KR20080026129A - 반도체 웨이퍼로부터의 물질 제거 방법 및 이를 수행하기위한 장치 - Google Patents

반도체 웨이퍼로부터의 물질 제거 방법 및 이를 수행하기위한 장치 Download PDF

Info

Publication number
KR20080026129A
KR20080026129A KR1020077030736A KR20077030736A KR20080026129A KR 20080026129 A KR20080026129 A KR 20080026129A KR 1020077030736 A KR1020077030736 A KR 1020077030736A KR 20077030736 A KR20077030736 A KR 20077030736A KR 20080026129 A KR20080026129 A KR 20080026129A
Authority
KR
South Korea
Prior art keywords
fluid
semiconductor wafer
photoresist
precursor fluid
precursor
Prior art date
Application number
KR1020077030736A
Other languages
English (en)
Other versions
KR101269783B1 (ko
Inventor
미하일 코롤리크
마이클 래브킨
존 델라리오스
프리츠 씨 레데커
존 엠 보이드
Original Assignee
램 리써치 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 램 리써치 코포레이션 filed Critical 램 리써치 코포레이션
Publication of KR20080026129A publication Critical patent/KR20080026129A/ko
Application granted granted Critical
Publication of KR101269783B1 publication Critical patent/KR101269783B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer

Abstract

비뉴턴 유체에 대한 전구체 유체의 액체 상태를 유지하기에 충분한 압력에서 반도체 웨이퍼가 재치되는 체적 내의 압력을 유지한다. 전구체 유체를 액체 상태로 유지하면서 반도체 웨이퍼로부터 제거되어야 할 물질에 근접하도록 전구체 유체를 공급한다. 반도체 웨이퍼가 재치되는 체적 내의 웨이퍼 상에 공급된 전구체 유체가 비뉴턴 유체로 변환되도록 상기 체적 내의 압력을 감소시킨다. 비뉴턴 유체로의 변환 동안, 전구체 유체의 팽창과 웨이퍼에 대한 전구체 유체의 이동에 의해, 변환된 비뉴턴 유체가 반도체 웨이퍼로부터 물질을 제거한다.
전구체 유체, 비뉴턴 유체, 반도체 웨이퍼, 포토레지스트

Description

반도체 웨이퍼로부터의 물질 제거 방법 및 이를 수행하기 위한 장치 {METHOD FOR REMOVING MATERIAL FROM SEMICONDUCTOR WAFER AND APPARATUS FOR PERFORMING THE SAME}
반도체의 제조 동안, 집적 회로는 실리콘 등의 물질로 정의되는 반도체 웨이퍼 ("웨이퍼") 상에 형성한다. 집적 회로를 웨이퍼 상에 형성하기 위해서는, 각종 타입의 트랜지스터, 레지스터, 다이오드 및 커패시터 등의 다수의 (예컨대, 수백만) 전자 디바이스를 제조하는 것이 필요하다. 전자 디바이스의 제조는 웨이퍼 상의 정확한 지점에 물질을 증착, 제거, 및 주입하는 것을 수반한다. 포토리소그래피로 불리는 공정은 웨이퍼 상의 정확한 지점에 물질을 증착, 제거, 및 주입하기 위해서 통상적으로 이용된다.
포토리소그래피 공정에서는, 웨이퍼 상에 포토레지스트 물질을 먼저 증착한다. 다음 포토레지스트 물질을 레티클에 의해 필터링된 광으로 노광한다. 레티클은 일반적으로, 광이 레티클을 통과하는 것을 블로킹하는 예시적인 기하학적 피쳐 (feature) 로 패터닝된 유리판이다. 레티클을 통과한 이후, 광은 포토레지스트 물질의 표면에 접촉한다. 광은 노광된 포토레지스트 물질의 화학적 구성을 변화시킨다. 포지티브 포토레지스트 물질인 경우, 노광은 노광된 포토레지스트 물질이 현상액에 용해되지 않게 한다. 반대로, 네거티브 포토레지스트 물질인 경우, 노광은 노광된 포토레지스트 물질이 현상액에 용해되게 한다. 노광 이후, 포토레지스트 물질의 용해성 부분을 제거하고, 패터닝된 포토레지스트 층을 남겨둔다.
다음, 패터닝된 포토레지스트 층으로 커버되지 않은 웨이퍼 영역에 물질을 제거, 증착, 또는 주입하기 위해서 웨이퍼를 프로세싱한다. 상기 웨이퍼 프로세싱은 포토레지스트의 제거를 보다 어렵게 하기 위한 방식으로 포토레지스트 층을 개질하는 경우가 있다. 예를 들어, 플라즈마 식각 공정의 경우, 포토레지스트의 외부층을 하부 포토레지스트보다 상당히 덜 반응적인 하드 크러스트 (crust) 로 변환시킨다. 웨이퍼 프로세싱 이후, 소위 포토레지스트 스트립 공정에서, 플라즈마 식각 이후 남겨진 다른 종류의 폴리머 잔유물은 물론, 패터닝된 포토레지스트 층의 잔유물을 웨이퍼로부터 제거할 필요가 있다. 포토레지스트 스트립 공정에서 포토레지스트 및 폴리머 물질을 완전히 제거하는 것이 중요한데, 이는 웨이퍼 표면 상에 잔류하는 상기 물질이 집적 회로의 결함을 일으킬 수 있기 때문이다. 또한, 포토레지스트 스트립 공정은 웨이퍼 상에 존재하는 하부 물질의 화학적 개질 또는 물리적 손상을 피하기 위해서 조심스럽게 수행해야 한다. 하부 웨이퍼 물질에 대한 화학적 개질 및/또는 손상을 덜 가하면서 포토레지스트 및 폴리머 물질의 보다 완전한 제거를 이룰 수 있도록 포토레지스트 스트립 공정에서의 개선이 요구된다.
일 실시형태에서, 반도체 웨이퍼로부터 물질을 제거하기 위한 방법을 개시한다. 상기 방법은 비뉴턴 유체에 대한 전구체 유체 (precursor fluid) 의 액체 상태를 유지하기에 충분하도록, 반도체 웨이퍼가 재치되는 체적 내 압력을 유지하는 공정을 포함한다. 또한, 상기 방법은 전구체 유체를 액체 상태로 유지하면서 상기 반도체 웨이퍼 상에 전구체 유체를 공급하는 공정을 포함한다. 보다 구체적으로, 반도체 웨이퍼로부터 제거되어야 하는 물질에 근접하도록 전구체 유체를 공급한다. 상기 방법은 반도체 웨이퍼가 재치되는 체적 내 압력을 감소하는 공정을 더 포함한다. 압력 감소에 의해 전구체 유체가 비뉴턴 유체로 변환한다. 비뉴턴 유체로 변환하는 동안, 전구체 유체의 팽창에 의해, 변환된 비뉴턴 유체가 반도체 웨이퍼로부터 물질을 제거한다.
또 다른 실시형태에서, 반도체 웨이퍼로부터 포토레지스트 및 폴리머 물질을 제거하는 방법을 개시한다. 상기 방법은 반도체 웨이퍼 상에 용액을 공급하여 벌크 포토레지스트 물질을 제거하는 공정을 포함한다. 용액은 포토레지스트 물질을 통해 침투하여 포토레지스트 크러스트를 남기면서 벌크 포토레지스트 물질을 제거한다. 벌크 포토레지스트 물질을 제거한 이후, 비뉴턴 유체에 대한 전구체 유체가 액체 상태로 유지되면서 반도체 웨이퍼 상에 공급된다. 또한, 전구체 유체는 공급되어 포토레지스트 크러스트를 통해 상기 포토레지스트 크러스트 하부에 위치하는 빈 영역으로 침투한다. 상기 방법은 전구체 유체를 비뉴턴 유체로 변환시키기 위해 반도체 웨이퍼의 주위 압력을 감소시키는 공정을 더 포함한다. 비뉴턴 유체로의 변환 동안 전구체 유체의 팽창에 의해, 변환된 비뉴턴 유체가 포토레지스트 크러스트 및 폴리머 물질을 제거한다.
또 다른 실시형태에서, 반도체 웨이퍼로부터 물질을 제거하기 위한 장치를 개시한다. 상기 장치는 유체 인풋이 연결된 챔버를 포함한다. 유체 인풋은 챔버 내에서 지지되는 반도체 웨이퍼 상에 비뉴턴 유체에 대한 전구체 유체를 공급하도록 구성된다. 또한, 상기 장치는 챔버 내의 압력을 조절하도록 구성된 가압 디바이스를 포함한다. 가압 디바이스는 전구체 유체를 반도체 웨이퍼 상에 공급할 때, 전구체 유체를 액체 상태로 유지하기 위해서 챔버 내의 압력을 조절할 수 있다. 상기 장치는 챔버 내의 압력을 저압 환경으로 배출하도록 구성된 압력 배출 디바이스를 더 포함한다. 챔버 내의 압력 배출은 전구체 유체를 액체 상태에서 비뉴턴 유체로 변환시키기에 충분하다. 비뉴턴 유체로의 변환 동안 전구체 유체의 팽창은, 변환된 비뉴턴 유체가 반도체 웨이퍼로부터 물질을 제거하도록 하는데 충분하다.
본 발명의 다른 측면과 이점은, 본 발명의 실시예를 통해 설명되는, 첨부된 도면과 함께, 하기 상세한 설명으로부터 보다 분명해질 것이다.
도 1a는 패터닝된 포토레지스트 층이 상부에 정의된 반도체 웨이퍼를 나타낸 것이다;
도 1b는 플라즈마 식각 공정을 상부에서 수행한 후의 도 1a의 패터닝된 포토레지스트 층 및 반도체 웨이퍼를 나타낸 것이다;
도 1c는 종래의 습식 스트립 화학물질을 사용하여 벌크 포토레지스트 부분을 제거한 이후의 도 1b의 반도체 웨이퍼, 포토레지스트 크러스트, 및 폴리머 물질을 나타낸 것이다;
도 2는 본 발명의 일 실시형태에 따라서, 반도체 웨이퍼로부터 물질을 제거하기 위한 방법의 플로우 차트를 나타낸 것이다;
도 3a는 본 발명의 일 실시형태에 따라서, 도 2 방법의 공정 (201 및 203) 수행 이후의 도 1c의 구성을 나타낸 것이다;
도 3b는 본 발명의 일 실시형태에 따라서, 도 2 방법의 공정 (205) 이후의 도 3a의 구성을 나타낸 것이다;
도 3c는 본 발명의 일 실시형태에 따라서, 제거된 포토레지스트 크러스트, 제거된 폴리머 물질, 및 비뉴턴 유체를 반도체 웨이퍼로부터 세정해내는 린스 및 건조 공정 이후의 반도체 웨이퍼를 나타낸 것이다;
도 4는 본 발명의 일 실시형태에 따라서, 반도체 웨이퍼로부터 포토레지스트 및 폴리머 물질을 제거하기 위한 방법의 플로우 차트를 나타낸 것이다;
도 5는 본 발명의 일 실시형태에 따라서, 반도체 웨이퍼로부터 물질을 제거하는 방법을 수행할 수 있는 공정 챔버를 나타낸 것이다.
다음 설명에서, 본 발명의 철저한 이해를 제공하기 위해 많은 구체적인 내용들을 서술한다. 하지만, 이들 구체적인 내용의 일부 또는 전체 없이도 본 발명을 수행할 수 있음이 당업자들에게는 당연할 것이다. 다른 예에서는, 본 발명을 불필요하게 불명료화 하지 않기 위해서 주지된 프로세스 공정을 상세히 기재하지 않았다.
도 1a는 패터닝된 포토레지스트 층 (103) 이 상부에 정의된 반도체 웨이퍼 (101) 를 나타낸 것이다. 반도체 웨이퍼 (101) 는, 지금까지 있었던 반도체 제조의 정도에 따라, 각종 기하학적 배열의 많은 상이한 물질의 빌드업을 포함할 수 있다. 패터닝된 포토레지스트 층 (103) 은 통상의 포토리소그래피 공정을 적용하여 반도체 웨이퍼 (101) 상에 정의될 수 있다. 본 의제에서, 패터닝된 포토레지스트 층 (103) 은 플라즈마 식각 공정에서 사용되는 플라즈마로부터 반도체 웨이퍼 (101) 의 커버된 부분을 보호하기 위한 마스크로서 작용한다. 이로써, 패터닝된 포토레지스트 층 (103) 에 의해 반도체 웨이퍼 (101) 에 식각될 수 있는 패턴이 또한 정의된다.
본 의제의 플라즈마 식각 공정과 같은 몇 가지 웨이퍼 프로세싱 공정은, 플라즈마에 노출되는 패터닝된 포토레지스트 층의 일정 두께를 포토레지스트 크러스트로 변환시킬 수 있다. 도 1b는 플라즈마 식각 공정을 상부에서 수행한 후의 도 1a의 패터닝된 포토레지스트 층 (103) 및 반도체 웨이퍼 (101) 를 나타낸 것이다. 도 1b에 도시된 바와 같이, 플라즈마 식각 공정 이후, 패터닝된 포토레지스트 층 (103) 은 벌크 포토레지스트 부분 (103a) 및 포토레지스트 크러스트 (103b) 로 정의되며, 여기서 벌크 포토레지스트 부분 (103a) 은 포토레지스트 크러스트 (103b) 아래에 위치한다.
플라즈마 식각 공정을 수행하기 이전에는, 벌크 포토레지스트 부분 (103a) 을 정의하는 포토레지스트 물질이 패터닝된 포토레지스트 층 (103) 을 정의하는 포토레지스트 물질과 본질적으로 동일하다. 하지만, 포토레지스트 크러스트 (103b) 는 벌크 포토레지스트 부분 (103a) 과 상당히 상이하다. 예를 들어, 벌크 포토레지스트 부분 (103a) 과 달리, 포토레지스트 크러스트 (103b) 는 반도체 웨이퍼 (101) 표면에 강하게 부착하는 보다 단단한 다공성 물질이다.
또한, 플라즈마 식각 공정은 반도체 웨이퍼 (101) 표면 상에 폴리머 물질 (104) 을 남길 수 있다. 식각 공정 동안, 식각 공정의 부산물과 플라즈마 내의 종들의 반응에 의해 폴리머 물질 (104) 이 생성될 수 있다. 예를 들어, 상기 폴리머 물질 (104) 은, 기판으로부터의 종들을 포함하는 불화탄소계 물질일 수 있다.
플라즈마 식각 공정 이후, 벌크 포토레지스트 부분 (103a), 포토레지스트 크러스트 (103b), 및 폴리머 물질 (104) 을 완전히 제거하는 것이 필요하다. 또한, 포토레지스트 및 폴리머 물질은 반도체 웨이퍼 (101) 의 하부 피쳐들에 대해 화학적 또는 물리적 손상을 가하지 않고 제거되어야 한다. 벌크 포토레지스트 부분 (103a) 을 제거하기 위한 하나의 방법은 습식 스트립 공정의 수행을 포함한다. 습식 스트립 공정에서, 반도체 웨이퍼 (101) 및 포토레지스트 물질 상부에 습식 스트립 화학물질을 공급한다. 습식 스트립 화학물질은 다공성 포토레지스트 크러스트 (103b) 를 침투하여, 용해 공정을 통해서 벌크 포토레지스트 부분 (103a) 을 제거하도록 한다. 습식 스트립 화학물질의 몇 가지 예는 그들 중에서, ATMI, Inc.에서 제조된 AP902 및 Air Products and Chemicals, Inc.에서 제조된 EZStrip 523을 포함한다. 종래의 많은 습식 스트립 화학물질은, 반도체 웨이퍼 (101) 의 하부 피쳐들을 양호하게 유지하면서 벌크 포토레지스트 부분 (103a) 을 신속히 제거하도록 하는 테트라메틸암모늄 히드록사이드 (TMAH) 계 용액이다.
하지만, 종래의 습식 스트립 화학물질이 벌크 포토레지스트 부분 (103a) 을 제거하는데 효과적이지만, 반도체 웨이퍼 (101) 의 하부 피쳐들을 손상시키지 않으면서 포토레지스트 크러스트 (103b) 를 효과적으로 제거할 수는 없다는 것이 당업자들에게 명백할 것이다. 즉, 포토레지스트 크러스트 (103b) 를 제거할 수 있는 것으로 추천되었던 종래의 습식 스트립 화학물질이, 반도체 웨이퍼 (101) 의 하부 피쳐들에 손상을 가한다는 것이 매우 우세하다.
도 1c는 종래의 습식 스트립 화학물질을 사용하여 벌크 포토레지스트 부분 (103a) 을 제거한 이후의, 도 1b의 반도체 웨이퍼 (101), 포토레지스트 크러스트 (103b), 및 폴리머 물질 (104) 을 나타낸 것이다. 종래의 습식 스트립 화학물질은 벌크 포토레지스트 부분 (103a) 을 제거할 수 있지만 포토레지스트 크러스트 (103b) 를 제거할 수 없기 때문에, 종래의 습식 스트립 공정 이후에는 포토레지스트 크러스트 (103b) 가 반도체 웨이퍼 (101) 에 부착되어 있다. 포토레지스트 크러스트 (103b) 의 다공성 성질 때문에, 종래의 습식 화학 공정이 포토레지스트 크러스트 (103b) 를 침투하여 상기 포토레지스트 크러스트 (103b) 하부에 위치하는 벌크 포토레지스트 부분 (103a) 을 제거할 수 있는 것이다. 결과적으로, 종래의 습식 스트립 공정 이후, 포토레지스트 크러스트 (103b) 의 쉘 (shell) 이 반도체 웨이퍼 (101) 의 각 피쳐에 부착되어 있다. 또한, 포토레지스트 크러스트 (103b) 의 화학적 성질로 인하여, 포토레지스트 크러스트 (103b) 와 반도체 웨이퍼 (101) 사이의 그 계면 (105) 에 강한 본딩이 존재한다. 따라서, 하부에 위치하 는 반도체 웨이퍼 (101) 를 손상시키지 않으면서 포토레지스트 크러스트 (103b) 및 폴리머 물질 (104) 을 제거하는 방법이 요구된다.
도 2는 본 발명의 일 실시형태에 따라서, 반도체 웨이퍼로부터 물질을 제거하기 위한 방법의 플로우 차트를 나타낸 것이다. 이 방법은 비뉴턴 유체에 대한 전구체 유체를 액체 상태로 유지하기에 충분하도록 반도체 웨이퍼가 재치되는 체적 내의 압력을 유지하기 위한 공정 (201) 을 포함한다. 일 실시형태에서, 전구체 유체를 액체 상태로 유지하기 위해서 체적을 1 대기압 (1 atm) 보다 크게 가압한다. 또 다른 실시형태에서, 체적 내의 1 대기압 (1 atm) 에서 액체 상태로 유지하기 위해서 전구체 유체를 포뮬레이팅한다. 이외의 또 다른 실시형태에서, 1 대기압 (1 atm) 미만의 체적 내압에서 액체 상태로 유지하기 위해서 전구체 유체를 포뮬레이팅한다. 이하에서, 전구체 유체에 대해 보다 상세히 기재한다. 다음, 상기 방법은 전구체 유체를 액체 상태로 유지하면서 반도체 웨이퍼 상에 전구체 유체를 공급하기 위한 공정 (203) 으로 진행한다. 액체 상태의 전구체 유체는 반도체 웨이퍼 상에 정의된 서로 인접하는 높은 에스펙트 비의 피쳐들 사이 및 비아들 내부에 공급될 수 있음이 명백하다. 또한, 액체 상태의 전구체 유체는 다공성 포토레지스트 크러스트를 통해 침투하여 포토레지스트 크러스트 하부에 위치할 수 있는 빈 영역에 이를 수 있다. 따라서, 공정 (203) 에서 전구체 유체를 반도체 웨이퍼 상에 공급하는 경우, 반도체 웨이퍼로부터 제거되어야 하는 물질에 근접하도록 전구체 유체를 공급한다. 반도체 웨이퍼로부터 제거되어야 하는 상기 물질의 예는, 포토레지스트, 포토레지스트 크러스트, 폴리머 물질, 및 본질적으로 원하지 않는 임의의 다른 잔류 물질을 포함할 수 있다.
공정 (203) 이후, 상기 방법은 반도체 웨이퍼가 재치되는 체적 내의 압력을 감소시켜 전구체 유체를 비뉴턴 유체로 변환시키는 공정 (205) 으로 진행한다. 비뉴턴 유체는 적용되는 전단력에 따라 점도가 변하는 유체이다. 비뉴턴 유체의 예는, 고체의 극단과 액체의 극단 사이의 중간 부분에 위치하는 연성의 응축성 물질로서, 연성의 응축성 물질은 외부 응력에 의해 쉽게 변형된다. 거품은 비뉴턴 유체의 일예이며, 참고로, 가스 버블은 액체 매트릭스 내로 제한된다. 하지만, 본 발명과 관련된 비뉴턴 유체는 특정 종류의 거품에 제한되지 않는다.
전구체 유체의 비뉴턴 유체로의 변환 동안, 그 체적 팽창은 변환된 비뉴턴 유체가 원하지 않는 물질, 예를 들어, 포토레지스트 크러스트, 폴리머 물질 등을 반도체 웨이퍼로부터 제거하게 한다. 전구체 유체가 비뉴턴 유체로 변환할 때, 비뉴턴 유체에 대한 전구체 유체의 팽창 및 기판, 즉, 반도체 웨이퍼에 대한 비뉴턴 유체의 상대 이동은, 포토레지스트 크러스트 및 폴리머 물질이 반도체 웨이퍼로부터 제거되도록, 비뉴턴 유체가 포토레지스트 크러스트 및 폴리머 물질에 대해 기계적 힘을 가하게 한다. 즉, 원하지 않는 물질과 인접하고 그 아래에 존재하는 전구체 유체의, 액체에서 비뉴턴 유체로의 변환에 의해, 원하지 않는 물질이 반도체 웨이퍼로부터 기계적으로 제거된다.
전구체 유체는 반도체 웨이퍼 상에 존재하는 피쳐들 사이의 공간으로 균일하게 작용하기 때문에, 팽창을 수반하는 전구체 유체의 비뉴턴 유체로의 변환은 실질적으로 반도체 웨이퍼 상에 존재하는 피쳐들의 각 측면에 균일한 정수압 (hydrostatic pressure) 을 가할 것이다. 따라서, 비뉴턴 유체는 반도체 웨이퍼 피쳐들에 대해 차등력 (differential force) 을 나타내지 않으므로, 피쳐들에 대한 손상을 피할 것이다. 또한, 비뉴턴 유체는 반도체 웨이퍼로부터 제거되는 물질을 비말 동반하는 역할을 한다. 따라서, 포토레지스트 크러스트 및 폴리머 물질과 같이 제거된 물질은 반도체 웨이퍼 상에 재정착하지 않으며 재부착되지 않을 것이다.
상기에서 기재된 바와 같이, 특정 압력을 넘어서 유지되는 경우, 전구체 유체는 액체 상태가 된다. 충분히 낮은 압력에 노출되는 경우, 전구체 유체는 비뉴턴 유체로 변환한다. 설명을 위해서, 전구체 유체가 비뉴턴 유체로 변환하는 특정 압력 아래를 전구체 유체의 변환 압력이라 칭한다. 일 실시형태에서 전구체 유체는 용해, 혼합, 유화 등의 많은 방법들 중 하나에 의해 추진체 (propellant) 를 내부에 포함하는 액체로서 정의된다. 압력이 변환 압력 아래로 떨어지는 경우, 전구체 유체 내의 추진체가 팽창하여 전구체 유체를 비뉴턴 유체로 변환시킬 것이다.
전구체 유체 내의 추진체는, 변환 압력을 넘어서는 액체 상태를 유지하고 변환 압력 아래에서는 기체 상태를 유지하는 것으로 정의된다. 예를 들어, 일 실시형태에서, 프로판 (C3H8) 을 추진체로서 사용할 수 있다. 하지만, 다른 실시형태에서 추진체 물질은 본질적으로 변환 압력에 대한 물리적 상태 조건을 만족하고, 전구체 유체, 반도체 웨이퍼, 및 프로세싱 환경/구조와의 화학적 융화가 가능 한 임의의 물질일 수 있다. 변환 압력을 넘는 압력에서 액체 상태의 추진체를 전구체 유체에 첨가한다. 일 실시형태에서, 전구체 유체에 첨가된 추진체의 양은, 추진체를 첨가한 후의 전구체 유체의 약 5중량% 내지 약 20중량% 의 범위 이내이다. 전구체 유체에 용해될 수 있는 추진체의 최대량은 전구체 유체 내의 (액체 상태인) 추진체의 용해성에 의해 일반적으로 제한된다.
본 발명의 일 실시형태에서, 전구체 유체의 비뉴턴으로의 변환은, 변환 압력보다 높은 압력에서 변환 압력보다 낮은 압력으로의 빠른 감압을 통해 이루어진다. 일 실시형태에서, 전구체 유체의 주위 압력은 약 0.01초 ~ 약 2초의 기간 내에서 액체 상태의 전구체 유체가 비뉴턴 유체로 변환되게 하는 비율로 감소된다. 여기서 사용되는 바와 같이, "약"은 주어진 수치의 ±20% 이내인 것을 말한다. 다른 실시형태에서, 전구체 유체의 주위 압력은 약 0.05초 ~ 약 0.2초의 기간 이내에서 액체 상태의 전구체 유체가 비뉴턴 유체로 변환되게 하는 비율로 감소된다. 또 다른 실시형태에서, 전구체 유체의 주위 압력은 약 0.01초의 기간 이내에서 액체 상태의 전구체 유체가 비뉴턴 유체로 변환되게 하는 비율로 감소된다.
비뉴턴 유체가 포토레지스트 크러스트 및 폴리머 물질에 대해 충분한 양의 힘을 발휘하는 것에 의해, 반도체 웨이퍼로부터 이들이 제거되기 때문에, 전구체 유체에 대한 비뉴턴 유체의 체적비가 충분히 커야 한다. 일 실시형태에서, 전구체 유체에서 추진체가 팽창한 이후의 비뉴턴 유체의 체적은 액체 상태인 전구체 유체 체적의 약 2배 ~ 약 100배의 범위 이내이다. 또 다른 실시 형태에서, 전구체 유체 내의 추진체 팽창 이후의 비뉴턴 유체의 체적은 액체 상태에서의 전구체 유체의 체적의 약 5배 ~ 약 20배의 범위 이내이다.
일 실시형태에서, 베이스 전구체 유체, 즉, 전구체 유체의 비-추진체 부분은 탈이온수의 양에 각종 성분을 첨가함으로써 정의된다. 예를 들어, 전구체 유체의 비뉴턴 유체로의 변환 동안에 형성하는 버블을 안정화시킬 수 있는 다른 첨가제 및 표면 장력을 감소시키기 위한 계면 활성제를 포함하도록 베이스 전구체 유체를 포뮬레이팅할 수 있다. 상기 첨가제의 예는 그 중에서도 지방산, 셀룰로오스, 오일, 및 프로테인을 포함할 수 있다. 베이스 전구체 유체는 세제 및/또는 비누도 포함할 수 있다. 또한, 미셀 표면에 강하게 결합하기 위해서 베이스 전구체 유체에 히드로트로프 (hydrotrope) 를 포함할 수 있고, 이로써 미셀의 크기를 조절할 수 있다. 포토레지스트 크러스트와 반도체 웨이퍼 사이의 계면 접착력을 줄일 수 있는 첨가제를 또한 베이스 전구체 유체에 포함할 수 있다. 일 실시형태에서, 벌크 포토레지스트를 제거하기 위해 사용되는 습식 스트립 화학물질의 일정량을 전구체 유체에 첨가하여, 포토레지스트 크러스트를 제거하는 동안 잔류하는 벌크 포토레지스트를 계속해서 제거할 수 있다.
도 2의 방법을 참고로 하여, 공정 (201 및 203) 동안의 반도체 웨이퍼에 대한 주위 압력을 변환 압력 바로 위까지 유지할 수 있다. 하지만, 공정 (201 및 203) 동안 전구체 유체 관점에서 주위 압력에 대한 구체적인 제한은 없다. 또한, 몇 가지 실시형태에서, 전구체 유체에 사용되는 추진체는 상기 추진체의 완전 액화 압력에 근접하는 압력에서 부분 액화할 수 있다. 이들 실시형태에서는, 완전 액화 압력에서 예상되는 추진체 양보다 작은 추진체의 양을 포함하도록 전구 체 유체를 제한할 수 있다. 즉, 이들 실시형태에서, 공정 (201 및 203) 동안의 반도체 웨이퍼에 대한 주위 압력을 추진체의 완전 액화 압력보다 낮지만 이에 근접하는 압력으로 유지할 수 있다.
압력이 변환 압력 아래로 감소하고 전구체 유체의 추진체가 액체 상태에서 기체 상태로 변하므로, 기체 상태인 추진체는 이상 기체와 같이 움직일 수 있다. 즉, 이상 기체 법칙 (PV=nRT) 에 따라서, 기체 상태인 추진체의 체적은 기체 상태인 추진체의 온도에 의해 영향받을 수 있다. 주어진 압력에서, 높은 기체 온도는 상응하게 높은 기체 체적을 반영하며, 그 반대도 마찬가지다. 또한, 버블의 내부 압력은 버블 크기 및 버블 사이의 액체 표면 장력에 의해 영향받을 것이다. 고정된 주위 압력에서, 작은 크기의 버블은 큰 크기의 버블에 비해서 내부 압력이 높을 것이다. 추진체의 액체 상태에서 기체 상태로의 전환시 기체 체적이 커짐에 따라, 변환된 비뉴턴 유체는 큰 체적을 점유할 것이다. 즉, 도 2의 방법은 액체 상태에서 비뉴턴 유체로 변환하는 동안 전구체 유체의 체적 팽창을 제어하기 위해서 온도 제어를 위한 공정도 포함할 수 있다. 온도는 전구체 유체라는 화학물질의 보존을 고려하면서 제어되어야 한다.
도 3a는 본 발명의 일 실시형태에 따라서, 도 2 방법의 공정 (201 및 203) 수행 이후의 도 1c의 구성을 나타낸 것이다. 전술한 바와 같이, 액체 상태인 전구체 유체 (301) 를 반도체 웨이퍼 (101) 상에 공급한다. 전구체 유체 (301) 를 반도체 웨이퍼 (101) 상에 존재하는 피쳐들 사이에 공급한다. 또한, 벌크 포토레지스트 부분 (103a) 에 의해 이전에 점유되었던 포토레지스트 크러스트 (103b) 아래에 위치한 영역으로, 다공성 포토레지스트 크러스트 (103b) 를 통해서 전구체 유체 (301) 를 침투시킨다. 일 실시형태에서, 도 2의 방법을 수행하기 이전에 반도체 웨이퍼 (101) 를 린스 및 건조 처리할 수 있다.
도 3b는 본 발명의 일 실시형태에 따라서, 도 2 방법의 공정 (205) 이후의 도 3a의 구성을 나타낸 것이다. 앞서 기재된 바와 같이, 공정 (205) 에서, 압력을 변환 압력 아래로 감소시켜, 전구체 유체 (301) 를 비뉴턴 유체 (303) 로 변환시킨다. 전구체 유체 (301) 의 비뉴턴 유체 (303) 로의 변환과 관련된 유체 팽창 및 유체 이동은, 비뉴턴 유체가 포토레지스트 크러스트 (103b) 및 폴리머 물질 (104) 에 대해서 기계적 힘을 발휘하게 하여, 포토레지스트 크러스트 (103b) 및 폴리머 물질 (104) 을 반도체 웨이퍼 (101) 로부터 제거한다. 제거된 포토레지스트 크러스트 (103b) 및 폴리머 물질은 비뉴턴 유체 (303) 에 비말 동반되므로, 제거된 포토레지스트 크러스트 (103b) 및 폴리머 물질이 반도체 웨이퍼 (101) 상에 재정착할 수 없고 재부착될 수 없다. 도 3c는 본 발명의 일 실시형태에 따라서, 제거된 포토레지스트 크러스트 (103b), 제거된 폴리머 물질 (104), 및 비뉴턴 유체 (303) 를 반도체 웨이퍼 (101) 로부터 세정해내기 위한 린스 및 건조 공정 이후의 반도체 웨이퍼 (101) 를 나타낸 것이다.
포토레지스트 크러스트를 반도체 웨이퍼로부터 제거하는 방법은, 도 2와 관련하여 전술한 바와 같이, 반도체 웨이퍼로부터 포토레지스트 물질을 일반적으로 제거하는 방법의 부분으로서 통합될 수 있다. 도 4는 본 발명의 일 실시형태에 따라서, 반도체 웨이퍼로부터 포토레지스트 및 폴리머 물질을 제거하기 위한 방법 의 플로우 차트를 나타낸 것이다. 상기 방법은 벌크 포토레지스트 물질을 제거하기 위해서 반도체 웨이퍼 상에 용액을 공급하는 공정 (401) 을 포함한다. 공급된 용액은 포토레지스트 물질을 통해서 침투하여, 포토레지스트 크러스트를 남기면서 벌크 포토레지스트 물질을 제거할 수 있다.
벌크 포토레지스트 물질의 제거 이후, 상기 방법은 반도체 웨이퍼 상에 비뉴턴 유체에 대한 전구체 유체를 공급하기 위한 공정 (403) 으로 계속된다. 본 방법의 전구체 유체는 앞서 기재된 전구체 유체에 상당한다. 즉, 전구체 유체를 반도체 웨이퍼 상에 공급할 때 액체 상태로 유지한다. 전구체 유체를 공급하여 포토레지스트 크러스트를 통하여 포토레지스트 크러스트 아래에 위치하는 빈 영역에 침투시킨다. 다음, 공정 (405) 에서, 반도체 웨이퍼의 주위 압력을 감소시켜 전구체 유체를 비뉴턴 유체로 변환시킨다. 비뉴턴 유체로의 변환 동안 전구체 유체의 체적 팽창은, 비뉴턴 유체가 포토레지스트 크러스트 및 폴리머 물질에 기계적 힘을 발휘하여 이를 제거시킨다.
도 5는 본 발명의 일 실시형태에 따라서, 전술한 바와 같이, 반도체 웨이퍼로부터 물질을 제거하기 위한 방법을 수행할 수 있는 공정 챔버 (501) 를 나타낸 것이다. 챔버 (501) 는 전구체 유체를 액체 상태로 유지하는 공정 압력보다 높게 상기 챔버의 내압을 유지할 수 있다. 웨이퍼 지지체 (503) 가 챔버 (501) 내에 배치된다. 웨이퍼 지지체 (503) 는 물질의 제거 공정 동안 반도체 웨이퍼 (505) 를 홀딩하는 것으로 정의된다.
챔버 (501) 는 전구체 유체원 (precursor fluid source, 509) 에 연결된 인 풋 (507) 을 포함한다. 공정 동안, 인풋 (507) 을 통해 전구체 유체원 (509) 으로부터 전구체 유체를 공급하여, 화살표 (511) 로 나타낸 바와 같이, 반도체 웨이퍼 (505) 상에 공급한다. 챔버 (501) 는 또한 가압 디바이스 (515) 에 연결된 인풋 (513) 을 포함한다. 공정 동안, 가압 디바이스 (515) 를 사용하여 화살표 (517) 로 나타낸 바와 같이, 공정 분위기 가스의 추가 또는 제거를 통해 챔버 (501) 내의 압력을 조절한다. 챔버 (501) 는 온도 조절부 (533) 에 연결된 인풋 (531) 을 더 포함한다. 공정 동안, 온도 조절부 (533) 는 인풋 (531) 을 통해 공정 분위기 가스를 조절하여 챔버 (501) 내에 원하는 온도를 유지할 수 있다. 또한, 일 실시형태에서는, 온도 조절부 (533) 를 사용해 웨이퍼 지지체 (503) 의 온도를 조절하여, 반도체 웨이퍼 (505) 의 온도를 번갈아 조절할 수 있다.
압력 배출 디바이스 (521) 는 커넥션 (519) 을 통해 챔버 (501) 에 연결된다. 공정 동안, 압력 배출 디바이스 (521) 는 챔버 (501) 내의 압력을 빠르게 배출하여, 화살표 (523) 로 나타낸 바와 같이, 반도체 웨이퍼 (505) 표면 상에서 전구체 유체를 비뉴턴 유체로 변환시킬 수 있다. 전구체 유체의 비뉴턴 유체로의 변환 이후, 변환된 비뉴턴 유체 및 제거된 물질, 예컨대, 포토레지스트 및 폴리머 물질을 드레인 시스템 (527) 에 의해 커넥션 (525) 을 통해 제거할 수 있다. 본 발명을 불명료화 하지 않도록 하기 위해서 챔버 (501) 의 많은 추가 사항들을 여기에 기재하지 않았다. 하지만, 당업자들은 상기 챔버 (501) 가 반도체 웨이퍼 프로세싱에 사용되는 압력 챔버와 통상 관련된 많은 피쳐들을 포함할 것이라는 것을 알 것이다.
본 발명을 수개의 실시형태를 통해 설명하였으나, 앞선 상세한 설명을 읽고 도면을 연구하는 당업자들은 각종 변경, 추가, 치환 및 그 등가물을 알 수 있을 것이다. 따라서, 본 발명은 발명의 사상 및 범위 이내에 있는 한, 상기와 같은 변경, 추가, 치환, 및 등가물 모두를 포함하는 것을 목적으로 한다.

Claims (24)

  1. 비뉴턴 유체에 대한 전구체 유체를 액체 상태로 유지하기에 충분하도록 반도체 웨이퍼가 재치되는 체적 내 압력을 유지하는 단계;
    상기 전구체 유체를 상기 액체 상태로 유지하면서 상기 반도체 웨이퍼 상에 상기 전구체 유체를 공급하는 단계로서, 상기 전구체 유체가 상기 반도체 웨이퍼로부터 제거되어야 할 물질에 근접하도록 공급하는, 상기 전구체 유체를 공급하는 단계 ; 및
    상기 전구체 유체를 상기 비뉴턴 유체로 변환시켜, 상기 변환 동안 상기 전구체 유체의 팽창에 의해 상기 비뉴턴 유체가 상기 반도체 웨이퍼로부터 상기 물질을 제거하도록 하기 위해서 상기 체적 내 압력을 감소시키는 단계를 포함하는, 반도체 웨이퍼로부터의 물질 제거 방법.
  2. 제 1 항에 있어서,
    상기 비뉴턴 유체에 의해 상기 반도체 웨이퍼로부터 제거되는 상기 물질은, 포토레지스트 크러스트, 폴리머 물질, 및 포토레지스트 크러스와 폴리머 물질 모두 중 하나인, 반도체 웨이퍼로부터의 물질 제거 방법.
  3. 제 2 항에 있어서,
    상기 반도체 웨이퍼 상에 상기 전구체 유체를 공급하는 단계 이전에,
    습식 화학물질을 사용하여 벌크 포토레지스트 부분을 제거하는 단계를 더 포함하며,
    상기 제거하는 단계는 식각 공정 이후에 수행하고, 상기 벌크 포토레지스트 부분의 제거는, 상기 포토레지스트 크러스트를 남겨두도록 수행하며, 상기 포토레지스트 크러스트는 상기 식각 공정 동안 형성되는, 반도체 웨이퍼로부터의 물질 제거 방법.
  4. 제 1 항에 있어서,
    상기 전구체 유체는 그 내부에 액체 상태의 추진체를 포함하는 액체로서, 상기 전구체 유체는 상기 반도체 웨이퍼 상의 고 에스펙트 비의 피처들 사이 및 비아들 내부에 공급할 수 있고, 상기 전구체 유체는 포토레지스트 크러스트를 통해서 상기 포토레지스트 크러스트 아래에 위치한 영역에 침투할 수 있는, 반도체 웨이퍼로부터의 물질 제거 방법.
  5. 제 4 항에 있어서,
    상기 전구체 유체에 포함된 추진체의 양은 상기 추진체의 포함 이후 상기 전구체 유체의 약 5중량% ~ 약 20중량% 의 범위인, 반도체 웨이퍼로부터의 물질 제거 방법.
  6. 제 1 항에 있어서,
    상기 전구체 유체는 상기 전구체 유체의 상기 비뉴턴 유체로의 변환 동안 형성하는 버블을 안정화시킬 수 있는 계면 활성제 및 첨가제를 포함하는 것으로 정의되는, 반도체 웨이퍼로부터의 물질 제거 방법.
  7. 제 1 항에 있어서,
    상기 체적 내 압력을 감소시키는 단계에 의해 상기 전구체 유체에 용해된 추진체가 팽창하고, 상기 추진체의 팽창에 의해 상기 전구체 유체가 상기 비뉴턴 유체로 변환하는, 반도체 웨이퍼로부터의 물질 제거 방법.
  8. 제 7 항에 있어서,
    상기 추진체의 팽창 이후 상기 비뉴턴 유체의 체적은, 상기 액체 상태인 상기 전구체 유체의 체적의 약 2배 ~ 약 100배의 범위인, 반도체 웨이퍼로부터의 물질 제거 방법.
  9. 제 1 항에 있어서,
    상기 액체 상태에서 상기 비뉴턴 유체로 변환하는 동안 상기 전구체 유체의 팽창을 조절하기 위해서 온도를 조절하는 단계를 더 포함하는, 반도체 웨이퍼로부터의 물질 제거 방법.
  10. 제 1 항에 있어서,
    상기 비뉴턴 유체에 대한 상기 전구체 유체를 상기 액체 상태로 유지하기에 충분한 압력은 1 대기압 (atm) 보다 높은, 반도체 웨이퍼로부터의 물질 제거 방법.
  11. 제 1 항에 있어서,
    상기 비뉴턴 유체에 대한 상기 전구체 유체를 상기 액체 상태로 유지하기에 충분한 압력은 1 대기압 (atm) 이하인, 반도체 웨이퍼로부터의 물질 제거 방법.
  12. 벌크 포토레지스트 물질을 제거하기 위해서 반도체 웨이퍼 상에 용액을 공급하는 단계로서, 상기 용액은 포토레지스트 물질을 통해 침투하여 포토레지스트 크러스트를 남기면서 상기 벌크 포토레지스트 물질을 제거하는, 상기 용액을 공급하는 단계;
    상기 벌크 포토레지스트 물질을 제거한 이후, 상기 반도체 웨이퍼 상에 비뉴턴 유체에 대한 전구체 유체를 공급하는 단계로서, 상기 전구체 유체를 상기 반도체 웨이퍼 상에 공급할 때 액체 상태로 유지시키고, 상기 전구체 유체를 상기 포토레지스트 크러스트를 통해서 상기 포토레지스트 크러스트 아래에 위치한 빈 영역에 침투시켜 상기 반도체 웨이퍼 상에 존재하는 폴리머 물질에 근접하도록 공급하는, 상기 전구체 유체를 공급하는 단계; 및
    상기 전구체 유체를 상기 비뉴턴 유체로 변환시켜, 상기 변환 동안 상기 전구체 유체의 팽창에 의해 상기 비뉴턴 유체가 상기 포토레지스트 크러스트 및 폴리머 물질을 제거하도록 하기 위해서, 상기 반도체 웨이퍼의 주위 압력을 감소시키는 단계를 포함하는, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  13. 제 12 항에 있어서,
    상기 포토레지스트 크러스트 및 상기 폴리머 물질이 상기 비뉴턴 유체에 의해 제거되는 것은, 상기 포토레지스트 크러스트 및 상기 폴리머 물질 상에서 상기 비뉴턴 유체에 의해 발휘되는 기계적 힘의 결과인, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  14. 제 12 항에 있어서,
    상기 비뉴턴 유체에 의해 제거되는 상기 포토레지스트 크러스트 및 상기 폴리머 물질은, 상기 제거된 포토레지스트 및 폴리머 물질이 상기 반도체 웨이퍼 상에 재정착하지 않도록 상기 비뉴턴 유체에 비말 동반되는, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  15. 제 12 항에 있어서,
    상기 반도체 웨이퍼의 주위 압력을 감소시키는 단계는,
    약 0.01초 ~ 약 2초의 기간 내에 상기 액체 상태인 상기 전구체 유체가 상기 비뉴턴 유체로 변환되도록 수행되는, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  16. 제 12 항에 있어서,
    상기 전구체 유체는 상기 벌크 포토레지스트 물질을 제거하기 위해서 사용되는 상당한 양의 상기 용액을 포함하는, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  17. 제 12 항에 있어서,
    상기 반도체 웨이퍼의 주위 압력을 감소시키는 단계에 의해 상기 전구체 유체에 포함된 추진체가 팽창하고, 상기 추진체의 팽창에 의해 상기 액체 상태인 상기 전구체 유체가 상기 비뉴턴 유체로 변환하는, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  18. 제 17 항에 있어서,
    상기 추진체의 팽창 이후 상기 비뉴턴 유체의 체적은, 상기 액체 상태인 상기 전구체 유체의 체적의 약 2배 ~ 약 100배의 범위인, 반도체 웨이퍼로부터의 포토레지스트 및 폴리머 물질 제거 방법.
  19. 챔버;
    상기 챔버에 연결되고, 상기 챔버 내에서 지지되는 반도체 웨이퍼 상에 비뉴턴 유체에 대한 전구체 유체를 공급하도록 구성된 유체 인풋;
    상기 반도체 웨이퍼 상에 공급할 때 상기 전구체 유체를 액체 상태로 유지하 기 위해서 상기 챔버 내의 압력을 조절하도록 구성된 가압 디바이스; 및
    상기 챔버 내의 압력을 저압 환경으로 배출하도록 구성되는 압력 배출 디바이스로서, 상기 챔버 내의 상기 압력 배출은 상기 전구체 유체를 상기 액체 상태에서 상기 비뉴턴 유체로 변환시키기에 충분하여, 상기 변환 동안 상기 전구체 유체의 팽창이 상기 비뉴턴 유체가 상기 반도체 웨이퍼로부터 물질을 제거하도록 하기에 충분한, 상기 압력 배출 디바이스를 포함하는, 반도체 웨이퍼로부터의 물질 제거 장치.
  20. 제 19 항에 있어서,
    상기 챔버 내의 온도를 조절하도록 구성된 온도 조절부를 더 포함하고, 상기 챔버 내의 온도 조절에 의해 상기 액체 상태에서 상기 비뉴턴 유체로의 변환 동안의 상기 전구체 유체의 팽창을 조절할 수 있는, 반도체 웨이퍼로부터의 물질 제거 장치.
  21. 제 19 항에 있어서,
    상기 압력 배출 디바이스는 상기 전구체 유체가 약 0.01초 ~ 약 2초의 기간 내에 상기 액체 상태에서 상기 비뉴턴 유체로 변환되도록 상기 챔버 내의 압력을 상기 저압 환경으로 배출하도록 구성된, 반도체 웨이퍼로부터의 물질 제거 장치.
  22. 제 19 항에 있어서,
    상기 챔버는 상기 반도체 웨이퍼 상에 상기 전구체 유체를 공급하기 이전에, 상기 반도체 웨이퍼에 대해 습식 스트립 공정을 수행하도록 더 정의되고,
    상기 습식 스트립 공정은 상기 반도체 웨이퍼 상에 포토레지스트 크러스트를 남기면서 상기 반도체 웨이퍼로부터 포토레지스트 물질의 벌크 부분을 제거하는 역할을 하는, 반도체 웨이퍼로부터의 물질 제거 장치.
  23. 제 19 항에 있어서,
    상기 전구체 유체는 내부에 추진체를 포함하는 액체인, 반도체 웨이퍼로부터의 물질 제거 장치.
  24. 제 19 항에 있어서,
    상기 반도체 웨이퍼로부터 제거되는 물질은 포토레지스트 크러스트, 폴리머 물질, 및 포토레지스트 크러스트와 폴리머 물질 모두 중 하나인, 반도체 웨이퍼로부터의 물질 제거 장치.
KR1020077030736A 2005-06-30 2006-06-15 반도체 웨이퍼로부터의 물질 제거 방법 및 이를 수행하기위한 장치 KR101269783B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/174,080 US8323420B2 (en) 2005-06-30 2005-06-30 Method for removing material from semiconductor wafer and apparatus for performing the same
US11/174,080 2005-06-30

Publications (2)

Publication Number Publication Date
KR20080026129A true KR20080026129A (ko) 2008-03-24
KR101269783B1 KR101269783B1 (ko) 2013-05-30

Family

ID=37588053

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077030736A KR101269783B1 (ko) 2005-06-30 2006-06-15 반도체 웨이퍼로부터의 물질 제거 방법 및 이를 수행하기위한 장치

Country Status (8)

Country Link
US (2) US8323420B2 (ko)
JP (1) JP4956535B2 (ko)
KR (1) KR101269783B1 (ko)
CN (1) CN100583389C (ko)
MY (1) MY150143A (ko)
SG (1) SG166109A1 (ko)
TW (1) TWI349304B (ko)
WO (1) WO2007005230A2 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913703B1 (en) 2003-06-27 2011-03-29 Lam Research Corporation Method and apparatus for uniformly applying a multi-phase cleaning solution to a substrate
US20040261823A1 (en) * 2003-06-27 2004-12-30 Lam Research Corporation Method and apparatus for removing a target layer from a substrate using reactive gases
US8522801B2 (en) * 2003-06-27 2013-09-03 Lam Research Corporation Method and apparatus for cleaning a semiconductor substrate
US7737097B2 (en) * 2003-06-27 2010-06-15 Lam Research Corporation Method for removing contamination from a substrate and for making a cleaning solution
US7799141B2 (en) * 2003-06-27 2010-09-21 Lam Research Corporation Method and system for using a two-phases substrate cleaning compound
US8316866B2 (en) * 2003-06-27 2012-11-27 Lam Research Corporation Method and apparatus for cleaning a semiconductor substrate
US7648584B2 (en) 2003-06-27 2010-01-19 Lam Research Corporation Method and apparatus for removing contamination from substrate
US7416370B2 (en) * 2005-06-15 2008-08-26 Lam Research Corporation Method and apparatus for transporting a substrate using non-Newtonian fluid
US8043441B2 (en) * 2005-06-15 2011-10-25 Lam Research Corporation Method and apparatus for cleaning a substrate using non-Newtonian fluids
US8522799B2 (en) * 2005-12-30 2013-09-03 Lam Research Corporation Apparatus and system for cleaning a substrate
US7862662B2 (en) * 2005-12-30 2011-01-04 Lam Research Corporation Method and material for cleaning a substrate
US8323420B2 (en) 2005-06-30 2012-12-04 Lam Research Corporation Method for removing material from semiconductor wafer and apparatus for performing the same
US7568490B2 (en) * 2003-12-23 2009-08-04 Lam Research Corporation Method and apparatus for cleaning semiconductor wafers using compressed and/or pressurized foams, bubbles, and/or liquids
SG154438A1 (en) * 2005-12-30 2009-08-28 Lam Res Corp Cleaning compound and method and system for using the cleaning compound
US8480810B2 (en) * 2005-12-30 2013-07-09 Lam Research Corporation Method and apparatus for particle removal
US20080148595A1 (en) * 2006-12-20 2008-06-26 Lam Research Corporation Method and apparatus for drying substrates using a surface tensions reducing gas
US7897213B2 (en) * 2007-02-08 2011-03-01 Lam Research Corporation Methods for contained chemical surface treatment
US8388762B2 (en) * 2007-05-02 2013-03-05 Lam Research Corporation Substrate cleaning technique employing multi-phase solution
US8226775B2 (en) 2007-12-14 2012-07-24 Lam Research Corporation Methods for particle removal by single-phase and two-phase media
US7981221B2 (en) * 2008-02-21 2011-07-19 Micron Technology, Inc. Rheological fluids for particle removal
US8845812B2 (en) * 2009-06-12 2014-09-30 Micron Technology, Inc. Method for contamination removal using magnetic particles
KR100968878B1 (ko) * 2010-04-02 2011-05-31 (주)제이제이테크 추진기관의 추진제 처리장비
JP6090837B2 (ja) * 2012-06-13 2017-03-08 株式会社Screenホールディングス 基板処理装置および基板処理方法

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113453A (en) * 1934-10-20 1938-04-05 Tubize Chatillon Corp Process for bleaching viscose yarn on aluminum bobbins
US2593057A (en) * 1949-12-29 1952-04-15 Pure Oil Co Inhibitors against hydrogen sulfide and brine corrosion
NL251243A (ko) 1959-05-04
US3212762A (en) 1960-05-23 1965-10-19 Dow Chemical Co Foam generator
US3436262A (en) 1964-09-25 1969-04-01 Dow Chemical Co Cleaning by foam contact,and foam regeneration method
US3617095A (en) 1967-10-18 1971-11-02 Petrolite Corp Method of transporting bulk solids
US3978176A (en) 1972-09-05 1976-08-31 Minnesota Mining And Manufacturing Company Sparger
GB1507472A (en) 1974-05-02 1978-04-12 Bunker Ramo Foamable coating remover composition
US4156619A (en) 1975-06-11 1979-05-29 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Process for cleaning semi-conductor discs
US4133773A (en) 1977-07-28 1979-01-09 The Dow Chemical Company Apparatus for making foamed cleaning solutions and method of operation
US4238244A (en) 1978-10-10 1980-12-09 Halliburton Company Method of removing deposits from surfaces with a gas agitated cleaning liquid
US4838289A (en) 1982-08-03 1989-06-13 Texas Instruments Incorporated Apparatus and method for edge cleaning
US4911761A (en) 1984-05-21 1990-03-27 Cfm Technologies Research Associates Process and apparatus for drying surfaces
JPH0719766B2 (ja) * 1986-01-17 1995-03-06 松下電器産業株式会社 処理方法
US4780150A (en) * 1986-02-07 1988-10-25 Amchem Products, Inc. Corrosion inhibited acid cleaners
ES2011470B3 (es) 1986-07-08 1990-01-16 Kohlensaurewerk Deutschland Gmbh Procedimiento para la disgregacion de sustancias volatiles
NL8601939A (nl) 1986-07-28 1988-02-16 Philips Nv Werkwijze voor het verwijderen van ongewenste deeltjes van een oppervlak van een substraat.
DE3640645A1 (de) * 1986-11-28 1988-06-09 Wacker Chemitronic Verfahren zum zersaegen von kristallstaeben oder -bloecken vermittels innenlochsaege in duenne scheiben
US4817652A (en) 1987-03-26 1989-04-04 Regents Of The University Of Minnesota System for surface and fluid cleaning
US4962776A (en) 1987-03-26 1990-10-16 Regents Of The University Of Minnesota Process for surface and fluid cleaning
US4849027A (en) 1987-04-16 1989-07-18 Simmons Bobby G Method for recycling foamed solvents
US5105556A (en) 1987-08-12 1992-04-21 Hitachi, Ltd. Vapor washing process and apparatus
US5048549A (en) 1988-03-02 1991-09-17 General Dynamics Corp., Air Defense Systems Div. Apparatus for cleaning and/or fluxing circuit card assemblies
US5181985A (en) 1988-06-01 1993-01-26 Wacker-Chemitronic Gesellschaft Fur Elektronik-Grundstoffe Mbh Process for the wet-chemical surface treatment of semiconductor wafers
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5000795A (en) 1989-06-16 1991-03-19 At&T Bell Laboratories Semiconductor wafer cleaning method and apparatus
US5102777A (en) 1990-02-01 1992-04-07 Ardrox Inc. Resist stripping
US5271774A (en) 1990-03-01 1993-12-21 U.S. Philips Corporation Method for removing in a centrifuge a liquid from a surface of a substrate
EP0445728B1 (en) 1990-03-07 1994-06-08 Hitachi, Ltd. Apparatus and method for cleaning solid surface
US5306350A (en) 1990-12-21 1994-04-26 Union Carbide Chemicals & Plastics Technology Corporation Methods for cleaning apparatus using compressed fluids
US5261966A (en) 1991-01-28 1993-11-16 Kabushiki Kaisha Toshiba Method of cleaning semiconductor wafers using mixer containing a bundle of gas permeable hollow yarns
US5175124A (en) 1991-03-25 1992-12-29 Motorola, Inc. Process for fabricating a semiconductor device using re-ionized rinse water
JPH04354128A (ja) * 1991-05-31 1992-12-08 Maatec:Kk 基板の薬液処理方法及びその装置並びに基板の薬液処理、洗浄及び乾燥方法及びその装置
USRE35115E (en) * 1991-07-17 1995-12-12 Church & Dwight Co. Inc. Low foaming effective hydrotrope
DE4138400C1 (ko) * 1991-11-22 1993-02-18 Aichelin Gmbh, 7015 Korntal-Muenchingen, De
US5242669A (en) 1992-07-09 1993-09-07 The S. A. Day Mfg. Co., Inc. High purity potassium tetrafluoroaluminate and method of making same
US5288332A (en) 1993-02-05 1994-02-22 Honeywell Inc. A process for removing corrosive by-products from a circuit assembly
US5336371A (en) 1993-03-18 1994-08-09 At&T Bell Laboratories Semiconductor wafer cleaning and rinsing techniques using re-ionized water and tank overflow
US5911837A (en) 1993-07-16 1999-06-15 Legacy Systems, Inc. Process for treatment of semiconductor wafers in a fluid
US5464480A (en) 1993-07-16 1995-11-07 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
US5472502A (en) 1993-08-30 1995-12-05 Semiconductor Systems, Inc. Apparatus and method for spin coating wafers and the like
US5656097A (en) 1993-10-20 1997-08-12 Verteq, Inc. Semiconductor wafer cleaning system
US5950645A (en) 1993-10-20 1999-09-14 Verteq, Inc. Semiconductor wafer cleaning system
US5518542A (en) 1993-11-05 1996-05-21 Tokyo Electron Limited Double-sided substrate cleaning apparatus
US5938504A (en) 1993-11-16 1999-08-17 Applied Materials, Inc. Substrate polishing apparatus
US5417768A (en) 1993-12-14 1995-05-23 Autoclave Engineers, Inc. Method of cleaning workpiece with solvent and then with liquid carbon dioxide
DE69523208T2 (de) 1994-04-08 2002-06-27 Texas Instruments Inc Verfahren zur Reinigung von Halbleiterscheiben mittels verflüssigter Gase
JP3320549B2 (ja) * 1994-04-26 2002-09-03 岩手東芝エレクトロニクス株式会社 被膜除去方法および被膜除去剤
US5498293A (en) 1994-06-23 1996-03-12 Mallinckrodt Baker, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness
US6081650A (en) 1994-06-30 2000-06-27 Thomson Licensing S.A. Transport processor interface and video recorder/playback apparatus in a field structured datastream suitable for conveying television information
US5705223A (en) 1994-07-26 1998-01-06 International Business Machine Corp. Method and apparatus for coating a semiconductor wafer
US5772784A (en) 1994-11-14 1998-06-30 Yieldup International Ultra-low particle semiconductor cleaner
US5558109A (en) * 1995-02-21 1996-09-24 Church & Dwight Co., Inc. Aqueous cleaning method and composition with nonionic surfactants for removing water soluble flux
JP3504023B2 (ja) 1995-05-26 2004-03-08 株式会社ルネサステクノロジ 洗浄装置および洗浄方法
US5660642A (en) 1995-05-26 1997-08-26 The Regents Of The University Of California Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
US5964958A (en) 1995-06-07 1999-10-12 Gary W. Ferrell Methods for drying and cleaning objects using aerosols
US5968285A (en) 1995-06-07 1999-10-19 Gary W. Ferrell Methods for drying and cleaning of objects using aerosols and inert gases
US6532976B1 (en) 1995-07-10 2003-03-18 Lg Semicon Co., Ltd. Semiconductor wafer cleaning apparatus
DE19622015A1 (de) 1996-05-31 1997-12-04 Siemens Ag Verfahren zum Ätzen von Zerstörungszonen an einem Halbleitersubstratrand sowie Ätzanlage
TW416987B (en) 1996-06-05 2001-01-01 Wako Pure Chem Ind Ltd A composition for cleaning the semiconductor substrate surface
JPH1055993A (ja) 1996-08-09 1998-02-24 Hitachi Ltd 半導体素子製造用洗浄液及びそれを用いた半導体素子の製造方法
JPH1092713A (ja) * 1996-09-11 1998-04-10 Hitachi Ltd 塗布方法および装置
EP0893166A4 (en) 1996-09-25 2004-11-10 Shuzurifuresher Kaihatsukyodok WASHING SYSTEM USING LIQUID, HIGH DENSITY GAS
TW357406B (en) 1996-10-07 1999-05-01 Tokyo Electron Ltd Method and apparatus for cleaning and drying a substrate
US5858283A (en) 1996-11-18 1999-01-12 Burris; William Alan Sparger
US6896826B2 (en) 1997-01-09 2005-05-24 Advanced Technology Materials, Inc. Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
US5900191A (en) 1997-01-14 1999-05-04 Stable Air, Inc. Foam producing apparatus and method
US5800626A (en) 1997-02-18 1998-09-01 International Business Machines Corporation Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
US6701941B1 (en) 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
JPH10321572A (ja) 1997-05-15 1998-12-04 Toshiba Corp 半導体ウェーハの両面洗浄装置及び半導体ウェーハのポリッシング方法
US5958144A (en) * 1997-05-20 1999-09-28 Church & Dwight Flux-removing aqueous cleaning composition and method of use
JPH1126423A (ja) 1997-07-09 1999-01-29 Sugai:Kk 半導体ウエハ等の処理方法並びにその処理装置
US6152805A (en) 1997-07-17 2000-11-28 Canon Kabushiki Kaisha Polishing machine
US5932493A (en) 1997-09-15 1999-08-03 International Business Machines Corporaiton Method to minimize watermarks on silicon substrates
US5904156A (en) 1997-09-24 1999-05-18 International Business Machines Corporation Dry film resist removal in the presence of electroplated C4's
US6398975B1 (en) 1997-09-24 2002-06-04 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for localized liquid treatment of the surface of a substrate
US6491764B2 (en) 1997-09-24 2002-12-10 Interuniversitair Microelektronics Centrum (Imec) Method and apparatus for removing a liquid from a surface of a rotating substrate
EP0905746A1 (en) 1997-09-24 1999-03-31 Interuniversitair Micro-Elektronica Centrum Vzw Method of removing a liquid from a surface of a rotating substrate
JP3039493B2 (ja) 1997-11-28 2000-05-08 日本電気株式会社 基板の洗浄方法及び洗浄溶液
US6270584B1 (en) 1997-12-03 2001-08-07 Gary W. Ferrell Apparatus for drying and cleaning objects using controlled aerosols and gases
FR2773725B1 (fr) * 1998-01-16 2000-02-25 Commissariat Energie Atomique Procede de generation et de mise en circulation d'une mousse dans une installation et dispositif pour la mise en oeuvre de ce procede
US6017863A (en) * 1998-05-22 2000-01-25 Church & Dwight Co., Inc. Aqueous cleaning solution and method for removing uncured adhesive residues
US6049996A (en) 1998-07-10 2000-04-18 Ball Semiconductor, Inc. Device and fluid separator for processing spherical shaped devices
US5944581A (en) 1998-07-13 1999-08-31 Ford Motor Company CO2 cleaning system and method
JP3003684B1 (ja) 1998-09-07 2000-01-31 日本電気株式会社 基板洗浄方法および基板洗浄液
JP2000100801A (ja) 1998-09-25 2000-04-07 Sumitomo Electric Ind Ltd エピタキシャルウェハおよびその製造方法ならびにそれに用いられる化合物半導体基板の表面清浄化方法
JP2000141215A (ja) 1998-11-05 2000-05-23 Sony Corp 平坦化研磨装置及び平坦化研磨方法
US6090217A (en) 1998-12-09 2000-07-18 Kittle; Paul A. Surface treatment of semiconductor substrates
JP2000260739A (ja) 1999-03-11 2000-09-22 Kokusai Electric Co Ltd 基板処理装置および基板処理方法
US6290780B1 (en) 1999-03-19 2001-09-18 Lam Research Corporation Method and apparatus for processing a wafer
US6272712B1 (en) 1999-04-02 2001-08-14 Lam Research Corporation Brush box containment apparatus
JP4247587B2 (ja) 1999-06-23 2009-04-02 Jsr株式会社 半導体部品用洗浄剤、半導体部品の洗浄方法、研磨用組成物、および研磨方法
US6562726B1 (en) 1999-06-29 2003-05-13 Micron Technology, Inc. Acid blend for removing etch residue
US20020121290A1 (en) 1999-08-25 2002-09-05 Applied Materials, Inc. Method and apparatus for cleaning/drying hydrophobic wafers
US6734121B2 (en) 1999-09-02 2004-05-11 Micron Technology, Inc. Methods of treating surfaces of substrates
US6228563B1 (en) * 1999-09-17 2001-05-08 Gasonics International Corporation Method and apparatus for removing post-etch residues and other adherent matrices
US7122126B1 (en) 2000-09-28 2006-10-17 Materials And Technologies Corporation Wet processing using a fluid meniscus, apparatus and method
US6858089B2 (en) 1999-10-29 2005-02-22 Paul P. Castrucci Apparatus and method for semiconductor wafer cleaning
US6576066B1 (en) 1999-12-06 2003-06-10 Nippon Telegraph And Telephone Corporation Supercritical drying method and supercritical drying apparatus
US6286231B1 (en) 2000-01-12 2001-09-11 Semitool, Inc. Method and apparatus for high-pressure wafer processing and drying
US6276459B1 (en) 2000-02-01 2001-08-21 Bradford James Herrick Compressed air foam generator
JP2001269634A (ja) * 2000-03-27 2001-10-02 Tamotsu Mesaki 半導体材料等の処理方法
US6594847B1 (en) 2000-03-28 2003-07-22 Lam Research Corporation Single wafer residue, thin film removal and clean
US6457199B1 (en) 2000-10-12 2002-10-01 Lam Research Corporation Substrate processing in an immersion, scrub and dry system
EP1287109B1 (de) 2000-05-17 2007-07-04 Henkel Kommanditgesellschaft auf Aktien Wasch- oder reinigungsmittelformkörper
US6927176B2 (en) 2000-06-26 2005-08-09 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
US6488040B1 (en) 2000-06-30 2002-12-03 Lam Research Corporation Capillary proximity heads for single wafer cleaning and drying
KR100366623B1 (ko) 2000-07-18 2003-01-09 삼성전자 주식회사 반도체 기판 또는 lcd 기판의 세정방법
US6810887B2 (en) 2000-08-11 2004-11-02 Chemtrace Corporation Method for cleaning semiconductor fabrication equipment parts
US6328042B1 (en) 2000-10-05 2001-12-11 Lam Research Corporation Wafer cleaning module and method for cleaning the surface of a substrate
US20020094684A1 (en) 2000-11-27 2002-07-18 Hirasaki George J. Foam cleaning process in semiconductor manufacturing
US6525009B2 (en) 2000-12-07 2003-02-25 International Business Machines Corporation Polycarboxylates-based aqueous compositions for cleaning of screening apparatus
US6493902B2 (en) 2001-02-22 2002-12-17 Chung-Yi Lin Automatic wall cleansing apparatus
JP2002280343A (ja) 2001-03-15 2002-09-27 Nec Corp 洗浄処理装置、切削加工装置
JP2002280330A (ja) 2001-03-21 2002-09-27 Lintec Corp チップ状部品のピックアップ方法
US6627550B2 (en) 2001-03-27 2003-09-30 Micron Technology, Inc. Post-planarization clean-up
JP2002309638A (ja) 2001-04-17 2002-10-23 Takiron Co Ltd 建物の排水管路における通気性掃除口
JP3511514B2 (ja) 2001-05-31 2004-03-29 エム・エフエスアイ株式会社 基板浄化処理装置、ディスペンサー、基板保持機構、基板の浄化処理用チャンバー、及びこれらを用いた基板の浄化処理方法
US6802911B2 (en) 2001-09-19 2004-10-12 Samsung Electronics Co., Ltd. Method for cleaning damaged layers and polymer residue from semiconductor device
CN1589317A (zh) 2001-11-19 2005-03-02 荷兰联合利华有限公司 改进的洗涤体系
US20030171239A1 (en) * 2002-01-28 2003-09-11 Patel Bakul P. Methods and compositions for chemically treating a substrate using foam technology
KR100566840B1 (ko) * 2002-01-30 2006-04-03 가부시끼가이샤 도시바 성막 방법 및 성막 장치
JP4018917B2 (ja) * 2002-03-15 2007-12-05 株式会社ケミカルアートテクノロジー 処理方法及び処理システム
JP2003282513A (ja) 2002-03-26 2003-10-03 Seiko Epson Corp 有機物剥離方法及び有機物剥離装置
JP4570008B2 (ja) 2002-04-16 2010-10-27 東京エレクトロン株式会社 液処理装置および液処理方法
US20040159335A1 (en) 2002-05-17 2004-08-19 P.C.T. Systems, Inc. Method and apparatus for removing organic layers
US6846380B2 (en) * 2002-06-13 2005-01-25 The Boc Group, Inc. Substrate processing apparatus and related systems and methods
US20040002430A1 (en) 2002-07-01 2004-01-01 Applied Materials, Inc. Using a time critical wafer cleaning solution by combining a chelating agent with an oxidizer at point-of-use
US6733596B1 (en) 2002-12-23 2004-05-11 Lam Research Corporation Substrate cleaning brush preparation sequence, method, and system
US20040163681A1 (en) 2003-02-25 2004-08-26 Applied Materials, Inc. Dilute sulfuric peroxide at point-of-use
US6951042B1 (en) 2003-02-28 2005-10-04 Lam Research Corporation Brush scrubbing-high frequency resonating wafer processing system and methods for making and implementing the same
EP1609174B1 (en) * 2003-03-31 2011-11-30 Lam Research Corporation Chamber and method for wafer processing
KR20050119177A (ko) * 2003-03-31 2005-12-20 호야 가부시키가이샤 세정 방법, 이물질 제거 방법, 세정장치 및 세정액
US20040261823A1 (en) * 2003-06-27 2004-12-30 Lam Research Corporation Method and apparatus for removing a target layer from a substrate using reactive gases
US6946396B2 (en) 2003-10-30 2005-09-20 Nissan Chemical Indusries, Ltd. Maleic acid and ethylene urea containing formulation for removing residue from semiconductor substrate and method for cleaning wafer
KR20050044085A (ko) 2003-11-07 2005-05-12 삼성전자주식회사 집적회로 소자의 세정액 및 그 세정액을 이용한 세정방법
US7353560B2 (en) 2003-12-18 2008-04-08 Lam Research Corporation Proximity brush unit apparatus and method
KR100981897B1 (ko) * 2003-12-23 2010-09-13 램 리써치 코포레이션 기판 클리닝 장치 및 방법
US7416370B2 (en) 2005-06-15 2008-08-26 Lam Research Corporation Method and apparatus for transporting a substrate using non-Newtonian fluid
US7568490B2 (en) * 2003-12-23 2009-08-04 Lam Research Corporation Method and apparatus for cleaning semiconductor wafers using compressed and/or pressurized foams, bubbles, and/or liquids
US8323420B2 (en) 2005-06-30 2012-12-04 Lam Research Corporation Method for removing material from semiconductor wafer and apparatus for performing the same
US8043441B2 (en) 2005-06-15 2011-10-25 Lam Research Corporation Method and apparatus for cleaning a substrate using non-Newtonian fluids
JP2005194294A (ja) 2003-12-26 2005-07-21 Nec Electronics Corp 洗浄液及び半導体装置の製造方法
CN1654617A (zh) 2004-02-10 2005-08-17 捷时雅株式会社 清洗用组合物和半导体基板的清洗方法及半导体装置的制造方法
US20050183740A1 (en) 2004-02-19 2005-08-25 Fulton John L. Process and apparatus for removing residues from semiconductor substrates
US8136423B2 (en) 2005-01-25 2012-03-20 Schukra of North America Co. Multiple turn mechanism for manual lumbar support adjustment

Also Published As

Publication number Publication date
SG166109A1 (en) 2010-11-29
KR101269783B1 (ko) 2013-05-30
US8691027B2 (en) 2014-04-08
TW200710981A (en) 2007-03-16
JP2008545272A (ja) 2008-12-11
MY150143A (en) 2013-11-29
WO2007005230A3 (en) 2007-04-26
WO2007005230A2 (en) 2007-01-11
TWI349304B (en) 2011-09-21
US20070000518A1 (en) 2007-01-04
US20130061887A1 (en) 2013-03-14
JP4956535B2 (ja) 2012-06-20
CN100583389C (zh) 2010-01-20
US8323420B2 (en) 2012-12-04
CN101213639A (zh) 2008-07-02

Similar Documents

Publication Publication Date Title
KR101269783B1 (ko) 반도체 웨이퍼로부터의 물질 제거 방법 및 이를 수행하기위한 장치
US6562146B1 (en) Processes for cleaning and drying microelectronic structures using liquid or supercritical carbon dioxide
US6613157B2 (en) Methods for removing particles from microelectronic structures
US6596093B2 (en) Methods for cleaning microelectronic structures with cyclical phase modulation
US6602351B2 (en) Methods for the control of contaminants following carbon dioxide cleaning of microelectronic structures
KR100591220B1 (ko) 고압 처리 방법
US20020112740A1 (en) Methods for cleaning microelectronic structures with aqueous carbon dioxide systems
US6905555B2 (en) Methods for transferring supercritical fluids in microelectronic and other industrial processes
US20030106573A1 (en) Process and apparatus for removing residues from the microstructure of an object
JP2008541479A (ja) 極性流体を表面から超臨界流体を用いて除去する方式
JP2004527110A (ja) マイクロエレクトロニック構造体を洗浄する方法
JP4031440B2 (ja) 超臨界処理を用いる汚染物の除去
US6928746B2 (en) Drying resist with a solvent bath and supercritical CO2
US6924086B1 (en) Developing photoresist with supercritical fluid and developer
JP3553838B2 (ja) 超臨界乾燥方法
KR102260325B1 (ko) 집적회로 소자 제조 장치
JP2004088095A (ja) 洗浄方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee