 적어도 일부를 상기 시스템 내의 보다 따뜻한 표면으로 안내하기 위한 제어 유닛을 포함할 수 있다. 상기 시스템 제어 유닛은 상기 주 압축기의 가변 속도 동작 및 상기 주 압축기의 맥동 동작 중 하나 이상을 허용하기 위한 제어 유닛을 포함할 수 있다.
추가적인 관련 실시예에서, 상기 시스템 제어 유닛은, 상기 로드로부터 복귀된 주 냉매의 측정 압력에 기초하여, 상기 로드로부터 복귀된 주 냉매의 계산된 끓는점을 확정하고; 상기 로드로부터 복귀된 주 냉매의 측정 온도를 상기 계산된 끓는점과 비교하여; 상기 측정 온도가 상기 계산된 끓는점으로부터 미리 정해진 온도차보다 더 높은 온도인 경우에, 상기 로드에 대한 유효 냉동을 증가시키도록 상기 부 냉동 시스템을 제어함으로써, 상기 로드의 과랭(undercooling)을 방지하도록 상기 부 냉동 시스템의 동작을 제어할 수 있다. 다른 실시예에서, 상기 시스템 제어 유닛은, 상기 로드의 하류측에서 제1 온도 센서로, 상기 로드로부터 복귀하는 주 냉매의 온도를 모니터링하고; 상기 제1 온도 센서의 온도가 미리 정해진 상정된 포화 온도점에 도달한 경우에 전원이 켜지도록, 상기 제1 온도 센서의 하류측에 있는 소형 히터를 제어하며; 상기 소형 히터의 하류측에서, 제2 온도 센서로 상기 주 냉매의 온도를 모니터링하여; 상기 소형 히터의 전원이 켜져 상기 주 냉매의 온도가 상승된 경우, 상기 로드에 대한 유효 냉동을 증가시키도록 상기 부 냉동 시스템을 제어함으로써, 상기 로드의 과랭을 방지하도록 상기 부 냉동 시스템의 동작을 제어할 수 있다. 다른 실시예에서, 상기 시스템 제어 유닛은, 상기 로드의 하류측에서 제1 온도 센서로, 상기 로드로부터 복귀하는 주 냉매의 온도를 모니터링하고; 상기 제1 온도 센서의 온도가 미리 정해진 상정된 포화 온도점에 도달한 경우에 전원이 켜지도록, 상기 제1 온도 센서의 하류측에 있는 소형 히터를 제어하며; 상기 소형 히터의 하류측에서, 제2 온도 센서로 상기 주 냉매의 온도를 모니터링하여; 상기 소형 히터의 전원이 켜져 상기 주 냉매의 온도가 상승된 경우, 상기 소형 히터에 의해 제공된 열의 규모를 결정하고, 상기 규모에 기초하여, 상기 로드에 대한 유효 냉동을 감소시키도록 상기 부 냉동 시스템을 제어할지의 여부를 결정함으로써, 상기 로드의 과랭을 방지하도록 상기 부 냉동 시스템의 동작을 제어할 수 있다. 상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기 상의 가변 히터를 조정하기 위한 제어 유닛을 포함할 수 있다. 상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기의 설정값 온도를 제어하기 위한 제어 유닛을 포함할 수 있다. 상기 시스템 제어 유닛은 서로 상이한 설정값 온도를 갖도록 하나 초과의 부 극저온 냉동기를 제어할 수 있다.
추가적인 관련 실시예에서, 상기 주 냉매는 아르곤, 크세논, 크립톤, 헬륨 및 혼합 가스 냉매 중 하나 이상을 포함할 수 있다. 상기 주 냉매는 상기 부 냉동 시스템에 사용되는 냉매의 끓는 온도보다 높은 끓는 온도를 갖는 하나 이상의 냉매 성분을 포함할 수 있으며, 예를 들어 상기 주 냉매는 아르곤, 질소, 크세논 및 크립톤 중 하나 이상을 포함하고, 상기 부 냉매는 헬륨 및 네온 중 하나 이상을 포함할 수 있다. 상기 주 냉매는 상기 부 냉동 시스템에 사용되는 하나 이상의 냉매의 끓는 온도보다 낮은 끓는 온도를 갖는 냉매를 포함할 수 있다. 상기 주 냉매는 아르곤, 질소, 크세논, 크립톤 및 헬륨 중 하나 이상을 포함하고, 상기 부 냉매는 혼합 가스 냉매를 포함할 수 있다. 상기 시스템은, 상기 절연 인클로저 내에서, 상기 절연 인클로저의 입구로부터 유입되는 고압의 주 냉매와 상기 로드로부터 복귀하는 주 냉매 사이에서 열을 교환시키고, 고압의 주 냉매를 냉각기로 배출하는 관류식 열교환기를 더 포함할 수 있다. 상기 시스템은 상기 절연 인클로저의 입구로부터 유입되는 고압의 주 냉매가 상기 로드로부터 복귀하는 주 냉매와 열을 교환하지 않도록, 상기 관류식 열교환기의 우회 이동(bypassing)을 허용하는 우회 밸브를 더 포함할 수 있다. 상기 시스템 제어 유닛은, 상기 관류식 열교환기의 중간 지점과 상기 관류식 열교환기의 단부 지점 중 하나 이상에서의 온도를 모니터링하여; 모니터링된 온도가 미리 정해진 온도 미만으로 떨어진 경우, 상기 로드에 대한 유효 냉동을 감소시키도록 상기 부 냉동 시스템을 제어함으로써, 상기 로드의 과랭을 방지하도록 상기 부 냉동 시스템의 동작을 제어할 수 있다.
추가적인 관련 실시예에서, 상기 로드는 반도체 소자를 제조하기 위한 이온 주입 시스템의 일부일 수 있는 정전 척을 포함할 수 있다. 상기 시스템은 상기 정전 척으로 상기 반도체 소자를 처리하기 전에 상기 반도체 소자를 수용하는 예냉 챔버를 더 포함할 수 있다. 상기 로드는, 반도체 웨이퍼를 냉각하기 위한 시스템의 적어도 일부, 이온 주입 시스템의 적어도 일부 및 물리적 증기 증착 시스템의 적어도 일부 중 하나 이상을 포함할 수 있다. 상기 하나 이상의 부 극저온 냉동기는 헬륨 냉동기를 포함할 수 있는 지포드-맥마흔(Gifford-McMahon) 사이클 냉동기를 포함할 수 있다. 상기 하나 이상의 부 극저온 냉동기는 맥동관 냉동기를 포함할 수 있다. 상기 하나 이상의 부 극저온 냉동기는 역 브레이튼 사이클 냉동기, 스터링 사이클(Stirling cycle) 냉동기 및 줄-톰슨 사이클(Joule-Thomson cycle) 냉동기 중 하나 이상을 포함할 수 있고, 단일 냉매를 사용하는 냉동기 또는 혼합 가스 냉매를 사용하는 냉동기를 포함할 수 있다. 상기 하나 이상의 부 극저온 냉동기는, 하나 초과의 부 극저온 냉동기와 열교환 관계에 있는 주 냉매의 평행 또는 직렬 유동으로 상기 주 냉매를 냉각시키도록 접속되는 상기 하나 초과의 부 극저온 냉동기를 포함할 수 있다.
추가적인 관련 실시예에서, 상기 주 냉동 시스템의 주 압축기는 가변 속도 압축기를 포함할 수 있다. 상기 시스템은 상기 절연 인클로저 내에 진공을 생성하기 위한 저온펌핑 표면(cryopumping surface)을 더 포함할 수 있다. 상기 저온펌핑 표면은 상기 하나 이상의 부 극저온 냉동기의 2단계 냉각을 포함할 수 있다. 상기 시스템은 상기 주 냉매가, 상기 주 냉매를 로드로 전달하는 공급 라인 및 상기 로드로부터 주 냉매를 복귀시키는 복귀 라인을 우회할 수 있도록 하는 우회 밸브를 더 포함할 수 있다. 상기 팽창 유닛은 모세관, 가변 유동 면적을 갖는 밸브, 스프링 편향 밸브(spring biased valve), 피스톤 익스팬더 및 터빈 익스팬더 중 하나 이상을 포함할 수 있다. 상기 시스템은 상기 주 냉매의 공급원과, 상기 주 압축기에 의해 수용되는 저압의 주 냉매 사이의 상기 주 냉매의 유동을 조절하는 압력 조절기; 및 상기 시스템으로의 상기 주 냉매의 유동을 조절하기 위해, 상기 압력 조절기를 제어하기 위한 압력 제어 유닛을 더 포함할 수 있다. 상기 시스템은 상기 절연 인클로저 상의 압력계에 접속된 격리 밸브를 더 포함할 수 있고, 상기 격리 밸브는, 상기 절연 인클로저 상의 압력계가 미리 정해진 최대 안전 압력을 초과하는 압력을 검지한 경우, 상기 절연 인클로저의 입구로의 상기 주 냉매의 유동을 방지한다. 상기 시스템은 상기 절연 인클로저로부터 상기 주 압축기로 복귀하는 주 냉매의 온도를 모니터링하도록 접속된 열 센서; 및 상기 절연 인클로저로부터 복귀하는 주 냉매의 온도가 미리 정해진 접촉 위험 최소 온도보다 낮은 경우, 상기 부 냉동 시스템의 불연속 동작에 연결되는 안전 제어 유닛을 더 포함할 수 있다. 상기 시스템은 상기 주 냉매가 상기 시스템으로 들어가기 전에, 상기 주 냉매의 공급원으로부터 안내된 가스로부터 불순물을 제거하는 정화기 및/또는 상기 주 압축기 내에서 주 냉매로부터 오일을 제거하는 오일 분리기를 더 포함할 수 있다. 상기 공급 라인과 상기 복귀 라인의 각각의 적어도 일부는 진공 절연 이동 라인 내에서 연장될 수 있다. 상기 하나 이상의 열교환기는 상기 주 냉매의 적어도 상당 부분을 액체상으로 전환시키거나, 상기 하나 이상의 열교환기는 실질적으로 상기 주 냉매를 액체상으로 전환시키지 않을 수 있다. 상기 팽창 유닛은 상기 주 냉매의 적어도 상당 부분을 액체상으로 전환시킬 수 있다.
추가적인 관련 실시예에서, 상기 공급 라인은 상기 절연 인클로저로부터 이동 라인을 통해 상기 로드로 저압의 냉매를 전달할 수 있고, 상기 복귀 라인은 상기 로드로부터 상기 이동 라인을 통해 상기 절연 인클로저로 냉매를 복귀시킬 수 있다. 상기 로드는 상기 절연 인클로저 내에 있을 수 있다. 상기 로드는 반도체 기판, 극저온 분리용 유체 스트림, 액화될 가스, 생물학적 시료, 화학적 처리, 재료 특성 분석 장비, 수증기 트랩, 제조 공정 내 물품, 이미징 장치, 아원자 입자 검출기, 광자 검출기, 화학 분석 장비, 초전도 케이블, 및 초전도 장치 중 하나 이상을 포함할 수 있다.
본 발명에 따른 다른 실시예에서, 냉각 냉매를 로드에 제공하기 위한 시스템이 제공된다. 상기 시스템은, 폐루프 주 냉동 시스템을 포함하며, 상기 폐루프 주 냉동 시스템은, 저압의 냉매를 수용하여, 상기 냉매를 고압 상태로 배출하는 압축기; 상기 압축기로부터 고압의 냉매를 수용하여, 상기 냉매를 저압 상태로 절연 인클로저로 배출하는 팽창 밸브로서, 상기 절연 인클로저는 상기 팽창 밸브로부터 냉매를 수용하는 입구와 저압의 냉매를 상기 압축기로 복귀시키는 출구를 포함하는, 상기 팽창 밸브; 상기 절연 인클로저 내의 하나 이상의 열교환기로서, 저압의 냉매를 수용하고, 상기 냉매와 열교환 관계에 있는 부 냉동 시스템을 사용하여 상기 냉매를 냉각시키는, 상기 하나 이상의 열교환기; 및 저압의 냉매를 로드로 전달하는 공급 라인과 상기 로드로부터 상기 주 냉동 시스템으로 냉매를 복귀시키는 복귀 라인을 포함한다. 상기 시스템은 하나 이상의 부 극저온 냉동기를 포함하는 부 냉동 시스템을 더 포함한다. 상기 시스템 제어 유닛은, 상기 로드로 전달되는 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어한다.
본 발명에 따른 다른 실시예에서, 로드를 냉각시키기 위한 방법이 개시된다. 상기 방법은 폐루프 주 냉동 시스템의 주 압축기에서 주 냉매를 압축하는 단계로서, 상기 주 압축기는 저압의 주 냉매를 수용하여, 상기 주 냉매를 고압 상태로 배출하는, 단계; 상기 주 압축기로부터 고압의 주 냉매를 절연 인클로저의 입구로 이동시키고, 상기 절연 인클로저로부터 저압의 주 냉매를 상기 주 압축기로 복귀시키는 단계; 고압의 상기 주 냉매를 상기 절연 인클로저 내의 하나 이상의 열교환기로 이동시키고, 하나 이상의 부 극저온 냉동기를 포함하는 부 냉동 시스템으로부터의 부 냉매와의 열교환을 이용하여 하나 이상의 열교환기에서 주 냉매를 냉각시키는 단계; 상기 절연 인클로저 내에서 팽창 유닛을 사용하여 주 냉매를 팽창시키는 단계로서, 상기 팽창 유닛은 상기 하나 이상의 열교환기로부터 고압의 주 냉매를 수용하고, 상기 주 냉매를 저압 상태로 배출하는, 단계; 저압의 주 냉매를 로드로 전달하고, 상기 로드로부터 상기 주 냉동 시스템으로 주 냉매를 복귀시키는 단계; 및 상기 로드로 전달되는 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어하는 단계를 포함할 수 있다.
