KR20110114538A - 조정가능 갭 플라즈마 챔버에서의 듀얼 컨파인먼트 및 초고압을 위한 방법 및 장치 - Google Patents
조정가능 갭 플라즈마 챔버에서의 듀얼 컨파인먼트 및 초고압을 위한 방법 및 장치 Download PDFInfo
- Publication number
- KR20110114538A KR20110114538A KR1020117014096A KR20117014096A KR20110114538A KR 20110114538 A KR20110114538 A KR 20110114538A KR 1020117014096 A KR1020117014096 A KR 1020117014096A KR 20117014096 A KR20117014096 A KR 20117014096A KR 20110114538 A KR20110114538 A KR 20110114538A
- Authority
- KR
- South Korea
- Prior art keywords
- gap
- upper electrode
- electrode
- plasma processing
- lower electrode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000009977 dual effect Effects 0.000 title description 2
- 238000012545 processing Methods 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 230000002093 peripheral effect Effects 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 8
- 238000009832 plasma treatment Methods 0.000 claims abstract description 5
- 239000010453 quartz Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 210000001015 abdomen Anatomy 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32541—Shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
- H01J37/32642—Focus rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/3299—Feedback systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
기판을 처리하기 위해 구성된 플라즈마 처리 챔버를 가지는 플라즈마 처리 시스템을 제공한다. 플라즈마 처리 시스템은 기판을 처리하기 위해 적어도 상부 전극 및 하부 전극을 포함한다. 플라즈마 처리 동안 기판은 하부 전극 상에 배치되고, 상부 전극 및 기판은 제 1 갭을 형성한다. 또한, 플라즈마 처리 시스템은 상부 전극 주변 확장부 (UE-PE) 를 포함한다. UE-PE는 상부 전극의 주변부에 기계적으로 결합되고, 상기 UE-PE는 상부 전극과 비공면 (non co-planar) 이 되도록 구성된다. 플라즈마 처리 시스템은 커버 링을 더 포함한다. 커버 링은 하부 전극을 동심으로 (concentrically) 둘러싸도록 구성되고, 여기서 UE-PE 및 커버 링은 제 2 갭을 형성한다.
Description
플라즈마 처리의 진보는 반도체 산업에서의 성장을 용이하게 하였다. 반도체 산업은 고도로 경쟁적인 시장이다. 제조 회사가 상이한 처리 조건들로 기판을 처리할 수 있는 능력은 그 제조 회사에게 경쟁자들보다 유리함을 부여할 수 있다. 따라서, 제조 회사들은 기판 처리를 향상시키기 위한 방법들 및/또는 배열들을 찾기 위해 시간과 자원들을 할애해 왔다.
기판 처리를 수행하기 위해 채용될 수 있는 통상적인 처리 시스템은 용량-결합형 플라즈마 (CCP) 처리 시스템일 수 있다. 플라즈마 처리 시스템은 프로세스 파라미터들의 범위 내에서 처리할 수 있도록 구축될 수 있다. 그러나, 근래에, 처리될 디바이스들의 타입은 더욱 정교해졌고, 더욱 정밀한 공정 제어를 요구할 수도 있다. 예를 들면, 피처리 디바이스들은 피쳐들 (features) 이 더 미세해짐에 따라 점점 더 소형화되고 있으며, 더 우수한 수율을 위해 기판에 걸친 플라즈마 밀도 및 균일도와 같은 플라즈마 파라미터들의 더욱 정밀한 제어를 요구할 수도 있다. 에칭 챔버에서 웨이퍼 지역의 압력 제어는, 플라즈마 밀도 및 균일도에 영향을 미치는 프로세스 파라미터의 일례일 수 있다.
반도체 디바이스들의 제조는, 플라즈마 처리 챔버 내에서 플라즈마를 채용하는 복수 단계 프로세스들을 필요로 할 수 있다. 반도체 디바이스(들) 의 플라즈마 처리 중에, 플라즈마 처리 챔버는 통상적으로 그 공정의 각 단계 동안 소정 압력으로 유지될 수 있다. 소정 압력은, 당업자에게 잘 알려진 바와 같이, 기계식 진공 펌프(들), 터보 펌프(들), 컨파인먼트 링 포지셔닝 (confinement ring positioning) 및/또는 그것의 조합들을 채용하는 것을 통해 달성될 수 있다.
종래에는, 밸브 조립체가 배기 터보 펌프(들) 을 스로틀링 (throttling) 하기 위해 채용됨으로써 플라즈마 처리 챔버 내의 소정 압력 조건들을 유지하기 위한 압력 제어를 획득할 수 있었다. 그러나, 뱃 밸브 (vat valve) 에 의해 제어되는 압력은 챔버의 상이한 지역들에서의 차별적인 압력 제어를 제공하는 능력없이, 전체 챔버에서의 전면적인 변경을 발생시킬 수 있다.
종래 기술에서, 플라즈마 처리 챔버의 플라즈마 생성 지역 (예를 들면, 두개의 전극들에 의해 캡슐화되고 컨파인먼트 링들에 의해 둘러싸인 지역) 에서의 압력은, 컨파인먼트 링 조립체의 컨파인먼트 링들 사이의 갭 (gap) 을 조정함으로써 제어될 수 있다. 갭 조정으로 플라즈마 생성 지역으로부터의 배기 가스 유량 (flow rate) 을 제어하고, 결과적으로 압력에 영향을 미칠 수 있다. 플라즈마 생성 지역 밖의 전체 가스 유동 컨덕턴스는, 컨파인먼트 링들의 갯수 및 컨파인먼트 링들 사이의 갭의 사이즈를 포함하지만 이에 한정되지는 않는, 몇몇 팩터들 (factors) 에 의존할 수 있다. 이에 따라, 압력 범위용 작동 윈도우즈 (windows) 는 챔버 갭 및/또는 이들 컨파인먼트 링들의 갭에 의해 제한될 수도 있다. 또한, 플라즈마 단면은 이들 컨파인먼트 링들의 고정 직경으로 인해, 전술한 공정을 위한 고정된 직경일 수 있다.
종래 기술에서, 전술한 플라즈마의 고정된 단면의 문제점을 해결하기 위해, 복수의 차별화된 플라즈마 볼륨 (differentiated plasma volume) 을 유지하는 능력을 갖도록 구성된 플라즈마 처리 챔버가 채용될 수 있다. 일례에서, 넓은 갭 구성 (wide-gap configuration) 이 채용됨으로써 상대적으로 저 압력을 갖는 증가된 플라즈마 단면을 제공할 수 있다. 다른 예에서, 좁은 갭 구성 (narrow-gap configuration) 이 채용됨으로써 종래의 플라즈마 단면을 제공하지만 상대적으로 더 높은 압력이 달성될 수 있다. 그러나, 플라즈마 처리 시스템을 위한 능동적인 차별화된 압력 제어는 제공되고 있지 않다.
각 단계가 상이한 압력을 포함할 수도 있는 복수 단계로 기판을 처리할 필요성의 관점에서, 플라즈마 처리 시스템들의 더 넓은 범위의 압력에 대해 차별화된 압력 제어를 제공하는 능력의 개선이 매우 요망된다.
본 발명은, 일 실시형태에서, 기판을 처리하기 위해 구성된 플라즈마 처리 챔버를 가지는 플라즈마 처리 시스템에 관한 것이다. 플라즈마 처리 시스템은 기판을 처리하기 위한 적어도 상부 전극 및 하부 전극을 포함한다. 플라즈마 처리 동안 기판은 하부 전극 상에 배치되고, 상부 전극 및 기판은 제 1 갭을 형성한다. 또한, 플라즈마 처리 시스템은 상부 전극 주변 확장부 (UE-PE : Upper Electrode Peripheral Extension) 를 포함한다. UE-PE는 상부 전극의 주변부에 기계적으로 결합되고, 상기 UE-PE는 상부 전극과 비공면 (non co-planar) 이 되도록 구성된다. 플라즈마 처리 시스템은 커버 링을 더 포함한다. 커버 링은 하부 전극을 동심으로 (concentrically) 둘러싸도록 구성되고, 여기서 UE-PE 및 커버 링은 제 2 갭을 형성한다.
상기 요약은 본원에 개시된 발명의 다수 실시형태들 중의 하나에만 관련된 것이고, 본원의 청구범위에 설명된 본 발명의 범위를 제한하도록 의도된 것이 아니다. 본 발명의 이들 특징 및 다른 특징은 다음의 도면과 함께 아래의 본 발명의 상세한 설명에서 더욱 구체적으로 설명될 것이다.
첨부된 도면들의 특징들에 있어서, 본 발명은 한정이 아닌 예시로서 도시된 것이고, 유사한 참조 번호들은 유사한 엘리먼트들을 지칭한다.
도 1은 본 발명의 실시형태에 따라, 상부 전극 조립체와 하부 전극 조립체 사이에 조정가능 갭이 구성되고, 초고압 및/또는 저 컨덕턴스 체제를 위해 대칭 챔버로 좁은 갭 구성을 산출하는 플라즈마 처리 시스템의 단순 개략도를 나타낸다.
도 2는 본 발명의 실시형태에 따라, 상부 전극 조립체와 하부 전극 조립체 사이에 조정가능 갭이 구성되고, 저 압력 및/또는 고 컨덕턴스 체제를 위해 비대칭 챔버로 넓은 갭 구성을 산출하는 플라즈마 처리 시스템의 단순 개략도를 나타낸다.
도 1은 본 발명의 실시형태에 따라, 상부 전극 조립체와 하부 전극 조립체 사이에 조정가능 갭이 구성되고, 초고압 및/또는 저 컨덕턴스 체제를 위해 대칭 챔버로 좁은 갭 구성을 산출하는 플라즈마 처리 시스템의 단순 개략도를 나타낸다.
도 2는 본 발명의 실시형태에 따라, 상부 전극 조립체와 하부 전극 조립체 사이에 조정가능 갭이 구성되고, 저 압력 및/또는 고 컨덕턴스 체제를 위해 비대칭 챔버로 넓은 갭 구성을 산출하는 플라즈마 처리 시스템의 단순 개략도를 나타낸다.
이하, 첨부된 도면들에서 나타낸 본 발명의 몇몇 실시형태들을 참조하여 본 발명을 상세하게 설명할 것이다. 이하의 설명에서는, 본 발명의 완전한 이해를 제공하기 위해 다수의 구체적 상세들이 기술된다. 그러나, 본 발명은 이들 구체적 상세들의 일부 또는 전부가 없이도 실시될 수 있다는 것이 당업자에게 자명할 것이다. 다른 예들에서, 잘 알려진 처리 단계들 및/또는 구조물들은 본 발명을 필요없이 불분명하게 하지않도록 상세히 설명하지 않는다.
본 발명의 실시형태들에 따르면, 동일한 플라즈마 처리 챔버에서 광범위한 압력을 제공하는 방법들 및 장치들이 제공된다. 일부 플라즈마 처리 시스템들에서, 챔버 갭 (즉, 상부 및 하부 전극 사이의 갭) 은 레서피 파라미터 (recipe parameter) 이고 각 단계들마다 상이할 수도 있다. 이들 플라즈마 처리 시스템들에서, 하부 전극 조립체를 이동시킴으로써 챔버 갭을 조정하도록 구성된 메커니즘이 제공될 수도 있다. 다른 플라즈마 처리 시스템들에서는, 상부 전극 조립체가 이동될 수도 있다. 본원의 개시에서는, 챔버가 이동 하부 전극을 가지는 것으로 가정된다. 그러나, 본원 발명의 실시형태들은 상부 전극이 (택일적으로 또는 추가적으로) 이동가능한 챔버들에 대해서도 동일하게 잘 적용되는 것임을 이해해야 한다.
하나 이상의 실시형태들에서, 상부 전극은 접지되고 하부 전극은 전원공급된다. 일 구현에서, 상부 전극의 주변부에는 그 상부 전극을 둘러싸는 고리 모양의, 즉 도넛 형상의 링이 제공된다. 본원에서 상기 고리 모양의 확장부는 상부 전극 주변 확장부 (UE-PE : Upper Electrode Peripheral Extension) 로서 지칭된다.
석영 커버 링까지 존재하는 UE-PE 아래의 갭은, 상부 전극과 하부 전극 사이의 갭이 충분히 좁혀짐에 따라 UE-PE 아래의 갭이 UE-PE 아래의 플라즈마를 유지하기에 불충분한 크기가 되는 반면, UE-PE의 내측의 상부 전극 밑에 있는 갭은 여전히 플라즈마를 유지하기에 충분히 큰 상태를 유지하는 지점에 이르도록 구성될 수 있다. 이러한 좁은 갭의 경우, UE-PE 아래의 갭은 매우 높은 흐름 제한의 영역을 나타낼 수 있다. 일 실시형태에서, UE-PE 아래의 갭의 높이가 조정되어 압력을 제어함으로써, UE-PE 내측 상부 전극의 밑에 있는 갭의 영역에서 초고압 및 저 컨덕턴스를 획득할 수 있다.
일 실시형태에서는, 상부 전극과 하부 전극 사이의 갭이 점증적으로 커지는 반면 UE-PE 아래의 갭은 플라즈마를 유지하기에 불충분하게 크고 UE-PE의 내측 상부 전극의 밑에 있는 갭은 플라즈마를 유지하기에 충분히 큰 상태를 여전히 유지하므로, 더 낮은 압력 및 더 높은 컨덕턴스가 좁은 갭 구성에 대해 달성될 수 있다.
상부 전극과 하부 전극 사이의 갭이 점증적으로 더 커지므로, UE-PE 아래의 갭은 플라즈마를 유지하기에 충분히 큰 반면 UP-PE의 내측 상부 전극의 밑에 있는 갭 또한 플라즈마를 유지하기에 충분히 크게 되는 지점에 이른다. 이러한 넓은 갭 구성에서는, 저 압력 및 고 컨덕턴스가 달성될 수 있다. 플라즈마를 수용하고 및/또는 압력을 제어하기 위해서 컨파인먼트 링들이 채용될 수도 있다.
전술한 것으로부터 인식될 수 있는 바와 같이, 전원공급된 하부 전극의 유효 RF 커플링 영역은 좁은 갭 구성 및 넓은 갭 구성 양자 모두에 대해 동일함을 유지한다. 그러나, 넓은 갭 구성에서는, 접지된 전극의 유효 RF 커플링 영역이 커진다. 따라서, 좁은 갭 구성은 RF 커플링의 제 1 면적비를 제공하는 반면 넓은 갭 구성은 RF 커플링의 제 2 면적비, 즉, 더 큰 유효 RF 접지 커플링 영역으로 인해 더 큰 RF 커플링의 제 2 면적비를 제공할 수 있다,
일 실시형태에서, 갭들 (즉, 상부 전극의 중앙 지역에서의 상부 전극과 하부 전극 사이의 갭 및 UE-PE 아래의 갭) 의 차이는 UE-PE를 상부 전극과 비공면 (non co-planar) 으로 만듦으로써 달성될 수 있다. 예를 들면, UE-PE는 상부 전극의 아래로 돌출할 수 있다. 상부 전극이 이동가능한 구현형태에서는 UE-PE가 상부 전극과 함께 이동한다.
다른 실시형태에서, 하부 전극 주변 확장부 (LE-PE) 는 하부 전극과 비공면 (non co-planar) 이 되도록 채용될 수 있다. 예를 들어, LE-PE는 하부 전극의 위로 상승될 수 있다. 일례에서, LE-PE는 석영 커버 링일 수 있다. 하부 전극이 이동가능한 구현형태에서는 LE-PE가 하부 전극과 함께 이동한다.
본 발명의 특징들 및 장점들은 (종래 기술 메커니즘들과 본 발명의 실시형태들이 대비된) 다음의 도면 및 설명을 참조하여 더욱 용이하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시형태에 따라, 상부 전극 조립체와 하부 전극 조립체 사이에 조정가능 갭이 구성됨으로써 초고압 및/또는 저 컨덕턴스 체제용 대칭 챔버로 좁은 갭 구성을 산출하는 플라즈마 처리 시스템의 단순 개략도를 나타낸다. 플라즈마 처리 시스템 (100) 은 단일, 이중 또는 삼중의 주파수가 용량적으로 방전되는 시스템일 수 있고, 또는 유도적으로 결합되는 플라즈마 시스템이거나 다른 플라즈마 생성 및/또는 유지 기술을 채용한 플라즈마 시스템일 수 있다. 도 1의 예에서는, 무선 주파수가 2, 27 및 60 MHz를 포함할 수 있지만 이에 한정되지 않는다.
도 1을 참조하면, 일 실시형태에서 플라즈마 처리 시스템 (100) 에는 상부 전극 조립체 (102) 및 하부 전극 조립체 (104) 가 구성될 수 있다. 상부 전극 조립체 (102) 및 하부 전극 조립체 (104) 는 챔버 갭 (106) 에 의해 서로로부터 분리될 수 있다. 상부 전극 조립체 (102) 는 RF 전원 공급장치 (미도시) 에 의해 전원공급되거나 접지될 수 있는 상부 전극을 적어도 포함할 수 있다.
도 1의 예에 있어서, 일 실시형태에서 상부 전극 조립체 (102) 는 접지될 수 있다. 또한, 일 실시형태에서 상부 전극 조립체 (102) 에는 안쪽 상부 전극 컴포넌트 (102a) 및 바깥쪽 상부 전극 컴포넌트 (102b) 가 구성될 수 있다. 일 실시형태에서 바깥쪽 전극 컴포넌트 (102b) 는 안쪽 상부 전극 (102a) 의 고리 모양의 확장부일 수 있다. 본 명세서에서, 바깥쪽 전극 컴포넌트 (102b) 는 상부 전극 주변 확장부 (UE-PE) 로 지칭될 수도 있다.
도 1에 나타낸 바와 같이, 안쪽 상부 전극 컴포넌트 (102a) 및 UE-PE (102b) 는 도 1에 나타낸 상이한 컴포넌트들로 형성될 수 있다. 다르게는, 일 실시형태에서 안쪽 상부 전극 (102a) 및 UE-PE (102b) 는 모놀리식 유닛 (monolithic unit) 으로서 형성될 수도 있다. 또한, 일 실시형태에서 안쪽 상부 전극 (102a) 및/또는 UE-PE (102b) 는 복수의 컴포넌트들로 형성될 수도 있다.
일 실시형태에서 하부 전극 조립체 (104) 에는 정전척 (ESC)(110), 에지 링 (112), 인슐레이터 링 (114), 포커스 링 (116), 석영 커버 링 (118), 컨파인먼트 링 조립체 (124), 및/또는 바이패스 링 (120) 이 구성될 수 있다. 도 1에 나타낸 바와 같이, 바이패스 링 (120) 은 알루미늄으로 형성될 수 있다. 일 실시형태에서, 바이패스 링 (120) 에는 바이패스 캐비티 (122) 가 구성됨으로써 바이패스 캐비티 (122) 를 통해 가스가 배출가능하게 할 수 있다. 도 1에 나타낸 바와 같이, 터보 분자 펌프 (TMP)(136) 에 결합된 뱃 밸브 (134) 가 채용됨으로써 플라즈마 처리 시스템 (100) 으로부터 처리된 가스를 배출할 수도 있다. 전술한 컴포넌트들의 특징들은 당업자에게 잘 알려져 있으며, 설명을 단순화하기 위해 상세히 설명하지 않을 것이다.
일 실시형태에서, UE-PE (102b) 에는 단차 (step) 즉, 초크 포인트 (choke point)(126) 가 구성될 수 있다. 단차의 결과로서, UE-PE (102b) 의 하부면은 안쪽 상부 전극 (102a) 의 하부면 아래로 연장 또는 돌출할 수 있다. 도 1에 나타낸 바와 같이, 일 실시형태에서 UE-PE (102b) 의 하부면 및 석영 커버 링 (118) 의 상부면은 제 2 갭 (128) 에 의해 분리될 수 있다. 일 실시형태에서 갭 (128) 의 사이즈는 상부 전극 조립체 (102) 및/또는 하부 전극 조립체를 이동시키는 것에 의해 조정가능할 수 있다.
일 실시형태에서, 초크 포인트는 비공면 단차 (non co-planar step) 를 만드는 것에 의해 형성될 수 있다. 예를 들면, UE-PE는 상부 전극의 표면 아래로 연장 또는 돌출할 수 있다. 선택적으로 또는 추가적으로, 하부 전극 주변 확장부 (LE-PE) 는 하부 전극과 비공면이 되도록 채용될 수 있다. 예를 들면, LE-PE는 하부 전극의 위로 상승될 수 있다. 일례에서, LE-PE는 석영 커버 링 (118) 일 수 있다.
도 1에 나타낸 바와 같이, 플라즈마 처리 시스템 (100) 에는 2 개의 가능한 플라즈마 유지 지역들: 지역 (130a) 또는 지역들 (130a와 128과 130b) 이 구성될 수 있다. 일 실시형태에서, 챔버 갭 (106) 이 플라즈마를 유지하기에 충분히 클 때에는 언제나 지역 (130a) 이 플라즈마를 유지할 수 있다. 반면, 일 실시형태에서 초크 지역의 갭 (128) 이 플라즈마를 유지하기에 충분히 클 때에는 언제나 지역들 (130a와 128과 130b) 이 플라즈마를 유지할 수 있다. 이것은 도 2에 도시되어 있다.
플라즈마 처리 동안, 공정처리된 가스 (미도시) 는 챔버 갭 (106) 으로 공급될 수 있다. 챔버 갭 (106) 으로 공급되는 공정처리된 가스는 하부 전극 조립체 (104) 에 공급된 RF 전원에 의해 플라즈마 상태로 여기될 수 있다. 예컨대, 하부 전극 조립체 (104) 가 이동됨으로써 좁은 갭 구성을 형성할 수 있고, 갭 (128) 의 사이즈는 (평균자유경로에 관하여) 플라즈마를 유지하기에 불충분하게 클 수 있는 상황을 고려한다.
도 1의 좁은 갭 구성에 있어서, 일 실시형태에서 플라즈마는 챔버 갭 (106) 의 지역 (130a) 에서 유지될 수 있다. 초크 지역의 갭 (128) 은 플라즈마를 유지하기에 불충분하게 클 수 있다. 이에 따라, 지역 (130b) 이 플라즈마를 유지하지 못할 수 있다. 좁은 갭 구성에서는, 컨파인먼트 링 조립체 (124) 가 풀업 (pull up) 되어서 추가적인 흐름 장애를 제한한다.
일 실시형태에서, 상부 전극과 하부 전극은 좁은 갭 구성에 있어서 1:1 면적비 (area ratio) 를 달성하여, 챔버를 좁은 갭 구성에 있어서의 대칭 챔버로 만들도록 사이징될 수도 있다.
좁은 갭 구성에서는, 일 실시형태에서 플라즈마 처리 시스템의 지역 (130a) 과 나머지 부분 사이의 상이한 압력이 획득 및 제어될 수 있다. 일례에서, 챔버 갭 (106) 에서의 압력은 능동적 피드백 루프 (active feedback loop) 에 의해 제어될 수 있다. 일 실시형태에서, 지역 (130a) 에서의 압력이 측정될 수 있고, 갭 (128), 뱃 밸브 (134) 및/또는 가스 유량이 조정됨으로써 지역 (130a) 의 압력을 제어할 수도 있다.
예컨대, 기판 (108) 의 플라즈마 처리 동안 지역 (130a) 에 예를 들어 토르 (Torr) 범위의 초고압이 요구될 수 있는 상황을 고려한다. 하부 전극 조립체 (104) 는 갭 (128) 에 대한 매우 좁은 갭을 형성하기 위해 감소된 높이까지 이동될 수 있다. 갭 (128) 의 초크 지역 (choke region) 은 가스 흐름을 상당히 초킹 (choking) 하는 매우 높은 흐름 제한의 영역을 나타낼 수 있다. 일 실시형태에서, 갭 (128) 의 높이는 갭 (128) 및/또는 지역 (130b) 의 플라즈마를 유지하기에 불충분하게 크다.
전술한 능동적 압력 피드백 루프를 통해, 갭 (128) 의 높이를 조정함으로써 지역 (130a) 의 압력을 제어할 수 있다. 예를 들면, 갭 (128) 의 높이를 더 감소시는 것에 의해, 지역 (130a) 의 압력을 증가시킬 수 있다. 일 실시형태에서, 갭 (128) 은, 갭 (128) 을 조정하는 것을 통해 제어된 압력 범위의 전체에 걸쳐서 지역 (130b) 의 플라즈마를 유지하기에 불충분하게 큰 상태로 남는다.
선택적으로 및/또는 추가적으로, 일 실시형태에서 지역 (130a) 을 통해 공정처리된 가스의 흐름을 조정하는 것에 의해 지역 (130a) 의 압력이 제어될 수 있다. 일례에서, 공정처리된 가스의 흐름이 증가되어 지역 (130a) 의 압력을 증가시킴으로써, 지역 (130a) 의 초고압을 획득하기 위해 압력을 증가시킬 수 있다.
선택적으로 및/또는 추가적으로, 일 실시형태에서 지역 (130a) 의 압력 제어는 TMP (136) 의 뱃 밸브 (134) 업스트림 (upstream) 을 조정하는 것에 의해 달성될 수 있다. 일례에서, 뱃 밸브 (134) 는 백 프레셔 (back pressure) 플라즈마 챔버 지역까지 폐쇄됨으로써 지역 (130a) 의 압력을 증가시켜 초고압을 획득하는 스로틀일 수 있다.
도 1을 참조하면, 초고압 체제를 위한 압력 제어에서는 흐름 제한이 갭 (128) 으로부터의 흐름 제한과 비교하여 중요하지 않기 때문에 컨파인먼트 링 세트 (124) 가 채용되지 않을 수 있다. 또한, 컨파인먼트 링 세트 (124) 는 컨파인먼트 링 세트 (124) 사이의 갭들 보다 훨씬 더 큰 컨덕턴스를 갖는 바이패스 링 (120) 과 평행하다. 예를 들면, 컨파인먼트 링 세트 (124) 는 바이패스 링 (120) 의 숄더 (132) 에 놓여지는 접힌 상태 (collapsed state) 로 구성되거나, 도 1에 나타낸 바와 같이 웨이퍼 이송 위치로 풀업 (pull up) 될 수 있다. 바이패스 링 (120) 의 바이패스 캐비티 (122) 를 통한 가스 컨덕턴스는 컨파인먼트 링 세트 (124) 로부터의 압력 제어를 중요하지 않게 만들 수 있다.
그러므로, 높은 유량 (flow rate) 및/또는 높은 흐름 제한으로 인해, 지역 (130a) 은 예를 들어 약 5 토르 (Torr) 까지의 초고압을 획득할 수 있다. 이에 따라, 일 실시형태에서 좁은 갭 구성을 가진 대칭 챔버는 처리 챔버의 나머지 부분에 독립한 저 컨덕턴스 및/또는 초고압을 획득할 수 있다.
종래 기술에서, 갭 (128) 은 플라즈마를 유지하기에 불충분한 크기가 되도록 갭 (128) 의 사이즈를 좁힘으로써 지역 (130b) 의 플라즈마를 소실시키도록 채용될 수 있다. 대조적으로, 갭 (128) 은 지역 (130b) 의 플라즈마를 소실시키기 위해 채용될 수 있을 뿐만 아니라 지역 (130b) 의 압력을 제어하도록 조정될 수도 있다. 따라서, 갭 (128) 은 압력 제어를 위해서 플라즈마를 소실시킬 지점 이상으로 좁아질 수도 있다.
또 다른 상황, 예컨대 대칭 챔버 및 좁은 갭을 가지는 구성에 대해, 플라즈마 처리 중에 지역 (130a) 에서의 저 압력 및/또는 고 컨덕턴스가 요구될 수 있는 상황을 고려한다. 도 1은 대칭 챔버로 저 압력 및/또는 고 컨덕턴스 체제의 예를 설명하기 위해 채용된다. 예컨대, 일 실시형태에서 하부 전극 조립체 (104) 는 갭 (128) 이 흐름 제한을 감소시키기에 충분히 크지만 여전히 지역 (130b) 에서의 플라즈마 점화를 방지할 수 있도록 이동될 수 있다.
도 1을 참조하면, 지역 (130a) 에는 플라즈마가 유지될 수 있다. 갭 (128) 은 플라즈마를 소실시키도록 충분히 좁고, 또한 지역 (130b) 에는 플라즈마가 유지되지 않는다. 일 실시형태에서, 갭 (128) 은 가스 컨덕턴스를 증가시키기에 충분히 커서 지역 (130a) 에 저압을 발생시킬 수 있다. 일 실시형태에서, 지역 (130a) 의 압력 제어는 갭 (128) 을 조정하는 것에 의해 획득될 수 있다. 일 실시형태에서 갭 (128) 의 사이즈에 대한 상위 범위는 플라즈마를 유지하기 위한 (평균자유경로에 관한) 갭 (128) 의 크기로 한정될 수 있다.
선택적으로 및/또는 추가적으로, 일 실시형태에서 지역 (130a) 을 통해 공정처리된 가스의 흐름을 조정함으로써 지역 (130a) 의 압력을 제어할 수 있다. 일례에서, 지역 (130a) 에서의 압력을 감소시키기 위해 공정처리된 가스의 흐름을 감소시킬 수 있다.
선택적으로 및/또는 추가적으로, 일 실시형태에서 지역 (130a) 의 압력 제어는 TMP (136) 의 뱃 밸브 (134) 업스트림을 조정하는 것에 의해 달성될 수 있다. 일례에서, 뱃 밸브 (134) 는 지역 (130a) 에서의 압력을 감소시키도록 개방되는 스로틀일 수 있다.
대칭 챔버를 가지는 저 압력 체제에서는, 컨파인먼트 링 세트 (124) 가 채용되어 압력을 제어할 수 있다. 도 1을 참조하면, 컨파인먼트 링 세트 (124) 는 하강할 수 있고, 컨파인먼트 링 세트 (124) 사이의 갭들을 조정하는 것에 의해 지역 (130a) 의 압력을 제어할 수 있다. 컨파인먼트 링 세트를 채용하여 압력을 제어하는 방법은 당업자에게 잘 알려져 있으며, 설명을 단순화하기 위해 상세히 설명하지 않겠다.
그러므로, 갭 (128) 을 조정하여 컨덕턴스를 증가시키는 한편 외부의 지역 (130b) 이 플라즈마를 유지하는 것을 방지하는 대칭 챔버 구성으로 저압 체제를 달성할 수 있다. 지역 (130a) 의 압력은 갭 (128), 컨파인먼트 링 세트 (124), 가스 유량, 및/또는 뱃 밸브 (134) 를 조정하는 것에 의해 제어될 수 있다.
도 2는 본 발명의 실시형태에 따라, 상부 전극 조립체 (102) 와 하부 전극 조립체 (104) 사이에 조정가능 갭이 구성되고, 저 압력 및/또는 고 컨덕턴스 체제를 위해 비대칭 챔버로 넓은 갭 구성을 산출하는 플라즈마 처리 시스템의 단순 개략도를 나타낸다. 이해를 용이하게 하기 위해, 도 2는 도 1과 비교하여 설명한다.
도 2에 나타낸 바와 같이, 플라즈마 처리 시스템 (200) 에서 기판 (108) 의 처리를 위해 예컨대, 저 압력, 예를 들어 약 5 밀리토르 (mili-Torr) 만큼 낮은 저 압력이 요구될 수 있는 상황을 고려한다. 일 실시형태에서 화살표 240의 방향으로 하부 전극 조립체 (104) 를 이동시켜 갭 (128) 의 높이를 증가시킴으로써 저 압력 및/또는 고 컨덕턴스를 획득할 수 있다. 갭 (128) 의 높이의 증가는 더 높은 컨덕턴스를 발생시킬 수 있다. 일 실시형태에서, 갭 (128) 은 충분히 크고, 지역 (230) 에는 플라즈마가 유지될 수 있다. 지역 (230) 은 챔버의 중앙으로부터 컨파인먼트 링 세트 (124) 의 안쪽 모서리까지 연장될 수 있다. 도 2에 나타낸 바와 같이, 컨파인먼트 링 세트 (124) 는 특정 지역 내의 플라즈마를 규제하도록 채용될 수 있다.
도 2의 넓은 갭 구성에 있어서, 전원공급된 하부 전극에 대한 접지된 상부 전극의 면적비는 클 수 있다, 즉, 상기 면적비는 1:1 보다 더 커서, 챔버가 비대칭이 되게 할 수 있다. 대칭 구성과는 대조적으로, 도 1에 나타낸 바와 같은 지역 (130a) 에서만 플라즈마가 유지되는 대신에, 도 2에 나타낸 바와 같은 비대칭 구성에 관해서는 지역 (230) 에서 플라즈마가 유지된다. 예를 들면, 전원공급된 RF 전극 영역들에 대한 접지의 높은 비율은 넓은 갭 구성에 대한 기판 (108) 에서 고 바이어스 전압 및 고 이온 에너지를 발생시킬 수 있다.
도 2에 나타낸 바와 같이, 비대칭 구성에 관한 저 압력 획득 능력에 기여하는 바이패스 링 (120) 의 바이패스 캐비티 (122) 를 통하여 지역 (230) 의 밖으로 가스가 토출될 수 있다. 바이패스 캐비티 (122) 및 갭 (128) 의 증가된 높이로 인해, 비대칭 구성에서는 획득될 수도 있는 고 압력이 제한될 수 있다.
도 2에 나타낸 바와 같이, 저 압력 비대칭 구성에서는, 컨파인먼트 링 세트 (124) 의 갭들을 조정하는 것에 의해 지역 (230) 의 압력을 제어할 수 있다. 컨파인먼트 링 세트 (124) 는 하강할 수 있고, 컨파인먼트 링 세트 (124) 사이의 갭들을 조정하는 것에 의해 압력을 제어할 수 있다.
선택적으로 및/또는 추가적으로, 일 실시형태에서는 지역 (130) 을 통해 공정처리된 가스의 흐름을 조정하는 것에 의해 지역 (230) 의 압력을 제어할 수 있다. 일례에서, 지역 (230) 에서의 압력을 감소시키기 위해 공정처리된 가스의 흐름을 감소시킬 수 있다.
선택적으로 및/또는 추가적으로, 일 실시형태에서 지역 (230) 의 압력 제어는 TMP (136) 의 뱃 밸브 (134) 업스트림을 조정하는 것에 의해 달성될 수 있다. 일례에서, 뱃 밸브 (134) 는 지역 (230) 에서의 압력을 감소시키도록 개방되는 스로틀일 수 있다.
그러므로, 비대칭 챔버를 가지는 갭 (128) 의 넓은 갭 구성에 있어서 증가된 컨덕턴스로 저압 체제를 달성할 수 있다. 컨파인먼트 링 세트 (124) 사이의 갭들, 가스 유량, 및/또는 뱃 밸브 (134) 를 조정하는 것에 의해 지역 (230) 의 압력을 제어할 수 있다.
전술한 것으로부터 인식될 수 있는 바와 같이, 본 발명의 실시형태들은 플라즈마 처리 시스템에 있어서 차별화된 압력 제어를 허용함으로써 광범위한 압력 및/또는 컨덕턴스를 제공할 수 있다. 획득될 수 있는 압력의 범위는 약 5 밀리토르 (mili-Torr) 로부터 약 5 토르 (Torr) 까지 일 수 있다. 초 고압 범위에서는, 감마 모드 (gamma mode) 의 플라즈마 처리가 가능할 수 있다. 또한, 상이한 갭 구성들은 전원공급된 하부 전극에 대한 접지된 상부 전극의 면적비 제어를 가능하게 할 수 있고, 이온 에너지 분배 뿐만 아니라 웨이퍼 바이어스 및 이온 에너지의 제어를 가능하게 할 수 있다. 따라서, 광범위한 압력 및/또는 바이어스 및 이온 에너지 또는 이온 에너지 분배에 대해 동일한 플라즈마 처리 챔버를 사용하여 여러가지 레서피들 (recipes) 을 필요로 하는 기판이 행해질 수 있으며, 복수의 플라즈마 처리 챔버들을 채용함에 있어서 발생할 수 있는 비용 및/또는 시간 지연을 감소시킬 수 있다.
본 발명이 몇 가지 실시형태에 관하여 설명되었지만, 본 발명의 범위 내에 포함되는 변형물, 치환물, 및 등가물이 존재한다. 또한, 본 발명의 방법과 장치들을 구현하는 많은 대안의 방법들이 존재한다는 것을 주목해야 한다. 또한, 본 발명의 실시형태들은 다른 적용들에서 유용함을 발견할 수 있다. 요약서는, 워드 카운트 제한으로 인해, 본 명세서에 편의상 제공된 것으로서, 독해의 편의를 위해 기입된 것이며, 본 발명의 청구범위를 한정하는데 채용되어서는 안된다. 따라서, 본 발명의 진정한 사상 및 범위 내에 포함되는 이러한 모든 변형물, 치환물, 및 등가물을 포함하는 것으로 본 발명이 해석되도록 의도된다.
Claims (20)
- 기판을 처리하기 위해 구성된 플라즈마 처리 챔버를 가지는 플라즈마 처리 시스템으로서,
상기 기판을 처리하기 위한 적어도 상부 전극 및 하부 전극으로서, 상기 기판은 플라즈마 처리 동안 상기 하부 전극 상에 배치되고 상기 상부 전극 및 상기 기판은 제 1 갭을 형성하는, 상기 적어도 상부 전극 및 하부 전극;
상부 전극 주변 확장부 (UE-PE) 로서, 상기 UE-PE는 상기 상부 전극의 주변부에 기계적으로 결합되고 상기 UE-PE는 상기 상부 전극과 비공면 (non co-planar) 이 되도록 구성된, 상기 상부 전극 주변 확장부 (UE-PE); 및
상기 하부 전극을 동심으로 (concentrically) 둘러싸도록 구성된 커버 링으로서, 상기 UE-PE 및 상기 커버 링은 제 2 갭을 형성하는, 상기 커버 링을 포함하는, 플라즈마 처리 시스템. - 제 1 항에 있어서,
상기 상부 전극 및 상기 하부 전극 중의 하나는 상기 하부 전극의 편평한 표면에 대한 수직 방향으로 이동가능한, 플라즈마 처리 시스템. - 제 1 항에 있어서,
상기 제 2 갭은 상기 제 1 갭 보다 더 작은, 플라즈마 처리 시스템. - 제 1 항에 있어서,
상기 UE-PE 및 상기 상부 전극은 모놀리식 유닛 (monolithic unit) 으로서 형성된, 플라즈마 처리 시스템. - 제 1 항에 있어서,
상기 UE-PE 및 상기 상부 전극은 복수의 컴포넌트들로 형성된, 플라즈마 처리 시스템. - 제 1 항에 있어서,
바이패스 링 (by-pass ring) 조립체를 더 포함하는, 플라즈마 처리 시스템. - 제 1 항에 있어서,
컨파인먼트 링 (confinement ring) 조립체를 더 포함하는, 플라즈마 처리 시스템. - 제 1 항에 있어서,
상기 커버 링은 적어도 부분적으로 석영 (quartz) 으로 덮인, 플라즈마 처리 시스템. - 제 1 항에 있어서,
상기 처리에 의해 생성된 배기 가스의 적어도 일부분을 배출하기 위한 바이패스 캐비티 (by-pass cavity) 를 가진 바이패스 링을 더 포함하는, 플라즈마 처리 시스템. - 플라즈마 처리 챔버의 압력을 제어하는 방법으로서,
기판을 처리하기 위한 적어도 상부 전극 및 하부 전극을 제공하는 단계로서, 상기 기판은 플라즈마 처리 동안 상기 하부 전극 상에 배치되고 상기 상부 전극 및 상기 기판이 제 1 갭을 형성하는, 상기 적어도 상부 전극 및 하부 전극을 제공하는 단계;
상부 전극 주변 확장부 (UE-PE) 를 제공하는 단계로서, 상기 UE-PE는 상기 상부 전극의 주변부에 기계적으로 결합되고 상기 UE-PE는 상기 상부 전극과 비공면 (non co-planar) 이 되도록 구성된, 상기 상부 전극 주변 확장부 (UE-PE) 를 제공하는 단계;
상기 하부 전극을 동심으로 (concentrically) 둘러싸도록 구성된 커버 링을 제공하는 단계로서, 상기 UE-PE 및 상기 커버 링은 제 2 갭을 형성하는, 상기 커버 링을 제공하는 단계;
상기 기판을 처리하기 위해 상기 처리 챔버 내에 플라즈마를 생성하는 단계; 및
상기 플라즈마 처리 챔버 내의 압력을 제어하기 위해 상기 제 2 갭 및 상기 제 1 갭을 동시에 조정하는 단계를 포함하는, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 제 10 항에 있어서,
상기 조정하는 단계는,
상기 상부 전극 및 상기 하부 전극 중의 하나를 상기 하부 전극의 편평한 표면에 대한 수직 방향으로 이동시켜서 상기 제 2 갭의 높이를 변경시키는 단계를 더 포함하는, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 제 10 항에 있어서,
상기 제 2 갭은 상기 제 1 갭 보다 더 작은, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 제 10 항에 있어서,
상기 UE-PE 및 상기 상부 전극은 모놀리식 유닛 (monolithic unit) 으로서 형성되는, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 제 10 항에 있어서,
상기 UE-PE 및 상기 상부 전극은 복수의 컴포넌트들로 형성된, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 제 10 항에 있어서,
상기 플라즈마 처리 챔버는 컨파인먼트 링 (confinement ring) 세트를 더 포함하고,
상기 방법은,
상기 상부 전극과 상기 하부 전극 사이에 제 1 갭이 존재할 때 처리 압력을 조절하도록 상기 컨파인먼트 링 세트를 배치하는 단계; 및
상기 동시에 조정하는 단계에 기인하여 상기 상부 전극과 상기 하부 전극 사이에 제 2 갭이 존재할 때 상기 컨파인먼트 링 세트를 완전히 스토잉 (stowing) 하는 단계로서, 상기 제 1 갭이 상기 제 2 갭 보다 더 큰, 상기 컨파인먼트 링 세트를 완전히 스토잉하는 단계를 포함하는, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 제 10 항에 있어서,
상기 커버 링은 적어도 부분적으로 석영 (quartz) 으로 덮인, 플라즈마 처리 챔버의 압력을 제어하는 방법. - 플라즈마 처리 챔버의 면적비 (area ratio) 를 변경하는 방법으로서,
기판을 처리하기 위한 적어도 상부 전극 및 하부 전극을 제공하는 단계로서, 상기 기판은 플라즈마 처리 동안 상기 하부 전극 상에 배치되고 상기 상부 전극 및 상기 기판은 제 1 갭을 형성하는, 상기 적어도 상부 전극 및 하부 전극을 제공하는 단계;
상부 전극 주변 확장부 (UE-PE) 를 제공하는 단계로서, 상기 UE-PE는 상기 상부 전극의 주변부에 기계적으로 결합되고 상기 UE-PE는 상기 상부 전극과 비공면 (non co-planar) 이 되도록 구성된, 상기 상부 전극 주변 확장부 (UE-PE) 를 제공하는 단계;
상기 하부 전극을 동심으로 (concentrically) 둘러싸도록 구성된 커버 링을 제공하는 단계로서, 상기 UE-PE 및 상기 커버 링은 제 2 갭을 형성하고 상기 제 2 갭은 상기 제 1 갭 보다 더 작은, 상기 커버 링을 제공하는 단계;
상기 기판을 처리하기 위해 상기 처리 챔버 내에 플라즈마를 생성하는 단계; 및
상기 플라즈마 처리 챔버 내의 상기 면적비를 변경하기 위해 상기 제 2 갭 및 상기 제 1 갭을 인-시튜 (in-situ) 로 동시에 조정하는 단계로서, 상기 상부 전극 및 상기 하부 전극 중의 하나를 상기 하부 전극의 편평한 표면에 대한 수직 방향으로 이동시키는 단계를 포함하는, 상기 조정하는 단계를 포함하는, 플라즈마 처리 챔버의 면적비를 변경하는 방법. - 제 17 항에 있어서,
상기 상부 전극 및 상기 하부 전극 중 상기 상부 전극만 조정가능한, 플라즈마 처리 챔버의 면적비를 변경하는 방법. - 제 17 항에 있어서,
상기 상부 전극 및 상기 하부 전극 중 상기 하부 전극만 조정가능한, 플라즈마 처리 챔버의 면적비를 변경하는 방법. - 제 17 항에 있어서,
상기 조정하는 단계는 적어도 제 1 면적비 및 제 2 면적비를 발생시키고, 상기 제 1 면적비는 1 : 1 을 나타내어 대칭 플라즈마 처리 챔버를 에뮬레이팅 (emulating) 하고, 상기 제 2 면적비는 1 : 1 이 아니어서 비대칭 플라즈마 처리 챔버를 에뮬레이팅하는, 플라즈마 처리 챔버의 면적비를 변경하는 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13948108P | 2008-12-19 | 2008-12-19 | |
US61/139,481 | 2008-12-19 | ||
US12/368,843 US8869741B2 (en) | 2008-12-19 | 2009-02-10 | Methods and apparatus for dual confinement and ultra-high pressure in an adjustable gap plasma chamber |
US12/368,843 | 2009-02-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110114538A true KR20110114538A (ko) | 2011-10-19 |
KR101591128B1 KR101591128B1 (ko) | 2016-02-02 |
Family
ID=42266749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020117014096A KR101591128B1 (ko) | 2008-12-19 | 2009-12-16 | 조정가능 갭 플라즈마 챔버에서의 듀얼 컨파인먼트 및 초고압을 위한 방법 및 장치 |
Country Status (8)
Country | Link |
---|---|
US (2) | US8869741B2 (ko) |
EP (1) | EP2380412B1 (ko) |
JP (1) | JP5872291B2 (ko) |
KR (1) | KR101591128B1 (ko) |
CN (1) | CN102257885B (ko) |
SG (1) | SG10201705046SA (ko) |
TW (2) | TWI538566B (ko) |
WO (1) | WO2010080420A2 (ko) |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018144613A1 (en) * | 2017-02-03 | 2018-08-09 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424487B2 (en) | 2017-10-24 | 2019-09-24 | Applied Materials, Inc. | Atomic layer etching processes |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10465294B2 (en) | 2014-05-28 | 2019-11-05 | Applied Materials, Inc. | Oxide and metal removal |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8869741B2 (en) * | 2008-12-19 | 2014-10-28 | Lam Research Corporation | Methods and apparatus for dual confinement and ultra-high pressure in an adjustable gap plasma chamber |
US9224618B2 (en) * | 2012-01-17 | 2015-12-29 | Lam Research Corporation | Method to increase mask selectivity in ultra-high aspect ratio etches |
JP5970268B2 (ja) * | 2012-07-06 | 2016-08-17 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置および処理方法 |
US10533251B2 (en) | 2015-12-31 | 2020-01-14 | Lam Research Corporation | Actuator to dynamically adjust showerhead tilt in a semiconductor processing apparatus |
US9953843B2 (en) * | 2016-02-05 | 2018-04-24 | Lam Research Corporation | Chamber for patterning non-volatile metals |
US11251019B2 (en) * | 2016-12-15 | 2022-02-15 | Toyota Jidosha Kabushiki Kaisha | Plasma device |
KR102581226B1 (ko) * | 2016-12-23 | 2023-09-20 | 삼성전자주식회사 | 플라즈마 처리 장치 |
JP6863199B2 (ja) | 2017-09-25 | 2021-04-21 | トヨタ自動車株式会社 | プラズマ処理装置 |
TWI780093B (zh) * | 2017-12-15 | 2022-10-11 | 美商蘭姆研究公司 | 用於電漿腔室的環結構及系統 |
Family Cites Families (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5000113A (en) * | 1986-12-19 | 1991-03-19 | Applied Materials, Inc. | Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process |
JPH0214517A (ja) * | 1988-07-01 | 1990-01-18 | Mitsubishi Electric Corp | エツチング装置 |
US5089442A (en) * | 1990-09-20 | 1992-02-18 | At&T Bell Laboratories | Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd |
US5252178A (en) * | 1992-06-24 | 1993-10-12 | Texas Instruments Incorporated | Multi-zone plasma processing method and apparatus |
KR100324792B1 (ko) * | 1993-03-31 | 2002-06-20 | 히가시 데쓰로 | 플라즈마처리장치 |
TW357404B (en) * | 1993-12-24 | 1999-05-01 | Tokyo Electron Ltd | Apparatus and method for processing of plasma |
JP3257741B2 (ja) * | 1994-03-03 | 2002-02-18 | 東京エレクトロン株式会社 | プラズマエッチング装置及び方法 |
TW299559B (ko) * | 1994-04-20 | 1997-03-01 | Tokyo Electron Co Ltd | |
TW323387B (ko) * | 1995-06-07 | 1997-12-21 | Tokyo Electron Co Ltd | |
JP3192370B2 (ja) * | 1995-06-08 | 2001-07-23 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP3319285B2 (ja) * | 1996-06-05 | 2002-08-26 | 株式会社日立製作所 | プラズマ処理装置及びプラズマ処理方法 |
JP3310171B2 (ja) * | 1996-07-17 | 2002-07-29 | 松下電器産業株式会社 | プラズマ処理装置 |
US6284093B1 (en) * | 1996-11-29 | 2001-09-04 | Applied Materials, Inc. | Shield or ring surrounding semiconductor workpiece in plasma chamber |
TW418461B (en) * | 1997-03-07 | 2001-01-11 | Tokyo Electron Ltd | Plasma etching device |
KR100258984B1 (ko) * | 1997-12-24 | 2000-08-01 | 윤종용 | 건식 식각 장치 |
JP4165946B2 (ja) * | 1998-11-30 | 2008-10-15 | 東京エレクトロン株式会社 | マイクロ波プラズマ処理装置 |
JP2001230237A (ja) | 2000-02-14 | 2001-08-24 | Rohm Co Ltd | 半導体基板用プラズマ表面処理装置における下部電極盤の構造 |
TW484187B (en) * | 2000-02-14 | 2002-04-21 | Tokyo Electron Ltd | Apparatus and method for plasma treatment |
US6553932B2 (en) * | 2000-05-12 | 2003-04-29 | Applied Materials, Inc. | Reduction of plasma edge effect on plasma enhanced CVD processes |
US6433484B1 (en) * | 2000-08-11 | 2002-08-13 | Lam Research Corporation | Wafer area pressure control |
US6872281B1 (en) * | 2000-09-28 | 2005-03-29 | Lam Research Corporation | Chamber configuration for confining a plasma |
US6492774B1 (en) * | 2000-10-04 | 2002-12-10 | Lam Research Corporation | Wafer area pressure control for plasma confinement |
US6475336B1 (en) * | 2000-10-06 | 2002-11-05 | Lam Research Corporation | Electrostatically clamped edge ring for plasma processing |
US6391787B1 (en) * | 2000-10-13 | 2002-05-21 | Lam Research Corporation | Stepped upper electrode for plasma processing uniformity |
JP2002198355A (ja) * | 2000-12-26 | 2002-07-12 | Tokyo Electron Ltd | プラズマ処理装置 |
CN1302152C (zh) * | 2001-03-19 | 2007-02-28 | 株式会社Ips | 化学气相沉积设备 |
JP2002305179A (ja) * | 2001-04-05 | 2002-10-18 | Matsushita Electric Ind Co Ltd | プラズマ処理方法 |
US6818096B2 (en) * | 2001-04-12 | 2004-11-16 | Michael Barnes | Plasma reactor electrode |
US6974523B2 (en) * | 2001-05-16 | 2005-12-13 | Lam Research Corporation | Hollow anode plasma reactor and method |
US6527911B1 (en) * | 2001-06-29 | 2003-03-04 | Lam Research Corporation | Configurable plasma volume etch chamber |
US6984288B2 (en) * | 2001-08-08 | 2006-01-10 | Lam Research Corporation | Plasma processor in plasma confinement region within a vacuum chamber |
US7882800B2 (en) * | 2001-12-13 | 2011-02-08 | Tokyo Electron Limited | Ring mechanism, and plasma processing device using the ring mechanism |
US6744212B2 (en) * | 2002-02-14 | 2004-06-01 | Lam Research Corporation | Plasma processing apparatus and method for confining an RF plasma under very high gas flow and RF power density conditions |
JP2003264169A (ja) * | 2002-03-11 | 2003-09-19 | Tokyo Electron Ltd | プラズマ処理装置 |
JP4102873B2 (ja) * | 2002-03-29 | 2008-06-18 | 東京エレクトロン株式会社 | プラズマ処理装置用電極板及びプラズマ処理装置 |
TW558789B (en) * | 2002-05-02 | 2003-10-21 | Hitachi High Tech Corp | Semiconductor processing device and diagnostic method of semiconductor processing device |
EP1512164B1 (en) * | 2002-05-23 | 2016-01-06 | Lam Research Corporation | Multi-part electrode for a semiconductor processing plasma reactor and method of replacing a portion of a mutli-part electrode |
US6841943B2 (en) * | 2002-06-27 | 2005-01-11 | Lam Research Corp. | Plasma processor with electrode simultaneously responsive to plural frequencies |
KR100465877B1 (ko) * | 2002-08-23 | 2005-01-13 | 삼성전자주식회사 | 반도체 식각 장치 |
US6963043B2 (en) * | 2002-08-28 | 2005-11-08 | Tokyo Electron Limited | Asymmetrical focus ring |
JP2004119448A (ja) * | 2002-09-24 | 2004-04-15 | Nec Kyushu Ltd | プラズマエッチング装置およびプラズマエッチング方法 |
CN1518073A (zh) * | 2003-01-07 | 2004-08-04 | 东京毅力科创株式会社 | 等离子体处理装置及聚焦环 |
US7316761B2 (en) * | 2003-02-03 | 2008-01-08 | Applied Materials, Inc. | Apparatus for uniformly etching a dielectric layer |
JP4286025B2 (ja) * | 2003-03-03 | 2009-06-24 | 川崎マイクロエレクトロニクス株式会社 | 石英治具の再生方法、再生使用方法および半導体装置の製造方法 |
US7009281B2 (en) * | 2003-03-14 | 2006-03-07 | Lam Corporation | Small volume process chamber with hot inner surfaces |
JP4268433B2 (ja) | 2003-04-02 | 2009-05-27 | 積水化学工業株式会社 | プラズマ処理装置 |
US7244336B2 (en) * | 2003-12-17 | 2007-07-17 | Lam Research Corporation | Temperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift |
US7645341B2 (en) * | 2003-12-23 | 2010-01-12 | Lam Research Corporation | Showerhead electrode assembly for plasma processing apparatuses |
US7713380B2 (en) * | 2004-01-27 | 2010-05-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and apparatus for backside polymer reduction in dry-etch process |
JP2005217240A (ja) * | 2004-01-30 | 2005-08-11 | Matsushita Electric Ind Co Ltd | ドライエッチング装置およびドライエッチング方法 |
JP2005303099A (ja) * | 2004-04-14 | 2005-10-27 | Hitachi High-Technologies Corp | プラズマ処理装置およびプラズマ処理方法 |
US7713431B2 (en) * | 2004-06-10 | 2010-05-11 | Tokyo Electron Limited | Plasma processing method |
US20060043067A1 (en) * | 2004-08-26 | 2006-03-02 | Lam Research Corporation | Yttria insulator ring for use inside a plasma chamber |
US7430986B2 (en) * | 2005-03-18 | 2008-10-07 | Lam Research Corporation | Plasma confinement ring assemblies having reduced polymer deposition characteristics |
US20060225654A1 (en) * | 2005-03-29 | 2006-10-12 | Fink Steven T | Disposable plasma reactor materials and methods |
US7837825B2 (en) * | 2005-06-13 | 2010-11-23 | Lam Research Corporation | Confined plasma with adjustable electrode area ratio |
US7713379B2 (en) | 2005-06-20 | 2010-05-11 | Lam Research Corporation | Plasma confinement rings including RF absorbing material for reducing polymer deposition |
KR101218114B1 (ko) * | 2005-08-04 | 2013-01-18 | 주성엔지니어링(주) | 플라즈마 식각 장치 |
US20070032081A1 (en) * | 2005-08-08 | 2007-02-08 | Jeremy Chang | Edge ring assembly with dielectric spacer ring |
US8038837B2 (en) * | 2005-09-02 | 2011-10-18 | Tokyo Electron Limited | Ring-shaped component for use in a plasma processing, plasma processing apparatus and outer ring-shaped member |
US7909960B2 (en) * | 2005-09-27 | 2011-03-22 | Lam Research Corporation | Apparatus and methods to remove films on bevel edge and backside of wafer |
US20070116872A1 (en) * | 2005-11-18 | 2007-05-24 | Tokyo Electron Limited | Apparatus for thermal and plasma enhanced vapor deposition and method of operating |
US7743730B2 (en) * | 2005-12-21 | 2010-06-29 | Lam Research Corporation | Apparatus for an optimized plasma chamber grounded electrode assembly |
US8789493B2 (en) * | 2006-02-13 | 2014-07-29 | Lam Research Corporation | Sealed elastomer bonded Si electrodes and the like for reduced particle contamination in dielectric etch |
US8012306B2 (en) * | 2006-02-15 | 2011-09-06 | Lam Research Corporation | Plasma processing reactor with multiple capacitive and inductive power sources |
US7578258B2 (en) * | 2006-03-03 | 2009-08-25 | Lam Research Corporation | Methods and apparatus for selective pre-coating of a plasma processing chamber |
US7740705B2 (en) * | 2006-03-08 | 2010-06-22 | Tokyo Electron Limited | Exhaust apparatus configured to reduce particle contamination in a deposition system |
US7670432B2 (en) * | 2006-03-08 | 2010-03-02 | Tokyo Electron Limited | Exhaust system for a vacuum processing system |
US7794546B2 (en) * | 2006-03-08 | 2010-09-14 | Tokyo Electron Limited | Sealing device and method for a processing system |
US20070227666A1 (en) * | 2006-03-30 | 2007-10-04 | Tokyo Electron Limited | Plasma processing apparatus |
US8635971B2 (en) * | 2006-03-31 | 2014-01-28 | Lam Research Corporation | Tunable uniformity in a plasma processing system |
US7829468B2 (en) * | 2006-06-07 | 2010-11-09 | Lam Research Corporation | Method and apparatus to detect fault conditions of plasma processing reactor |
US7740736B2 (en) * | 2006-06-08 | 2010-06-22 | Lam Research Corporation | Methods and apparatus for preventing plasma un-confinement events in a plasma processing chamber |
US7879184B2 (en) * | 2006-06-20 | 2011-02-01 | Lam Research Corporation | Apparatuses, systems and methods for rapid cleaning of plasma confinement rings with minimal erosion of other chamber parts |
US7572737B1 (en) * | 2006-06-30 | 2009-08-11 | Lam Research Corporation | Apparatus and methods for adjusting an edge ring potential substrate processing |
US7837826B2 (en) | 2006-07-18 | 2010-11-23 | Lam Research Corporation | Hybrid RF capacitively and inductively coupled plasma source using multifrequency RF powers and methods of use thereof |
US20080087641A1 (en) * | 2006-10-16 | 2008-04-17 | Lam Research Corporation | Components for a plasma processing apparatus |
US7482550B2 (en) * | 2006-10-16 | 2009-01-27 | Lam Research Corporation | Quartz guard ring |
US7854820B2 (en) * | 2006-10-16 | 2010-12-21 | Lam Research Corporation | Upper electrode backing member with particle reducing features |
US7875824B2 (en) * | 2006-10-16 | 2011-01-25 | Lam Research Corporation | Quartz guard ring centering features |
US8702866B2 (en) * | 2006-12-18 | 2014-04-22 | Lam Research Corporation | Showerhead electrode assembly with gas flow modification for extended electrode life |
US8043430B2 (en) * | 2006-12-20 | 2011-10-25 | Lam Research Corporation | Methods and apparatuses for controlling gas flow conductance in a capacitively-coupled plasma processing chamber |
US7758718B1 (en) * | 2006-12-29 | 2010-07-20 | Lam Research Corporation | Reduced electric field arrangement for managing plasma confinement |
KR100849179B1 (ko) * | 2007-01-10 | 2008-07-30 | 삼성전자주식회사 | 갭 발생방지구조 및 이를 갖는 플라즈마 처리설비 |
US7943007B2 (en) * | 2007-01-26 | 2011-05-17 | Lam Research Corporation | Configurable bevel etcher |
US7858898B2 (en) * | 2007-01-26 | 2010-12-28 | Lam Research Corporation | Bevel etcher with gap control |
US9536711B2 (en) * | 2007-03-30 | 2017-01-03 | Lam Research Corporation | Method and apparatus for DC voltage control on RF-powered electrode |
US7862682B2 (en) * | 2007-06-13 | 2011-01-04 | Lam Research Corporation | Showerhead electrode assemblies for plasma processing apparatuses |
US7758764B2 (en) * | 2007-06-28 | 2010-07-20 | Lam Research Corporation | Methods and apparatus for substrate processing |
US8563619B2 (en) * | 2007-06-28 | 2013-10-22 | Lam Research Corporation | Methods and arrangements for plasma processing system with tunable capacitance |
US7837827B2 (en) * | 2007-06-28 | 2010-11-23 | Lam Research Corporation | Edge ring arrangements for substrate processing |
WO2009042137A2 (en) * | 2007-09-25 | 2009-04-02 | Lam Research Corporation | Temperature control modules for showerhead electrode assemblies for plasma processing apparatuses |
US8622021B2 (en) * | 2007-10-31 | 2014-01-07 | Lam Research Corporation | High lifetime consumable silicon nitride-silicon dioxide plasma processing components |
US8418649B2 (en) * | 2007-12-19 | 2013-04-16 | Lam Research Corporation | Composite showerhead electrode assembly for a plasma processing apparatus |
US8522715B2 (en) * | 2008-01-08 | 2013-09-03 | Lam Research Corporation | Methods and apparatus for a wide conductance kit |
TWI501704B (zh) * | 2008-02-08 | 2015-09-21 | Lam Res Corp | 於電漿處理系統中用以改變面積比之方法與裝置 |
TWI516175B (zh) * | 2008-02-08 | 2016-01-01 | 蘭姆研究公司 | 在電漿處理腔室中穩定壓力的方法及其程式儲存媒體 |
KR101625516B1 (ko) * | 2008-02-08 | 2016-05-30 | 램 리써치 코포레이션 | 플라즈마 프로세싱 장치 및 플라즈마 프로세싱 장치에서 반도체 기판을 처리하는 방법 |
US8679288B2 (en) * | 2008-06-09 | 2014-03-25 | Lam Research Corporation | Showerhead electrode assemblies for plasma processing apparatuses |
JP5102706B2 (ja) * | 2008-06-23 | 2012-12-19 | 東京エレクトロン株式会社 | バッフル板及び基板処理装置 |
US8221582B2 (en) * | 2008-07-07 | 2012-07-17 | Lam Research Corporation | Clamped monolithic showerhead electrode |
US8161906B2 (en) * | 2008-07-07 | 2012-04-24 | Lam Research Corporation | Clamped showerhead electrode assembly |
US8147648B2 (en) * | 2008-08-15 | 2012-04-03 | Lam Research Corporation | Composite showerhead electrode assembly for a plasma processing apparatus |
US8449679B2 (en) * | 2008-08-15 | 2013-05-28 | Lam Research Corporation | Temperature controlled hot edge ring assembly |
JP5391659B2 (ja) * | 2008-11-18 | 2014-01-15 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US8869741B2 (en) * | 2008-12-19 | 2014-10-28 | Lam Research Corporation | Methods and apparatus for dual confinement and ultra-high pressure in an adjustable gap plasma chamber |
US8540844B2 (en) * | 2008-12-19 | 2013-09-24 | Lam Research Corporation | Plasma confinement structures in plasma processing systems |
US8313612B2 (en) * | 2009-03-24 | 2012-11-20 | Lam Research Corporation | Method and apparatus for reduction of voltage potential spike during dechucking |
US8272346B2 (en) * | 2009-04-10 | 2012-09-25 | Lam Research Corporation | Gasket with positioning feature for clamped monolithic showerhead electrode |
US20110011534A1 (en) * | 2009-07-17 | 2011-01-20 | Rajinder Dhindsa | Apparatus for adjusting an edge ring potential during substrate processing |
SG169960A1 (en) * | 2009-09-18 | 2011-04-29 | Lam Res Corp | Clamped monolithic showerhead electrode |
DE202010014805U1 (de) * | 2009-11-02 | 2011-02-17 | Lam Research Corporation (Delaware Corporation) | Heissrandring mit geneigter oberer Oberfläche |
US8485128B2 (en) * | 2010-06-30 | 2013-07-16 | Lam Research Corporation | Movable ground ring for a plasma processing chamber |
US9082593B2 (en) * | 2011-03-31 | 2015-07-14 | Tokyo Electron Limited | Electrode having gas discharge function and plasma processing apparatus |
US9263240B2 (en) * | 2011-11-22 | 2016-02-16 | Lam Research Corporation | Dual zone temperature control of upper electrodes |
-
2009
- 2009-02-10 US US12/368,843 patent/US8869741B2/en active Active
- 2009-12-16 KR KR1020117014096A patent/KR101591128B1/ko not_active IP Right Cessation
- 2009-12-16 WO PCT/US2009/068183 patent/WO2010080420A2/en active Application Filing
- 2009-12-16 CN CN200980150990.4A patent/CN102257885B/zh active Active
- 2009-12-16 SG SG10201705046SA patent/SG10201705046SA/en unknown
- 2009-12-16 JP JP2011542362A patent/JP5872291B2/ja not_active Expired - Fee Related
- 2009-12-16 EP EP09837887.0A patent/EP2380412B1/en active Active
- 2009-12-18 TW TW098143679A patent/TWI538566B/zh active
- 2009-12-18 TW TW105108902A patent/TWI593317B/zh active
-
2014
- 2014-09-24 US US14/495,553 patent/US9548186B2/en active Active
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US11264213B2 (en) | 2012-09-21 | 2022-03-01 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10465294B2 (en) | 2014-05-28 | 2019-11-05 | Applied Materials, Inc. | Oxide and metal removal |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10707061B2 (en) | 2014-10-14 | 2020-07-07 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10796922B2 (en) | 2014-10-14 | 2020-10-06 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US11158527B2 (en) | 2015-08-06 | 2021-10-26 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11735441B2 (en) | 2016-05-19 | 2023-08-22 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10541113B2 (en) | 2016-10-04 | 2020-01-21 | Applied Materials, Inc. | Chamber with flow-through source |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US11049698B2 (en) | 2016-10-04 | 2021-06-29 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10770346B2 (en) | 2016-11-11 | 2020-09-08 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
WO2018144613A1 (en) * | 2017-02-03 | 2018-08-09 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10903052B2 (en) | 2017-02-03 | 2021-01-26 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
KR20190105130A (ko) * | 2017-02-03 | 2019-09-11 | 어플라이드 머티어리얼스, 인코포레이티드 | 플라즈마 균일성의 방사상 및 방위각 제어를 위한 시스템들 및 방법들 |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10529737B2 (en) | 2017-02-08 | 2020-01-07 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10325923B2 (en) | 2017-02-08 | 2019-06-18 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11361939B2 (en) | 2017-05-17 | 2022-06-14 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11915950B2 (en) | 2017-05-17 | 2024-02-27 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US11101136B2 (en) | 2017-08-07 | 2021-08-24 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10424487B2 (en) | 2017-10-24 | 2019-09-24 | Applied Materials, Inc. | Atomic layer etching processes |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10861676B2 (en) | 2018-01-08 | 2020-12-08 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10699921B2 (en) | 2018-02-15 | 2020-06-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US11004689B2 (en) | 2018-03-12 | 2021-05-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
Also Published As
Publication number | Publication date |
---|---|
US8869741B2 (en) | 2014-10-28 |
KR101591128B1 (ko) | 2016-02-02 |
TW201625075A (zh) | 2016-07-01 |
US20100159703A1 (en) | 2010-06-24 |
WO2010080420A2 (en) | 2010-07-15 |
TW201036494A (en) | 2010-10-01 |
EP2380412A2 (en) | 2011-10-26 |
US20150011097A1 (en) | 2015-01-08 |
TWI538566B (zh) | 2016-06-11 |
WO2010080420A3 (en) | 2010-08-26 |
EP2380412A4 (en) | 2015-03-18 |
JP5872291B2 (ja) | 2016-03-01 |
CN102257885A (zh) | 2011-11-23 |
US9548186B2 (en) | 2017-01-17 |
CN102257885B (zh) | 2014-11-26 |
JP2012513093A (ja) | 2012-06-07 |
TWI593317B (zh) | 2017-07-21 |
SG10201705046SA (en) | 2017-07-28 |
EP2380412B1 (en) | 2017-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101591128B1 (ko) | 조정가능 갭 플라즈마 챔버에서의 듀얼 컨파인먼트 및 초고압을 위한 방법 및 장치 | |
KR102535094B1 (ko) | 반도체 제조에서 플라즈마 프로세스 공간을 제어하도록 전기적 비대칭 효과를 사용하기 위한 시스템들 및 방법들 | |
US9892888B2 (en) | Particle generation suppresor by DC bias modulation | |
KR101498322B1 (ko) | 와이드 컨덕턴스 키트를 위한 방법 및 장치 | |
JP5606565B2 (ja) | 容積可変型プラズマ処理チャンバおよびその方法 | |
US8187415B2 (en) | Plasma etch reactor with distribution of etch gases across a wafer surface and a polymer oxidizing gas in an independently fed center gas zone | |
JP2007533138A (ja) | 半導体基板処理チャンバ内のガス流を制御するための装置 | |
US20180061681A1 (en) | Plasma processing apparatus | |
KR20100105695A (ko) | 유도 결합 플라즈마 챔버에서 에지 성능을 제어하기 위한 장치 및 방법 | |
US8342122B2 (en) | Methods and apparatus for changing area ratio in a plasma processing system | |
US11530482B2 (en) | Faceplate having a curved surface | |
JP2012049376A (ja) | プラズマ処理装置およびプラズマ処理方法 | |
US11521836B2 (en) | Plasma processing apparatus | |
US10312059B2 (en) | Ring member with air holes and substrate processing system including the same | |
CN107305830B (zh) | 电容耦合等离子体处理装置与等离子体处理方法 | |
JP7471810B2 (ja) | リングアセンブリ、基板支持体及び基板処理装置 | |
US20240234096A1 (en) | Plasma processing apparatus and method for fabricating semiconductor device using the same | |
KR20240056321A (ko) | 플라즈마 챔버 및 플라즈마 챔버를 이용한 웨이퍼 식각 방법 | |
JP2016134460A (ja) | プラズマ処理装置およびプラズマ処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |