KR19990007407A - 압전세라믹소결체, 압전세라믹소자, 적층압전세라믹소자, 및 압전세라믹소결체의 제조방법 - Google Patents

압전세라믹소결체, 압전세라믹소자, 적층압전세라믹소자, 및 압전세라믹소결체의 제조방법 Download PDF

Info

Publication number
KR19990007407A
KR19990007407A KR1019980024504A KR19980024504A KR19990007407A KR 19990007407 A KR19990007407 A KR 19990007407A KR 1019980024504 A KR1019980024504 A KR 1019980024504A KR 19980024504 A KR19980024504 A KR 19980024504A KR 19990007407 A KR19990007407 A KR 19990007407A
Authority
KR
South Korea
Prior art keywords
piezoelectric ceramic
sintered body
particles
zirconia
ceramic
Prior art date
Application number
KR1019980024504A
Other languages
English (en)
Other versions
KR100303766B1 (ko
Inventor
고이치 가와노
가주야 가마다
Original Assignee
무라따 미치히로
가부시끼가이샤 무라따 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무라따 미치히로, 가부시끼가이샤 무라따 세이사꾸쇼 filed Critical 무라따 미치히로
Publication of KR19990007407A publication Critical patent/KR19990007407A/ko
Application granted granted Critical
Publication of KR100303766B1 publication Critical patent/KR100303766B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 압전세라믹소결체(sintered piezoelectric ceramic)와 이것의 제조방법, 및 압전세라믹소자(piezoelectric ceramic device)에 관한 것으로, 본 발명의 압전세라믹소결체는 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며 내습성이 우수하다. 한편, 다수개의 세라믹의 소성시에, 이들끼리 용착되는 것이 방지된다. 또, 세라믹의 제조비용이 절감된다. 압전세라믹소결체는, 압전세라믹 입자중에 분산되어 있는 미립자상의 또는 덩어리상의 지르코니아(zirconia) 입자를 포함하며, 상기 압전세라믹 입자의 평균입자지름은 상기 지르코니아 입자보다 작은 것을 특징으로 한다.

Description

압전세라믹소결체, 압전세라믹소자, 적층압전세라믹소자, 및 압전세라믹소결체의 제조방법
본 발명은 압전세라믹소결체(sintered piezoelectric ceramic)와 이것의 제조방법, 및 압전세라믹소자(piezoelectric ceramic device)에 관한 것이다.
종래, 세라믹 필터(ceramic filter), 스피커(speaker), 초음파 진동자(ultrasonic oscillators) 등에 사용된 압전세라믹소자에는, 압전세라믹소결체(이하, '세라믹소결체'라 한다)에 전극들을 형성한 압전세라믹소자를 사용하였다. 일반적으로, 압전세라믹소자는, 분극방향을 일정하게 하기 때문에, 직류전압에 의해 분극된다. 소자의 분극도를 향상시키기 위해, 소자에는 고전압이 인가되며, 이때 소자는 유전파괴의 발생없이, 분극용 고전압에 대한 내성을 필요로 한다.
압전세라믹소자는, 흔히 열악한 조건하에서 사용되기 때문에, 세라믹소결체는 내환경성(weather resistance), 특히 내습성(moisture resistance)이 우수할 필요가 있다.
세라믹소결체는, 압전성세라믹을 하소한 후, 이것을 바인더(binder)와 혼합한 후, 얻은 혼합물을 과립(顆粒)상으로 만든 후(granulating), 얻은 과립상의 펠렛(pellets)을 성형(molding)한 후, 상기 성형체(mold)를 소성함으로써 얻어진다. 보통, 성형체를 가능한 한 많이 용광로에 적층하여 소성한다. 그러나, 적층된 성형체가 고온에서 용착(溶着; be fused to be combined together)된다는 문제점이 있다.
이 문제점을 해결하기 위해, 하기의 방법이 제안되었다.
도4에 도시한 바와 같이, 입자25는 적층된 성형체23 사이에 제공된다. 입자들은 지르코니아(zirconia), Al2O3등을 포함한다. 먼저, 분말25가 지지부재(도시하지 않았음) 위로 뿌려진다. 그런 다음, 성형체23이 그 위에 놓여진다. 또, 분말25가 성형체23의 상면 위로 뿌려지며, 다른 성형체23이 분말25에 의해 간격이 두어지면서 그 위에 차례로 적층된다.
일본특허 공고번호 (JP-B) Hei-3-2821호 공보와 관련하여, 도5에 또 하나의 방법이 도시되어 있다. 성형체23이 용착되는 것이 방지되기 때문에, 성형체23과 동일한 조성을 갖지만 평균입자지름이 큰 조립자(粗粒子; coarse grains)23a를 각 성형체23 내에 분산한다. 이것을 조립자 혼합법(coarse grains-mixing method)이라 한다. 상기 성형체23은 이들사이에 분말을 제공하지 않고서도 적층될 수 있다.
상기한 방법에서는, 성형체23으로 된 적층체를 소성한 후, 그런 다음 이들을 개개의 소결된 성형체23으로 분리한다.
그러나, 종래 방법에 의해 제작된 세라믹소결체는, 압전성세라믹의 내습성을 포함하는 특성면이나 가격면에 있어서 최근 시장의 요구를 충분히 만족할 수 없었다.
게다가, 종래 방법은 하기의 문제점을 갖는다:
1. 소결된 성형체로부터 분말을 제거하는 추가공정에 대한 요구
2. 소결된 성형체는 분말25의 흔적을 여전히 갖는다
3. 인접한 성형체들23 사이에 분말25를 고르게 뿌리기가 어렵다
이것에 의해 성형체23의 성형체23의 왜곡(歪曲; warping)이 발생한다. 그러므로, 소결된 성형체의 왜곡을 막기 위해 재소성해야 한다.
조립자 혼합법도 또한 다음의 점에서 문제시된다:
1. 조립자23a는 성형체23과 동일한 조성을 갖기 때문에, 상대적으로 저온소성하에서도 입자의 상당량이 성형체23과 용착될 수 있다
2. 고온소성하에서, 대부분의 입자들이 성형체23과 용착된다
3. 조립자23a는 추가공정에서 제조되어야 한다. 게다가, 다른 종류의 조립자들은 다른 종류의 압전성세라믹으로 제조되어야 한다. 그러므로, 이런 조립자들을 사용하는 방법은 고비용이다.
본 발명의 목적은, 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며, 또 내습성이 우수한 압전세라믹소결체를 제공하는 것이며, 또한 이들의 제조방법을 제공하는 것이다. 그린(green)상의 압전성세라믹으로 된 적층체의 소성시에, 본 발명의 압전세라믹소결체는 이들끼리의 용착이 방지되며, 또한 제조비용이 절감된다.
도1은 본 발명의 압전세라믹소결체를 사용한 압전세라믹소자를 보여주는 일부 단면 사시도이다.
도2는 본 발명의 압전성세라믹의 소성시의 적층상태를 보여주는 단면도이다.
도3은 본 발명의 적층압전세라믹소자에 관한 한 구현예를 보여주는 일부 단면 사시도이다.
도4는 종래의 압전성세라믹의 소성시의 적층상태를 보여주는 단면도이다.
도5는 종래의 압전성세라믹의 소성시의 또 하나의 적층상태를 보여주는 단면도이다.
(도면의 주요 부분에 대한 부호의 설명)
1: 압전세라믹소결체
2: PZT(압전성세라믹)
3: 원반상의 성형체
5: 지르코니아(ZrO2)
7: 은전극
9: 압전세라믹소자
10: 적층압전세라믹소자
11: 적층소결체
12: 내부전극
13: 외부전극
본 발명의 제1측면에서는, 압전성세라믹 입자중에 분산된 미립자상의 또는 덩어리상의 지르코니아 입자를 함유하는 압전세라믹소결체를 제공하며, 상기 압전성세라믹 입자의 평균입자지름이 상기 지르코니아 입자보다 작은(smaller than) 것을 특징으로 한다.
본 발명의 제2측면에서는, 주성분으로서 압전성세라믹 입자를 포함하고 부성분으로서 지르코니아 입자를 포함하는 압전세라믹소결체를 제공하며, 상기 지르코니아 입자의 평균입자지름이 상기 압전성세라믹 입자보다 큰 것(larger than)을 특징으로 한다.
이와 같은 구성에 의해, 상기 세라믹의 표층(表層)근방에 존재하는 지르코니아 입자 때문에, 압전세라믹소결체의 용착이 방지된다. 게다가, 상기 세라믹은 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며, 내습성이 우수하다.
상기한 세라믹소결체에 있어서, 압전성세라믹 입자의 평균입자지름은 바람직하게는 0.5㎛~9.0㎛인 것이 좋으며, 지르코니아 입자의 평균입자지름은 바람직하게는 10㎛~30㎛인 것이 좋다. 이것은 본 발명의 제3측면이다.
상기한 바와 같이 입자지름을 한정함으로써, 본 발명의 세라믹소결체의 용착을 확실하게 방지할 수 있으며, 한편 세라믹소결체의 표면 평활성을 보장한다. 여기에서 언급한 표면 평활성이라는 것은, 세라믹소결체의 표면을 전극의 형성에 지장이 없게 하며, 세라믹소결체가 이들의 적층압력에 대해 내구성이 있다는 것을 의미한다.
상기한 세라믹소결체에 있어서, 지르코니아 입자의 첨가량은 바람직하게는, 압전성세라믹 입자의 0.1~3.0중량%인 것이 좋다. 이것은 본 발명의 제4측면이다. 이 측면에서, 세라믹소결체에 있게 될 지르코니아 입자의 첨가량을 상기한 바와 같이 한정한 경우, 세라믹소결체로부터 형성될 성형체는 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며, 내습성이 우수하다.
상기한 구성을 갖는 본 발명의 압전세라믹소결체는, 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있고, 내습성이 우수하며, 또한 이들이 용착되는 것이 방지된다.
본 발명의 제5측면은, 본 발명의 제1측면 내지 제4측면 중 어느 한 측면에 속하는 압전세라믹소결체의 양주면에, 전극들을 형성함으로써 제작된 압전세라믹소자이다.
여기에서는, 상기한 압전세라믹소결체를 사용하기 때문에, 압전세라믹소자가 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며, 내습성이 우수하다.
본 발명의 제6측면은, 본 발명의 제1측면 내지 제4측면 중 어느 한 측면에 속하는 압전세라믹소결체층과, 인접한 압전세라믹소결체층들 사이에 적층되어 있는 내부전극층을 포함하는 적층압전세라믹소자이며, 상기 적층압전세라믹소자가 내부전극의 노출면에 접속되도록 형성된 외부전극을 갖는 것을 특징으로 한다.
이와 같은 구성에 의해, 상기 적층소자를 소성하여 적층소결체(sintered monolithic devices)로 한 경우에는, 적층소결체끼리의 용착이 방지된다. 게다가, 적층소자는 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며, 내습성이 우수하다.
본 발명의 제7측면은 압전세라믹소결체의 제조방법이며, 상기 방법은,
압전성세라믹용의 분말상의 재료를 혼합하여, 분말상의 혼합물을 얻는 공정;
상기 혼합물을 하소하여, 하소체(calcined body)를 얻는 공정;
상기 하소체를 가루상의 분말로 분쇄하는 공정;
상기 분말을 바인더와 혼합하여, 바인더 함유 혼합물을 얻는 공정;
상기 혼합물을 성형체로 성형하는 공정; 및
상기 성형체를 소성하여 소결체(sintered molding)를 얻는 공정
을 포함하며,
이것은, 소결체를 구성하는 입자보다 평균입자지름이 큰, 미립자상의 또는 덩어리상의 지르코니아 입자를, 하소체를 얻는 공정 이후에서 성형체를 얻는 공정 이전까지의 사이에, 세라믹에 첨가하는 것을 특징으로 한다.
본 발명의 제8측면은, 압전세라믹소결체의 제조방법이며, 상기 방법은,
압전성세라믹용의 분말상의 재료를 혼합하여, 분말상의 혼합물을 얻는 공정;
상기 혼합물을 하소하여, 하소체(calcined body)를 얻는 공정;
상기 하소체를 가루상의 분말로 분쇄하는 공정;
상기 분말을 바인더와 혼합하여, 바인더 함유 혼합물을 얻는 공정;
상기 바인더 함유 혼합물을 과립상의 펠렛으로 그레뉼레이팅(granulating)하는 공정;
상기 펠렛을 성형체로 성형하는 공정; 및
상기 성형체를 소성하여 소결체(sintered molding)를 얻는 공정
을 포함하며,
이것은, 소결체를 구성하는 입자보다 평균입자지름이 큰, 미립자상의 또는 덩어리상의 지르코니아 입자를, 하소체를 얻는 공정 이후에서 성형체를 얻는 공정 이전까지의 사이에, 세라믹에 첨가하는 것을 특징으로 한다.
미립자상의 또는 덩어리상의 지르코니아 입자를, 압전세라믹성형체(piezoelectric ceramic molding)에 첨가하는 이들 방법에 있어서, 이들의 소성시에 세라믹소결체끼리 용착되는 것이 방지된다.
상기 압전세라믹소결체의 제조방법에 있어서, 바람직하게는, 지르코니아 입자를 하소체를 분쇄한 분말에 첨가하는 것이 좋다. 이것은 본 발명의 제9측면이다.
상기 방법에 있어서, 바인더 함유 혼합물의 제조공정중에 지르코니아 입자를 세라믹에 바인더와 함께 첨가하거나, 또는 바인더 함유 혼합물의 제조공정 이후에 이들을 첨가하는 것도 또한 바람직하다. 이것은 본 발명의 제10측면이다.
상기 방법에 있어서, 과립상의 펠렛의 제조공정 이후에 지르코니아 입자를 세라믹에 첨가하는 것도 또한 바람직하다. 이것은 본 발명의 제11측면이다.
상기한 공정중에 어느 공정에 있어서도, 지르코니아 입자를 세라믹에 첨가함으로써, 세라믹의 소성공정중에 세라믹소결체끼리의 용착이 확실하게 방지된다.
압전세라믹소결체의 제조방법에 있어서, 세라믹소결체 입자의 평균입자지름은 바람직하게는 0.5㎛~9.0㎛ 사이인 것이 좋으며, 첨가하는 지르코니아 입자의 평균입자지름은 바람직하게는 10㎛~30㎛ 사이인 것이 좋다. 이것은 본 발명의 제12측면이다.
상기한 바와 같이 입자지름을 한정함으로써, 세라믹소결체의 용착이 확실하게 방지되며, 한편 세라믹소결체의 표면 평활성이 보장된다.
상기 방법에 있어서, 또한 지르코니아 입자의 첨가량은 바람직하게는, 세라믹 입자의 0.1~3.0중량%인 것이 좋다. 이것은 본 발명의 제13측면이다.
이 측면에 있어서, 지르코니아 입자의 첨가량을 상기한 바와 같이 한정한 경우, 세라믹소결체끼리 소성시에 용착되는 것이 더욱 효과적으로 방지되며, 게다가 세라믹소결체의 압전특성이 악화되는 것이 방지된다.
상기 방법에서는, 압전성세라믹 입자중의 지르코니아 입자가 분산되며, 이에 의해 세라믹소결체끼리 소성공정중에 용착되는 것이 방지된다.
본 발명의 압전세라믹소결체를 제조하는데 사용될 압전성세라믹은, 이들의 조성 및 그외 다른 것에 대하여 특별한 제약이 없다. 어느 압전성세라믹이라도 여기에 사용가능하다. 구체적으로 언급하면, 예를 들어, BaTiO3, PbTiO3, KXWO3, PbNb2O6등과 같은 단성분계; 예를 들어, PbTiO3-PbZrO3, PbTiO3-Pb(Mg1/3Nb2/3)O3와 같은 2성분계; 및 예를 들어, PbTiO3-PbZrO3-Pb(Mg1/3Nb2/3)O3, PbTiO3-PbZrO3-Pb(Co1/3Nb2/3)O3와 같은 3성분계가 있다. 여기에서 사용가능한 복합 산화물(composite oxides) 및 화합물(compounds)의 상세한 예를 하기의 표1에 나타낸다. 또, 표1에 나타낸 조성물의 유도체로서는, Pb의 일부를 Ba, Sr, Ca 등으로 치환한 것이나, 또는 Ti의 일부를 Sn, Hf 등으로 치환함으로써 얻어진 것이 사용가능하다.
복합 산화물의 예 화합물의 예
페로브스카이트(Perovskites) A2+B4+O3 A: Pb, Ba, Ca, Sr, Cd 등B: Sn, Hf 등
A1+B5+O3 A: Li, Na, K, Ag 등B: Nb, Ta 등
페로브스카이트형 복합물(Perovskite-structured Composites) A2+(B2+ 1/3B5+ 2/3)O3 Pb(Mg1/3Nb2/3)O3, Pb(Mg1/3Ta2/3)O3Pb(Ni1/3Nb2/3)O3, Pb(Mn1/3Ta2/3)O3Pb(Mn1/3Sb2/3)O3, Pb(Zn1/3Nb2/3)O3Pb(Zn1/3Ta2/3)O3, Pb(Mn1/3Nb2/3)O3Pb(Co1/3Sb2/3)O3, Pb(Zn1/3Nb2/3)O3Pb(Co1/3Nb2/3)O3, Pb(Fe1/3Sb2/3)O3Pb(Fe1/3Nb2/3)O3, Pb(Mn1/3Bi2/3)O3
A2+(B3+ 1/2B5+ 1/2)O3 Pb(Fe1/2Nb1/2)O3, Pb(Sc1/2Ta1/2)O3Pb(Y1/2Nb1/2)O3, Pb(Mn1/2Sb1/2)O3Pb(In1/2Nb1/2)O3, Pb(Mn1/2Sb1/2)O3Pb(Mn1/2Nb1/2)O3
A2+(B2+ 1/2B6+ 1/2)O3 Pb(Cd1/2W1/2)O3, Pb(Mg1/2W1/2)O3Pb(Co1/2W1/2)O3, Pb(Ni1/2W1/2)O3Pb(Mn1/2W1/2)O3, Pb(Ca1/2W1/2)O3
A2+(B3+ 2/3B6+ 1/3)O3 Pb(Fe2/3W1/3)O3, Pb(Mn2/3W1/3)O3
A3+(B2+ 1/2B4+ 1/2)O3 La(Mg1/2Ti1/2)O3, Nd(Mg1/2Ti1/2)O3
(A1+ 1/2A3+ 1/2)B4+O3 (K1/2La1/2)TiO3, (Na1/2Bi1/2)TiO3
A2+(B1+ 1/4B5+ 3/4)O3 Pb(Li1/4Nb3/4)O3, Pb(Cu1/4Nb3/4)O3Pb(Li1/4Sb3/4)O3
파이로크로라이트형 복합물(Pyrochroite-structured Composites) A2B2O7 A: Ba, Ca, Sr, Cd, La, Nd, Pb 등B: Ta, Nb, Ti 등
필로우형 비스무스 복합물(Phyllo-structured Bismuth Composites) Bi2AX-1BXO3X+3 A: Ba, Ca, Sr, Cd, La, Nd, Pb 등B: Ta, Nb, Ti 등
텅스텐-청동 복합물(Tungsten-bronze Composites) AXB2O6 A: Pb, Ba, Sr 등B: Nb, Ta 등
압전성세라믹의 소결시의 평균입자지지름은, 첨가하는 지르코니아의 평균입자보다 작은 것이 바람직하며, 평균입자지름이 0.5㎛~9.0㎛인 것이 더욱 바람직하다.
압전성세라믹에 첨가된 미립자(particulate)상의 또는 덩어리(agglomerate)상의 지르코니아 입자는, 세라믹소결체의 용착(溶着; being fused and combined together)을 방지하는 것으로 작용한다. 지르코니아 입자가 압전성세라믹 입자보다 평균입자지름이 큰 경우에는, 첨가된 지르코니아 입자의 첨가량 및 입자지름이 명확하게 한정되지 않는다. 그러나, 세라믹소결체의 용착정도, 외관, 및 전기특성의 관점에서 보아, 지르코니아 입자의 첨가량은 0.1~3.0중량%인 것이 바람직하며, 이것의 평균입자지름은 10~30㎛인 것이 바람직하다. 본 발명에서 사용된 지르코니아는 ZrO2에만 한정되지 않으며, 예를 들어 Y2O3, MgO, CaO 등의 안정화제(stabilizer)에 의해 안정화된 ZrO2을 포함한다. 여기에서 사용된 지르코니아의 첨가량은, 압전세라믹소결체에 있어서 PZT에 대한 지르코니아의 비율을 나타낸다.
본 발명에 속하는 적층압전세라믹소자는, 압전세라믹소결체층과 내부전극층을 교대로 적층하여 이루어진 것이지만, 내부전극의 형성패턴이나 소자에 인가될 외부전극의 패턴에는 특별한 제약이 없다.
본 발명의 압전세라믹소결체의 제조방법에 있어서, 과립(顆粒)상의 펠렛(pellet)을 형성하는 공정은, 분무 그레뉼레이션(spray granulation)에 의해 달성될 수 있으나, 특별히 한정되지 않는다. 상기 방법에서, 성형체를 형성하는 단계는 압축성형(compression molding) 또는 압출(extrusion)성형에 의해 달성될 수 있다. 후자의 압출성형은 그레뉼레이션(granulation) 공정을 요구하지 않는다.
여기에서 언급된 미립자상의 또는 덩어리상의 입자란 말은, 입자의 크기를 특히 한정하는 것을 의미하는 것은 아니며, 1개의 또는 다수개의 입자로 이루어진 독립적인 상태를 나타낸다. 입자의 형태에 관해서는, 대략 구형의 입자에만 특별히 한정되지 않는다.
본 발명의 압전세라믹소결체의 제조방법에 있어서, 압전성세라믹입자에 미립자상의 또는 덩어리상의 지르코니아 입자를 첨가하는 공정은, 바람직하게는, 압전성세라믹입자를 하소하는 공정 이후에서 성형체를 형성하는 공정 이전까지의 사이에 실시되는 것이 좋다. 지르코니아를 첨가하는 공정에 있어서, '첨가'란 말은, 지르코니아 입자와 압전성세라믹 입자를 혼합한 후, 이들을 교반하는 것을 포함하며, 이에 의해 압전성세라믹 입자에 지르코니아 입자를 첨가한다. 이것과는 별도로, 원한다면, 지르코니아 입자를 하소된 세라믹에 첨가한 후, 분쇄하여 교반할 수 있다.
이하, 본 발명을 하기의 예들을 참조하여 더욱 상세하게 설명하지만, 이에 의해 본 발명의 범위를 한정하려는 것은 아니다.
실시예1:
도1은 본 발명의 압전세라믹소결체를 포함하는 압전세라믹소자를 보여주는 일부 단면 사시도이다.
도1에 도시된 본 발명에 속하는 압전세라믹소자9는 하기에 언급된 방법으로 제작되었다.
먼저, 압전성세라믹의 출발원료로서는, TiO2, ZrO2(지르코니아), 및 PbO를 준비하였고, 이들을 볼밀(ball mill)로 혼합하였다. 그런 다음, 얻은 혼합물을 800℃와 1000℃ 사이에서 하소하였으며, 그런 다음 충격식 분쇄기(impact grinder)에서 분쇄함으로써, 가루상의 분말을 얻었다.
그런 다음, 지르코니아(ZrO2)를 상기 분말에 첨가하여, 혼합분말을 얻었다. 상기 혼합분말에, 이것을 굳히는 것으로 작용하는 폴리비닐 알콜(polyvinyl alcohol)로 된 바인더(binder)를 첨가하였으며, 교반(攪拌)하여, 바인더 함유 혼합물(binder-containing mixture)을 얻었다. 그런 다음, 이렇게 하여 얻은 교반된 혼합물을 분무건조(spray drying)에 의해 과립상으로 만들어서, 과립상의 펠렛(granular pellets)을 얻었다.
얻은 과립상의 펠렛을 프레스 성형함으로써, 원반상의 성형체를 얻었다. 그런 다음, 도2에 나타낸 바와 같이, 성형체를 적층한 후, 1000℃와 1300℃ 사이에서 일정시간 소성한 후, 개개의 것들로 분리하였다. 이렇게 하여 원반상의 소결체1을 얻었다.
그런 다음, 은(銀)전극7이 원반상의 소결체1의 양주면에 소성에 의해 부착되었고, 이후에 직류전압이 분극을 위해 거기에 인가되었다. 이렇게 하여, 직경이 10㎜이며 두께가 1㎜인 원반상의 압전세라믹소자9를 얻었다. 도1 및 도2에서, 참조번호2는 PZT이며, 참조번호5는 ZrO2이다.
여기에서 얻은 원반상의 소결체1의 용착정도를 조사하였다. 게다가, 상기 원반상의 소결체1의 왜곡정도(warping degree)를 관찰하였으며, 상기 원반상의 소결체1을 포함하는 압전세라믹소자9의 전기특성을 측정하였다. 얻은 결과를 하기의 표2에 나타낸다. 표2에서 비교예는 종래의 압전세라믹소결체이며, 이것은 압전세라믹매트릭스(matrix)에 미립자상의 또는 덩어리상의 지르코니아 입자를 포함하지 않는, 종래방법으로 제조된 것이다. 측정시료들은 다음과 같이 이들의 용착정도에 대해 평가되었다: ○는 용착이 발생하지 않은 것, △는 부분적으로는 용착이 발생하였지만 개개의 것으로 분리가능한 것, ×는 개개의 것으로 분리가 불가능한 것. 표2에서,로 표시된 것은 본 발명의 범위 이외의 것이다.
시료번호 ZrO2첨가량(입자지름:20㎛)(중량%) 용착정도 왜곡(㎛) 분극파괴전압(㎸) 내습시험 1000hrs 후의 변화율
fr(%) k(%) Cx(%)
1 0 × 48 6.0 -0.42 2.01 1.37
2 0.1 10 6.2 -0.31 1.58 0.98
3 0.3 11 6.8 -0.20 1.13 0.44
4 0.5 11 7.0 -0.09 0.75 0.29
5 1 8 7.5 0.03 0.58 0.03
6 2 12 7.6 0.12 0.32 -0.58
7 3 19 7.0 0.29 0.12 -0.89
8 4 22 5.2 0.57 -0.54 -1.96
종래예 0 72 6.1 -0.40 1.97 1.31
또한, 각 시료의 분극파괴전압(break-down voltage for polarization) 및 내습시험을 실시하였던 시료들 개개의 전기특성의 변화를 측정하였다. 분극파괴전압이란, 시료에 직류전압을 점점 증가시켜서 인가하는 경우에, 각 시료의 유전파괴전압을 의미한다. 각 시료의 전기특성의 변화를 측정하기 위해, 85℃-85%RH-1000시간의 조건에서 각 시료의 내습시험을 실시하였다. 상기 시험후 24시간, 각 시료의 공진주파수(fr), 전기기계결합계수(kp), 및 비유전율(Cx)을, 내습시험전의 시료에 관하여 이들의 특성변화가 얻어지는 것으로부터 산출하였다. 0% 부근의 변화를 갖는 시료가 좋다.
표2에 나타낸 시험결과에 근거하여, 제4측면에 나타낸 바와 같이, 지르코니아의 첨가량을 한정하는 이유를 하기에 설명한다.
지르코니아(ZrO2)의 첨가량을 1중량% 이상(not smaller than)로 한정하는 이유는, 시료번호1에서와 같이, 첨가량이 0중량%인 경우에는, 세라믹소결체가 바람직하지 않게도 용착되기 때문이다.
지르코니아(ZrO2)의 첨가량을 3.0중량% 이하(not larger than)로 한정하는 이유는, 시료번호8에서와 같이, 첨가량이 4.0중량%인 경우에는, 세라믹소결체가 용착되지 않아서 본 발명의 목적을 달성할 수 있긴 하지만, 세라믹소자의 분극파괴전압이 바람직하지 않게도 저하되기 때문이다.
실시예2:
ZrO2를 2중량% 첨가하였던, 실시예1에서 얻은 원반상의 소결체1을 모니터하였고, 한편 PZT 및 ZrO2의 평균입자지름을 변화시키면서, 각 시료의 용착정도를 조사하였으며, 각 시료의 표면 평활성(surface smoothness)을 측정하였다. 이것의 결과를 표3에 나타낸다. 여기에서 측정된 시료들의 용착정도는 다음과 같이 평가되었다: ○는 용착이 발생하지 않은 것, △는 부분적으로는 용착이 발생하였지만 개개의 것으로 분리가능한 것, ×는 개개의 것으로 분리가 불가능한 것. 이들의 표면 평활성에 대해서, 표면 평활성이 종래의 세라믹소결체보다 우수한 시료는 ○로 표시하며, 표면 평활성이 종래의 세라믹소결체보다 열악한 것은 ×로 표시된다. 표3에서,로 표시된 시료는 본 발명의 범위외의 것이다.
시료번호 PZT의 입자지름(㎛) ZrO2의 입자지름(첨가량: 2중량%)(㎛) 용착정도 표면 평활성
10 2 5
11 2 10
12 2 20
13 2 30
14 2 50 ×
15 0.5 20
16 9 20
17 12 20
18 15 10 ×
19 15 20
20 15 30
표3에 나타낸 시험결과에 근거하여, 제1 및 제3 측면에서와 같이, PZT와 지르코니아의 평균입자지름을 한정하는 이유를 하기에 설명한다.
PZT의 평균입자지름을 지르코니아보다 작게(smaller than) 한정하는 이유는, 시료번호18에서와 같이, PZT의 평균입자지름이 ZrO2보다 크게(larger than)하는 경우에는, 세라믹소결체가 바람직하지 않게도 용착되기 때문이다.
PZT의 평균입자지름을 0.5㎛ 이상(not smaller than)으로 한정하는 이유는, PZT의 평균입자지름이 0.5㎛ 미만(smaller than)인 경우에는, 이런 PZT에 ZrO2를 첨가하여도, 세라믹의 압전특성(piezoelectric characteristics)을 향상시키는데에 효과를 볼 수 없기 때문이다.
PZT의 평균입자지름을 9.0㎛ 이하(not larger than)로 한정하는 이유는, 시료번호17, 시료번호19, 및 시료번호20에서와 같이, PZT의 평균입자지름이 10㎛보다 큰 (larger than) 경우에는, 허용범위 이내일지라도 세라믹소결체가 다소 용착되어 바람직하지 못하기 때문이다.
지르코니아의 평균입자지름을 10㎛ 이상(not smaller than)으로 한정하는 이유는, 시료번호10에서와 같이, ZrO2의 평균입자지름이 5㎛인 경우에는, 허용범위 이내일지라도 세라믹소결체가 다소 용착되어 바람직하지 못하기 때문이다.
지르코니아의 평균입자지름을 30㎛ 이하(not larger than)로 한정하는 이유는, 시료번호14에서와 같이, 지르코니아의 평균입자지름이 50㎛인 경우에는, 비록 세라믹소결체가 용착되지 않아서 본 발명의 목적을 달성할 수 있을지라도, 세라믹소결체의 표면 평활성이 열악하기 때문이다.
실시예3:
평균입자지름이 20㎛인 ZrO2를 2중량% PZT에 첨가한, 실시예1에서 얻은 원반상의 소결체1을 모니터하였다. 여기에서는, ZrO2의 첨가공정의 시간을 변화시키면서, 세라믹소결체의 용착정도를 조사하였으며, 얻은 개개의 세라믹소자의 전기기계결합계수를 측정하였다. 이들 시료들과 별도로, 여기에서는 또, 하소된 분말을 압출성형에 의해 성형함으로써 또 하나의 시료들을 준비하였으며, 또한 이상과 동일한 방법으로 모니터하여, 상기 시료의 전기기계결합계수를 측정하였다. 얻은 자료를 표4에 나타내었으며, 여기에서, ○는 용착이 발생하지 않은 것, ×는 개개의 것으로 분리가 불가능할 정도로 용착된 것을 나타낸다.
시료번호 ZrO2의 첨가시간(ZrO2입자지름: 20㎛,ZnO2첨가량: 2중량%) 용착정도 전기기계결합계수(확산방향으로 공진) k(%)
30 하소전 × 58.2
31 하소후~분쇄전 67.0
32 분쇄후~분무그레뉼레이션전 67.4
33 분무그레뉼레이션후~성형전 67.5
34 분쇄후~압출성형전 68.0
이하, 표4에 나타낸 시험결과에 근거하여, 제7 및 제8측면에서와 같이, 지르코니아의 첨가시간을 한정하는 이유를 설명한다.
지르코니아의 첨가공정을 압전성세라믹의 하소 이후로 한정하는 이유는, 시료번호30에서와 같이, ZrO2를 압전성세라믹의 하소전에 첨가한 경우에는, 세라믹소결체가 용착되며 얻은 소자의 전기기계결합계수가 작기 때문에, 그러한 것은 바람직하지 못하다.
표4의 결과에 의해 지지되지는 않았지만, 지르코니아의 첨가공정을 압전성세라믹의 성형 이전으로 한정하는 이유는, 이런 경우에는, 지르코니아가 압전성세라믹에 첨가될 수는 있지만, 세라믹 중에서 분산될 수는 없기 때문이다.
시료번호34에서와 같이, 압전성세라믹펠렛을 압출성형에 의해 성형하였으며, 또 세라믹이 하소되어 분쇄된 이후에서 이것이 성형되기 이전까지의 사이에 ZrO2를 세라믹에 첨가하였지만, 세라믹소결체가 용착되지 않았다는 것은 확실하였다.
실시예4:
도3에 도시한 바와 같이, 본 발명의 적층압전세라믹소자10은 하기에 설명된 방법으로 형성되었다. 도3에서, 내부전극의 위치는 점선(點線)으로 나타내며, 외부전극의 형성위치는 이점쇄선(二點鎖線; double dotted line)으로 나타낸다.
먼저, 압전성세라믹의 출발원료로서는, TiO2, ZrO2(지르코니아), 및 PbO를 준비하였고, 이들을 볼밀로 혼합하였다. 그런 다음, 얻은 혼합물을 800℃와 1000℃ 사이에서 하소하였으며, 그런 다음 충격식 분쇄기에서 분쇄함으로써, 가루상의 분말을 얻었다.
그런 다음, 지르코니아(ZrO2)를 상기 분말에 첨가하여, 혼합분말을 얻었다. 상기 혼합분말에, 이것을 굳히는 것으로 작용하는 폴리비닐 아세테이트(polyvinyl acetate)로 된 바인더를 첨가하였으며, 교반(攪拌)하여, 바인더 함유 혼합물을 얻었다. 그런 다음, 바인더 함유 혼합물을 풀링식성형기계(pulling-type molding machine)를 사용하여 성형하여, 두께가 20~100㎛인 세라믹 그린시트를 얻었다. 일부의 이들 세라믹그린시트 각각은 Ag-Pd로 이루어진 내부전극 페이스트로 스크린 인쇄되며, 이것을 교대로 적층함으로써 적층체를 얻었다. 얻은 적층체를 공기중에서 1000℃~1500℃에서 일정시간 소성하여, 압전세라믹소결체1과 내부전극12로 이루어진 적층소결체11을 얻었다. 그런 다음, 도3에 나타낸 바와 같이, 적층소결체11의 각각의 내부전극12의 노출부에 있어서, 폭방향의 양단에서 교대로 각각의 내부전극의 노출부를 피복하는 방식으로 절연제14를 형성하였으며, 그런 다음 적층소결체11의 길이방향에 평행으로, Ag로 이루어진 외부전극 페이스트를 적층소결체11에 2열로 도포한 후, 800~900℃에서 일정시간 소성하여, 외부전극13을 형성하였다. 이렇게 하여 적층압전세라믹소자10을 얻었다.
상술한 실시예1~실시예4에 있어서는, 압전성세라믹으로서 PZT가 사용되었지만, 여기에 한정되지는 않는다. 본 발명의 세라믹소결체의 제조에 있어서, 예를 들어, PT(lead titanate; 티탄산 납)계 세라믹, BT(barium titanate; 티탄산 바륨)계 세라믹과 같은 다른 압전성세라믹도, 본 발명의 소자의 특성을 손상하지 않고서, 사용될 수 있다.
이상에서 상세하게 설명한 바와 같이, 본 발명의 압전세라믹소결체 및 이것의 제조방법은, 세라믹이 유전파괴(dielectric breakdown)의 발생없이 분극용 고전압에 대한 내성(resistant to high voltage for polarization)이 있으며, 또 내습성이 우수하다는 점에서 유리하며, 또한 이들을 소성하는 공정중에 이들이 용착되는 것이 방지된다는 점에서 유리하다. 게다가, 세라믹의 제조비용이 절감된다.
게다가, 상기 압전세라믹소결체를 포함하는 본 발명의 압전세라믹소자 및 적층압전세라믹소자는, 유전파괴의 발생없이 분극용 고전압에 대한 내성이 있으며 또 내습성이 우수하다는 점에서 유리하다. 게다가, 적층압전세라믹소자의 제조에 있어서, 적층세라믹소결체가 용착되는 것이 방지된다.
본 발명의 특정 구현예들을 참조하여 본 발명을 상세하게 설명하였지만, 본 발명의 요지와 범위를 벗어남이 없이 다양한 변경 및 변형이 거기에 적용가능하다는 것은 당업계의 업자들에게는 명백한 일이다.

Claims (13)

  1. 압전성세라믹(piezoelectric ceramic) 입자중에 분산된, 미립자( particulate)상의 또는 덩어리(agglomerate)상의 지르코니아 입자(zirconia grains)를 함유하는 압전세라믹소결체(sintered piezoelectric ceramic)에 있어서,
    상기 압전성세라믹 입자의 평균입자지름이 상기 지르코니아 입자보다 작은(smaller than) 것을 특징으로 하는 압전세라믹소결체.
  2. 주성분으로서 압전성세라믹 입자를 포함하고 부성분으로서 지르코니아 입자를 포함하는 압전세라믹소결체에 있어서,
    상기 지르코니아 입자의 평균입자지름이 상기 압전성세라믹 입자보다 큰 것(larger than)을 특징으로 하는 압전세라믹소결체.
  3. 제1항에 있어서, 상기 압전성세라믹 입자의 평균입자지름은 0.5㎛~9.0㎛이며, 상기 지르코니아 입자의 평균입자지름은 10㎛~30㎛인 것을 특징으로 하는 압전세라믹소결체.
  4. 제1항에 있어서, 상기 지르코니아 입자의 첨가량은 상기 압전성세라믹 입자의 0.1~3.0중량%인 것을 특징으로 하는 압전세라믹소결체.
  5. 제1항에 기재된 압전세라믹소결체의 양주면에, 전극들을 형성함으로써 제작된 것을 특징으로 하는 압전세라믹소자(piezoelectric ceramic device).
  6. 제1항에 기재된 압전세라믹소결체로 된 층과, 인접한 압전세라믹소결체층들 사이에 적층되어 있는 내부전극층을 포함하는 적층압전세라믹소자(monolithic piezoelectric ceramic device)에 있어서, 상기 내부전극의 노출면에 접속되도록 형성된 외부전극을 구비하는 것을 특징으로 하는 적층압전세라믹소자.
  7. 압전성세라믹용의 분말상의 재료를 혼합하여, 분말상의 혼합물을 얻는 공정;
    상기 혼합물을 하소하여, 하소체(calcined body)를 얻는 공정;
    상기 하소체를 가루상의 분말로 분쇄하는 공정;
    상기 분말을 바인더와 혼합하여, 바인더 함유 혼합물을 얻는 공정;
    상기 혼합물을 성형체(mold)로 성형하는 공정; 및
    상기 성형체를 소성하여 소결체(sintered molding)를 얻는 공정
    을 포함하는 압전세라믹소결체의 제조방법에 있어서,
    상기 소결체를 구성하는 입자보다 평균입자지름이 큰, 미립자상의 또는 덩어리상의 지르코니아 입자를, 하소체를 얻는 공정 이후에서 성형체를 얻는 공정 이전까지의 사이에, 세라믹에 첨가하는 것을 특징으로 하는 방법.
  8. 압전성세라믹용의 분말상의 재료를 혼합하여, 분말상의 혼합물을 얻는 공정;
    상기 혼합물을 하소하여, 하소체(calcined body)를 얻는 공정;
    상기 하소체를 가루상의 분말로 분쇄하는 공정;
    상기 분말을 바인더와 혼합하여, 바인더 함유 혼합물을 얻는 공정;
    상기 바인더 함유 혼합물을 과립상의 펠렛(pellets)으로 그레뉼레이팅(granulating)하는 공정;
    상기 펠렛을 성형체로 성형하는 공정; 및
    상기 성형체를 소성하여 소결체를 얻는 공정
    을 포함하는 압전세라믹소결체의 제조방법에 있어서,
    상기 소결체를 구성하는 입자보다 평균입자지름이 큰, 미립자상의 또는 덩어리상의 지르코니아 입자를, 하소체를 얻는 공정 이후에서 성형체를 얻는 공정 이전까지의 사이에, 세라믹에 첨가하는 것을 특징으로 하는 방법.
  9. 제7항에 기재된 압전세라믹소결체의 제조방법에 있어서, 지르코니아 입자를, 하소체를 분쇄하여 이루어진 분말에 첨가하는 것을 특징으로 하는 방법.
  10. 제7항에 기재된 압전세라믹소결체의 제조방법에 있어서, 바인더 함유 혼합물의 제조공정중에 지르코니아 입자를 세라믹에 바인더와 함께 첨가하거나, 또는 바인더 함유 혼합물의 제조공정 이후에 이들을 거기에 첨가하는 것을 특징으로 하는 방법.
  11. 제8항에 기재된 압전세라믹소결체의 제조방법에 있어서, 과립상의 펠렛의 제조공정 이후에 지르코니아 입자를 세라믹에 첨가하는 것을 특징으로 하는 방법.
  12. 제7항에 있어서, 상기 세라믹소결체 입자의 평균입자지름은 0.5㎛~9.0㎛이며, 첨가하는 지르코니아 입자의 평균입자지름은 10㎛~30㎛인 것을 특징으로 하는 압전세라믹소결체의 제조방법.
  13. 제7항에 있어서, 상기 지르코니아 입자의 첨가량은 하소된 세라믹의 0.1~3.0중량%인 것을 특징으로 하는 압전세라믹소결체의 제조방법.
KR1019980024504A 1997-06-27 1998-06-27 압전세라믹소결체,압전세라믹소자,적층압전세라믹소자,및압전세라믹소결체의제조방법 KR100303766B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17222697 1997-06-27
JP9-172226 1997-06-27
JP09014498A JP3301380B2 (ja) 1997-06-27 1998-04-02 圧電セラミック焼結体、圧電セラミック素子、および積層圧電セラミック素子、ならびに圧電セラミック焼結体の製造方法
JP10-90144 1998-04-02

Publications (2)

Publication Number Publication Date
KR19990007407A true KR19990007407A (ko) 1999-01-25
KR100303766B1 KR100303766B1 (ko) 2001-09-24

Family

ID=26431649

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980024504A KR100303766B1 (ko) 1997-06-27 1998-06-27 압전세라믹소결체,압전세라믹소자,적층압전세라믹소자,및압전세라믹소결체의제조방법

Country Status (5)

Country Link
US (1) US5958285A (ko)
JP (1) JP3301380B2 (ko)
KR (1) KR100303766B1 (ko)
CN (1) CN1085637C (ko)
DE (1) DE19828438C2 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552471B1 (en) * 1999-01-28 2003-04-22 Parallel Design, Inc. Multi-piezoelectric layer ultrasonic transducer for medical imaging
JP3783534B2 (ja) * 2000-08-18 2006-06-07 株式会社村田製作所 圧電磁器焼結体および圧電磁器素子
CN1240088C (zh) 2001-07-02 2006-02-01 株式会社新王磁材 制备稀土烧结磁体的方法
JP2005263600A (ja) * 2004-03-22 2005-09-29 Yazaki Corp ジルコニア中空粒子の製造方法。
JP4926389B2 (ja) * 2004-06-17 2012-05-09 株式会社豊田中央研究所 結晶配向セラミックス、及びその製造方法
US7332851B2 (en) * 2004-09-29 2008-02-19 Ngk Insulators, Ltd. Piezoelectric/electrostrictive film type device and method of manufacturing the same
EP2101364A4 (en) * 2006-12-06 2013-04-03 Murata Manufacturing Co LAMINATED PIEZOELECTRIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
DE102008046336A1 (de) * 2008-09-09 2010-03-11 Osram Gesellschaft mit beschränkter Haftung LTCC-Schichtstapel
CN104821224A (zh) * 2015-05-18 2015-08-05 中国科学技术大学 一种基于压电陶瓷材料的电感及其应用
WO2018138070A2 (de) * 2017-01-30 2018-08-02 Ceramtec Gmbh Verfahren zur herstellung eines keramischen teils auf basis von blei-zirkonat-titanat
CN110955041A (zh) * 2020-01-10 2020-04-03 太原理工大学 一种基于sebs薄膜的全固态可变焦压电驱动式微透镜
CN111393173B (zh) * 2020-03-18 2022-03-22 广州凯立达电子股份有限公司 一种压电陶瓷叠堆烧结用隔粘剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3103441A (en) * 1963-09-10 Ceramic materials having flat temperature characteristics
BE509098A (ko) * 1951-02-10
JPS5922148B2 (ja) * 1977-04-02 1984-05-24 日本碍子株式会社 電子工業用セラミツクス焼成用窯道具
JPS55144475A (en) * 1979-04-27 1980-11-11 Tohoku Metal Ind Ltd Manufacture of ceramics sheet
JPS6027657A (ja) * 1983-07-26 1985-02-12 株式会社村田製作所 セラミクスの焼成方法
US5312790A (en) * 1993-06-09 1994-05-17 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric material

Also Published As

Publication number Publication date
JPH1171174A (ja) 1999-03-16
DE19828438A1 (de) 1999-02-11
CN1085637C (zh) 2002-05-29
US5958285A (en) 1999-09-28
CN1206700A (zh) 1999-02-03
DE19828438C2 (de) 2002-08-01
JP3301380B2 (ja) 2002-07-15
KR100303766B1 (ko) 2001-09-24

Similar Documents

Publication Publication Date Title
EP2267808B1 (en) Piezoelectric/electrostrictive element and manufacturing method thereof
EP1382587B1 (en) Piezoelectric porcelain and method for preparation thereof, and piezoelectric element
KR100303766B1 (ko) 압전세라믹소결체,압전세라믹소자,적층압전세라믹소자,및압전세라믹소결체의제조방법
US20080252179A1 (en) Piezoelectric Element and Method for Manufacturing the Piezoelectric Element
JP2004002069A (ja) 圧電磁器の製造方法および圧電素子の製造方法
JP4727458B2 (ja) 圧電セラミックス用焼結助剤、bnt−bt系圧電セラミックス、積層型圧電デバイスおよびbnt−bt系圧電セラミックスの製造方法
US6372152B1 (en) Piezoelectric ceramic composition and ceramic piezoelectric device employing the composition
JP4403967B2 (ja) 圧電デバイスの製造方法
KR940005542B1 (ko) 세라믹 조성물 및 이를 이용한 전자부품
JP5345834B2 (ja) 非鉛系圧電セラミックス、積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法
EP1630149B1 (en) Piezoelectric ceramic composition and piezoelectric element including the same
KR100657194B1 (ko) 압전자기 조성물, 압전소자 및 이들의 제조방법
US7564176B2 (en) Laminated piezoelectric element and production method of the same
US20020060306A1 (en) Piezoelectric ceramic composition and piezoelectric element containing the same
EP0780350B1 (en) Piezoelectric ceramic composition
US20080067897A1 (en) Production Method of Piezoelectric Ceramic, Production Method of Piezoelectric Element, and Piezoelectric Element
JPH11322422A (ja) 圧電セラミック材料
JP4736585B2 (ja) 圧電磁器組成物
EP0356839B1 (en) Piezoelectric ceramic material
JP3245933B2 (ja) 抵抗体
JP2005035843A (ja) 圧電セラミックスおよび焼結助剤ならびに積層型圧電素子
JP2003160377A (ja) 誘電体磁器組成物およびこれを用いた積層セラミック部品
JPH07277820A (ja) 圧電磁器組成物
JPH0848572A (ja) 鉛化合物含有圧電セラミックス素子の製造方法
JP2003221274A (ja) 誘電体磁器組成物およびこれを用いた積層セラミック部品

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130618

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160705

Year of fee payment: 16

EXPY Expiration of term