추가적인 관련 실시예에서, 상기 방법은 상기 부 냉동 시스템의 제1 채널을 통해 상기 부 냉동 시스템으로부터 상기 로드의 하나 이상의 열전달면에 냉각을 전달하고, 상기 부 냉동 시스템의 제2 채널을 통해 상기 하나 이상의 열교환기로 상기 부 냉매를 전달하는 단계를 더 포함할 수 있다. 상기 방법은 상기 로드로 전달되는 주 냉매의 적어도 압력에 기초하여, 상기 로드에 대한 가변적 냉동 용량의 제공을 제어하는 단계를 더 포함할 수 있다. 상기 방법은 상기 주 압축기의 고압, 저압 및 차압 중 하나 이상을 제어하는 단계; 상기 주 냉매에 전달될 열을 공급하도록 열원을 제어하는 단계; 조정 가능한 스로틀의 동작을 제어하는 단계; 상기 하나 이상의 열교환기의 적어도 일부를 우회하도록, 상기 주 냉매의 유동을 제어하는 단계; 상기 주 냉동 시스템의 적어도 일부를 우회하도록, 상기 주 냉매의 유동을 제어하는 단계; 상기 주 냉매의 흐름률을 제어하는 단계; 상기 부 냉매의 흐름률을 제어하는 단계; 상기 부 냉동 시스템의 설정값 온도를 제어하는 단계; 상기 부 냉매에 전달될 열을 공급하도록 열원을 제어하는 단계; 상기 부 냉동 시스템의 부 압축기의 속도를 제어하는 단계; 상기 부 냉동 시스템의 적어도 일부를 우회하도록, 상기 부 냉매의 유동을 제어하는 단계; 상기 로드의 적어도 일부를 데우기 위해, 상기 주 냉매의 적어도 일부의 유동을 제어하는 단계 및/또는 상기 로드의 적어도 일부를 데우기 위해, 상기 부 냉매의 적어도 일부의 유동을 제어하는 단계를 더 포함할 수 있다.
추가적인 관련 실시예에서, 상기 방법은 상기 절연 인클로저로부터 이동 라인을 통해 상기 로드로 저압의 냉매를 전달하고, 상기 로드로부터 상기 이동 라인을 통해 상기 절연 인클로저로 상기 냉매를 복귀시키는 단계를 포함할 수 있다. 상기 로드는 상기 절연 인클로저 내에 있을 수 있다. 상기 로드는 반도체 기판, 극저온 분리용 유체 스트림, 액화될 가스, 생물학적 시료, 화학적 처리, 재료 특성 분석 장비, 수증기 트랩, 제조 공정 내 물품, 이미징 장치, 아원자 입자 검출기, 광자 검출기, 화학 분석 장비, 초전도 케이블, 및 초전도 장치 중 하나 이상을 포함할 수 있다. 상기 방법은 냉각될 유체 또는 물체를 상기 로드의 열전달면으로부터 상기 로드의 다른 부분으로 이동시키는 단계를 더 포함할 수 있다.
앞서 말한 내용은, 상이한 여러 도면에 걸쳐 유사한 도면부호가 동일한 부분을 나타내는 첨부 도면에 예시된 바와 같은 본 발명의 예시적 실시예에 대한 이하의 더욱 특정된 설명으로부터 명백할 것이다. 본 발명의 실시예를 예시함에 있어, 도면은 반드시 일정한 비율로 도시될 필요는 없으며, 대신 강조될 수 있다.
도 1은 본 발명의 일 실시예에 따른 냉각 시스템의 개략도이다.
도 2는 본 발명의 일 실시예에 따른 질소 가스의 열적 사이클의 도면이다.
도 3은 본 발명의 일 실시예에 따른, 저온 펌프(cryopump)로서 2단계 극저온 냉동기를 사용하는 냉각 시스템의 개략도이다.
도 4는 본 발명의 일 실시예에 따른 고 처리율 냉각 시스템(high throughput cooling system)의 개략도이다.
도 5는 본 발명의 일 실시예에 따른, 혼합 가스 냉동 시스템에 통합된 절연 인클로저를 구비한 고 처리율 냉각 시스템의 개략도이다.
본 발명의 예시적인 실시예를 이하 설명한다.
본 발명의 일 실시예에 따르면, 단일-웨이퍼 고 처리율 이온 주입기에서의 사용을 위한 저온 이온 주입용 용액을 제공하기 위한 밀폐 사이클 극저온 냉각원이 제공된다. 또한, 본 발명에 따른 일 실시예는, 광범위한 다른 가능한 응용, 예를 들어 극저온 분리를 위해 유체 스트림을 냉각시키는 것, 가스를 액화시키는 것, 생물학적 냉동고용으로 냉각을 제공하는 것, 화학적 처리의 반응 속도를 제어하는 것, 재료 특성 분석 장비용으로 냉각을 제공하는 것, 진공 처리 시 저 증기압을 생성하도록 수증기를 포착하는 것, 반도체 웨이퍼 처리 및 검사와 같은 제조 공정 시의 물품을 냉각시키는 것, 이미징 장치 및 다른 기기, 아원자 입자 및 광자 검출기를 냉각시키는 것, 화학 분석 장비를 냉각시키는 것, 그리고 초전도 케이블 및 장치를 냉각시키는 것에 있어 냉각을 제공하는데 사용될 수 있다. 시스템은 다른 냉각 응용에 사용될 수도 있음을 인식할 것이다.
도 1은 본 발명의 일 실시예에 따른 냉각 시스템(100)의 개략도이다. 도 1의 실시예에서, 시스템(100)은 질소 스트림(104)과 같은 재순환 냉매를 냉각시키기 위해, 극저온 냉동기(101/102/103)를 사용한다. 도 1의 구성요소와 유사한 도면부호가 사용되는 도 2의 열 도표와 관련하여, 질소는 (대안적으로, 2개의 별도의 열교환기로서 이루어질 수 있는) 관류식 열교환기(105)의 제1 및 제2 부분(105a/b)에서 예냉되고, 극저온 냉동기(101/102/103)를 사용하여 응결되며(206), 팽창 유닛(107)을 사용하여 팽창되고(207)(냉매의 적어도 일부가 극저온 냉동기(101/102/103)에 의해, 그리고/또는 팽창 유닛(107)에 의해 가스 상태에서 액체 상태로 변경될 수 있음), 로드(108)에 제공(208)되는데, 여기서 질소가 비등하여 열을 추출함으로써 로드(108)를 냉각시키고, 가스 형태로 시스템으로 복귀한다. 복귀한 질소는 관류식 열교환기(105a/b) 내에서 복귀 스트림과 유입 스트림 사이의 열교환에 의해 유입 스트림을 예냉(205a/b)하면서, 관류식 열교환기(105a/b)를 통한 복귀(205a/b)에 의해 데워진다. 이어서, 질소는 압축기 패키지(109)에서 재압축되도록(209) 복귀한다. 시스템(100)은 앞서 언급된 다른 응용에 대해서뿐만 아니라, 반도체 제조 공정 동안 이온 주입에 사용되는 웨이퍼 척에 냉각을 제공하기 위해 사용될 수 있다.
도 1의 실시예에서, 시스템은 극저온 냉동 시스템(101/102/103), 질소 압축기(109), 절연 인클로저(110)(냉동기(101/102/103)로부터 재순환 질소 스트림(104)으로의 열전달이 발생함), 밸브류, 유동 제어부, 압력 제어부, 안전 제어부, 시스템 제어부, 및 정화부(이상 모든 구성요소는 이하 추가로 설명됨)를 포함한다. 재순환 질소 스트림(104) 대신, 시스템은 아르곤, 크세논, 크립톤, 다른 순수 냉매, 혼합 냉매, 또는 냉동기(101/102/103)에 사용되는 냉매의 끓는점보다 높은 온도에서 끓는 냉매 성분을 포함하는 임의의 냉매(예를 들어, 질소 및/또는 아르곤)의 스트림을 사용할 수 있다. 본 명세서에 사용된 바와 같이, "냉매"는 가스상 및 액체상의 혼합물일 수 있고, 가스 대 액체의 비율은 냉동 사이클 동안에 걸쳐 변경될 수 있음을 인식해야 한다. 극저온 냉동 시스템(101/102/103)은 지포드-맥마흔(GM) 냉동 사이클을 운용하는 하나 이상의 냉동기(101/102/103)를 통해 냉매로서 헬륨을 사용한다. 대안적으로, 냉동(101/102/103)을 제공하기 위해, 단일 또는 혼합 냉매를 구비하는 역 브레이튼 사이클, 스터링 사이클 또는 줄 톰슨 팽창 사이클이 사용될 수 있다. 헬륨 대신, 극저온 냉동 시스템(101/102/103)은 네온과 같은 다른 저온 비등(cold boiling) 냉매 성분을 포함하는 냉매를 사용할 수 있다. 일 실시예는 비록, 단일 냉동기도 가능하지만, 직렬 또는 병렬을 이룰 수 있는 다수의 냉동기(101/102/103)를 사용한다.
도 1의 실시예에서, 질소 압축기(109)는 건성 가스를 압축하도록 개조된 기밀하게 밀봉된 로터리 베인 펌프를 사용하지만, 스크롤 또는 임의의 다른 유형의 펌프도 사용될 수 있다. 펌프는 가변 속도로 작동할 수 있다. 대안적으로, 일정 속도 펌프가 사용될 수 있다. 압축 열을 관리하기 위해, 압축기(109)에 의한 압축 전 또는 압축 동안, 질소 스트림 내로 오일이 주입될 수 있다. 이어서, 이 오일은 섬유 유리의 밀집 팩 및 활성탄을 구비한 실온 흡착기로 구성되는 오일 분리기(135)를 통해 질소 스트림으로부터 제거된다.
도 1의 실시예에서, 절연 인클로저(110)는 구성요소 주위에 저압 또는 진공 인벨로프를 생성하여 얻어지는데, 이는 실온 미만일 것이다. 절연 진공은 터보 분자 펌프(111)에 의해 제공되고, 다이어프램 러핑 펌프(diaphram roughing pump)(112)에 의해 배압(backing)되지만, 또한 저온 펌핑(cryopumping)을 통해 생성될 수도 있다. 예를 들어, 2단계 극저온 냉동기(313)(도 3 참조) 또는 다른 극저온 냉동기가 인클로저(110) 내에 진공을 생성하기 위한 저온 펌프로서 사용될 수 있다. 절연 진공은 또한, 절연 인클로저(110)의 진공 공간으로 개방된 강성 이동 라인, 진공 재킷 베이오넷 피팅(vacuum jacketed bayonette fitting)을 사용하거나, 능동적으로 펌핑되거나 초기에 저압 및 밀봉인 상태의 이동 라인(114)을 따른 별도로 밀봉된 진공 공간에 의해, 냉각될 로드(108)로 액체 질소를 운반하는 열적으로 분리된 이동 라인(114)을 따라 사용된다. 절연은 또한, 저온 구성요소 주위에서 폼(foam)과 같은 다른 절연 시스템을 통해 달성될 수 있다.
도 1의 실시예에서, 질소로부터 극저온 냉동기(101/102/103)로의 열전달은 냉동기(101/102/103)로부터 관형 열교환기가 권취되는 구리 덩어리로의 직접적인 열 전도를 통해 달성된다. 구리 덩어리는 냉동기의 일부이거나, 열 전도가 가능한 방식으로 냉동기에 연결될 수 있다. 구리 덩어리는 열전달을 극대화하기 위해 적합한 위치에 납땜되는 관을 지지하기 위한 나선형 스캘럽 홈을 가질 수 있다. 대안적으로, 일측면이 평탄한 D-자 형상의 관이 사용될 수 있다. 관은 매끄러운 내경을 갖지만, 내표면적을 증가시켜 열전달을 개선하기 위해 내부 핀(fin), 홈 또는 거친 마무리가 사용될 수 있다.
도 1의 실시예에서, 밸브류는, 로드에 액체 질소를 공급하는 라인 상의 밸브(115)와 증발된 질소를 복귀시키는 라인 상의 밸브(116)로 이루어진 2개의 격리 밸브(115/116), 및 액체 질소가 로드(108)로 보내짐이 없이 순환할 수 있도록 하는 우회 밸브(117)를 포함한다. 밸브류(115/116/117)는 로드(108)에 냉동이 가해지기 전에 시스템이 작동 온도까지 예냉될 수 있어, 로드(108)에 냉동이 요구되지 않는 기간 동안, 시스템이 저온으로 유지될 수 있는 작동 모드를 허용한다. 밸브는 밸브로부터 외부 환경으로의 열 누설을 최소화하는 수동식, 공압식 또는 전기식의 열적으로 분리된 작동 장치를 가질 수 있다. 열적 분리는 밸브 본체와 작동 장치 사이의 단면적을 더 감소시킬 수 있는 절개부(cut-out)를 구비하거나 구비하지 않은 얇은 벽 관을 통해 달성된다. 열적 분리는 또한, 낮은 열 전도성을 갖는 재료의 사용을 통해 달성될 수 있다.
도 1의 실시예에서, 유동 제어는 온도, 압력, 액체 포화의 백분율 및 시스템의 요망되는 유동에 대해 명확하게 크기 설정되는 모세관(107)의 사용을 통해 달성될 수 있다. 모세관(107)은 액체 질소를 로드에 공급하는 라인(114)과 냉동기(101/102/103) 사이에 위치되지만, 그 위치는 시스템 내에서 변경될 수 있다. 유동 제어의 대안적 방법은 압축기(109)와 따뜻한 열교환기(105) 사이의 오리피스에서 전환되는 웜 스로틀 밸브 또는 다른 팽창 밸브, 가변 유동 면적을 갖는 밸브, 스프링 편향 밸브를 포함하거나, 압축기(109)의 속도를 변경함으로써 이루어진다.
도 1의 일 실시예에서, 제조중인 반도체 소자는 정전 척에 요망되는 냉각 냉매를 감소시키기 위해 예냉될 수 있다. 예를 들어, 유동 라인(도시되지 않음)이 질소를 질소 루프(104) 내의 위치로부터 예냉 챔버(도시되지 않음)로 우회시킬 수 있다.
도 1의 일 실시예에서, 압력 제어는 질소의 공급원과 질소 압축기의 복귀측 사이의 압력 조절기(118), 고 측압 제어 밸브(119), 우회 조절기(120) 및 압축기(109)의 속도에 의해 제공된다. 압력 조절기(118)는 가스가 질소의 공급원으로부터 배출될 수 있도록 하여, 가스상 질소와 액체 질소 사이의 부피차를 보상하고, 질소의 응축 시 압력을 유지하여 질소 압축기의 복귀측에 대한 최소 압력을 제어한다. 질소 공급원은 고압 실린더, 반도체 제조 공장 내 시설 질소 공급원 또는 국부적 질소 발생기로부터의 공급원일 수 있다. 압력 조절기(118)는 일정 값으로 설정되지만, 또한 가스 유동을, 냉동이 로드(108)에 가해지는 온도가 역학적으로 변경될 수 있도록 하는 시스템으로 바꾸기 위해, 압력 제어 유닛(136)에 의해 능동적으로 제어될 수도 있다. 고 측압 제어 밸브(119)는 로드가 증가하는 상태하에서 또는 시스템이 정지되어 있는 경우에, 시스템 내 질소가 증발할 때 공급 측압을 제한한다. 우회 조절기(120)는 질소 압축기(109)의 저압측과 고압측 사이에 위치되고, 압축기(109)에 의해 요구되는 동력, 및 고 측압 제어 밸브(119)와 함께, 압축기(109)의 복귀측의 최대 압력을 제어한다. 압축기 속도 및 압력 조절기 설정은 압축기(109)의 공급측의 최소 압력을 규정한다. 압축기(109)의 속도는 변경될 수 있다. 대안적으로, 압축기(109)의 속도는 일정할 수 있다.
도 1의 실시예에서, 안전 제어부는 질소 라인 및 절연 인클로저(110) 상의 안전 밸브(119/121/122/123/124)와, 압축기(109) 상의 안전 밸브, 질소 스트림 상의 격리 밸브(125/126), 및 열 센서(137)를 통해 제공된다. 질소 라인 상의 안전 밸브(119/121/122/124)는 밸브의 작동 또는 압축기(109)로부터 절연 인클로저(110)로 질소를 운반하는 라인의 분리를 통해 잠재적으로 격리될 수 있는 임의의 체적 상에 설치된다. 진공 공간(110) 상의 안전 밸브(123)는 질소 라인이 파손된 경우에 인클로저(110)의 과도 가압 상태 및 이어지는 인클로저(110) 내에서의 증발을 방지하도록 크기설정된다. 질소 스트림 상의 격리 밸브(125)는 절연 인클로저(110) 상의 압력계(127)에 의해 제어된다. 압력계(127)가 1 미크론 초과와 같은 고압을 감지하면, 압력계(127) 상의 릴레이가 작동하여, 격리 밸브(125)로의 전력을 차단하여, 정상적으로 폐쇄된 구성을 이루고, 이에 따라 폐쇄된다. 이는 질소 라인 내의 액체 질소의 증발을 야기하게 될 진공 누설 또는 질소 라인 파손의 경우에, 공급원으로부터의 질소가 계속하여 인클로저(110)로 들어가는 것을 방지한다. 열 센서(137)는 절연 인클로저(110)를 떠나 압축기(109)로 복귀하는 질소의 온도를 모니터링하여, 만일 온도가 접촉 위험을 생성할 정도로 충분히 낮은 경우, 냉동기(101/102/103)의 작동을 중지시킬 것이다(또는 냉동기에 의해 제공되는 냉동을 감소시킬 것이다).
도 1의 실시예에서, 시스템 제어 유닛(139)은 시스템의 과냉각(overcooling) 또는 과랭(undercooling)을 방지하는데 유효한 냉동력의 양을 조정하여, 위험한 상황을 발생시키지 않고서 시스템이 로드(108)에 적당량의 냉동을 제공할 수 있도록 구성되는 하나 이상의 제어 유닛을 포함한다. 시스템 제어 유닛(139)에 의해 행해지는 제어 유닛의 추가적인 동작이 이하 설명된다. 시스템 제어 유닛(139)은 센서(130, 131, 133, 137), 소형 히터(132), 압축기(109 및 128) 및 본 명세서에 개시된 것과 같이 시스템의 동작을 제어하는데 필요한 다른 센서와 장치를 포함하여 본 명세서에 개시된 여러 센서 및 장치에 전기적으로 접속된다는 것을 인식할 것이다. 시스템 제어 유닛(139)은 본 명세서에 개시된 제어 기술을 실행하기 위해, 특별히 프로그램된 마이크로프로세서 또는 다른 특별히 프로그램된 전자부품을 포함하여 적합한 전자 하드웨어를 포함한다. 또한, "제어 유닛"이 본 명세서에 개시될 때, 이는 시스템 제어 유닛(139)의 서브 유닛으로서, 예를 들어 마이크로프로세서 또는 시스템 제어 유닛(139)의 다른 전자 하드웨어의 서브루틴 또는 서브구성요소에 의해 이루어질 수 있다는 점을 인식할 것이다. 과냉각 또는 과랭을 방지하기 위해, 시스템 제어 유닛(139)은 극저온 냉동기(101/102/103) 및/또는 헬륨 압축기(128)의 속도를 조정하고, 그리고/또는 냉동기 유닛(101/102/103) 중 하나 이상의 전원을 오프한다. 이로써, 가스상이 아닌 액체상인 로드(108)로의 유동의 백분율이 변화된다. 정상 작동, 즉 과냉각 또는 과랭되지 않은 작동에서, 냉동기(101/102/103)는 비록, 모든 냉동기에 대한 냉동 로드의 균형을 맞추기 위해 이들 냉동기가 모두 동일한 속도로 작동되도록 강제될 수도 있지만, 상이한 속도로 작동하도록 허용된다. 또한, 극저온 냉동기(101/102/103) 중 하나 이상은 상이한 크기 또는 상이한 냉동 유형의 것일 수 있으며, 또는 모든 극저온 냉동기가 동일한 크기 및 냉동 유형을 가질 수도 있다는 점을 인식해야 한다. 또한, 제어 유닛은 극저온 냉동기(101/102/103)에 제어 파라미터(예를 들어, 최대 또는 최소 냉동기 속도)를 제공할 수 있으며, 극저온 냉동기가 최대 및 최소 파라미터 내에서 (하나 이상의 온-보드 국부 프로세서를 사용하여) 국부적 제어를 행할 수 있도록 하면서, 극저온 냉동기는 이러한 파라미터 내에서 작동해야 한다. 또한, 제어 유닛은 냉동기의 속도를 직접적으로 제어하기 보다는, 냉동기(101/102/103)의 설정값 온도를 직접적으로 제어할 수 있다. 냉동기(101/102/103)는 상이한 설정값 온도를 갖도록 제어될 수 있다.
도 1의 실시예에서, 유효 냉동을 조정하기 위한 다른 옵션이 존재한다. 예를 들어, 일정한 속도 또는 가변 속도로 작동되는 극저온 냉동기(101/102/103)에 의해 가해지는 냉동의 양을 감소시키기 위해, 가변성 히터(140)가 사용될 수 있다. 다른 방법은 질소 유동을 복귀측 열교환기(105b) 주위로 안내하기 위한 밸브를 사용하여, 유입 질소가 극저온 냉동기(101/102/103)에 도달하기 전에, 유입 질소의 예냉을 방지 또는 허용할 것이다. 유동의 일부는 또한, 로드(108)에 가해지는 냉동을 감소시키기 위해, 시스템 내 보다 따뜻한 표면으로 안내될 수 있다. 유효 냉동은 또한, 가변 속도 압축기(109)로 질소 스트림 내의 유동을 변경하거나, 일정 속도 압축기의 전원을 온 또는 오프시켜 유동을 맥동시킴으로써 조정될 수 있다.
도 1의 실시예에서, 효과적인 시스템 제어를 위해, 시스템은 부족 냉동(under-refrigerated) 또는 과-냉동(over-refrigerated) 상태 양자를 검출할 수 있다. 부족 냉동의 검출은 압력 변환기(130)를 사용하여 질소 회로의 복귀 라인 상의 압력을 측정하여 행할 수 있으며, 이는 후에 계산되는 액체 질소의 끓는점을 결정한다. 이이서, 복귀 라인 상의 온도 센서(131)로부터의 데이터를 계산된 값과 비교한다. 측정된 온도가 계산된 온도로부터 미리 설정된 온도차보다 더 높은 온도인 경우, 이는 시스템이 로드(108)로부터 액체 또는 거의 액체인 질소를 복귀시키지 않고 있으며, 추가적인 냉동을 활용할 수 있다는 것을 의미한다. 냉동기(101/102/103)는 이어서 속도를 증가시키는 것과 같은 수단을 통해 유효 냉동을 증가시키도록 지시된다. 부족 냉동 상태의 검출은 또한, 열역학 시스템의 완벽 모델과 같은 다른 수단을 통해서, 그리고 입구 및 출구 온도, 입구 및 출구 압력 및 유동과 같은 시스템 파리미터를 비교하여 달성할 수 있다. 다른 방법은 온도 센서(131)를 사용하여 복귀 온도를 모니터링하고, 복귀 온도가 상정된 포화 온도점에 도달하면, 온도 센서(131)의 하류측의 소형 히터(132)의 전원을 온한다. 이어서, 소형 히터(132)의 하류측의 제2 온도 센서(133)가 소량의 열의 추가가 질소의 온도를 상승시켰는지를 확인하기 위해 모니터링된다. 만약, 상승시켰다면, 질소 스트림은 설정된 과열 수준을 초과하게 되어, 보다 많은 냉동이 필요하게 된다.
도 1의 실시예에서, 과-냉동의 검출은 안전 및 잠재적인 에너지 효율 상의 이유로 중요하다. 과-냉동은 관류식 열교환기(105a/b)의 중간점 또는 대안적으로 어느 한쪽의 단부에서의 온도를 관찰함으로써 모니터링될 수 있다. 이 온도가 미리 설정된 수준 미만으로 떨어지면, 시스템은 유효 냉동을 감소시키도록 조정된다. 부 제어 열 센서(137)가, 열교환기(105a/b)를 떠나 압축기(109)로 복귀하는 질소의 온도를 모니터링한다. 이 값이 접촉 위험이 있는 것으로 간주되는 온도 미만으로 떨어지면, 모든 냉동기(101/102/103)는 안전 제어 유닛(138)에 의해 사용 불능이 되고, 시스템 작동은 폐쇄(lock-out)된다. 다른 방법은 온도 센서(131)를 사용하여 복귀 온도를 모니터링하여, 복귀 온도가 상정된 포화 온도점에 도달하면, 지점(116)으로부터 온도 센서(131)의 하류측에 있는 소형 히터(132)의 전원을 온한다. 이이서, 소형 히터(132)의 하류측의 제2 온도 센서(133)는 소량의 열의 추가가 질소의 온도를 상승시켰는지 여부를 관찰하도록 모니터링된다. 온도를 상승시키는데 필요한 열의 양의 크기는 과-냉동이 존재하는지의 여부에 대한 지표이다. 또한, 로드에서와 같은 특정 위치에서의 온도는 로드에 대한 냉동을 증가 또는 감소시키는 피드백 제어를 위해 사용될 수 있다. 로드에 대한 냉동의 감소는 냉동기(101/102/103)에 의해 생성되는 냉동을 감소시킴으로써, 그리고/또는 우회 밸브(117)를 통해 로드로부터 유동을 우회시킴으로써 수행될 수 있다.
또한, 냉매의 2-상 유동(즉, 냉매는 액체상 및 가스상을 포함함)이 존재하는 본 발명에 따른 일 실시예에서, 시스템 제어 유닛(139)은 로드로 들어가는 냉매의 압력(즉, 로드로의 냉매 입구 압력)에 대한 정보를 사용하여, 그리고 온도 피드백을 수용할 필요 없이, 로드의 온도를 조절할 수 있다. 이는 2-상 혼합물의 압력/온도 관계로 인해 가능하다. 일 실시예에서, 로드의 하류측 온도 및 입구 압력 양자 모두는 시스템 제어 유닛(139)이 로드의 온도를 조절할 수 있도록 사용될 수 있으며, 다른 실시예에서는, 입구 압력만이 사용될 수 있다. 제어 기술이 하나 이상의 온도에 기초하는 것으로 본 명세서에 설명되는 경우에는, 이에 따라 유사한 기술이 압력 및 온도 또는 압력에만 기초하여 사용될 수도 있다.
도 1의 실시예에서, 재순환 질소의 순도는 시스템에서 몇가지 방법을 통해 보장될 수 있다. 첫째로, 시스템의 외부의 질소 공급원으로부터의 가스가 가열 또는 미가열의 게터 재료를 사용하는 정화기(134)를 통과하여 불순물을 제거한다. 질소 압축기(109) 내에서, 질소 스트림으로 도입되는 오일은 섬유 유리의 밀집 팩 및 활성탄을 구비한 실온 흡착기로 구성되는 오일 분리기(135)를 통해 제거되며, 오일 분리기는 물 및 다른 가스상 오염물질도 제거한다. 마지막으로, 질소 스트림이 절연 인클로저(110) 내에서 저온 흡착기(129)를 통과하게 된다. 또한, 시스템의 사용 시 오염물질의 도입을 감소시키는 것도 고려된다. 격리 밸브(126)는 로드를 데우기 위해 시스템으로 도입될 실온 또는 가열된 질소를 감안할 수 있고, 압력 조절기(118)는 질소 스트림 내에 항상 정압이 유지되는 것을 보장하도록 사용될 수 있다.
도 4는 본 발명의 일 실시예에 따른 고 처리율 냉각 시스템(400)의 개략도이다. 도 4의 실시예에서, 시스템(400)은 질소 스트림(404)과 같은 재순환 냉매의 냉각과 더불어, 냉각될 기판의 예냉을 가능하게 하는, 이중 채널 혼합 가스 냉매 시스템(441)을 사용한다. 냉각 시스템(400)은 혼합 가스 냉매 시스템(441), 질소 재순환 압축기(409), 절연 인클로저(410), 및 전기적 인터페이스 제어 박스(442)를 포함한다. 전기적 인터페이스 제어 박스(442)는 혼합 가스 냉동 시스템(441)을 제어하기 위한 전자부품과 별도로, 또는 일체로 형성될 수 있다. 절연 인클로저(410)에서, 혼합 가스 냉동 시스템(441)으로부터 재순환 질소 스트림(404)으로의 열전달이 발생한다. 비록, 도 1의 실시예에서와 같은 진공 절연이 대신하여 사용될 수도 있지만, 도 4의 실시예에서의 절연 인클로저(410)는 발포 절연(foam insulation)을 포함한다. 절연 인클로저(410)는 질소 압축기(409)가 절연 인클로저(410)의 외부에 위치되고, 실온과 같은 보다 따뜻한 온도에 있는 동안, 절연되는 후술하는 냉각 구성요소를 포함할 수 있다.
도 4의 실시예에서, 혼합 가스 냉동 시스템(441)의 제1 채널(443)은 예를 들어 정전 척에서 요구되는 냉각 냉매를 감소시키기 위해, 제조중인 반도체 소자를 예냉시키도록, 혼합 가스 냉매를 예냉 장비로 순환시킨다. 도 4에서, 제1 채널(443)은 혼합 가스 냉매를 예냉 장비로 운반하기 위한 제1 채널 혼합 가스 냉매 공급 라인(444) 및 예냉 장비로부터 혼합 가스 냉매를 복귀시키기 위한 제1 채널 혼합 가스 냉매 복귀 라인(445)을 포함한다. 예냉 장비는 예를 들어, 하나 이상의 예냉 챔버(447, 448)에서 열전달면을 냉각시키는 예냉 극저온 인터페이스 모듈(446)을 포함하거나; 또는 혼합 가스 냉매가 예냉 챔버(447, 448)에서 열전달면으로 직접 순환될 수 있다. 또한, 혼합 가스 냉매는 예냉 장비일 수도 그렇지 않을 수도 있고, 예냉 장비가 사용되는지에 상관없이, 로드 내 임의의 열전달면으로 순환될 수 있다. 또한, 본 발명에 따른 일 실시예는 로드 중 하나가 다른 로드에 대한 예냉 챔버가 아닌 경우를 포함하여, 2개의 상이한 로드를 2개의 상이한 온도에서 냉각시키는데 사용될 수 있다. 본 명세서에 개시된 반도체 기판과 같은 로드와 더불어, 임의의 다른 로드가 본 발명에 따른 일 실시예에 의해 냉각될 수 있다. 예를 들어, 로드는 극저온 분리를 위한 유체 스트림, 액화될 가스, 생물학적 냉동고 또는 다른 생물학적 시료, 화학적 공정, 재료 특성 분석 장비, 진공 처리를 위한 수증기 트랩, 제조 공정에 있어서의 물품, 이미징 장치 또는 다른 기기, 아원자 입자 또는 광자 검출기, 화학적 분석 장비 또는 초전도 케이블 또는 장치를 포함할 수 있다. 다른 로드는 냉각될 수 있다.
본 발명의 일 실시예에 따르면, 예냉 챔버(447, 448)가 예를 들어, 반도체 기판을 약 -40℃ 내지 약 -100℃ 범위의 온도로 냉각시키는데 사용될 수 있으며, 그 후 기판은 이온 주입 또는 다른 공정이 기판에 행해지는 정전 척(449)으로 전달될 수 있다. 본 발명의 일 실시예에 따르면, 절연 인클로저(예를 들어, 110 및 410) 밖으로 지향되는 질소는 예를 들어, 콜드 패드 극저온 인터페이스 모듈(465), 압반(466), 정전 척(449), 또는 로드 내 다른 위치에서의 온도일 수 있는 약 -150℃ 내지 약 -190℃와 같은 약 -80℃ 내지 약 -250℃의 목표 온도를 달성하도록 사용될 수 있다. 예냉 챔버(447, 448) 내 반도체 기판의 예냉에 의해, 본 발명에 따른 일 실시예는 반도체 제조 설비에 대한 보다 높은 처리율이 가능한데, 이는 반도체 기판이 예냉 챔버(447, 448)에서 이미 예냉된 경우에, 반도체 기판은 정전 척에서 요망되는 저온으로 냉각되기 위해 보다 적은 시간을 필요로 하기 때문이다.
도 4의 실시예에서, 혼합 가스 냉동 시스템(441)의 제2 채널(450)은 동일한 열교환기의 별도의 채널을 통과하는 별도의 질소 가스 루프(404)로부터 열을 제거하기 위해, 절연 인클로저(410) 내에 포함되는 열교환기를 통해 혼합 가스 냉매를 순환시킨다. 도 4의 실시예에서, 질소 루프(404)는 비록, 도 1의 실시예에 대해 전술한 바와 같이 액체 및 가스의 혼합물이 순환될 수도 있지만, 폐루프(404) 전반에 걸쳐 본질적으로 모든 질소를 가스상으로 순환시킬 수 있다. 질소 루프(404)에서, 질소는 질소 압축기(409)에 의해 압축되고, 질소 공급 라인(451)을 통해 제1 열교환기(452)의 일측으로 전달되며, 제1 열교환기의 일측으로부터 질소는 제2 열교환기(453)의 일측으로 유동한다. 제1 및 제2 열교환기(452, 453)에서, 질소는 로드로부터 복귀하는 질소에 의해 냉각된다. 제2 열교환기(453) 이후에, 질소는 선택적 히터(454)를 통해 제3 열교환기(455)의 일측으로 유동하고, 제3 열교환기의 일측으로부터 질소는 제4 열교환기(456)의 일측으로 유동한다. 제3 및 제4 열교환기(455, 456)에서, 질소는 (혼합 가스 냉동 시스템(441)으로부터의) 혼합 가스 냉매에 의해 냉각되어, 제3 및 제4 열교환기(455, 456)의 타측을 통해 유동한다. 질소는 제4 열교환기(456)를 빠져나가고, 흡착기(457)를 통과하여 불순물이 제거되며, 모세관(458) 또는 스로틀 밸브와 같은 팽창 유닛을 통해 팽창된다. 팽창 유닛은 가스 팽창 효과를 통해 추가적인 냉각을 제공할뿐만 아니라, 질소의 유동을 조절하는데 사용된다. 팽창 이후에, 질소는 로드를 냉각시키기 위해 질소 라인(459)을 통해 절연 인클로저(410)를 빠져나가고, 로드로부터 복귀 라인(460)을 통해 절연 인클로저(410)로 복귀된다. 복귀 질소는 제1 및 제2 열교환기(452 및 453) 내 유입 질소 스트림을 데우고, 그리고 냉각시키기 위해, 제2 열교환기(453)의 타측 및 이로부터 제1 열교환기(452)의 타측으로 제공된다. 제1 열교환기(452)로부터, 질소는 복귀 라인(461)을 거쳐 압축기(409)로 복귀하여 압축된다.
이렇게, 도 4의 실시예에서, 로드로부터 복귀하는 저온 질소 가스(460)와 질소 압축기(409)로부터 절연 인클로저(410)로 들어가는 공급 가스(451) 사이의 관류식 열교환을 위해, 2개의 제1 열교환기(452, 453)가 사용된다. 제3 및 제4 열교환기(455, 456)는 (혼합 가스 냉매 시스템(441)의 제2 채널(450)로부터의) 혼합 가스 냉매와 2개의 제1 열교환기를 빠져나간 질소 가스 사이에서의 열전달을 위해 사용된다. 혼합 가스 냉매는 혼합 가스 냉동 시스템(441)의 제2 채널(450)의 혼합 가스 공급 라인(462)에 의해 제4 열교환기(456)로 공급되고, 제4 및 제3 열교환기(456, 455)의 각각의 일측을 통과하고, 이로부터 제2 채널(450)의 혼합 가스 복귀 라인(463)에 의해 혼합 가스 냉동 시스템(441)으로 복귀한다. 히터(454)는 열교환기(455, 456)에서 혼합 가스 냉매가 어는 것을 방지하기 위해 사용될 수 있다.
도 4의 실시예에서, 질소 압축기(409)의 공급측과 복귀측 사이의 압력 차(예를 들어, 질소 공급 라인(451)과 질소 복귀 라인(461) 사이의 압력 차)는 질소가 모세관(458)을 통과함에 따라, 요망되는 질소 흐름율 및 팽창 수준을 얻도록 제어될 수 있다. 또한, 전자 인버터(464)는 압축기(409)를 빠져나가는 질소 흐름율을 감소시키기 위해, 압축기(409)의 속도를 감소시키는데 사용될 수 있다.
도 4의 실시예에서, 밸브(415/416/417)는 도 1의 밸브(115/116/117)에 대해 전술한 바와 유사한 방식으로 사용될 수 있다. 특히, 밸브류는 2개의 밸브(415/416), 즉 로드로 질소를 공급하는 라인 상의 하나의 밸브(415) 및 로드로부터 질소를 복귀시키는 라인 상의 하나의 밸브(416), 및 질소가 로드로 보내짐이 없이 순환할 수 있도록 하는 우회 밸브(417)를 포함할 수 있다. 밸브류(415/416/417)는 냉동이 로드에 가해지기 전에 시스템이 작동 온도로 예냉될 수 있는 작동의 모드를 허용하고, 시스템은 로드에 냉동이 요구되지 않는 기간 동안 저온으로 유지될 수 있다. 밸브(415/416/417)는 비록, 진공 절연이 사용되는 경우에는 진공 밸브일 수도 있으나, 절연 인클로저(410)가 진공 절연되지 않는 경우에는 진공 밸브일 필요는 없다.
도 4의 실시예(400)는 반도체 제조 또는 다른 응용에 대한 최종 사용자에 의해 작동되는 장비와 접속되도록 사용될 수 있다. 예를 들어, 고객 장비는 콜드 패드 극저온 인터페이스 모듈(465), 압반(466), 정전 척(449), 예냉 극저온 인터페이스 모듈(446), 및 하나 이상의 예냉 챔버(447, 448) 중 하나 또는 이들 모두를 포함할 수 있다. 절연 인클로저(410)를 빠져나가고, 이로 복귀하는 질소 라인(459 및 460)은 혼합 가스 냉매 공급 및 복귀 라인(444 및 445)이 연결될 수 있는 것처럼 고객 설비와 연결될 수 있다. 고객 장비는 예를 들어, 도 4의 부분(467)에 도시된 장비를 포함할 수 있다.
도 4의 실시예에서, 전기 인터페이스 제어 박스(442)는 고객 설비(467)와, 혼합 가스 냉동 시스템(441)과, 절연 인클로저(410) 내의 시스템 사이의 전기적 인터페이스를 제공한다. 전기적 인터페이스 제어 박스(442)는 예를 들어, 입력 또는 출력으로서, 이하의 신호 중 하나 이상, 또는 이러한 구성요소의 상태에 관한 다른 전기적 신호를 가질 수 있다: 예냉 챔버(447, 448)와 같은 원거리 위치의 온도를 나타내는 입력 전자 신호; 정전 척(449) 또는 압반(466)과 같은 원거리 위치에 대한 온도 제어 설정값을 나타내는 입력 전자 신호; 냉각제가 혼합 가스 냉동 시스템(441)의 제1 채널(443)로부터 유동하는 것인지를 나타내는 입력 전자 신호; 냉각제가 혼합 가스 냉동 시스템(441)의 제2 채널(450)로부터 유동하는 것인지를 나타내는 입력 전자 신호; 혼합 가스 냉동 시스템(441)의 제1 채널(443)에 콜드가 준비되어 있음을 나타내는 출력 전자 신호; 혼합 가스 냉동 시스템(441)의 제2 채널(450)에 콜드가 준비되어 있음을 나타내는 출력 전자 신호; 라인(459 및 460) 내 공급 및 복귀 질소의 온도를 나타내는 출력 전기 신호; 혼합 가스 냉매 공급 및 복귀 라인(462 및 463)의 온도를 나타내는 출력 전기 신호; 혼합 가스 냉동 시스템(441)에 대한 피드백을 나타내는 출력 전기 신호; 질소 루프(404) 중 하나 이상 또는 혼합 가스 냉동 시스템(441)의 어느 채널에 있어서의 고장을 나타내는 출력 전기 신호; 콜드 공급원 전원 온을 나타내는 출력 전기 신호. 전기적 인터페이스 제어 박스(442)는 예냉 챔버(447 및 448) 중 하나 이상에서와 같은 원거리 지점에서 특정 온도가 유지되도록, 예를 들어 혼합 가스 냉동 시스템(441)의 제1 채널(443)의 작동을 제어하기 위해, 하나 이상의 시스템 또는 서브 시스템의 전기적 제어를 제공하도록 사용될 수 있다. 예를 들어, 전기적 인터페이스 제어 박스(442)는 이러한 원거리 위치에서 온도를 제어하기 위해, 혼합 가스 냉동 시스템(441)의 제1 채널(443)의 작동을 펄스 온 및 오프할 수 있다. 전기적 인터페이스 제어 박스(442)에 더해, 도 4의 실시예는 추가적인 시스템 제어 유닛(439)를 포함하고, 추가적인 시스템 제어 유닛은 전기적 인터페이스 제어 박스(442)와 연결되는 별도의 유닛이거나, 이와 일체를 이룰 수 있다. 시스템 제어 유닛(439)은 시스템을 과냉각 또는 과랭하는 것을 방지하기에 유효한 냉동력의 양을 조정하여, 시스템이 위험한 상황을 발생시키지 않고서, 적당량의 냉동을 로드(예를 들어, 예냉 장비(446/447/448) 및 콜드 패드 극저온 인터페이스 모듈(465) 양자를 포함)에 제공할 수 있도록 구성되는 하나 이상의 제어 유닛을 포함한다. 시스템 제어 유닛(439)에 의해 행해지는 제어 유닛의 추가적인 작동이 이하 설명된다. 시스템 제어 유닛(439)이 히터(454), 압축기(409), 밸브(415/416/417) 및 본 명세서에 설명된 것처럼 시스템의 작동을 제어하는데 필요한 다른 센서 및 장치를 포함하여 본 명세서에 개시된 다양한 센서 및 장치에 전기적으로 연결된다는 것을 인식할 것이다. 시스템 제어 유닛(439)은 특정하게 프로그램된 마이크로프로세서 또는 본 명세서에 개시된 제어 기술을 행하기 위해 특별히 프로그램된 다른 전자부품을 포함하여 적합한 전자 하드웨어를 포함한다. 또한, 본 명세서에서 "제어 유닛"이 설명되는 경우, 제어 유닛은 마이크로프로세서 또는 시스템 제어 유닛(439)의 다른 전자 하드웨어의 서브루틴 또는 서브구성요소에 의해서와 같이 시스템 제어 유닛(439)의 서브유닛으로서 행해질 수 있다는 점을 인식할 것이다.
도 4의 실시예에서, 시스템 제어 유닛(439)은 예를 들어, 예냉 설비(446/447/448), 콜드 패드 극저온 인터페이스 모듈(465), 압반(466) 및 정전 척(449) 중 임의의 하나 또는 이들 모두를 포함하는 로드에 대한 전달 온도를 제어한다. 이러한 전달 온도를 제어하도록 질소 루프(404)의 작동을 제어하기 위해, 몇몇 가능한 상이한 기술이 독자적으로 또는 결합하여 사용될 수 있다. 각각이 경우에, 시스템 제어 유닛(439)은 하나 이상의 온도 센서(도시되지 않음)로부터의 전자 신호를 수신함으로써, 로드 내의 원거리 위치에서의 하나 이상의 온도의 판독을 수신할 수 있으며, 이에 응답하여 이러한 목적을 위해 사용되는 하나 이상의 제어 유닛으로부터 이들 장치로의 전자 신호를 통해 하나 이상의 장치의 작동을 제어할 수 있다. 따라서, 시스템 제어 유닛(439)은 로드로의 전달 온도를 제어하도록 피드백 루프를 행할 수 있다. 제어는 연속적인 폐쇄 루프일 수 있으며, 또는 대안적으로 제어는 개방 루프일 수 있고 연속적일 필요는 없다. 또한, 냉매의 2-상 유동(즉, 냉매는 액체상 및 가스상을 포함함)이 존재하는 본 발명에 따른 일 실시예에서, 시스템 제어 유닛(439)은 온도 피드백을 수용할 필요 없이, 로드로 들어가는 냉매의 압력(즉, 로드로의 냉매 입구 압력)에 관한 정보를 사용하여 로드의 온도를 조절할 수 있다. 이는 2-상 혼합물의 압력/온도 관계로 인해 가능하다. 일 실시예에서, 로드의 입구 압력 및 하류측 온도 양자 모두는 시스템 제어 유닛(139)이 로드의 온도를 조절할 수 있도록 하는데 사용될 수 있으며, 다른 실시예에서는 입구 압력만이 사용될 수 있다. 본 명세서에서 하나 이상의 온도에 기초하는 것으로 제어 기술이 설명되는 경우에, 이에 따라 유사한 기술이 압력 및 온도 또는 압력에만 기초하여 사용될 수도 있다.
도 4의 실시예에서, 시스템 제어 유닛(439)에 의한 제어의 일 예에서, 질소 압축기(409)로부터의 방전율은 로드 내 하나 이상의 원거리 위치에서의 하나 이상의 온도에 응답하여 시스템 제어 유닛(439)에 의해 제어될 수 있다. 질소 압축기(409)의 속도는 변경될 수 있으며, 또는 질소 압축기(409)는 시스템 제어 유닛(439)에 의해 전원 온 및 오프될 수 있다. 시스템 제어 유닛(439)은 질소 압축기(409)의 고압(공급 압력), 예를 들어, 질소 공급 라인(451)에서의 압력을 제어할 수 있다. 또한, 시스템 제어 유닛(439)은 질소 압축기(409)의 저압(복귀 압력), 예를 들어 질소 복귀 라인(461)에서의 압력을 제어할 수 있다. 또한, 시스템 제어 유닛(439)은 질소 압축기(409)의 고압과 저압 사이의 차압을 제어할 수 있으며, 또는 질소 압축기(409)의 차압, 고압 및 저압 중 두개 이상을 제어할 수 있다. 시스템 제어 유닛(439)은 예를 들어, 히터(454), 다른 히터 또는 다른 열원으로의 전자 신호를 사용하여, 유동 질소 루프(404)로 공급되는 열을 제어할 수 있다. 시스템 제어 유닛(439)은 모세관(458)을 대신하여 사용되는 조정 가능한 스로틀을 제어하기 위해 전자 신호를 사용할 수 있다. 시스템 제어 유닛(439)은 예를 들어, 열교환기(452, 453, 455, 456) 중 하나 이상의 일부(또는 전부)를 우회하도록 질소의 유동을 안내함으로써, 질소에 대한 냉각 루프의 단락(short circuiting)을 유도하기 위해, 질소 루프(404) 내에서 고온 가스 우회(도시되지 않음)를 통해 유동을 전환(예를 들어, 하나 이상의 밸브에 전자 신호를 제공함으로써)시키는 전자 신호를 사용할 수 있다. 시스템 제어 유닛(439)은 질소 루프(404) 내의 임의의 위치로부터 (예를 들어, 압축기(409)로부터, 실온부로부터, 또는 질소 루프(404)의 다른 따뜻한 부분으로부터) 우회(도시되지 않음)를 통해 유동을 전환(예를 들어, 하나 이상의 밸브에 전자 신호를 제공함으로써)시키는 전자 신호를 사용하여, 압반(466) 및/또는 정전 척(449)과 같은 로드 내의 위치로 따뜻한 가스를 제공함으로써, 이러한 위치가 신속하게 작동되도록 데울 수 있다. 시스템 제어 유닛(439)은 질소 루프(404)의 하류측의 보다 저온의 부분과 질소 루프(404)의 보다 따뜻한 부분(예를 들어, 질소 루프(404)의 실온부)로부터의 고온 가스의 혼합을 야기하는 질소 루프(404) 내 임의의 위치의 우회(도시되지 않음)를 통해 유동을 전환(하나 이상의 밸브에 전자 신호를 제공함으로써)시키는 전자 신호를 사용할 수 있다. 유동 우회의 경우에, 시스템 제어 유닛(439)은 온/오프, 비례, 또는 스로틀 작동을 갖도록 밸브(도시되지 않음)를 제어하는 전자 신호를 사용할 수 있다.
도 4의 실시예에서, 시스템 제어 유닛(439)에 의해 행해지는 제어 기술의 일부 또는 전부는 온도 판독의 연속적인 피드백에 기초하여, 요망되는 온도의 연속적인 조절을 행하는 것이 아닌 또는 상기 연속적인 조절에 추가하여, 로드로의 요망되는 전달 온도를 발생시키는데 필요한 우회 혼합 또는 온/오프 시간의 계산을 행하는 것일 수 있다. 또한, 시스템 제어 유닛(439)은 다른 유형의 제어를 행하는 것이 아닌 또는 이에 추가하여, 압력 및 밸브 위치에 기초하여, 혼합 또는 온/오프 시간이 얼마나 필요한가에 대한 계산을 행할 수 있다.
도 4의 실시예에서, 로드(예를 들어, 예냉 설비(446/447/448), 콜드 패드 극저온 인터페이스 모듈(465), 압반(466) 및/또는 정전 척(449))로의 전달 온도를 제어하기 위해, 질소 루프(404)의 작동을 제어하고, 그리고/또는 혼합 가스 냉동 시스템(441)의 작동을 제어하도록, 몇몇 추가적인 실현 가능한 상이한 기술이 독자적으로 또는 결합하여 사용될 수 있다. 시스템 제어 유닛(439)은 비례 또는 온/오프 밸브일 수 있는 하나 이상의 밸브에 전자 신호를 제공함으로써, 혼합 가스 냉동 시스템(441) 또는 질소 루프(404) 중 어느 하나 또는 양자 모두의 냉매 흐름율을 제어할 수 있다. 예를 들어, 이러한 밸브는 혼합 가스 냉동 시스템(441)의 제1 및 제2 채널(443, 450) 중 하나 또는 양자 모두의 공급 출력(444, 462)에 또는 질소 공급 라인(451 또는 459)에 위치될 수 있다. 시스템 제어 유닛(439)은 혼합 가스 냉동 시스템(441)의 설정값 온도를 변경시킬 수 있다. 시스템 제어 유닛(439)은 혼합 가스 냉매 또는 질소 루프 중 하나 이상을 가열시키기 위해, 하나 이상의 히터를 제어할 수 있다. 시스템 제어 유닛(439)은 혼합 가스 냉동 시스템(441)의 압축기의 속도를 조절할 수 있다. 시스템 제어 유닛(439)은 혼합 가스 냉동 시스템(441)의 보다 따뜻한 부분(예를 들어, 캐스케이드 시스템 내 보다 따뜻한 열교환기 또는 혼합 가스 냉동 시스템(441)의 실온부)으로부터 우회 라인을 통해 시스템(400)의 보다 저온인 부분으로 유동을 제어(예를 들어, 하나 이상의 밸브를 사용하여)할 수 있다. 시스템 제어 유닛(439)은 혼합 가스 냉동 시스템(441)의 디프로스트 루프(도시되지 않음)와 같은 혼합 가스 냉동 시스템(441) 내 위치로부터 우회(도시되지 않음)를 통해 유동을 전환(예를 들어, 하나 이상의 밸브에 전자 신호를 제공함으로써)시키는 전자 신호를 사용하여, 예냉 설비(446/447/448)와 같은 로드 내의 위치로 따뜻한 가스를 제공함으로써 이러한 위치가 신속하게 작동할 수 있도록 데울 수 있다.
도 4의 실시예와 유사한 다른 실시예에서, 혼합 가스 냉동 시스템(441)의 제1 채널(443) 및 질소 공급 및 복귀 라인(459, 460) 양자 모두는 콜드 패드 극저온 인터페이스 모듈(465), 압반(466) 및/또는 정전 척(449)의 냉각 시간(cool-down time)을 개선하는데 사용될 수 있다. 이는 예를 들어, 제1 채널(443)의 혼합 가스 냉매 공급 및 복귀 라인(444 및 445)으로부터 콜드 패드 극저온 인터페이스 모듈(465)로의 별도의 우회 라인(도시되지 않음)을 구비함으로써, 이루어질 수 있다.
도 4의 실시예는 도 1에 대해 전술한 것과 유사한 방식으로, 부족-냉동 및 과-냉동 상태 양자 모두를 검출하기 위한 장치를 포함할 수 있다. 재순환 질소 스트림(404)을 대신하여, 시스템은 아르곤, 크세논, 크립톤, 헬륨, 다른 순수한 냉매 또는 혼합 냉매의 스트림을 사용할 수 있다. 유사한 유형의 압축기가 도 1에 대해 전술한 것과 같이 사용될 수 있다. 혼합 가스 냉매 라인(462/463)으로부터 열교환기(455, 456)로의 열전달은 도 1에 대해 전술한 것과 유사한 열전도에 대한 기술을 사용하여 행해질 수 있다. 도 1에 대해 전술된 것과 유사한 유동 제어의 방법이 사용될 수 있다. 도 1의 질소 압축기(109)에 대해 전술된 것과 유사한 압력 제어의 방법이 사용될 수 있다. 비록, 절연 인클로저(410)의 진공 절연이 사용되지 않는 경우, 일부는 필요하지 않을 수 있지만, 도 1에 대해 전술된 바와 유사한 안전 제어부가 사용될 수 있다. 도 1에 대해 전술한 바와 유사한 냉매 순도의 제어에 대한 기술이 사용될 수 있다. 역 브레이튼과 같은 대안적인 냉동이 사용되어, 본 발명의 일 실시예에 따른 시스템의 양 채널에 냉각된 냉매를 제공할 수 있다. 또한, 요구되는 열교환기의 수는 냉각 요구사항 및 열교환기 설계에 따라 변경될 수 있다.
도 5는 절연 인클로저(510)가 혼합 가스 냉동 시스템(541)에 통합되어 있는 것을 제외하고는 도 4의 실시예와 유사한 본 발명의 일 실시예에 따른 고 처리율 냉각 시스템(500)의 개략도이다. 열교환기(552, 553, 555 및 556), 모세관(558), 히터(554), 흡착기(557), 밸브(515/516/517)는 모두 혼합 가스 냉동 시스템(541) 내 인클로저(510) 내에 위치된다. 질소 공급 및 복귀 라인(551 및 561)은 혼합 가스 냉동 시스템(541) 내의 인클로저(510)에 공급되고; 로드로의, 그리고 로드로부터의 질소 라인(559/560)은 혼합 가스 냉동 시스템(541)으로부터 로드로 공급된다. 혼합 가스는 혼합 가스 냉동 시스템(541) 내의 혼합 가스 공급 라인으로부터 질소 루프를 냉각시키기 위해 "562"에 공급되고, 혼합 가스는 냉각된 질소 루프로부터 "563"에 복귀한다. 제1 채널(543)은 혼합 가스 냉매를 고객 예냉 장비(546 및/또는 547/548)로 그리고 이들로부터 공급 및 복귀시키기 위해 혼합 가스 라인(544 및 545)을 사용하여 도 4의 제1 채널과 유사하게 작동한다. 혼합 가스 냉동 시스템(541)(도 4의 제2 채널(450)과 유사)을 빠져나가는 어떠한 제2 채널은 혼합 가스 냉동 시스템(541)에서는 필요로 하지 않는데, 이는 혼합 가스 라인(562 및 563)이 혼합 가스 냉동 시스템(541) 내의 질소 루프로 지향되기 때문이다. 전기 제어 박스(542), 질소 압축기(509) 및 인버터(564)는 혼합 가스 냉동 시스템(541)의 외부에 위치될 수 있다. 고객 장비(567)는 예냉 극저온 인터페이스 모듈(546), 콜드 패드 극저온 인터페이스 모듈(565), 하나 이상의 예냉 챔버(547 및 548), 정전 척(549) 및 압반(566)을 포함할 수 있다. 그 외 작동은 도 4의 실시예의 작동과 유사할 수 있다.
본 발명의 일 실시예에 따르면, 혼합 가스 냉동 시스템은 예를 들어, 자동-냉동 캐스케이드 시스템일 수 있으며, 혼합 가스 냉동 공정에서 하나 이상의 상 분리기 및 다수의 열교환기를 포함할 수 있다. 또한, 혼합 가스 냉동 시스템은 혼합 냉매 공급 라인(444 및 462)(도 4 참조)의 각각에 혼합 냉매 공급을 전달하는 분기 공급 라인, 및 혼합 냉매 복귀 라인(445 및 463)(도 4 참조)의 각각으로부터의 복귀 혼합 냉매를 수용하는 분기 복귀 라인을 포함할 수 있다. 또한, 도 4 및 도 5의 실시예에서, 다른 유형의 냉동 시스템이 혼합 가스 냉동 시스템을 대신하여 사용될 수 있다. 예를 들어, 역 브레이튼 사이클 또는 다른 냉동 시스템이 사용될 수 있으며, 도 4의 공급 라인(444, 462) 및 복귀 라인(445, 463)과 유사한 방식으로 작용하는 분기 공급 및 복귀 라인을 포함할 수 있다. 또한, 혼합 가스 냉동 시스템(441)의 2개의 채널(443 및 450)은 대신 2개의 별도의 혼합 가스 냉동 시스템에 의해 또는 2개의 별도의 다른 유형의 냉동 시스템에 의해 행해질 수 있다.
본 발명의 일 실시예에 따르면, 본 명세서에 열교환기가 설명된 경우, 요구되는 시스템 효율에 따라, 상이한 수의 이러한 열교환기가 사용될 수 있다.
본 발명의 일 실시예에 따른 냉각 시스템은 다양한 모드로 작동될 수 있다. 예를 들어, 작동 모드는 정상 상태 작동; 대기(또는 우회) 작동; 기동(실온으로부터 초기 냉각); 및 정지(유지보수 또는 다른 이유로 작동 온도로부터 실온으로 데우기 위한 시간)를 포함할 수 있다. 이러한 작동 모드는 예를 들어, 시스템 제어 유닛(139 또는 439)에 의해 제어될 수 있다.
본 발명의 일 실시예에 따르면, 시스템은 이동 라인을 사용하여 절연 인클로저 외부로 냉매를 이동시키는 것이 아니라, 절연 인클로저(예를 들어, 절연 인클로저(410)) 내부에서 로드를 냉각시키는데 사용될 수 있다. 예를 들어, 이러한 일 실시예는 비록, 다른 로드에 대해서도 사용될 수 있지만, 생물학적 시료이 냉각 또는 냉동되는 경우에 유용할 수 있다. 또한, 본 발명에 따른 일 실시예는 냉각될 유체 또는 기판이나 다른 물체를 예냉 챔버 또는 로드의 다른 열전달 표면으로부터 처리 챔버와 같은 로드의 다른 부분으로 이동시키는 것을 포함할 수 있다.
본 명세서에 사용된 바와 같이, "극저온"이란 용어는 233K와 23K(-40℃와 -250℃) 사이의 온도 범위를 가리킨다.
본 명세서에 인용된 모든 특허, 공개 출원 및 인용문헌의 개시내용은 전체적으로 참고로서 포함된다.
본 발명이 예시적인 실시예를 참고하여 특별히 도시되고 설명되었지만, 첨부된 특허청구범위에 의해 망라되는 본 발명의 범주로부터 벗어남이 없이, 형태 및 상세에 있어서 다양한 변경이 이루어질 수 있음을 당업자는 이해할 것이다.

Claims (105)

  1. 로드(load)를 냉각시키기 위한 시스템으로서,
    폐루프(closed loop) 주 냉동 시스템,
    부 냉동 시스템, 및
    시스템 제어 유닛을 포함하며,
    상기 폐루프 주 냉동 시스템은,
    저압의 주 냉매를 수용하고 상기 주 냉매를 고압 상태로 배출하는 주 압축기;
    상기 주 압축기로부터 고압의 상기 주 냉매를 수용하는 입구와, 상기 주 냉매를 저압 상태로 상기 주 압축기로 복귀시키는 출구를 포함하는 절연 인클로저(insulated enclosure);
    상기 절연 인클로저 내의 하나 이상의 열교환기로서, 고압의 상기 주 냉매를 수용하고, 부 냉동 시스템으로부터의 부 냉매를 사용하여 상기 주 냉매를 냉각시키며, 상기 부 냉매는 상기 하나 이상의 열교환기 내에서 상기 주 냉매와 열교환 관계에 있는, 하나 이상의 열교환기;
    상기 절연 인클로저 내의 팽창 유닛으로서, 상기 하나 이상의 열교환기로부터 고압의 상기 주 냉매를 수용하고, 상기 주 냉매를 저압 상태로 배출하는, 상기 팽창 유닛; 및
    저압의 상기 주 냉매를 로드로 전달하는 공급 라인 및 상기 로드로부터 상기 주 냉동 시스템으로 상기 주 냉매를 복귀시키는 복귀 라인을 포함하고,
    상기 부 냉동 시스템은 하나 이상의 부 극저온 냉동기를 포함하며,
    상기 시스템 제어 유닛은, 상기 로드로 전달되는 상기 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 상기 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  2. 제1항에 있어서,
    상기 로드의 하나 이상의 온도는 약 -80℃ 내지 약 -250℃의 온도를 포함하는,
    로드를 냉각시키기 위한 시스템.
  3. 제1항에 있어서,
    상기 부 냉동 시스템은 상기 로드의 하나 이상의 열전달면에 냉각을 전달하는 제1 채널과, 상기 하나 이상의 열교환기에 상기 부 냉매를 전달하는 제2 채널을 포함하는,
    로드를 냉각시키기 위한 시스템.
  4. 제3항에 있어서,
    상기 하나 이상의 열전달면은 열을 이동시켜, 상기 로드의 적어도 일부를 약 -40℃ 내지 약 -100℃ 범위의 온도까지 냉각시키는,
    로드를 냉각시키기 위한 시스템.
  5. 제3항에 있어서,
    상기 하나 이상의 열전달면은 상기 로드의 시스템에 의해 처리될 반도체 기판을 수용하기 위한 챔버의 적어도 일부를 포함하는,
    로드를 냉각시키기 위한 시스템.
  6. 제3항에 있어서,
    상기 부 냉동 시스템은 혼합 가스 냉동 시스템을 포함하는,
    로드를 냉각시키기 위한 시스템.
  7. 제6항에 있어서,
    상기 혼합 가스 냉동 시스템은 하나 초과의 열교환기 및 하나 이상의 상 분리기(phase separator)를 포함하는,
    로드를 냉각시키기 위한 시스템.
  8. 제1항에 있어서,
    상기 부 냉동 시스템은 역 브레이튼 냉동 시스템(reverse Brayton refrigeration system)을 포함하는,
    로드를 냉각시키기 위한 시스템.
  9. 제1항에 있어서,
    상기 로드는 예냉(pre-cool) 극저온 인터페이스 모듈, 예냉 챔버, 콜드 패드 극저온 인터페이스 모듈, 압반(platen), 정전 척(electrostatic chuck) 및 2개의 별도의 로드 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  10. 제1항에 있어서,
    상기 로드와 전자적으로 연통하는 전기적 인터페이스 제어 유닛을 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  11. 제10항에 있어서,
    상기 전기적 인터페이스 제어 유닛은 상기 로드의 하나 이상의 온도를 나타내는 전자 신호를 수신하는,
    로드를 냉각시키기 위한 시스템.
  12. 제10항에 있어서,
    상기 전기적 인터페이스 제어 유닛은 상기 로드의 하나 이상의 설정값 온도를 나타내는 전자 신호를 수신하는,
    로드를 냉각시키기 위한 시스템.
  13. 제10항에 있어서,
    상기 전기적 인터페이스 제어 유닛은 상기 로드의 하나 이상의 온도를 제어하기 위해 상기 부 냉동 시스템의 동작을 제어하기 위한 전기 신호를 출력하는,
    로드를 냉각시키기 위한 시스템.
  14. 제13항에 있어서,
    상기 전기적 인터페이스 제어 유닛에 의해 제어된 상기 로드의 하나 이상의 온도는 상기 로드의 하나 이상의 열전달면의 온도를 포함하는,
    로드를 냉각시키기 위한 시스템.
  15. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 로드로 전달되는 상기 주 냉매의 적어도 압력에 기초하여, 상기 로드에 대한 가변적 냉동 용량의 제공을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  16. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 주 압축기의 방전율을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  17. 제1항에 있어서,
    상기 시스템 제어 유닛은 주 압축기의 고압, 저압 및 차압 중 하나 이상을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  18. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 주 냉매로 전달될 열을 공급하는 열원을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  19. 제1항에 있어서,
    상기 팽창 유닛은 조정 가능한 스로틀을 포함하고, 상기 시스템 제어 유닛은 상기 조정 가능한 스로틀의 동작을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  20. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 하나 이상의 열교환기의 적어도 일부를 우회하도록 상기 주 냉매의 유동을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  21. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 주 냉동 시스템의 적어도 일부를 우회하도록 상기 주 냉매의 유동을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  22. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 주 냉매의 흐름률을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  23. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 부 냉매의 흐름률을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  24. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 부 냉동 시스템의 설정값 온도를 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  25. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 부 냉매로 전달될 열을 공급하는 열원을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  26. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 부 냉동 시스템의 부 압축기의 속도를 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  27. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 부 냉동 시스템의 적어도 일부를 우회하도록 상기 부 냉매의 유동을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  28. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 로드의 적어도 일부를 데우기 위해 상기 주 냉매의 적어도 일부의 유동을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  29. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 로드의 적어도 일부를 데우기 위해 상기 부 냉매의 적어도 일부의 유동을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  30. 제1항에 있어서,
    상기 절연 인클로저는 상기 부 냉동 시스템의 적어도 일부에 통합되는,
    로드를 냉각시키기 위한 시스템.
  31. 제1항에 있어서,
    상기 하나 이상의 열교환기는 냉각기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  32. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기의 속도를 조정하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  33. 제32항에 있어서,
    상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기의 하나 이상의 부 압축기의 속도를 조정하기 위한 제어 유닛을 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  34. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기들 중 하나 이상의 전원을 끄기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  35. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 로드로 흘러들어가는 상기 주 냉매의 액체상 대 가스상의 비율을 변경시키기 위해 상기 주 냉동 시스템과 상기 부 냉동 시스템 중 하나 이상의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  36. 제1항에 있어서,
    하나 초과의 부 극저온 냉동기들을 포함하며,
    상기 시스템 제어 유닛은 서로 상이한 속도로 작동하도록 상기 하나 초과의 부 극저온 냉동기들의 동작을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  37. 제1항에 있어서,
    하나 초과의 부 극저온 냉동기를 포함하며,
    상기 시스템 제어 유닛은 서로 동일한 속도로 작동하도록 상기 하나 초과의 부 극저온 냉동기들의 동작을 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  38. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 로드의 하나 이상의 온도의 실질적으로 일정한 온도를 유지하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  39. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 로드에 가해지는 냉동을 감소시키기 위해 상기 주 냉매의 적어도 일부를 상기 시스템 내의 보다 따뜻한 표면으로 안내하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  40. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 주 압축기의 가변 속도 동작 및 상기 주 압축기의 맥동 동작 중 하나 이상을 허용하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  41. 제1항에 있어서,
    상기 시스템 제어 유닛은,
    상기 로드로부터 복귀된 상기 주 냉매의 측정 압력에 기초하여 상기 로드로부터 복귀된 상기 주 냉매의 계산된 끓는점을 확정하고,
    상기 로드로부터 복귀된 상기 주 냉매의 측정 온도를 상기 계산된 끓는점과 비교하고, 및
    상기 측정 온도가 상기 계산된 끓는점으로부터 미리 정해진 온도차보다 더 높은 온도인 경우에, 상기 로드에 대한 유효 냉동을 증가시키도록 상기 부 냉동 시스템을 제어함으로써,
    상기 로드의 과랭(undercooling)을 방지하도록 상기 부 냉동 시스템의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  42. 제1항에 있어서,
    상기 시스템 제어 유닛은,
    상기 로드의 하류측에서 제1 온도 센서로 상기 로드로부터 복귀하는 상기 주 냉매의 온도를 모니터링하고,
    상기 제1 온도 센서의 온도가 미리 정해진 상정된 포화 온도점에 도달한 경우에 전원이 켜지도록, 상기 제1 온도 센서의 하류측에 있는 소형 히터를 제어하고,
    상기 소형 히터의 하류측에서, 제2 온도 센서로 상기 주 냉매의 온도를 모니터링하고, 및
    상기 소형 히터의 전원이 켜져 상기 주 냉매의 온도가 상승된 경우, 상기 로드에 대한 유효 냉동을 증가시키도록 상기 부 냉동 시스템을 제어함으로써,
    상기 로드의 과랭을 방지하도록 상기 부 냉동 시스템의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  43. 제1항에 있어서,
    상기 시스템 제어 유닛은,
    상기 로드의 하류측에서 제1 온도 센서로, 상기 로드로부터 복귀하는 상기 주 냉매의 온도를 모니터링하고,
    상기 제1 온도 센서의 온도가 미리 정해진 상정된 포화 온도점에 도달한 경우에 전원이 켜지도록, 상기 제1 온도 센서의 하류측에 있는 소형 히터를 제어하고,
    상기 소형 히터의 하류측에서, 제2 온도 센서로 상기 주 냉매의 온도를 모니터링하고, 및
    상기 소형 히터의 전원이 켜져 상기 주 냉매의 온도가 상승된 경우, 상기 소형 히터에 의해 제공된 열의 규모를 결정하고, 상기 규모에 기초하여, 상기 로드에 대한 유효 냉동을 감소시키도록 상기 부 냉동 시스템을 제어할지의 여부를 결정함으로써,
    상기 로드의 과랭을 방지하도록 상기 부 냉동 시스템의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  44. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기 상의 가변 히터를 조정하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  45. 제1항에 있어서,
    상기 시스템 제어 유닛은 상기 하나 이상의 부 극저온 냉동기의 설정값 온도를 제어하기 위한 제어 유닛을 포함하는,
    로드를 냉각시키기 위한 시스템.
  46. 제45항에 있어서,
    상기 시스템 제어 유닛은 서로 상이한 설정값 온도를 갖도록 하나 초과의 부 극저온 냉동기를 제어하는,
    로드를 냉각시키기 위한 시스템.
  47. 제1항에 있어서,
    상기 주 냉매는 질소 스트림을 포함하는,
    로드를 냉각시키기 위한 시스템.
  48. 제1항에 있어서,
    상기 주 냉매는 아르곤, 크세논, 크립톤, 헬륨 및 혼합 가스 냉매 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  49. 제1항에 있어서,
    상기 주 냉매는 상기 부 냉동 시스템에 사용되는 냉매의 끓는 온도보다 높은 끓는 온도를 갖는 하나 이상의 냉매 성분을 포함하는,
    로드를 냉각시키기 위한 시스템.
  50. 제49항에 있어서,
    상기 주 냉매는 아르곤, 질소, 크세논 및 크립톤 중 하나 이상을 포함하고, 상기 부 냉매는 헬륨 및 네온 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  51. 제1항에 있어서,
    상기 주 냉매는 상기 부 냉동 시스템에 사용되는 하나 이상의 냉매의 끓는 온도보다 낮은 끓는 온도를 갖는 냉매를 포함하는,
    로드를 냉각시키기 위한 시스템.
  52. 제51항에 있어서,
    상기 주 냉매는 아르곤, 질소, 크세논, 크립톤 및 헬륨 중 하나 이상을 포함하고, 상기 부 냉매는 혼합 가스 냉매를 포함하는,
    로드를 냉각시키기 위한 시스템.
  53. 제1항에 있어서,
    상기 절연 인클로저 내에서, 상기 절연 인클로저의 입구로부터 유입되는 고압의 상기 주 냉매와 상기 로드로부터 복귀하는 상기 주 냉매 사이에서 열을 교환시키고, 고압의 상기 주 냉매를 냉각기로 배출하는 관류식 열교환기를 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  54. 제53항에 있어서,
    상기 절연 인클로저의 입구로부터 유입되는 고압의 상기 주 냉매가 상기 로드로부터 복귀하는 상기 주 냉매와 열을 교환하지 않도록, 상기 관류식 열교환기의 우회 이동(bypassing)을 허용하는 우회 밸브를 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  55. 제53항에 있어서,
    상기 시스템 제어 유닛은,
    상기 관류식 열교환기의 중간 지점과 상기 관류식 열교환기의 단부 지점 중 하나 이상에서의 온도를 모니터링하여,
    상기 모니터링된 온도가 미리 정해진 온도 미만으로 떨어진 경우, 상기 로드에 대한 유효 냉동을 감소시키도록 상기 부 냉동 시스템을 제어함으로써,
    상기 로드의 과랭을 방지하도록 상기 부 냉동 시스템의 동작을 제어하는,
    로드를 냉각시키기 위한 시스템.
  56. 제1항에 있어서,
    상기 로드는 정전 척을 포함하는,
    로드를 냉각시키기 위한 시스템.
  57. 제56항에 있어서,
    상기 정전 척은 반도체 소자를 제조하기 위한 이온 주입 시스템의 일부인,
    로드를 냉각시키기 위한 시스템.
  58. 제57항에 있어서,
    상기 정전 척으로 상기 반도체 소자를 처리하기 전에 상기 반도체 소자를 수용하는 예냉 챔버를 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  59. 제1항에 있어서,
    상기 로드는, 반도체 웨이퍼를 냉각하기 위한 시스템의 적어도 일부, 이온 주입 시스템의 적어도 일부 및 물리적 증기 증착 시스템의 적어도 일부 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  60. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는 지포드-맥마흔(Gifford-McMahon) 사이클 냉동기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  61. 제60항에 있어서,
    상기 지포드-맥마흔 사이클 냉동기는 헬륨 냉동기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  62. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는 맥동관 냉동기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  63. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는 역 브레이튼 사이클 냉동기, 스터링 사이클(Stirling cycle) 냉동기 및 줄-톰슨 사이클(Joule-Thomson cycle) 냉동기 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  64. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는 단일 냉매를 사용하는 냉동기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  65. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는 혼합 가스 냉매를 사용하는 냉동기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  66. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는, 하나 초과의 부 극저온 냉동기들과 열교환 관계에 있는 상기 주 냉매의 평행 유동으로 상기 주 냉매를 냉각시키도록 접속되는 상기 하나 초과의 부 극저온 냉동기들을 포함하는,
    로드를 냉각시키기 위한 시스템.
  67. 제1항에 있어서,
    상기 하나 이상의 부 극저온 냉동기는, 하나 초과의 부 극저온 냉동기들과 열교환 관계에 있는 상기 주 냉매의 직렬 유동으로 상기 주 냉매를 냉각시키도록 접속되는 상기 하나 초과의 부 극저온 냉동기들을 포함하는,
    로드를 냉각시키기 위한 시스템.
  68. 제1항에 있어서,
    상기 주 냉동 시스템의 주 압축기는 가변 속도 압축기를 포함하는,
    로드를 냉각시키기 위한 시스템.
  69. 제1항에 있어서,
    상기 절연 인클로저 내에 진공을 생성하기 위한 저온펌핑 표면(cryopumping surface)을 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  70. 제69항에 있어서,
    상기 저온펌핑 표면은 상기 하나 이상의 부 극저온 냉동기의 2단계 냉각을 포함하는,
    로드를 냉각시키기 위한 시스템.
  71. 제1항에 있어서,
    상기 주 냉매가, 상기 주 냉매를 로드로 전달하는 상기 공급 라인 및 상기 로드로부터 주 냉매를 복귀시키는 상기 복귀 라인을 우회할 수 있도록 하는 우회 밸브를 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  72. 제1항에 있어서,
    상기 팽창 유닛은 모세관, 가변 유동 면적을 갖는 밸브, 스프링 편향 밸브(spring biased valve), 피스톤 익스팬더 및 터빈 익스팬더 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  73. 제1항에 있어서,
    상기 주 냉매의 공급원과, 상기 주 압축기에 의해 수용되는 저압의 상기 주 냉매 사이의 주 냉매의 유동을 조절하는 압력 조절기; 및
    상기 시스템으로의 상기 주 냉매의 유동을 조절하기 위해, 상기 압력 조절기를 제어하기 위한 압력 제어 유닛
    을 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  74. 제1항에 있어서,
    상기 절연 인클로저 상의 압력계에 접속된 격리 밸브를 더 포함하고, 상기 격리 밸브는, 상기 절연 인클로저 상의 압력계가 미리 정해진 최대 안전 압력을 초과하는 압력을 검지한 경우, 상기 절연 인클로저의 입구로의 상기 주 냉매의 유동을 방지하는,
    로드를 냉각시키기 위한 시스템.
  75. 제1항에 있어서,
    상기 절연 인클로저로부터 상기 주 압축기로 복귀하는 상기 주 냉매의 온도를 모니터링하도록 접속된 열 센서; 및
    상기 절연 인클로저로부터 복귀하는 상기 주 냉매의 온도가 미리 정해진 접촉 위험 최소 온도보다 낮은 경우, 상기 부 냉동 시스템의 불연속 동작에 연결되는 안전 제어 유닛을 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  76. 제1항에 있어서,
    상기 주 냉매가 상기 시스템으로 들어가기 전에, 상기 주 냉매의 공급원으로부터 안내된 가스로부터 불순물을 제거하는 정화기를 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  77. 제1항에 있어서,
    상기 주 압축기 내에서 주 냉매로부터 오일을 제거하는 오일 분리기를 더 포함하는,
    로드를 냉각시키기 위한 시스템.
  78. 제1항에 있어서,
    상기 공급 라인과 상기 복귀 라인의 각각의 적어도 일부는 진공 절연 이동 라인 내에서 연장되는,
    로드를 냉각시키기 위한 시스템.
  79. 제1항에 있어서,
    상기 하나 이상의 열교환기는 상기 주 냉매의 적어도 상당 부분을 액체상으로 전환시키는,
    로드를 냉각시키기 위한 시스템.
  80. 제1항에 있어서,
    상기 하나 이상의 열교환기는 실질적으로 상기 주 냉매를 액체상으로 전환시키지 않는,
    로드를 냉각시키기 위한 시스템.
  81. 제80항에 있어서,
    상기 팽창 유닛은 상기 주 냉매의 적어도 상당 부분을 액체상으로 전환시키는,
    로드를 냉각시키기 위한 시스템.
  82. 제1항에 있어서,
    상기 공급 라인은 상기 절연 인클로저로부터 이동 라인을 통해 상기 로드로 저압의 냉매를 전달하고, 상기 복귀 라인은 상기 로드로부터 상기 이동 라인을 통해 상기 절연 인클로저로 냉매를 복귀시키는,
    로드를 냉각시키기 위한 시스템.
  83. 제1항에 있어서,
    상기 로드는 상기 절연 인클로저 내에 있는,
    로드를 냉각시키기 위한 시스템.
  84. 제1항에 있어서,
    상기 로드는 반도체 기판, 극저온 분리용 유체 스트림, 액화될 가스, 생물학적 시료, 화학적 처리, 재료 특성 분석 장비, 수증기 트랩, 제조 공정 내 물품, 이미징 장치, 아원자 입자 검출기, 광자 검출기, 화학 분석 장비, 초전도 케이블, 및 초전도 장치 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 시스템.
  85. 냉각 냉매를 로드에 제공하기 위한 시스템으로서,
    폐루프 주 냉동 시스템,
    부 냉동 시스템, 및
    시스템 제어 유닛을 포함하며,
    상기 폐루프 주 냉동 시스템은,
    저압의 냉매를 수용하고 상기 냉매를 고압 상태로 배출하는 압축기;
    상기 압축기로부터 고압의 상기 냉매를 수용하고 상기 냉매를 저압 상태로 절연 인클로저로 배출하는 팽창 밸브,
    상기 팽창 밸브로부터 상기 냉매를 수용하는 입구와 저압의 냉매를 상기 압축기로 복귀시키는 출구를 포함하는, 절연 인클로저;
    상기 절연 인클로저 내의 하나 이상의 열교환기로서, 저압의 냉매를 수용하고, 상기 냉매와 열교환 관계에 있는 부 냉동 시스템을 사용하여 상기 냉매를 냉각시키는, 하나 이상의 열교환기; 및
    저압의 상기 냉매를 로드로 전달하는 공급 라인과 상기 로드로부터 상기 주 냉동 시스템으로 상기 냉매를 복귀시키는 복귀 라인을 포함하고,
    상기 부 냉동 시스템은 하나 이상의 부 극저온 냉동기를 포함하며,
    상기 시스템 제어 유닛은, 상기 로드로 전달되는 상기 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 상기 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어하는,
    냉각 냉매를 로드에 제공하기 위한 시스템.
  86. 로드를 냉각시키기 위한 방법으로서,
    폐루프 주 냉동 시스템의 주 압축기에서 주 냉매를 압축하는 단계로서, 상기 주 압축기는 저압의 주 냉매를 수용하여, 상기 주 냉매를 고압 상태로 배출하는, 단계;
    상기 주 압축기로부터 고압의 상기 주 냉매를 절연 인클로저의 입구로 이동시키고, 상기 절연 인클로저로부터 주 냉매를 저압 상태로 상기 주 압축기로 복귀시키는 단계;
    고압의 상기 주 냉매를 상기 절연 인클로저 내의 하나 이상의 열교환기로 이동시키고, 하나 이상의 부 극저온 냉동기를 포함하는 부 냉동 시스템으로부터의 부 냉매와의 열교환을 이용하여 하나 이상의 열교환기에서 상기 주 냉매를 냉각시키는 단계;
    상기 절연 인클로저 내에서 팽창 유닛을 사용하여 상기 주 냉매를 팽창시키는 단계로서, 상기 팽창 유닛은 상기 하나 이상의 열교환기로부터 고압의 상기 주 냉매를 수용하고, 상기 주 냉매를 저압 상태로 배출하는, 단계;
    저압의 상기 주 냉매를 로드로 전달하고, 상기 로드로부터 상기 주 냉동 시스템으로 상기 주 냉매를 복귀시키는 단계; 및
    상기 로드로 전달되는 상기 주 냉매의 압력 및 상기 로드의 하나 이상의 온도 중 하나 이상에 기초하여, 로드에 대한 가변적 냉동 용량을 제공하기 위해, 상기 주 냉동 시스템 및 상기 부 냉동 시스템 중 하나 이상의 동작을 제어하는 단계
    를 포함하는,
    로드를 냉각시키기 위한 방법.
  87. 제86항에 있어서,
    상기 부 냉동 시스템의 제1 채널을 통해 상기 부 냉동 시스템으로부터 상기 로드의 하나 이상의 열전달면에 냉각을 전달하고, 상기 부 냉동 시스템의 제2 채널을 통해 상기 하나 이상의 열교환기로 상기 부 냉매를 전달하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  88. 제86항에 있어서,
    상기 로드로 전달되는 주 냉매의 적어도 압력에 기초하여, 상기 로드에 대한 가변적 냉동 용량의 제공을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  89. 제86항에 있어서,
    상기 주 압축기의 고압, 저압 및 차압 중 하나 이상을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  90. 제86항에 있어서,
    상기 주 냉매에 전달될 열을 공급하도록 열원을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  91. 제86항에 있어서,
    상기 팽창 유닛은 조정 가능한 스로틀을 포함하고, 상기 방법은 상기 조정 가능한 스로틀의 동작을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  92. 제86항에 있어서,
    상기 하나 이상의 열교환기의 적어도 일부를 우회하도록, 상기 주 냉매의 유동을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  93. 제86항에 있어서,
    상기 주 냉동 시스템의 적어도 일부를 우회하도록, 상기 주 냉매의 유동을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  94. 제86항에 있어서,
    상기 주 냉매의 흐름률을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  95. 제86항에 있어서,
    상기 부 냉매의 흐름률을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  96. 제86항에 있어서,
    상기 부 냉동 시스템의 설정값 온도를 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  97. 제86항에 있어서,
    상기 부 냉매에 전달될 열을 공급하도록 열원을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  98. 제86항에 있어서,
    상기 부 냉동 시스템의 부 압축기의 속도를 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  99. 제86항에 있어서,
    상기 부 냉동 시스템의 적어도 일부를 우회하도록, 상기 부 냉매의 유동을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  100. 제86항에 있어서,
    상기 로드의 적어도 일부를 데우기 위해, 상기 주 냉매의 적어도 일부의 유동을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  101. 제86항에 있어서,
    상기 로드의 적어도 일부를 데우기 위해, 상기 부 냉매의 적어도 일부의 유동을 제어하는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
  102. 제86항에 있어서,
    상기 절연 인클로저로부터 이동 라인을 통해 상기 로드로 저압의 냉매를 전달하고, 상기 로드로부터 상기 이동 라인을 통해 상기 절연 인클로저로 상기 냉매를 복귀시키는 단계를 포함하는,
    로드를 냉각시키기 위한 방법.
  103. 제86항에 있어서,
    상기 로드는 상기 절연 인클로저 내에 있는,
    로드를 냉각시키기 위한 방법.
  104. 제86항에 있어서,
    상기 로드는 반도체 기판, 극저온 분리용 유체 스트림, 액화될 가스, 생물학적 시료, 화학적 처리, 재료 특성 분석 장비, 수증기 트랩, 제조 공정 내 물품, 이미징 장치, 아원자 입자 검출기, 광자 검출기, 화학 분석 장비, 초전도 케이블, 및 초전도 장치 중 하나 이상을 포함하는,
    로드를 냉각시키기 위한 방법.
  105. 제86항에 있어서,
    냉각될 유체 또는 물체를 상기 로드의 열전달면으로부터 상기 로드의 다른 부분으로 이동시키는 단계를 더 포함하는,
    로드를 냉각시키기 위한 방법.
KR1020127032539A 2010-05-12 2011-05-12 극저온 냉각용 시스템 및 방법 KR101705032B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US33380110P 2010-05-12 2010-05-12
US61/333,801 2010-05-12
US36351410P 2010-07-12 2010-07-12
US61/363,514 2010-07-12
PCT/US2011/036213 WO2011143398A1 (en) 2010-05-12 2011-05-12 System and method for cryogenic cooling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020177002757A Division KR101905161B1 (ko) 2010-05-12 2011-05-12 극저온 냉각용 시스템 및 방법

Publications (2)

Publication Number Publication Date
KR20130116162A true KR20130116162A (ko) 2013-10-23
KR101705032B1 KR101705032B1 (ko) 2017-02-09

Family

ID=44515101

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127032539A KR101705032B1 (ko) 2010-05-12 2011-05-12 극저온 냉각용 시스템 및 방법
KR1020177002757A KR101905161B1 (ko) 2010-05-12 2011-05-12 극저온 냉각용 시스템 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020177002757A KR101905161B1 (ko) 2010-05-12 2011-05-12 극저온 냉각용 시스템 및 방법

Country Status (7)

Country Link
US (2) US10156386B2 (ko)
EP (2) EP3040646B1 (ko)
JP (2) JP5815682B2 (ko)
KR (2) KR101705032B1 (ko)
CN (1) CN102918336B (ko)
TW (1) TWI571941B (ko)
WO (1) WO2011143398A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180032071A (ko) * 2016-09-21 2018-03-29 한국전력공사 액체질소 순환 및 냉동기를 통합한 초전도 케이블 냉각시스템

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
KR101705032B1 (ko) 2010-05-12 2017-02-09 브룩스 오토메이션, 인크. 극저온 냉각용 시스템 및 방법
JP5942459B2 (ja) * 2012-02-14 2016-06-29 セイコーエプソン株式会社 ハンドラー、及び部品検査装置
JP5938932B2 (ja) * 2012-02-14 2016-06-22 セイコーエプソン株式会社 ハンドラー、及び部品検査装置
US20140260380A1 (en) * 2013-03-15 2014-09-18 Energy Recovery Systems Inc. Compressor control for heat transfer system
CN103900315B (zh) * 2014-01-07 2016-08-17 沃姆制冷设备(上海)有限公司 超导器件及材料的液氮降温方法和实现该方法的超导制冷机
JP6679590B2 (ja) * 2014-11-13 2020-04-15 ライカ ミクロジュステーメ ゲーエムベーハー 凍結された試料に用いられる容器を備える凍結機械
CN105571187A (zh) * 2016-01-04 2016-05-11 上海理工大学 采用Xe为低温级制冷剂的超低温复叠制冷系统
CN106642776A (zh) * 2016-11-24 2017-05-10 深圳市天健机电设备有限公司 一种集中水冷系统
CN106766542A (zh) * 2016-12-28 2017-05-31 上海原能细胞医学技术有限公司 生物样本冷库
CN107818940B (zh) * 2017-11-30 2020-04-10 上海华力微电子有限公司 一种静电吸盘装置及其温控方法
US11472264B2 (en) * 2018-03-07 2022-10-18 Gogoro Inc. Apparatuses for controlling environmental conditions and associated methods
KR102608957B1 (ko) 2018-08-27 2023-12-01 삼성전자주식회사 플라즈마 처리 장치
US11607691B2 (en) 2019-10-29 2023-03-21 TMRW Life Sciences, Inc. Apparatus to facilitate transfer of biological specimens stored at cryogenic conditions
CN111043805B (zh) * 2019-12-30 2021-09-10 成都新连通低温设备有限公司 一种大功率液氮温区变温压力实验系统
WO2021236463A1 (en) 2020-05-18 2021-11-25 TMRW Life Sciences, Inc. Handling and tracking of biological specimens for cryogenic storage
TWI731722B (zh) * 2020-06-19 2021-06-21 國立臺北科技大學 具有自動除霜功能的冷凍系統及其自動除霜控制方法
USD963194S1 (en) 2020-12-09 2022-09-06 TMRW Life Sciences, Inc. Cryogenic vial carrier
CN115406132B (zh) * 2021-05-28 2023-09-15 中国科学院理化技术研究所 一种氦低温制冷系统及制冷方法
US20230186127A1 (en) * 2021-12-13 2023-06-15 The Boeing Company Cryogenic cooling system
KR102489501B1 (ko) * 2022-01-13 2023-01-18 크라이오에이치앤아이(주) 반도체 제조 장비용 온도 조절 장치
WO2023191963A1 (en) * 2022-03-30 2023-10-05 Microsoft Technology Licensing, Llc Cryogenic removal of carbon dioxide from the atmosphere
KR102654974B1 (ko) * 2022-05-25 2024-04-08 크라이오에이치앤아이(주) 반도체 제조 장비용 온도 조절 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415613B1 (en) * 2001-03-16 2002-07-09 General Electric Company Cryogenic cooling system with cooldown and normal modes of operation
US7003977B2 (en) * 2003-07-18 2006-02-28 General Electric Company Cryogenic cooling system and method with cold storage device
US7111467B2 (en) * 2001-02-23 2006-09-26 Brooks Automation, Inc. Ultra-low temperature closed-loop recirculating gas chilling system
US7126335B2 (en) * 2003-09-30 2006-10-24 Hitachi, Ltd. Nuclear magnetic resonance measuring apparatus

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733845A (en) * 1972-01-19 1973-05-22 D Lieberman Cascaded multicircuit,multirefrigerant refrigeration system
US4279127A (en) 1979-03-02 1981-07-21 Air Products And Chemicals, Inc. Removable refrigerator for maintaining liquefied gas inventory
US4277949A (en) 1979-06-22 1981-07-14 Air Products And Chemicals, Inc. Cryostat with serviceable refrigerator
JPS61128065A (ja) * 1984-11-28 1986-06-16 株式会社日立製作所 極低温冷凍機
JPH0776641B2 (ja) * 1986-05-16 1995-08-16 ダイキン工業株式会社 極低温冷凍機
US4840043A (en) * 1986-05-16 1989-06-20 Katsumi Sakitani Cryogenic refrigerator
US4951471A (en) * 1986-05-16 1990-08-28 Daikin Industries, Ltd. Cryogenic refrigerator
JPS6375760A (ja) 1986-09-19 1988-04-06 Canon Inc 放電装置の製造方法
JPH0643647Y2 (ja) 1986-11-05 1994-11-14 株式会社日立製作所 極低温冷凍装置
USRE33878E (en) 1987-01-20 1992-04-14 Helix Technology Corporation Cryogenic recondenser with remote cold box
JPS63220048A (ja) 1987-03-09 1988-09-13 ダイキン工業株式会社 極低温冷凍装置
US4829785A (en) * 1987-12-04 1989-05-16 The Boeing Company Cryogenic cooling system with precooling stage
US4796433A (en) 1988-01-06 1989-01-10 Helix Technology Corporation Remote recondenser with intermediate temperature heat sink
JPH0788980B2 (ja) 1989-02-01 1995-09-27 ダイキン工業株式会社 ヘリウム冷凍機
US5060481A (en) * 1989-07-20 1991-10-29 Helix Technology Corporation Method and apparatus for controlling a cryogenic refrigeration system
JPH03102652A (ja) 1989-09-18 1991-04-30 Canon Inc 光学的情報記録再生装置
JP2873388B2 (ja) 1990-05-15 1999-03-24 日本酸素株式会社 冷凍機及びその冷凍能力の調整方法
JP3102652B2 (ja) 1991-11-19 2000-10-23 株式会社日立製作所 冷熱衝撃試験装置
JPH05322343A (ja) * 1992-05-15 1993-12-07 Hitachi Ltd リザーバタンク付き冷凍装置
JP2725689B2 (ja) 1992-06-09 1998-03-11 住友重機械工業株式会社 蓄冷器式冷凍機
JPH0626459A (ja) * 1992-07-09 1994-02-01 Hitachi Ltd 極低温冷却装置およびその冷却方法
JPH06117716A (ja) * 1992-10-05 1994-04-28 Kobe Steel Ltd 液化冷凍装置の予冷方法及び装置
JPH06123508A (ja) * 1992-10-07 1994-05-06 Japan Atom Energy Res Inst 冷凍装置
JP2945806B2 (ja) * 1992-10-07 1999-09-06 株式会社神戸製鋼所 液化冷凍装置に設けられる冷凍負荷の予冷装置
JP3159553B2 (ja) * 1992-12-18 2001-04-23 東海旅客鉄道株式会社 極低温冷凍機の運転制御方法
JPH06265230A (ja) * 1993-03-11 1994-09-20 Kobe Steel Ltd 液化冷凍装置の運転制御方法及び装置
JPH06323662A (ja) * 1993-05-18 1994-11-25 Hitachi Ltd 冷凍装置
JP2910499B2 (ja) * 1993-05-18 1999-06-23 株式会社日立製作所 冷凍装置
JPH06323664A (ja) * 1993-05-18 1994-11-25 Hitachi Ltd 冷凍装置
JPH06323663A (ja) * 1993-05-18 1994-11-25 Hitachi Ltd 冷凍装置
JPH06323661A (ja) * 1993-05-18 1994-11-25 Hitachi Ltd 冷凍装置
US5508613A (en) 1994-08-29 1996-04-16 Conductus, Inc. Apparatus for cooling NMR coils
JPH08222429A (ja) 1995-02-13 1996-08-30 Hitachi Ltd 極低温装置
JPH09113052A (ja) * 1995-10-16 1997-05-02 Hitachi Ltd 冷凍装置
JPH09196487A (ja) * 1996-01-17 1997-07-31 Daikin Ind Ltd 極低温冷凍機
US5694776A (en) * 1996-01-30 1997-12-09 The Boc Group, Inc. Refrigeration method and apparatus
JP3573384B2 (ja) 1996-02-20 2004-10-06 住友重機械工業株式会社 極低温冷凍装置
JPH09236340A (ja) * 1996-02-28 1997-09-09 Daikin Ind Ltd 極低温冷凍装置
JP3571837B2 (ja) * 1996-03-01 2004-09-29 住友重機械工業株式会社 極低温冷凍装置
JPH09303897A (ja) 1996-05-10 1997-11-28 Daikin Ind Ltd 極低温冷凍装置
JPH10246524A (ja) * 1997-03-06 1998-09-14 Hitachi Ltd 冷凍装置
DE19720677C1 (de) 1997-05-16 1998-10-22 Spectrospin Ag NMR-Meßvorrichtung mit gekühltem Meßkopf
JPH11125474A (ja) 1997-10-23 1999-05-11 Hitachi Ltd 極低温冷凍システム
JP3670536B2 (ja) * 1999-11-08 2005-07-13 東海旅客鉄道株式会社 極低温冷却装置
US20020023447A1 (en) * 2000-06-28 2002-02-28 Oleg Podtchereniaev High efficiency very-low temperature mixed refrigerant system with rapid cool down
US6324856B1 (en) * 2000-07-07 2001-12-04 Spx Corporation Multiple stage cascade refrigeration system having temperature responsive flow control and method
JP3929022B2 (ja) 2000-11-01 2007-06-13 松下電器産業株式会社 ポイントサービスシステム
US6425250B1 (en) * 2001-02-08 2002-07-30 Praxair Technology, Inc. System for providing cryogenic refrigeration using an upstream pulse tube refrigerator
US7127901B2 (en) * 2001-07-20 2006-10-31 Brooks Automation, Inc. Helium management control system
US7478540B2 (en) * 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
DE10216786C5 (de) * 2002-04-15 2009-10-15 Ers Electronic Gmbh Verfahren und Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden
JP2003336923A (ja) * 2002-05-20 2003-11-28 Central Japan Railway Co 極低温冷凍装置
JP2004020754A (ja) 2002-06-13 2004-01-22 Namiki Precision Jewel Co Ltd ピグテイル型光ファイバ
US6679066B1 (en) * 2002-08-16 2004-01-20 Sumitomo Heavy Industries, Ltd. Cryogenic cooling system for superconductive electric machines
GB0408312D0 (en) * 2004-04-14 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
JP4407384B2 (ja) 2004-05-28 2010-02-03 株式会社Sumco Soi基板の製造方法
ITTO20040588A1 (it) * 2004-09-06 2004-12-06 Iarp S R L Impianto frigorifero a compressione di co2 per applicazioni di bassa temperatura
JP2006125772A (ja) * 2004-10-29 2006-05-18 Chubu Electric Power Co Inc 極低温冷凍機の運転制御装置
US7165422B2 (en) * 2004-11-08 2007-01-23 Mmr Technologies, Inc. Small-scale gas liquefier
DE102004053973B3 (de) * 2004-11-09 2006-07-20 Bruker Biospin Ag NMR-Spektrometer mit Refrigeratorkühlung
DE102004053972B3 (de) * 2004-11-09 2006-07-20 Bruker Biospin Gmbh NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
US7185501B2 (en) * 2004-12-16 2007-03-06 General Electric Company Cryogenic cooling system and method with backup cold storage device
JP4563269B2 (ja) 2005-07-05 2010-10-13 財団法人鉄道総合技術研究所 タービン型冷凍機の冷凍能力制御装置
JP2007303794A (ja) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd 冷凍装置
US8769982B2 (en) * 2006-10-02 2014-07-08 Emerson Climate Technologies, Inc. Injection system and method for refrigeration system compressor
US7528392B2 (en) * 2006-11-27 2009-05-05 Varian Semiconductor Equipment Associates, Inc. Techniques for low-temperature ion implantation
JP4253852B2 (ja) 2007-03-15 2009-04-15 村田機械株式会社 画像読取装置及びイメージスキャナ装置
WO2008133965A1 (en) * 2007-04-26 2008-11-06 Linde, Llc Air cycle refrigeration capacity control system
US8532832B2 (en) * 2008-09-23 2013-09-10 Be Aerospace, Inc. Method and apparatus for thermal exchange with two-phase media
EP2408453B1 (en) 2009-03-17 2022-01-05 Nicox Ophthalmics, Inc. Ophthalmic formulations of cetirizine and methods of use
JP2011125474A (ja) 2009-12-17 2011-06-30 Isuzu Motors Ltd 体調判定装置
WO2011132231A1 (ja) * 2010-04-23 2011-10-27 住友重機械工業株式会社 冷却システム及び冷却方法
KR101705032B1 (ko) 2010-05-12 2017-02-09 브룩스 오토메이션, 인크. 극저온 냉각용 시스템 및 방법
KR20120109873A (ko) * 2011-03-28 2012-10-09 삼성중공업 주식회사 옥내의 환기시스템 및 그 제연 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111467B2 (en) * 2001-02-23 2006-09-26 Brooks Automation, Inc. Ultra-low temperature closed-loop recirculating gas chilling system
US6415613B1 (en) * 2001-03-16 2002-07-09 General Electric Company Cryogenic cooling system with cooldown and normal modes of operation
US7003977B2 (en) * 2003-07-18 2006-02-28 General Electric Company Cryogenic cooling system and method with cold storage device
US7126335B2 (en) * 2003-09-30 2006-10-24 Hitachi, Ltd. Nuclear magnetic resonance measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180032071A (ko) * 2016-09-21 2018-03-29 한국전력공사 액체질소 순환 및 냉동기를 통합한 초전도 케이블 냉각시스템
WO2018056499A1 (ko) * 2016-09-21 2018-03-29 한국전력공사 액체질소 순환 및 냉동기를 통합한 초전도 케이블 냉각시스템

Also Published As

Publication number Publication date
EP3040646A1 (en) 2016-07-06
WO2011143398A1 (en) 2011-11-17
US10156386B2 (en) 2018-12-18
CN102918336A (zh) 2013-02-06
CN102918336B (zh) 2016-08-03
US20190120528A1 (en) 2019-04-25
JP2013538324A (ja) 2013-10-10
KR101905161B1 (ko) 2018-10-08
US11215384B2 (en) 2022-01-04
TW201201282A (en) 2012-01-01
JP2015227775A (ja) 2015-12-17
JP5815682B2 (ja) 2015-11-17
JP6203800B2 (ja) 2017-09-27
US20120038120A1 (en) 2012-02-16
TWI571941B (zh) 2017-02-21
KR101705032B1 (ko) 2017-02-09
KR20170015568A (ko) 2017-02-08
EP2569583B1 (en) 2016-03-02
EP2569583A1 (en) 2013-03-20
EP3040646B1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US11215384B2 (en) System and method for cryogenic cooling
JP2013538324A5 (ko)
US6574978B2 (en) Very low temperature refrigeration system with controlled cool down and warm up rates and long term heating capabilities
US6843065B2 (en) Very low temperature refrigeration system with controlled cool down and warm up rates and long term heating capabilities
JP5028117B2 (ja) 希釈冷凍機
JPH10246524A (ja) 冷凍装置
JP2910499B2 (ja) 冷凍装置
US20230204258A1 (en) Apparatus and method for generating cryogenic temperatures and use thereof
JP2600506B2 (ja) 冷凍装置
KR20220140525A (ko) 반도체 웨이퍼 온도 제어 장치
Hanrahan et al. A closed cycle 1k refrigerator precooled by a 4k pulse tube cryocooler
JPH09106906A (ja) 伝導冷却式超電導磁石
JPH044505B2 (ko)

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant