KR102431407B1 - 볼티지 레귤레이터 - Google Patents

볼티지 레귤레이터 Download PDF

Info

Publication number
KR102431407B1
KR102431407B1 KR1020160097746A KR20160097746A KR102431407B1 KR 102431407 B1 KR102431407 B1 KR 102431407B1 KR 1020160097746 A KR1020160097746 A KR 1020160097746A KR 20160097746 A KR20160097746 A KR 20160097746A KR 102431407 B1 KR102431407 B1 KR 102431407B1
Authority
KR
South Korea
Prior art keywords
transistor
output
voltage
current
gate
Prior art date
Application number
KR1020160097746A
Other languages
English (en)
Other versions
KR20170018772A (ko
Inventor
다이키 엔도
Original Assignee
에이블릭 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이블릭 가부시키가이샤 filed Critical 에이블릭 가부시키가이샤
Publication of KR20170018772A publication Critical patent/KR20170018772A/ko
Application granted granted Critical
Publication of KR102431407B1 publication Critical patent/KR102431407B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

(과제) 제한 전류와 단락 전류를 따로따로 조정할 필요가 없고, 일괄적으로 조정이 가능한 과전류 보호 회로를 구비한 볼티지 레귤레이터를 제공한다.
(해결 수단) 출력 트랜지스터의 출력 전류를 센스하는 트랜지스터로부터 공급되는 전류를 분배하고, 그 분배된 전류에 의해 출력 트랜지스터의 게이트 전압을 제어하여 출력 전류를 제한하는 출력 전류 제한 회로를 구비한 과전류 보호 회로에 있어서, 출력 전류를 센스하는 트랜지스터로부터 분배되는 전류를 상기 출력 트랜지스터가 출력하는 전압에 따라 변화시켜, 그 분배의 비가 구성하는 소자의 사이즈비로 결정되도록 구성한다.

Description

볼티지 레귤레이터{VOLTAGE REGULATOR}
본 발명은 볼티지 레귤레이터에 관한 것으로, 특히 과전류 보호 회로를 구비한 볼티지 레귤레이터에 관한 것이다.
볼티지 레귤레이터의 과전류 보호 회로에는, 출력의 전류-전압 특성이 수하 (垂下) 특성이 되는 과전류 보호 회로 (수하형 과전류 보호 회로) 와 フ 자 특성이 되는 과전류 보호 회로 (フ 자형 과전류 보호 회로) 가 있다.
수하형 과전류 보호 회로는, 예를 들어, 특허문헌 1 에 나타내는 바와 같이, 볼티지 레귤레이터의 출력 트랜지스터에 흐르는 전류가 소정의 전류를 초과하지 않게 제한한다. 출력 트랜지스터에 흐르는 제한된 전류 (이하, 「제한 전류」 라고도 한다) 는, 제조 공정에서 기인하여 흐트러지기 때문에, 출력 전류를 센스하는 센스 트랜지스터가 흘리는 전류를 받는 저항을 복수의 저항 소자에 의해 구성하고, 이것을 트리밍함으로써 저항값을 조정하여, 제한 전류를 원하는 값으로 설정한다.
한편, フ 자형 과전류 보호 회로는, 볼티지 레귤레이터의 출력 단자가 접지 단자에 단락했을 때에 생기는 과대한 손실에 의한 IC 의 파손을 방지하기 위한 회로이며, 예를 들어, 특허문헌 2 에 나타내는 바와 같이, 볼티지 레귤레이터의 출력 트랜지스터에 어느 값 이상의 전류가 흐르면 전류 제한을 개시하여, 출력 전압의 저하에 수반하여 출력 전류를 적극적으로 감소시킨다. 또한, 출력 단자가 접지 단자에 단락했을 때에 출력 트랜지스터에 흐르는 전류를 「단락 전류」 라고 한다. フ 자형 과전류 보호 회로에 있어서도, 상기 서술한 수하형 과전류 보호 회로와 동일하게, 센스 트랜지스터가 흘리는 전류를 받는 저항을 복수의 저항 소자에 의해 구성하고, 이것을 트리밍함으로써 저항값을 조정하여, 단락 전류를 원하는 값으로 설정한다.
일본 공개특허공보 2003-29856호 일본 특허공보 평7-74976호
종래의 볼티지 레귤레이터에 있어서, 과전류 보호 회로에 의해 수하 특성과 フ 자 특성의 양방을 얻기 위해서는, 특허문헌 1 에 기재되는 바와 같은 수하형 과전류 보호 회로와 특허문헌 2 에 기재되는 바와 같은 フ 자형 과전류 보호 회로를 병존시킬 필요가 생긴다. 그러나, 상기 서술한 바와 같이, 종래의 수하형 과전류 보호 회로 및 フ 자형 과전류 보호 회로에서는, 제조 공정상의 편차에 대해 제한 전류 및 단락 전류를 원하는 값으로 설정하기 위해서는, 양 보호 회로 내의 조정용의 저항의 각각을 복수의 저항 소자에 의해 구성할 필요가 생기므로, 칩 사이즈가 증대된다는 과제가 있다.
따라서, 본 발명의 목적은 상기와 같은 과제를 해결하여, 제한 전류와 단락 전류를 따로따로 조정할 필요가 없고, 일괄적으로 조정이 가능한 과전류 보호 회로를 구비한 볼티지 레귤레이터를 제공하는 것에 있다.
상기 과제를 해결하기 위해서, 본 발명에 있어서의 볼티지 레귤레이터는, 출력 트랜지스터와, 상기 출력 트랜지스터가 출력하는 전압을 분압한 분압 전압과 기준 전압의 차를 증폭시켜 출력하여, 상기 출력 트랜지스터의 게이트를 제어하는 제 1 오차 증폭 회로와, 상기 출력 트랜지스터에 과전류가 흐른 것을 검출하고, 상기 출력 트랜지스터의 전류를 제한하는 과전류 보호 회로를 구비한 볼티지 레귤레이터로서, 상기 과전류 보호 회로는, 상기 제 1 오차 증폭 회로의 출력 전압으로 제어되고, 상기 출력 트랜지스터의 출력 전류를 센스하는 제 1 트랜지스터와, 소스를 접지하고, 게이트와 드레인을 상기 제 1 트랜지스터의 드레인에 접속한 제 2 트랜지스터와, 드레인을 상기 제 1 트랜지스터의 드레인에 접속한 제 3 트랜지스터와, 상기 제 3 트랜지스터의 소스에 접속된 제 1 저항과, 소스를 접지하고, 게이트를 상기 제 2 트랜지스터의 게이트와 드레인에 접속하고, 드레인을 상기 제 1 저항을 개재하여 상기 제 3 트랜지스터의 소스에 접속한 제 4 트랜지스터와, 소스를 접지하고, 게이트를 상기 제 2 트랜지스터의 게이트와 드레인에 접속한 제 5 트랜지스터와, 상기 출력 트랜지스터가 출력하는 전압과 상기 제 1 저항에 인가되는 전압이 동일해지도록 상기 제 3 트랜지스터의 게이트를 제어하는 전압 제어 전압원과, 상기 제 5 트랜지스터에 흐르는 전류에 비례한 전류를 출력하는 커런트 미러 회로를 구비하고, 상기 커런트 미러 회로가 출력하는 전류에 의해, 상기 출력 트랜지스터의 게이트 전압을 제어하는 출력 전류 제한 회로를 구비한 것을 특징으로 한다.
본 발명의 과전류 보호 회로를 구비한 볼티지 레귤레이터에 의하면, 제 2 트랜지스터와 제 4 트랜지스터의 사이즈비에 의해 제한 전류와 단락 전류의 비를 결정하는 것이 가능해진다. 따라서, 제조 공정상의 편차에 의한 제한 전류 및 단락 전류의 변동에 대해서는, 하나의 저항을 트리밍하는 것만으로, 즉 일괄적으로 조정할 수 있고, 따라서, 칩 사이즈의 증대를 억제하는 것이 가능해진다.
도 1 은, 본 발명의 제 1 실시형태의 과전류 보호 회로를 구비한 볼티지 레귤레이터의 회로도이다.
도 2 는, 본 발명의 실시형태의 과전류 보호 회로를 구비한 볼티지 레귤레이터의 출력 전류-전압 특성을 나타내는 그래프이다.
도 3 은, 본 발명의 제 2 실시형태의 과전류 보호 회로를 구비한 볼티지 레귤레이터의 회로도이다.
도 4 는, 본 발명의 제 3 실시형태의 과전류 보호 회로를 구비한 볼티지 레귤레이터의 회로도이다.
이하, 본 발명의 실시형태에 대해 도면을 참조하여 설명한다.
[실시형태 1]
도 1 은, 본 발명의 제 1 실시형태의 과전류 보호 회로를 구비한 볼티지 레귤레이터의 회로도이다.
제 1 실시형태의 볼티지 레귤레이터는, 전원 단자 (101) 와, 출력 단자 (102) 와, 기준 전압 회로 (103) 와, 에러 앰프 (오차 증폭 회로) (104) 와, PMOS 트랜지스터 (출력 트랜지스터) (105) 와, 분압 회로 (106) 와, 과전류 보호 회로 (200) 를 갖는다.
출력 트랜지스터 (105) 는, 게이트가 에러 앰프 (104) 의 출력 단자에 접속되고, 소스가 전원 단자 (101) 에 접속되고, 드레인이 출력 단자 (102) 에 접속된다. 출력 단자 (102) 는 분압 회로 (106) 에 접속된다. 분압 회로 (106) 의 출력 단자는, 에러 앰프 (104) 의 비반전 입력 단자에 접속된다. 에러 앰프 (104) 의 반전 입력 단자에는, 기준 전압 회로 (103) 의 출력 단자가 접속된다.
이상으로부터, 에러 앰프 (104) 는, 분압 회로 (106) 의 출력 단자 전압과 기준 전압 회로 (103) 의 전압을 비교하여, 분압 회로 (106) 의 출력 단자 전압이 기준 전압 회로 (103) 의 전압과 동일해지도록 출력 트랜지스터 (105) 를 구동시킴으로써, 출력 단자 (102) 를 정전압으로 제어한다.
다음으로, 과전류 보호 회로 (200) 에 대해 설명한다.
과전류 보호 회로 (200) 는, PMOS 트랜지스터 (122, 123, 124 및 126) 와, NMOS 트랜지스터 (130, 131, 132, 134 및 136) 와, 저항 (125, 133 및 137) 과, 에러 앰프 (140) 를 구비하고 있다.
PMOS 트랜지스터 (122) 는, 게이트가 에러 앰프 (104) 의 출력 단자에 접속되고, 소스가 전원 단자 (101) 에 접속된다. NMOS 트랜지스터 (131) 의 게이트 및 드레인은, PMOS 트랜지스터 (122) 의 드레인에 접속되고, 소스는 접지 단자에 접속된다. NMOS 트랜지스터 (132) 의 게이트는, NMOS 트랜지스터 (131) 의 게이트 및 드레인에 접속되고, 소스는 접지 단자에 접속된다. PMOS 트랜지스터 (123) 의 게이트 및 드레인은, NMOS 트랜지스터 (132) 의 드레인에 접속되고, 소스는 전원 단자 (101) 에 접속된다. PMOS 트랜지스터 (124) 의 게이트는, PMOS 트랜지스터 (123) 의 게이트 및 드레인에 접속되고, 소스는 전원 단자 (101) 에 접속된다. 저항 (133) 은, 일단이 PMOS 트랜지스터 (124) 의 드레인에 접속되고, 타단자가 접지 단자에 접속된다. NMOS 트랜지스터 (134) 의 게이트는, 저항 (133) 의 일단과 PMOS 트랜지스터 (124) 의 드레인에 접속되고, 소스가 접지 단자에 접속된다. 저항 (125) 은, 일단이 NMOS 트랜지스터 (134) 의 드레인에 접속되고, 타단이 전원 단자 (101) 에 접속된다. PMOS 트랜지스터 (126) 는, 게이트가 저항 (125) 의 일단과 NMOS 트랜지스터 (134) 의 드레인에 접속되고, 소스가 전원 단자 (101) 에 접속되고, 드레인이 에러 앰프 (104) 의 출력 단자에 접속된다. NMOS 트랜지스터 (136) 는, 드레인이 PMOS 트랜지스터 (122) 의 드레인에 접속되고, 게이트가 에러 앰프 (140) 의 출력 단자에 접속되고, 소스가 저항 (137) 의 일단에 접속된다. 에러 앰프 (140) 는, 비반전 입력 단자가 출력 단자 (102) 에 접속되고, 반전 입력 단자가 NMOS 트랜지스터 (136) 의 소스와 저항 (137) 의 일단에 접속된다. 저항 (137) 은, 타단이 NMOS 트랜지스터 (130) 의 드레인에 접속된다. NMOS 트랜지스터 (130) 는, 게이트가 NMOS 트랜지스터 (131) 의 게이트 및 드레인에 접속되고, 소스가 접지 단자에 접속된다.
또한, 에러 앰프 (140) 에 의해 전압 제어 전압원 (201) 이 구성되고, NMOS 트랜지스터 (131 및 132) 에 의해 커런트 미러 회로 (202) 가 구성되고, PMOS 트랜지스터 (123 및 124) 에 의해 커런트 미러 회로 (203) 가 구성되고, 저항 (125), PMOS 트랜지스터 (126), 저항 (133), 및 NMOS 트랜지스터 (134) 에 의해 출력 전류 제한 회로 (204) 가 구성되어 있다.
다음으로 과전류 보호 회로 (200) 의 동작을 설명한다. PMOS 트랜지스터 (122) 는, 게이트 및 소스를 출력 트랜지스터 (105) 와 공통으로 하고 있기 때문에, 출력 트랜지스터 (105) 가 부하에 공급하는 전류에 비례한 전류를 드레인으로부터 흘린다. PMOS 트랜지스터 (122) 의 드레인으로부터 흐르는 전류는, 병렬로 접속된 NMOS 트랜지스터 (131) 와 NMOS 트랜지스터 (136) 로 분배된다.
에러 앰프 (140) 는, 출력 단자 (102) 의 전압과 저항 (137) 에 발생하는 전압을 비교하여, 출력 단자 (102) 의 전압과 NMOS 트랜지스터 (136) 의 소스 전압이 동일해지도록 NMOS 트랜지스터 (136) 의 게이트 전압을 제어한다.
여기서, 출력 단자 (102) 에 과전류가 흐른 상태에서, 출력 단자 (102) 의 전압이 높은 경우를 생각한다. 출력 단자 (102) 의 전압이 높기 때문에, NMOS 트랜지스터 (136) 는, 전류를 흘려 소스 전압이 높아지도록 게이트 전압을 제어한다. 저항 (137) 과 NMOS 트랜지스터 (130) 는 직렬로 접속되어 있기 때문에, NMOS 트랜지스터 (130, 131) 로 구성되는 커런트 미러 회로에 의해, 저항 (137) 에 흐르는 전류가 결정된다. NMOS 트랜지스터 (130 과 131) 의 트랜지스터 사이즈비를 n : 1 로 하면, PMOS 트랜지스터 (122) 의 드레인으로부터 흐르는 전류는, NMOS 트랜지스터 (130 과 131) 에 n : 1 로 분배된다. 즉, 출력 전류-전압 특성은 수하 특성을 나타낸다.
다음으로, 출력 단자 (102) 에 흐르는 과전류에 의해, 출력 단자 (102) 의 전압이 저하되었을 경우를 생각한다. NMOS 트랜지스터 (136) 는, 소스 전압이 낮아지도록 게이트 전압을 제어한다. NMOS 트랜지스터 (130) 에 흐르는 전류는, 출력 단자 (102) 의 전압의 저하에 의해, 저항 (137) 에 인가되는 전압 (출력 단자 (102) 의 전압) 과 저항 (137) 의 저항값에 의해 제한된다. 출력 단자 (102) 가 접지 단자에 단락했을 때에 NMOS 트랜지스터 (130) 에 흐르는 전류가, NMOS 트랜지스터 (131) 에 흐르는 전류보다 충분히 작아 무시할 수 있을 것으로 가정하면, PMOS 트랜지스터 (122) 로부터 NMOS 트랜지스터 (131) 로 흐르는 전류의 분배의 비는, n + 1 로 증가한다. NMOS 트랜지스터 (130) 에 흐르는 전류의 감소는, 저항 (137) 의 저항값과 출력 단자 (102) 의 전압에 동일한 저항 (137) 에 인가되는 전압의 저하에 의한 변화이기 때문에, 출력 단자 (102) 의 전압에 대해 선형의 변화가 된다. 즉, 출력 전류-전압 특성은 フ 자 특성을 나타낸다.
NMOS 트랜지스터 (131) 에 흐르는 전류는, 커런트 미러 회로 (202) 와 커런트 미러 회로 (203) 에 의해, PMOS 트랜지스터 (122) 에 흐르는 전류에 비례한 전류로서 저항 (133) 에 인가된다. 저항 (133) 에 발생한 전압은, 저항 (125) 및 NMOS 트랜지스터 (134) 에 의해 구성되는 소스 접지 증폭 회로에 의해 증폭되고, PMOS 트랜지스터 (126) 를 구동시켜 출력 트랜지스터 (105) 에 흐르는 전류를 제한한다.
과전류 보호 회로 (200) 가 출력 트랜지스터 (105) 에 흐르는 전류를 제한하고 있을 때에 저항 (133) 에 발생하는 전압은, 출력 단자 (102) 의 전압에 상관없이 일정하다. 여기서, 설명을 간략화하기 위해서 PMOS 트랜지스터 (123, 124) 및 NMOS 트랜지스터 (131, 132) 의 트랜지스터 사이즈비가 동일한 것으로 가정한다. 저항 (133) 에 흐르는 전류는, 커런트 미러 회로 (202 및 203) 에 의해 공급되기 때문에, 과전류 보호 회로 (200) 가 출력 트랜지스터 (105) 에 흐르는 전류를 제한하고 있을 때에 NMOS 트랜지스터 (131) 에 흐르는 전류도 일정하다. NMOS 트랜지스터 (131) 에 흐르는 전류는, PMOS 트랜지스터 (122) 의 드레인으로부터 흐르는 전류로부터 분배된 전류이다. 그 분배는 출력 단자 (102) 가 접지 단자에 단락되어 있는 경우와 출력 단자 (102) 의 전압이 높은 경우에서는, n + 1 : 1 이 된다. 과전류 보호 회로 (200) 가 출력 트랜지스터 (105) 에 흐르는 전류를 제한하고 있을 때의 NMOS 트랜지스터 (131) 에 흐르는 전류는 일정하기 때문에, PMOS 트랜지스터 (122) 의 드레인으로부터 흐르는 전류는, 출력 단자 (102) 가 접지 단자에 단락되어 있는 경우와 출력 단자 (102) 의 전압이 높은 경우에서는, 1 : n + 1 이 된다. PMOS 트랜지스터 (122) 는 출력 트랜지스터 (105) 에 흐르는 전류에 비례한 전류이기 때문에, 출력 트랜지스터 (105) 에 흐르는 제한된 전류는, 출력 단자 (102) 가 접지 단자에 단락되어 있는 경우와 출력 단자 (102) 의 전압이 높은 경우에서는, 1 : n + 1 이 된다.
이상으로부터, 과전류 보호 회로 (200) 는, 구성 소자의 사이즈비, 즉, NMOS 트랜지스터 (130 과 131) 의 사이즈비에 의해 제한 전류와 단락 전류의 비가 결정되기 때문에, 그들 값의 조정은 일괄적으로 실시하는 것이 가능해진다.
도 2 는, 본 실시형태의 볼티지 레귤레이터 (100) 의 출력 전류 (부하 전류) (IOUT) 와 출력 전압 (VOUT) 의 관계를 나타내는 그래프이다. 출력 트랜지스터 (105) 가 흘리는 부하 전류 (IOUT) 는, 출력 단자 (102) 의 전압인 출력 전압 (VOUT) 의 저하에 따라 감소하고, 출력 단자 (102) 가 접지 단자에 단락했을 때에 흐르는 단락 전류와 제한 전류의 비는, 1 : n + 1 과, 구성 소자의 사이즈비로 결정될 수 있다.
또, 제조 공정상의 편차에 대한 제한 전류 및 단락 전류의 조정에 대해서는, 출력 전류 제한 회로 (204) 내의 저항 (133) 의 저항값만을 트리밍에 의해 조정하면 된다. 따라서, 종래는, 수하형 과전류 보호 회로와 フ 자형 과전류 보호 회로 각각으로 조정 가능한 저항이 필요, 즉 2 개의 조정 가능한 저항이 필요했던 것에 대해, 본 실시형태에 의하면, 하나의 조정 가능한 저항이 있으면 제조 공정상의 편차에 대한 제한 전류 및 단락 전류의 조정이 가능하다. 따라서, 칩 사이즈의 증대를 억제하는 것이 가능해진다.
[실시형태 2]
도 3 은, 본 발명의 제 2 실시형태의 과전류 보호 회로 (300) 를 구비한 볼티지 레귤레이터 (100a) 의 회로도이다.
제 2 실시형태의 과전류 보호 회로 (300) 는, 제 1 실시형태에 있어서의 NMOS 트랜지스터 (136) 에 접속하는 에러 앰프 (140) 로 구성된 전압 제어 전압원 (201) 을, 전류원 (121) 과 NMOS 트랜지스터 (135) 로 구성된 전압 제어 전압원 (301) 으로 치환하여 구성하고 있다. 그 밖의 구성은, 도 1 에 나타내는 과전류 보호 회로 (200) 와 동일하기 때문에, 동일한 구성 요소에는 동일한 부호를 부여하고, 중복되는 설명은 적절히 생략한다.
전류원 (121) 은, 일단이 전원 단자 (101) 에 접속되고, 타단이 NMOS 트랜지스터 (135) 의 드레인 및 게이트에 접속된다. NMOS 트랜지스터 (135) 의 소스는, 출력 단자 (102) 에 접속된다. NMOS 트랜지스터 (136) 의 게이트는, NMOS 트랜지스터 (135) 의 게이트 및 드레인에 접속된다.
다음으로 과전류 보호 회로 (300) 의 동작을 설명한다. NMOS 트랜지스터 (136) 의 게이트에는, 전원 단자 (101) 와 출력 단자 (102) 사이에 접속되어 있는, 전류원 (121) 과 NMOS 트랜지스터 (135) 에 의해 분압된 전압이 인가된다. NMOS 트랜지스터 (135) 는, 게이트와 드레인이 단락되어 있기 때문에, NMOS 트랜지스터 (136) 의 게이트에는, 출력 단자 (102) 보다 NMOS 트랜지스터 (135) 의 임계값 전압분만큼 높은 전압이 인가된다. 또, NMOS 트랜지스터 (136) 의 소스에 접속된 저항 (137) 에는, NMOS 트랜지스터 (136) 의 게이트에 인가되는 전압보다, NMOS 트랜지스터 (136) 의 임계값 전압분만큼 낮은 전압이 인가된다. 그 때문에, NMOS 트랜지스터 (135 및 136) 가 동일 구조의 소자인 경우에는, 저항 (137) 에는 출력 단자 (102) 에 동일한 전압이 인가된다. 그 밖의 동작은, 본 발명의 제 1 실시형태의 과전류 보호 회로 (200) 와 동일하다.
[실시형태 3]
도 4 는, 본 발명의 제 3 실시형태의 과전류 보호 회로 (400) 를 구비한 볼티지 레귤레이터 (100b) 의 회로도이다.
제 3 실시형태의 과전류 보호 회로 (400) 는, 제 2 실시형태에 있어서의 전류원 (121) 과 NMOS 트랜지스터 (135) 로 구성된 전압 제어 전압원 (301) 을, 전류원 (121) 을 PMOS 트랜지스터 (127) 로 치환한 전압 제어 전압원 (401) 으로 구성하고 있다. 그 밖의 구성은, 도 1 에 나타내는 과전류 보호 회로 (100) 와 동일하기 때문에, 동일한 구성 요소에는 동일한 부호를 부여하고, 중복되는 설명은 적절히 생략한다.
PMOS 트랜지스터 (127) 는, 게이트가 출력 트랜지스터 (105) 의 게이트에 접속되고, 소스가 전원 단자 (101) 에 접속되고, 드레인이 NMOS 트랜지스터 (135) 의 게이트 및 드레인에 접속된다.
다음으로 과전류 보호 회로 (400) 의 동작을 설명한다. PMOS 트랜지스터 (127) 는, 게이트 및 소스를 출력 트랜지스터 (105) 와 공통으로 하고 있기 때문에, 출력 트랜지스터 (105) 가 부하에 공급하는 전류에 비례한 전류를 드레인으로부터 흘린다. 그 때문에, 출력 트랜지스터 (105) 가 부하에 전류를 공급할 필요가 없는 경부하 구동시에 있어서의 전원 단자 (101) 와 출력 단자 (102) 사이에 접속된 소자가 흘리는 전류에서 기인하는 출력 단자 (102) 의 전압의 상승을 억제할 수 있다. 그 밖의 동작은, 본 발명의 제 1 및 제 2 실시형태의 과전류 보호 회로 (200) 및 과전류 보호 회로 (300) 와 동일하다.
제 2 및 제 3 실시형태에 의한 볼티지 레귤레이터의 출력 전류 (부하 전류) (IOUT) 와 출력 전압 (VOUT) 의 관계는, 도 2 에 나타내는 그래프와 동일해진다.
따라서, 제 2 및 제 3 실시형태의 볼티지 레귤레이터 (100a 및 100b) 에 있어서도, 제 1 실시형태의 볼티지 레귤레이터 (100) 에 의해 얻어지는 상기 서술한 효과와 동일한 효과가 얻어진다.
100, 100a, 100b 볼티지 레귤레이터
101 전원 단자
102 출력 단자
103 기준 전압 회로
104, 140 에러 앰프
105 출력 트랜지스터 (PMOS 트랜지스터)
106 분압 회로
121 전류원
122, 123, 124, 126, 127 PMOS 트랜지스터
125, 133, 137 저항
130, 131, 132, 134, 135, 136 NMOS 트랜지스터
200, 300, 400 과전류 보호 회로
201, 301, 401 전압 제어 전압원
202, 203 커런트 미러 회로
204 출력 전류 제한 회로

Claims (6)

  1. 출력 트랜지스터와,
    상기 출력 트랜지스터가 출력하는 전압을 분압한 분압 전압과 기준 전압의 차를 증폭시켜 출력하여, 상기 출력 트랜지스터의 게이트를 제어하는 제 1 오차 증폭 회로와,
    상기 출력 트랜지스터에 과전류가 흐른 것을 검출하고, 상기 출력 트랜지스터의 전류를 제한하는 과전류 보호 회로를 구비한 볼티지 레귤레이터로서,
    상기 과전류 보호 회로는,
    상기 제 1 오차 증폭 회로의 출력 전압으로 제어되고, 상기 출력 트랜지스터의 출력 전류를 센스하는 제 1 트랜지스터와,
    소스를 접지하고, 게이트와 드레인을 상기 제 1 트랜지스터의 드레인에 접속한 제 2 트랜지스터와,
    드레인을 상기 제 1 트랜지스터의 드레인에 접속한 제 3 트랜지스터와,
    상기 제 3 트랜지스터의 소스에 접속된 제 1 저항과,
    소스를 접지하고, 게이트를 상기 제 2 트랜지스터의 게이트와 드레인에 접속하고, 드레인을 상기 제 1 저항을 개재하여 상기 제 3 트랜지스터의 소스에 접속한 제 4 트랜지스터와,
    소스를 접지하고, 게이트를 상기 제 2 트랜지스터의 게이트와 드레인에 접속한 제 5 트랜지스터와,
    상기 출력 트랜지스터가 출력하는 전압과 상기 제 1 저항에 인가되는 전압이 동일해지도록 상기 제 3 트랜지스터의 게이트를 제어하는 전압 제어 전압원과,
    상기 제 5 트랜지스터에 흐르는 전류에 비례한 전류를 출력하는 커런트 미러 회로를 구비하고,
    상기 커런트 미러 회로가 출력하는 전류에 의해, 상기 출력 트랜지스터의 게이트 전압을 제어하는 출력 전류 제한 회로를 구비한 것을 특징으로 하는 볼티지 레귤레이터.
  2. 제 1 항에 있어서,
    상기 전압 제어 전압원은,
    상기 출력 트랜지스터가 출력하는 전압과 상기 제 1 저항에 인가되는 전압의 차를 증폭시켜 출력하여, 상기 제 3 트랜지스터의 게이트를 제어하는 제 2 오차 증폭 회로에 의해 구성되는 것을 특징으로 하는 볼티지 레귤레이터.
  3. 제 1 항에 있어서,
    상기 전압 제어 전압원은,
    소스를 상기 출력 트랜지스터의 출력에 접속하고, 게이트와 드레인을 상기 제 3 트랜지스터의 게이트에 접속하는 제 6 트랜지스터와,
    상기 제 6 트랜지스터의 게이트와 드레인에 정전류를 공급하는 제 1 전류원에 의해 구성되는 것을 특징으로 하는 볼티지 레귤레이터.
  4. 제 3 항에 있어서,
    상기 제 1 전류원은,
    상기 제 1 오차 증폭 회로의 출력 전압으로 제어되고, 상기 출력 트랜지스터의 출력 전류를 센스하는 제 7 트랜지스터에 의해 구성되는 것을 특징으로 하는 볼티지 레귤레이터.
  5. 제 1 항에 있어서,
    상기 커런트 미러 회로는,
    소스를 전원 단자에 접속하고, 게이트와 드레인을 상기 제 5 트랜지스터의 드레인에 접속한 제 8 트랜지스터와,
    소스를 전원 단자에 접속하고, 게이트를 상기 제 8 트랜지스터의 게이트와 드레인에 접속하고, 드레인으로부터 전류를 출력하는 제 9 트랜지스터에 의해 구성되는 것을 특징으로 하는 볼티지 레귤레이터.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 출력 전류 제한 회로는,
    상기 커런트 미러 회로의 출력 전류를 전압으로 변환하는 제 2 저항과,
    소스를 접지하고, 게이트에 상기 제 2 저항에 발생하는 전압을 입력하는 제 10 트랜지스터와,
    상기 제 10 트랜지스터의 드레인으로부터 출력되는 전류를 전압으로 변환하는 제 3 저항과,
    소스를 전원 단자에 접속하고, 게이트에 상기 제 3 저항에 발생하는 전압을 입력하고, 드레인을 상기 출력 트랜지스터의 게이트에 접속하는 제 11 트랜지스터에 의해 구성되는 것을 특징으로 하는 볼티지 레귤레이터.
KR1020160097746A 2015-08-10 2016-08-01 볼티지 레귤레이터 KR102431407B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-158562 2015-08-10
JP2015158562A JP6506133B2 (ja) 2015-08-10 2015-08-10 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
KR20170018772A KR20170018772A (ko) 2017-02-20
KR102431407B1 true KR102431407B1 (ko) 2022-08-10

Family

ID=57996138

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160097746A KR102431407B1 (ko) 2015-08-10 2016-08-01 볼티지 레귤레이터

Country Status (5)

Country Link
US (1) US9886045B2 (ko)
JP (1) JP6506133B2 (ko)
KR (1) KR102431407B1 (ko)
CN (1) CN106444954B (ko)
TW (1) TWI667564B (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785705B2 (ja) * 2017-03-31 2020-11-18 エイブリック株式会社 過電流保護回路及びボルテージレギュレータ
JP6882090B2 (ja) * 2017-06-20 2021-06-02 エイブリック株式会社 ボルテージレギュレータ
US10031541B1 (en) * 2017-07-05 2018-07-24 Infineon Technologies Ag Current sensing for linear voltage regulator
KR102050907B1 (ko) * 2017-08-07 2019-12-02 중앙대학교 산학협력단 고장 전류 제한기 및 고장 전류 제한 방법
JP2019139445A (ja) * 2018-02-08 2019-08-22 ローム株式会社 レギュレータ
JP7031983B2 (ja) * 2018-03-27 2022-03-08 エイブリック株式会社 ボルテージレギュレータ
CN110262607B (zh) * 2019-06-26 2021-05-07 南京中感微电子有限公司 带电流限制的稳压器
KR20210011706A (ko) * 2019-07-23 2021-02-02 매그나칩 반도체 유한회사 저전압 강하 레귤레이터 및 그 구동방법
JP7368148B2 (ja) * 2019-09-06 2023-10-24 株式会社東芝 電源回路及び無線通信装置
JP7401406B2 (ja) 2020-07-17 2023-12-19 日清紡マイクロデバイス株式会社 定電圧回路
CN112379718A (zh) * 2020-11-24 2021-02-19 无锡艾为集成电路技术有限公司 线性稳压器、电子设备及线性稳压器折返限流的方法
CN112486236B (zh) * 2020-12-11 2022-07-22 思瑞浦微电子科技(苏州)股份有限公司 基于快速短路保护的低压差线性稳压器
CN112600167B (zh) * 2020-12-24 2022-09-27 成都思瑞浦微电子科技有限公司 一种高压稳压器的过流保护电路
US20240113517A1 (en) * 2022-09-29 2024-04-04 Texas Instruments Incorporated Current limiter circuit with adjustable response time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080265852A1 (en) 2007-04-27 2008-10-30 Takashi Imura Voltage regulator
CN102629147A (zh) 2011-02-01 2012-08-08 精工电子有限公司 电压调节器
CN104423408A (zh) 2013-08-26 2015-03-18 精工电子有限公司 稳压器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774976B2 (ja) 1989-01-18 1995-08-09 セイコー電子工業株式会社 電圧制御回路
JPH0774976A (ja) 1993-08-31 1995-03-17 Hitachi Ltd ダイナミックフォーカス装置
US7215191B2 (en) * 1998-06-26 2007-05-08 Yamaha Corporation Device for amplitude adjustment and rectification made with MOS technology
JP4548562B2 (ja) * 2001-03-26 2010-09-22 ルネサスエレクトロニクス株式会社 カレントミラー回路及びアナログデジタル変換回路
JP4574902B2 (ja) * 2001-07-13 2010-11-04 セイコーインスツル株式会社 ボルテージレギュレータ
JP3782726B2 (ja) * 2001-12-13 2006-06-07 株式会社リコー 過電流保護回路
JP2004118411A (ja) * 2002-09-25 2004-04-15 Seiko Instruments Inc ボルテージ・レギュレータ
JP4125774B2 (ja) * 2003-01-08 2008-07-30 株式会社リコー 定電圧回路
JP2004240535A (ja) * 2003-02-04 2004-08-26 Sanyo Electric Co Ltd レギュレータ回路
JP4082355B2 (ja) * 2004-01-30 2008-04-30 ミツミ電機株式会社 電流制限回路
JP4443301B2 (ja) * 2004-05-17 2010-03-31 セイコーインスツル株式会社 ボルテージ・レギュレータ
JP2006139673A (ja) * 2004-11-15 2006-06-01 Seiko Instruments Inc ボルテージレギュレータ
JP4616067B2 (ja) * 2005-04-28 2011-01-19 株式会社リコー 定電圧電源回路
JP4758731B2 (ja) * 2005-11-11 2011-08-31 ルネサスエレクトロニクス株式会社 定電圧電源回路
US7382180B2 (en) * 2006-04-19 2008-06-03 Ememory Technology Inc. Reference voltage source and current source circuits
JP2008052516A (ja) * 2006-08-24 2008-03-06 Seiko Instruments Inc 定電圧回路
JP4528790B2 (ja) * 2007-01-09 2010-08-18 Okiセミコンダクタ株式会社 信号強度検出回路
JP4914738B2 (ja) * 2007-02-17 2012-04-11 セイコーインスツル株式会社 ボルテージレギュレータ
JP2009048362A (ja) * 2007-08-17 2009-03-05 Ricoh Co Ltd 過電流制限及び出力短絡保護回路およびそれを用いたボルテージレギュレータと電子機器
KR100901769B1 (ko) * 2007-11-15 2009-06-11 한국전자통신연구원 저전압 고정밀도 밴드갭 기준전압 발생기
US7710090B1 (en) * 2009-02-17 2010-05-04 Freescale Semiconductor, Inc. Series regulator with fold-back over current protection circuit
JP4880007B2 (ja) * 2009-03-10 2012-02-22 株式会社リコー 定電圧電源回路
JP2011118865A (ja) * 2009-11-09 2011-06-16 Toshiba Corp 過電流保護回路及び定電圧電源回路
JP2012203673A (ja) * 2011-03-25 2012-10-22 Seiko Instruments Inc ボルテージレギュレータ
JP2013058093A (ja) * 2011-09-08 2013-03-28 Toshiba Corp 定電圧電源回路
JP5950591B2 (ja) * 2012-01-31 2016-07-13 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
CN203536947U (zh) * 2013-09-25 2014-04-09 无锡中星微电子有限公司 电流限制电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080265852A1 (en) 2007-04-27 2008-10-30 Takashi Imura Voltage regulator
CN102629147A (zh) 2011-02-01 2012-08-08 精工电子有限公司 电压调节器
CN104423408A (zh) 2013-08-26 2015-03-18 精工电子有限公司 稳压器

Also Published As

Publication number Publication date
CN106444954B (zh) 2019-12-06
JP6506133B2 (ja) 2019-04-24
TW201710821A (zh) 2017-03-16
JP2017037493A (ja) 2017-02-16
US20170047836A1 (en) 2017-02-16
US9886045B2 (en) 2018-02-06
TWI667564B (zh) 2019-08-01
KR20170018772A (ko) 2017-02-20
CN106444954A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
KR102431407B1 (ko) 볼티지 레귤레이터
JP5099505B2 (ja) ボルテージレギュレータ
KR101435238B1 (ko) 볼티지 레귤레이터
KR102188206B1 (ko) 볼티지 레귤레이터
KR101618612B1 (ko) 전압 조정기
EP1865397B1 (en) Low drop-out voltage regulator
KR102187403B1 (ko) 볼티지 레귤레이터
US9753473B2 (en) Two-stage low-dropout frequency-compensating linear power supply systems and methods
US8742819B2 (en) Current limiting circuitry and method for pass elements and output stages
KR102182026B1 (ko) 정전압 회로
US9348350B2 (en) Voltage regulator
US9639101B2 (en) Voltage regulator
KR20120089205A (ko) 전압 조정기
US10331152B2 (en) Quiescent current control in voltage regulators
US20180120875A1 (en) Voltage regulator
KR20120087840A (ko) 전압 조정기
KR20090082137A (ko) 볼티지 레귤레이터
US8674671B2 (en) Constant-voltage power supply circuit
US20170090495A1 (en) Linear Regulator with Improved Power Supply Rejection Ratio
KR102227586B1 (ko) 전압 레귤레이터
US9417645B2 (en) Voltage regulator
JP4892366B2 (ja) 過電流保護回路およびボルテージレギュレータ
US8149063B2 (en) Current-restriction circuit and driving method therefor
EP3594773A1 (en) Voltage regulation circuit
JP2012198624A (ja) 過電流保護回路

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant