KR102056250B1 - 재조합 세포, 및 이소프렌의 생산 방법 - Google Patents

재조합 세포, 및 이소프렌의 생산 방법 Download PDF

Info

Publication number
KR102056250B1
KR102056250B1 KR1020157010718A KR20157010718A KR102056250B1 KR 102056250 B1 KR102056250 B1 KR 102056250B1 KR 1020157010718 A KR1020157010718 A KR 1020157010718A KR 20157010718 A KR20157010718 A KR 20157010718A KR 102056250 B1 KR102056250 B1 KR 102056250B1
Authority
KR
South Korea
Prior art keywords
isoprene
recombinant cell
nucleic acid
pathway
acid
Prior art date
Application number
KR1020157010718A
Other languages
English (en)
Other versions
KR20150072410A (ko
Inventor
마사히로 후루따니
아끼히로 우에니시
고이찌로 이와사
스테판 옌네바인
라이너 피셔
Original Assignee
세키스이가가쿠 고교가부시키가이샤
프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50544650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR102056250(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 세키스이가가쿠 고교가부시키가이샤, 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. filed Critical 세키스이가가쿠 고교가부시키가이샤
Publication of KR20150072410A publication Critical patent/KR20150072410A/ko
Application granted granted Critical
Publication of KR102056250B1 publication Critical patent/KR102056250B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/07Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
    • C12Y102/07004Carbon-monoxide dehydrogenase (ferredoxin) (1.2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/99Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
    • C12Y102/99002Carbon-monoxide dehydrogenase (acceptor) (1.2.99.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)

Abstract

본 발명은 합성 가스 등으로부터 이소프렌을 생산할 수 있는 일련의 기술을 제공하는 것을 목적으로 한다. 비메발론산 경로에 의한 이소펜테닐이인산 합성능을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지고, 당해 핵산이 상기 숙주 세포 내에서 발현하며, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 재조합 세포가 제공된다. 숙주 세포로서 클로스트리디움속 세균 또는 무렐라속 세균이 예시된다. 당해 재조합 세포를 사용한 이소프렌의 생산 방법도 제공된다.

Description

재조합 세포, 및 이소프렌의 생산 방법 {RECOMBINANT CELL AND PRODUCTION METHOD FOR ISOPRENE}
본 발명은 일산화탄소 등의 특정한 C1 화합물로부터 이소프렌을 생산 가능한 재조합 세포, 및 당해 재조합 세포를 사용하는 이소프렌의 생산 방법에 관한 것이다.
이소프렌은 합성 폴리이소프렌의 단량체 원료로, 특히 타이어 업계에 있어서 중요한 소재이다. 최근, 석유에 의존한 기간 화학품의 생산 프로세스로부터, 식물 자원 등의 재생 가능 자원으로부터의 생산 프로세스로의 전환 기술의 개발과 실용화가 착실히 진행되고 있다. 이소프렌에 관해서도, 예를 들어 당을 원료로 한 재조합 대장균에 의한 생산 기술이 알려져 있다(특허문헌 1, 2).
재생 가능 자원으로부터의 생산 프로세스에 대해, 그 종래 기술의 대부분은 상기 이소프렌 생산 기술을 포함하고, 유기물, 특히 당, 글리세롤 또는 유성분 등에 의존한, 미생물에 의한 생산법이다. 그러나, 석유에서 유래하는 수많은 기간 화학품의 세계적인 생산량을 조달하기 위해서는, 식물 자원 등에서 유래하는 현재 사용 가능한 당질, 글리세린이나 유성분의 양으로는, 미생물의 탄소원으로서 부족한 것은 필수이다. 즉, 당질이나 유성분에 의존하는 미생물에 의한 기간 화학품의 생산량은 장래에 걸쳐서도 한정적이다. 또한, 이와 같은 프로세스는 식(食)과의 경합도 염려된다.
합성 가스(Synthesis gas, Syngas)는 폐기물, 천연 가스 및 석탄으로부터 고온ㆍ고압 하에서 금속 촉매의 작용에 의해 효율적으로 얻어지는, 일산화탄소, 이산화탄소 및 수소를 주성분으로 하는 혼합 가스이다. 합성 가스를 기점으로 하는 금속 촉매에 의한 C1 케미스트리의 분야에서는, 메탄올, 포름산, 포름알데히드 등의 액상의 화학품을 저렴하면서도 대량으로 생산하는 프로세스가 개발되어 있다.
그리고, 일산화탄소, 이산화탄소 및 수소는 폐기물 유래의 합성 가스나 공장 배기 가스, 천연 가스 또는 석탄 유래의 합성 가스에 포함되어 있고, 거의 영구적으로 이용 가능하다. 그러나, 합성 가스를 비롯한 C1 탄소원으로 한, 미생물에 의한 화학품 생산의 예는 극히 적은 것이 현 상황이다. 현재, 개발이 진행되고 있는 것은 합성 가스로부터의 에탄올, 2,3-부탄디올 등의 생산뿐이다. 특히, 재조합체에 의한 합성 가스 자화성물의 이용에 관한 보고는 적다. 특허문헌 3에는 대장균의 재조합체에 의한 이소프로판올의 생산 기술이 개시되어 있다. 이 기술에서는 대장균에 복수의 CO 대사 효소 유전자를 도입하여 합성 가스 자화능을 부여하고, 합성 가스로부터 이소프로판올을 생산하고 있다. 단, 이 기술은 이소프렌을 생산하는 것이 아니다.
일본 특허 공표 제2011-505841호 공보 일본 특허 공표 제2011-518564호 공보 일본 특허 공표 제2011-509691호 공보
상기 현 상황을 감안하여, 본 발명은 합성 가스 등으로부터 이소프렌을 생산할 수 있는 일련의 기술을 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위한 본 발명의 하나의 양상은 비(非)메발론산 경로에 의한 이소펜테닐이인산 합성능을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지고, 당해 핵산이 상기 숙주 세포 내에서 발현하며, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 재조합 세포이다.
본 발명은 이소프렌을 생산 가능한 재조합 세포에 관한 것이다. 본 발명의 재조합 세포는 「비메발론산 경로에 의한 이소펜테닐이인산 합성능」을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지는 것이고, 또한 당해 핵산이 숙주 세포 내에서 발현한다. 그리고, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터, 이소프렌을 생산 가능한 것이다. 본 발명의 재조합 세포에 의하면, 상기한 C1 화합물로부터 이소펜테닐이인산(IPP)을 합성하고, 추가로 합성된 IPP를 이소프렌으로 변환할 수 있다. 그 결과, 상기한 C1 화합물로부터 이소프렌을 생산할 수 있다. 본 발명의 재조합 세포를 사용함으로써, 예를 들어 일산화탄소나 이산화탄소를 포함하는 합성 가스로부터 이소프렌을 생산할 수 있다.
이소프레노이드의 생합성 경로는 메발론산 경로(MVA 경로라고도 함)와 비메발론산 경로(MEP 경로라고도 함)로 크게 구별된다. 비메발론산 경로는 글리세르알데히드3-인산과 피루브산으로부터, 최종적으로 이소펜테닐이인산(IPP) 또는 디메틸알릴이인산(DMAPP)을 생성하는 경로이다. 본 발명에서 사용하는 숙주 세포는 비메발론산 경로에 의한 이소펜테닐이인산 합성능을 갖는 것이다.
본 발명의 다른 양상은 메틸테트라히드로엽산, 일산화탄소 및 CoA로부터 아세틸 CoA를 합성하는 기능을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지고, 당해 핵산이 상기 숙주 세포 내에서 발현하며, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 재조합 세포이다.
본 발명의 재조합 세포는 「메틸테트라히드로엽산, 일산화탄소 및 CoA로부터 아세틸 CoA를 합성하는 기능」을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지는 것이고, 또한 당해 핵산이 숙주 세포 내에서 발현한다. 그리고, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터, 이소프렌을 생산 가능한 것이다. 본 발명의 재조합 세포에 의해서도, 상기한 C1 화합물로부터 IPP를 합성하고, 추가로 합성된 IPP를 이소프렌으로 변환할 수 있다. 그 결과, 상기한 C1 화합물로부터 이소프렌을 생산할 수 있다. 본 발명의 재조합 세포를 사용함으로써, 예를 들어 일산화탄소나 이산화탄소를 포함하는 합성 가스로부터 이소프렌을 생산할 수 있다.
「메틸테트라히드로엽산, 일산화탄소 및 CoA로부터 아세틸 CoA를 합성하는 기능」을 갖는 세포로서는, 도 1에 도시하는 아세틸 CoA 경로(Wood-Ljungdahl pathway) 및 메탄올 경로(Methanol pathway)를 갖는 혐기성 미생물이 예시된다.
바람직하게는, 일산화탄소 탈수소 효소를 갖는 것이다.
일산화탄소 탈수소 효소(EC 1. 2. 99. 2/1. 2. 7. 4)(일산화탄소데히드로게나아제, CO dehydrogenase, CODH)는 일산화탄소와 물로부터 이산화탄소와 프로톤을 생성시키는 작용, 및 그의 역반응인, 이산화탄소와 프로톤으로부터 일산화탄소와 물을 생성시키는 작용을 갖는다. 일산화탄소 탈수소 효소는 아세틸 CoA 경로(도 1)에서 작용하는 효소의 하나이다.
바람직하게는, 상기 숙주 세포는 클로스트리디움(Clostridium)속 세균 또는 무렐라(Moorella)속 세균이다.
바람직하게는, 메발론산 경로에서 작용하는 효소군을 코딩하는 핵산이 더 도입되어, 메발론산 경로에 의한 이소펜테닐이인산 합성능을 더 갖는다.
이러한 구성에 의해, 이소프렌 합성 효소의 기질이 되는 IPP가, 메발론산 경로와 비메발론산 경로의 양쪽으로부터 합성되어, IPP의 공급이 효율적으로 행해진다. 그 결과, 본 발명의 재조합 세포는 이소프렌 생산능이 더 높은 것으로 된다.
바람직하게는, 상기 메발론산 경로는 효모의 메발론산 경로이다.
바람직하게는, 상기 메발론산 경로는 원핵생물의 메발론산 경로이다.
바람직하게는, 상기 메발론산 경로는 방선균의 메발론산 경로이다.
바람직하게는, 비메발론산 경로에서 작용하는 적어도 하나의 효소를 코딩하는 핵산이 더 도입되어, 당해 핵산이 숙주 세포 내에서 발현한다.
이러한 구성에 의해, 비메발론산 경로에 의한 IPP 합성능이 증강된다. 그 결과, 본 발명의 재조합 세포는 이소프렌 생산능이 더 높은 것으로 된다.
바람직하게는, 상기 비메발론산 경로는 숙주 세포 이외의 비메발론산 경로이다.
바람직하게는, 상기 이소프렌 합성 효소는 식물 유래의 것이다.
바람직하게는, 상기 이소프렌 합성 효소를 코딩하는 핵산은 하기 (a), (b) 또는 (c)의 단백질을 코딩하는 것이다.
(a) 서열 번호 2로 표시되는 아미노산 서열을 포함하는 단백질,
(b) 서열 번호 2로 표시되는 아미노산 서열에 있어서, 1 내지 20개의 아미노산이 결실, 치환 또는 부가된 아미노산 서열을 포함하고, 또한 이소프렌 합성 효소의 활성을 갖는 단백질,
(c) 서열 번호 2로 표시되는 아미노산 서열과 60% 이상의 상동성을 나타내는 아미노산 서열을 갖고, 또한 이소프렌 합성 효소의 활성을 갖는 단백질
바람직하게는, 숙주 세포에 도입된 핵산은 코돈이 개변된 것이다.
이러한 구성에 의해, 도입된 핵산(외래 유전자)을 숙주 세포 내에서 보다 효율적으로 발현시키는 것이 가능해진다.
바람직하게는, 숙주 세포에 도입된 핵산은 숙주 세포의 게놈에 내장되어 있다.
바람직하게는, 숙주 세포에 도입된 핵산은 플라스미드에 내장되어 있다.
본 발명의 다른 양상은 상기의 재조합 세포를, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 탄소원으로서 사용하여 배양하고, 당해 재조합 세포에 이소프렌을 생산시키는 이소프렌의 생산 방법이다.
본 발명은 이소프렌의 생산 방법에 관한 것이다. 본 발명에서는, 상기한 재조합 세포를 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 탄소원으로서 배양함으로써, 당해 재조합 세포에 이소프렌을 생산시킨다. 본 발명에 따르면, 일산화탄소나 이산화탄소를 포함하는 합성 가스나, 포름산, 메탄올로부터 이소프렌을 생산할 수 있다.
본 발명의 다른 양상은 상기의 재조합 세포에, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 접촉시키고, 당해 재조합 세포에 상기 C1 화합물로부터 이소프렌을 생산시키는 이소프렌의 생산 방법이다.
본 발명에서는 상기한 재조합 세포에, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 접촉시키고, 당해 C1 화합물로부터 이소프렌을 생산시킨다. 본 발명에 의해서도, 일산화탄소나 이산화탄소를 포함하는 합성 가스나, 포름산, 메탄올로부터 이소프렌을 생산할 수 있다.
바람직하게는, 일산화탄소와 수소를 주성분으로 하는 가스, 또는 이산화탄소와 수소를 주성분으로 하는 가스를, 상기 재조합 세포에 제공한다.
「재조합 세포에 가스를 제공한다」란, 탄소원 등으로서 가스를 재조합하여 세포에 부여하거나, 또는 재조합 세포에 가스를 접촉시킨다는 의미이다.
바람직하게는, 재조합 세포는 클로스트리디움속 세균 또는 무렐라속 세균을 숙주 세포로 하는 것이고, 재조합 세포의 세포 밖으로 방출된 이소프렌을 회수한다.
이산화탄소 대신에 중탄산염을 사용할 수도 있다.
본 발명의 재조합 세포에 의하면, 일산화탄소, 이산화탄소, 포름산 또는 메탄올로부터 이소프렌을 생산할 수 있다. 예를 들어, 일산화탄소나 이산화탄소를 포함하는 합성 가스로부터 이소프렌을 생산하는 것이 가능해진다.
본 발명의 이소프렌의 생산 방법에 대해서도 마찬가지이고, 일산화탄소, 이산화탄소, 포름산 또는 메탄올로부터 이소프렌을 생산할 수 있다.
도 1은 아세틸 CoA 경로와 메탄올 경로를 나타내는 설명도이다.
도 2는 이소프렌 표준품의 가스 크로마토그램이다.
도 3은 컨트롤 벡터 pSCi01 플라스미드를 유지하는 씨. 륭달리이(C. ljungdahlii)의 합성 가스 발효 기상 성분의 가스 크로마토그램이다.
도 4는 pSCi::idi-ispS 플라스미드를 유지하는 씨. 륭달리이의 합성 가스 발효 기상 성분의 가스 크로마토그램이다.
도 5는 플라스미드 pSCi::MVA-IspS-idi의 이소프렌 합성 유전자 클러스터의 구성을 나타내는 설명도이다.
도 6은 플라스미드 pSCi::MVA-IspS-idi를 유지하는 씨. 륭달리이의 합성 가스 발효 기상 성분의 가스 크로마토그램이다.
본 발명의 하나의 양상에 관한 재조합 세포는, 비메발론산 경로에 의한 이소펜테닐이인산(IPP) 합성능을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지고, 당해 핵산이 상기 숙주 세포 내에서 발현하며, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 것이다.
본 양상의 재조합 세포에 있어서의 숙주 세포는 「비메발론산 경로에 의한 IPP 합성능」을 갖는 것이다.
상술한 바와 같이, 일반적으로, IPP의 합성 경로는 메발론산 경로(MVA 경로)와 비메발론산 경로(MEP 경로)의 2가지로 크게 구별된다. 메발론산 경로는 진핵생물이 구비하고 있는 것이고, 아세틸 CoA를 출발 물질로 하고 있다. 메발론산 경로에서 작용하는 효소로서는, 상류부터 순서대로, 아세틸 CoA 아세틸트랜스페라아제, HMG-CoA 신타아제, HMG-CoA 리덕타아제, 메발론산 키나아제, 5-포스포메발론산 키나아제, 디포스포메발론산 데카르복실라아제, 이소펜테닐이인산 이소머라아제를 들 수 있다.
한편, 비메발론산 경로는 원핵생물이나 엽록체ㆍ색소체가 구비하고 있는 것이고, 글리세르알데히드3-인산과 피루브산을 출발 물질로 하고 있다. 비메발론산 경로에서 작용하는 효소로서는, 상류부터 순서대로, DOXP 신타아제, DOXP 리덕토이소머라아제, 4-디포스포시티딜-2-C-메틸-D-에리트리톨신타아제, 4-디포스포시티딜-2-C-메틸-D-에리트리톨키나아제, 2-C-메틸-D-에리트리톨-2,4-시클로이인산신타아제, HMB-PP 신타아제, HMB-PP 리덕타아제를 들 수 있다.
또한 본 발명의 다른 양상에 관한 재조합 세포는 메틸테트라히드로엽산, 일산화탄소 및 CoA로부터 아세틸 CoA를 합성하는 기능을 갖는 숙주 세포에, 이소프렌 합성 효소를 코딩하는 핵산이 도입되어 이루어지고, 당해 핵산이 상기 숙주 세포 내에서 발현하며, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 것이다.
본 발명의 재조합 세포는 또한 일산화탄소 탈수소 효소(CODH)를 갖는 것이 바람직하다. 상세하게는, 주로 일산화탄소 대사, 즉 일산화탄소 탈수소 효소의 작용에 의하고, 일산화탄소와 물로부터 이산화탄소와 프로톤을 발생하는 기능에 의해 생육하는 세포가 바람직하다. 그와 같은 세포의 예로서는, 도 1에 도시하는 아세틸 CoA 경로(Wood-Ljungdahl pathway)와 메탄올 경로(Methanol pathway)를 갖는 혐기성 미생물을 들 수 있다.
당해 혐기성 미생물로서, 클로스트리디움 륭달리이(Clostridium ljungdahlii), 클로스트리디움 오토에타노게눔(Clostridium autoethanogenumn), 클로스트리디움 카르복시디보란스(Clostridium carboxidivorans), 클로스트리디움 라그스달레이(Clostridium ragsdalei)(문헌[Kopke M. et al., Appl. Environ. Microbiol. 2011, 77(15), 5467-5475]), 무렐라 서모아세티카(Moorella thermoacetica)(클로스트리디움 서모아세티쿰(Clostridium thermoaceticum)과 동일함)(문헌[Pierce EG. Et al., Environ. Microbiol. 2008, 10, 2550-2573]) 등의 클로스트리디움속 세균 또는 무렐라속 세균을 대표예로서 들 수 있다. 특히, 클로스트리디움속 세균은 숙주-벡터계나 배양 방법이 확립되어 있어, 본 발명에 있어서의 숙주 세포로서 적합하다.
상기 5종의 클로스트리디움속 세균 또는 무렐라속 세균은 합성 가스 자화성 미생물의 대표예로서 알려져 있다.
클로스트리디움속 세균, 무렐라속 세균 이외에는, 카르복시도셀라 스포로두센스 에스피. 엔오브이.(Carboxydocella sporoducens sp . Nov.)(문헌[Slepova TV. et al., Inter. J. Sys. Evol. Microbiol. 2006, 56, 797-800]), 로도슈도모나스 젤라티노사(Rhodopseudomonas gelatinosa)(문헌[Uffen RL, J. Bacteriol. 1983, 155(3), 956-965]), 유박테리움 리모섬(Eubacterium limosum)(문헌[Roh H. et al., J. Bacteriol. 2011, 193(1), 307-308]), 부티리박테리움 메틸로트로피쿰(Butyribacterium methylotrophicum)(문헌[Lynd, LH. Et al., J. Bacteriol. 1983, 153(3), 1415-1423]) 등의 세균을 숙주 세포로서 사용할 수 있다.
또한, 상기한 세균의 증식 및 CODH 활성은 모두 산소 감수성이지만, 산소 비감수성의 CODH도 알려져 있다. 예를 들어, 올리고트로파 카르복시도보란스(Oligotropha carboxidovorans)(문헌[Schubel, U. et al., J. Bacteriol., 1995, 2197-2203]), 브래디리조비움 자포니쿰(Bradyrhizobium japonicum)(문헌[Lorite MJ. Et al., Appl. Environ. Microbiol., 2000, 66(5), 1871-1876])을 비롯하여, 그 밖의 박테리아종에는 산소 비감수성의 CODH가 존재한다(문헌[King GM et al., Appl. Environ. Microbiol. 2003, 69(12), 7257-7265]). 호기성 수소 산화 세균인 랄소토니아(Ralsotonia)속균에도 산소 비감수성의 CODH가 존재한다(NCBI Gene ID:4249199, 8019399).
이와 같이, CODH를 갖는 세균은 넓게 존재하고 있고, 그 중에서 본 발명에서 사용하는 숙주 세포를 적절히 선택할 수 있다. 예를 들어, CO, CO/H2(CO와 H2를 주성분으로 하는 가스), 또는 CO/CO2/H2(CO와 CO2와 H2를 주성분으로 하는 가스)를 유일한 탄소원이면서 에너지원으로 한 선택 배지를 사용하여, 혐기, 미호기, 또는 호기적 조건으로, 숙주 세포로서 이용할 수 있는 CODH를 갖는 세균을 분리할 수 있다.
이소프렌 합성 효소로서는, 재조합 세포 내에서 그의 효소 활성을 발휘할 수 있는 것이면 특별히 한정은 없다. 이소프렌 합성 효소를 코딩하는 핵산(유전자)에 대해서도 마찬가지이고, 재조합 세포 내에서 정상적으로 전사ㆍ번역되는 것이면 특별히 한정은 없다. 또한, 이소프렌 합성 효소를 코딩하는 핵산은 숙주 세포에 의해 전사되기 쉬운 코돈으로 개변한 것일 수도 있다. 예를 들어, 숙주 세포가 클로스트리디움속 세균이면, 클로스트리디움속 세균의 코돈 사용 빈도의 정보를 기초로, 도입하는 핵산의 코돈을 개변할 수 있다.
이소프렌 합성 효소는 많은 식물에서 발견되고 있다. 이소프렌 합성 효소의 구체예로서는, 포플러(Populus nigra) 유래의 것(젠뱅크 기탁 번호:AM410988.1)을 들 수 있다. 그 외에, 바실루스 서브틸리스(Bacillus subtilis) 유래의 것(문헌[Sivy TL. et al., Biochem. Biophys. Res. Commu. 2002, 294(1), 71-5])을 들 수 있다.
서열 번호 1에 상기 포플러 유래 이소프렌 합성 효소를 코딩하는 핵산(DNA)의 염기 서열과 대응의 아미노산 서열, 서열 번호 2에 아미노산 서열만을 나타낸다. 서열 번호 1로 표시되는 염기 서열을 갖는 DNA는 이소프렌 합성 효소를 코딩하는 핵산의 일례로 된다.
또한, 이소프렌 합성 효소를 코딩하는 핵산에는 적어도 하기 (a), (b) 또는 (c)의 단백질을 코딩하는 핵산이 포함된다.
(a) 서열 번호 2로 표시되는 아미노산 서열을 포함하는 단백질,
(b) 서열 번호 2로 표시되는 아미노산 서열에 있어서, 1 내지 20개의 아미노산이 결실, 치환 또는 부가된 아미노산 서열을 포함하고, 또한 이소프렌 합성 효소의 활성을 갖는 단백질,
(c) 서열 번호 2로 표시되는 아미노산 서열과 60% 이상의 상동성을 나타내는 아미노산 서열을 갖고, 또한 이소프렌 합성 효소의 활성을 갖는 단백질
또한 (c)에 있어서의 아미노산 서열의 상동성에 대해서는, 보다 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 특히 바람직하게는 95% 이상이다.
본 발명의 재조합 세포에 있어서는, 이소프렌 합성 효소를 코딩하는 핵산 외에, 다른 핵산이 더 도입되어 있을 수도 있다. 하나의 실시 형태에서는, 메발론산 경로에서 작용하는 효소군을 코딩하는 핵산이 더 도입되어, 메발론산 경로에 의한 IPP 합성능을 더 갖는다. 이러한 구성에 의하면, 메발론산 경로와 비메발론산 경로의 양쪽으로부터 IPP가 합성되므로, IPP 합성능이 증강되어, 결과적으로 이소프렌 생산이 보다 효율적으로 행해진다.
상술한 바와 같이, 메발론산 경로에서 작용하는 효소군으로서는, 아세틸 CoA 아세틸트랜스페라아제, HMG-CoA 신타아제, HMG-CoA 리덕타아제, 메발론산 키나아제, 5-포스포메발론산 키나아제, 디포스포메발론산 데카르복실라아제, 이소펜테닐이인산 이소머라아제를 들 수 있다. 이 중, 예를 들어 HMG-CoA 신타아제, HMG-CoA 리덕타아제, 메발론산 키나아제, 5-포스포메발론산 키나아제, 디포스포메발론산 데카르복실라아제 및 이소펜테닐이인산 이소머라아제를 포함하는 효소군이 숙주 세포 내에서 발현하도록, 도입하는 핵산을 선택하면 된다. 이들 핵산에 대해서도, 숙주 세포에 의해 전사되기 쉬운 코돈으로 개변한 것을 채용할 수 있다.
또한, 메발론산 경로는 모든 진핵생물이 보유하고 있지만, 원핵생물에서도 발견되어 있다. 원핵생물에서 메발론산 경로를 갖는 것으로서는, 방선균에서는 스트렙토미세스(Streptomyces)종 균주 CL190(문헌[Takagi M. et al., J. Bacteriol. 2000, 182(15), 4153-7]), 스트렙토미세스 그리세올로스포레우스(Streptomyces griseolosporeus) MF730-N6(문헌[Hamano Y. et al., Biosci. Biotechnol. Biochem. 2001, 65(7), 1627-35])을 들 수 있다.
세균에서는 락토바실루스 헬벡티쿠스(Lactobacillus helvecticus)(문헌[Smeds A et al., DNA seq. 2001, 12(3), 187-190]), 코리네박테리움 아미콜라툼(Corynebacterium amycolatum), 미코박테리움 마리눔(Mycobacterium marinum), 바실루스 코아굴란스(Bacillus coagulans), 엔테로코쿠스 파에칼리스(Enterococcus faecalis), 에스트렙토코쿠스 아갈락티에(Streptococuss agalactiae), 믹소코쿠스 크산투스(Myxococcus xanthus) 등을 들 수 있다(문헌[Lombard J. et al., Mol. Biol. Evol. 2010, 28(1), 87-99]).
고세균에서는 에로피룸(Aeropyrum)속, 술포로부스(Sulfolobus)속, 데술푸로코쿠스(Desulfurococcus)속, 서모프로테우스(Thermoproteus)속, 할로박테리움(Halobacterium)속, 메타노코쿠스(Methanococcus)속, 서모코쿠스(Thermococcus)속, 피로코쿠스(Pyrococcus)속, 메타노피루스(Methanopyrus)속, 서모플라즈마(Thermoplasma)속 등을 들 수 있다(문헌[Lombard J. et al., Mol. Biol. Evol. 2010, 28(1), 87-99]).
상기 메발론산 경로에서 작용하는 효소군의 유래로서는 특별히 한정은 없지만, 효모의 메발론산 경로에서 작용하는 효소군이 바람직하다. 그 밖에, 방선균의 메발론산 경로에서 작용하는 효소군도 바람직하게 채용된다.
다른 실시 형태에서는, 비메발론산 경로에서 작용하는 적어도 하나의 효소를 코딩하는 핵산이 더 도입되어, 당해 핵산이 숙주 세포 내에서 발현된다. 본 실시 형태에 있어서도, IPP 합성능이 증강되어, 결과적으로 이소프렌 생산이 보다 효율적으로 행해진다. 도입되는 당해 핵산은 1종만일 수도 있고, 2종 이상일 수도 있다.
상술한 바와 같이, 비메발론산 경로에서 작용하는 효소로서는, DOXP 신타아제, DOXP 리덕토이소머라아제, 4-디포스포시티딜-2-C-메틸-D-에리트리톨신타아제, 4-디포스포시티딜-2-C-메틸-D-에리트리톨키나아제, 2-C-메틸-D-에리트리톨-2,4-시클로이인산신타아제, HMB-PP 신타아제, HMB-PP 리덕타아제를 들 수 있다. 예를 들어, 이들 효소군에서 1 또는 2 이상의 효소를 선택하고, 당해 효소를 코딩하는 핵산을 숙주 세포에 도입하면 된다.
또한, 비메발론산 경로에서 작용하는 효소는 숙주 세포 이외의 유래인 것이 바람직하다. 이러한 구성에 의해, 반응 생성물에 의한 반응 억제를 피할 수 있다.
이들 핵산에 대해서도, 숙주 세포에 의해 전사되기 쉬운 코돈으로 개변한 것을 채용할 수 있다.
메발론산 경로 또는 비메발론산 경로에서 작용하는 이들 효소에 대해서는, 천연으로 존재하는 것 외에, 각 효소의 개변체일 수도 있다. 예를 들어, 각 효소의 아미노산 치환 변이체나, 각 효소의 부분 단편이며 동일한 효소 활성을 갖는 폴리펩티드일 수도 있다.
숙주 세포에 핵산을 도입하는 방법으로서는 특별히 한정은 없고, 숙주 세포의 종류 등에 따라 적절히 선택할 수 있다. 예를 들어, 숙주 세포에 도입 가능하고 또한 내장된 핵산을 발현 가능한 벡터를 사용할 수 있다.
예를 들어, 숙주 세포가 세균 등의 원핵생물인 경우에는, 당해 벡터로서, 숙주 세포에 있어서 자립 복제 가능 내지는 염색체 중으로의 내장이 가능하고, 삽입된 상기 핵산(DNA)을 전사할 수 있는 위치에 프로모터를 함유하고 있는 것을 사용할 수 있다. 예를 들어, 당해 벡터를 사용하여, 프로모터, 리보솜 결합 서열, 상기 핵산(DNA) 및 전사 종결 서열을 포함하는 일련의 구성을 숙주 세포 내에서 구축하는 것이 바람직하다.
숙주 세포가 클로스트리디움속 세균(무렐라속 세균과 같은 근연종을 포함함)인 경우에 대해 설명하면, 클로스트리디움속 세균과 대장균의 셔틀 벡터 pIMP1(문헌[Mermelstein LD et al., Bio/technology 1992, 10, 190-195])을 사용할 수 있다. 본 셔틀 벡터는 pUC9(ATCC 37252)와 바실루스 서브틸리스로부터 분리된 pIM13(문헌[Projan SJ et al., J. Bacteriol. 1987, 169(11), 5131-5139])과의 융합 벡터이고, 클로스트리디움속 세균 내에서도 안정적으로 유지된다.
또한, 클로스트리디움속 세균으로의 유전자 도입에는, 통상 일렉트로포레이션법이 사용되지만, 유전자 도입 직후의 도입된 외래 플라스미드는 제한 효소 Cac824I 등에 의한 분해를 받기 쉽고 매우 불안정하다. 그로 인해, 바실루스 서브틸리스 파지 Φ3T1 유래 메틸트랜스페라아제 유전자가 유지된 pAN1(문헌[Mermelstein LD et al., Apply. Environ. Microbiol. 1993, 59(4), 1077-1081])을 보유하는 대장균, 예를 들어 ER2275주 등으로, pIMP1에서 유래하는 벡터를 일단 증폭하고, 메틸화 처리를 행한 후, 이를 대장균으로부터 회수하여 일렉트로포레이션에 의한 형질 전환에 사용하는 것이 바람직하다. 또한, 최근에는 Cac824I 유전자가 결손된 클로스트리디움 아세토부틸리쿰(Clostridium acetobuthylicum)이 개발되고 있어, 메틸화 처리되어 있지 않은 벡터도 안정적으로 가능하다(문헌[Dong H. et al., PLoS ONE 2010, 5(2), e9038]).
클로스트리디움속 세균에 있어서의 이종 유전자 발현의 프로모터로서는, 예를 들어 thl(티올라아제(thiolase)) 프로모터(문헌[Perret S et al., J. Bacteriol. 2004, 186(1), 253-257]), Dha(글리세롤 데히드라타아제(glycerol dehydratase)) 프로모터(문헌[Raynaud C. et al., PNAS 2003, 100(9), 5010-5015]), ptb(포스포트랜스부티릴라아제(phosphotransbutyrylase)) 프로모터(문헌[Desai RP et al., Appl. Environ. Microbiol. 1999, 65(3), 936-945]), adc(아세토아세트산 데카르복실라아제(acetoacetate decarboxylase)) 프로모터(문헌[Lee J et al., Appl. Environ. Microbiol. 2012, 78(5), 1416-1423]) 등이 있다. 단, 본 발명에서는 이들로 한정되지 않고, 숙주 세포 등에 발견되는 다양한 대사계의 오페론에 사용되고 있는 프로모터 영역의 서열이 사용 가능하다.
또한, 벡터를 사용하여 복수종의 핵산을 숙주 세포에 도입하는 경우, 각 핵산을 하나의 벡터에 내장할 수도 있고, 각각의 벡터에 내장할 수도 있다. 또한, 하나의 벡터에 복수의 핵산을 내장하는 경우에는, 각 핵산을 공통의 프로모터 하에서 발현시킬 수도 있고, 각각의 프로모터 하에서 발현시킬 수도 있다. 복수종의 핵산을 도입하는 예로서는, 「이소프렌 합성 효소를 코딩하는 핵산」 외에, 「메발론산 경로에서 작용하는 효소군을 코딩하는 핵산」이나 「비메발론산 경로에서 작용하는 적어도 하나의 효소를 코딩하는 핵산」을 도입하는 형태를 들 수 있다.
상기와 같은 외래 핵산 도입 외에, 돌연변이나 게놈 셔플링을 더 실시함으로써, 이소프렌의 생산성이 현격히 향상된 균주를 육종(育種)하는 것도 가능하다.
즉, 본 발명에 있어서는, 외래 핵산을 숙주 세포의 게놈에 내장할 수도 있고, 플라스미드에 내장할 수도 있다.
본 발명의 이소프렌의 생산 방법의 하나의 양상에서는 상기한 재조합 세포를, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 탄소원으로서 사용하여 배양하고, 당해 재조합 세포에 이소프렌을 생산시킨다. 탄소원으로서 사용하는 이들 C1 화합물에 대해서는, 1개만을 사용할 수도 있고, 2개 이상을 조합하여 사용할 수도 있다. 또한, 이들 C1 화합물은 주된 탄소원으로서 사용하는 것이 바람직하고, 유일의 탄소원인 것이 보다 바람직하다.
또한, 에너지원으로서 수소(H2)를 동시에 제공하는 것이 바람직하다.
본 발명의 재조합 세포를 배양하는 방법으로서는 특별히 한정은 없고, 숙주 세포의 종류 등에 따라서 적절히 행할 수 있다. 재조합 세포가 클로스트리디움속 세균(절대 혐기성)인 경우에는, 예를 들어 생육에 필요한 무기 염류 및 합성 가스를 포함하는 영양 조건으로 배양한다. 바람직하게는 0.2 내지 0.3㎫(절대압) 정도의 가압 상태에서 배양한다. 또한, 초기 증식 및 도달 세포 밀도를 양호하게 하기 위해서는, 비타민, 효모 엑기스, 옥수수 침지액, 백토 트립톤 등의 유기물을 소량 가할 수도 있다.
또한, 재조합 세포가 호기성이나 편성 혐기성인 경우에는, 예를 들어 액체 배지를 사용한 통기ㆍ교반 배양을 행할 수 있다.
본 발명의 이소프렌 생산 방법의 다른 양상에서는, 상기한 재조합 세포에, 일산화탄소, 이산화탄소, 포름산 및 메탄올로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 접촉시켜, 당해 재조합 세포에 상기 C1 화합물로부터 이소프렌을 생산시킨다. 즉, 세포 분열(세포 증식)을 수반하는지 여부에 관계 없이, 재조합 세포에 상기한 C1 화합물을 접촉시켜, 이소프렌을 생산시킬 수 있다. 예를 들어, 고정화한 재조합 세포에 상기한 C1 화합물을 연속적으로 공급하여, 이소프렌을 연속적으로 생산시킬 수 있다.
본 양상에 있어서도, 이들 C1 화합물에 대해서는, 1개만을 사용할 수도 있고, 2개 이상을 조합하여 사용할 수도 있다. 또한, 에너지원으로서 수소(H2)를 동시에 접촉시키는 것이 바람직하다.
바람직한 실시 형태에서는, 일산화탄소와 수소를 주성분으로 하는 가스, 또는 이산화탄소와 수소를 주성분으로 하는 가스를, 상기 재조합 세포에 제공한다. 즉, 이들 가스를 탄소원으로서 사용하여 재조합 세포를 배양하거나, 또는 이들 가스를 재조합하여 세포에 접촉시켜, 가스 중의 일산화탄소 또는 이산화탄소로부터 이소프렌을 생산시킨다. 이 경우도, 수소는 에너지원으로서 사용된다.
포름산 및/또는 메탄올을 재조합하여 세포에 제공하고, 포름산 및/또는 메탄올로부터도 이소프렌을 생산할 수도 있다. 즉, 일산화탄소나 이산화탄소에 추가하여, 또는 단독으로, 포름산이나 메탄올을 탄소원으로서 사용하여 재조합 세포를 배양하거나, 포름산이나 메탄올을 재조합하여 세포에 접촉시킴으로써, 포름산이나 메탄올로부터도 이소프렌을 생산할 수 있다.
생산된 이소프렌은 세포 내에 축적되거나, 세포 밖으로 방출된다. 예를 들어, 상술한 클로스트리디움속 세균 또는 무렐라속 세균을 숙주 세포로 한 재조합 세포를 사용하여, 세포 밖으로 방출된 이소프렌을 회수하고, 단리 정제함으로써, 순화된 이소프렌을 취득할 수 있다.
또한, 이산화탄소 대신에 중탄산염을 사용할 수 있는 경우가 있다. 즉, 클로스트리디움속 세균 및 그의 근연종은 탄산 탈수소 효소(Carbonic anhydrase, CA)(EC 4. 2. 1. 1:H2O+CO2⇔HCO3 -+H)를 갖는 것이 알려져 있고(문헌[Braus-Stromeyer SA et al., J. Bacteriol. 1997, 179(22), 7197-7200]), CO2원으로서, HCO3 -원이 되는 NaHCO3 등의 중탄산염을 사용할 수 있다.
여기서, 숙주 세포가 아세틸 CoA 경로와 메탄올 경로(도 1)를 갖고 있는 경우에 있어서, 재조합 세포에 제공될 수 있는 일산화탄소, 이산화탄소, 포름산 및 메탄올의 조합에 대해 설명한다.
아세틸 CoA 경로에 의한 아세틸 CoA 합성에서는, 메틸트랜스페라아제(Methyltransferase), 코리노이드 철-황 단백질(Corrinoid iron-sulfur protein(CoFeS-P)), 아세틸 CoA 신타아제(Acetyl-CoA synthase, ACS) 및 CODH의 작용에 의한, CoA, 메틸테트라히드로엽산(methyltetrahydrofolate, [CH3]-THF) 및 CO로부터의 아세틸 CoA의 합성 과정이 필수이다(문헌[Ragsdale SW et al., B.B.R.C. 2008, 1784(12), 1873-1898]).
한편, 부티리박테리움 메틸로트로피쿰의 배양에 있어서, 탄소원으로서 CO나 CO2 이외에 포름산이나 메탄올을 첨가하는 것은 CO 대사, 즉 아세틸 CoA 경로의 메틸 분지(Methyl branch)에 있어서의 테트라히드로엽산(tetrahydrofolate) 함량 및 CO 대사에서 필요해지는 CODH, 포름산데히드로게나아제(formate dehydrogenase, FDH) 및 히드로게나아제(hydrogenase)의 활성을 증대시키는 것이 알려져 있다(문헌[Kerby R. et al., J. Bacteriol. 1987, 169(12), 5605-5609]). 유박테리움 리모섬 등에 있어서도, 혐기 조건 하 CO2 및 메탄올을 탄소원으로 한 경우라도, 높은 증식을 얻는 것이 나타나 있다(문헌[Genthner BRS. et al., Appl. Environ. Microbiol., 1987, 53(3), 471-476]).
이들 메탄올의 합성 가스 자화성 미생물로의 영향 및 무렐라 서모아세티카(클로스트리디움 서모아세티쿰) 및 클로스트리디움 륭달리이 등의 게놈 해석(문헌[Pierce E. et al., Environ. Microbiol. 2008, 10(10), 2550-2573; Durre P. et al., PNAS 2010, 107(29), 13087-13092])의 결과로부터, 이들 미생물종에서는, 도 1에 도시된 바와 같은 메탄올 경로(methanol pathway)가 아세틸 CoA 경로(Wood-Ljungdahl pathway)에 메틸기의 도너로서 관여하는 것을 설명할 수 있다.
또한 실제로, 몇 개의 클로스트리디움속균에서는 포름산데히드로게나아제(FDH)(EC 1. 2. 1. 2/1. 2. 1. 43:포름산염(Formate)+NAD(P)⇔CO2+NAD(P)H)의 정방향의 활성(포름산염으로부터의 CO2 형성)이 확인되어 있다(문헌[Liu CL et al., J. Bacteriol. 1984, 159(1), 375-380; Keamy JJ et al., J. Bacteriol. 1972, 109(1), 152-161]). 이것으로부터, 이들 주에서는 CO2나 CO가 결핍 상태에 있는 경우, 부분적으로 메탄올(CH3OH)이나 포름산(HCOOH)으로부터 CO2의 생성 방향의 반응이 작용할 수 있다(도 1). 이는, 전술한 CH3OH를 가하는 것에 의한, 포름산데히드로게나아제(formate dehydrogenase) 활성 및 CODH의 활성 증대의 현상(문헌[Kerby R et al., J. Bateriol. 1987, 169(12), 5605-5609])으로부터도 설명할 수 있다. 즉, 포름산(HCOOH) 또는 메탄올(CH3OH)을 유일한 탄소원으로 해도 증식 가능하다.
숙주 세포가, 원래, 포름산데히드로게나아제의 정방향의 활성을 갖지 않는 주라도, 변이 도입, 외래 유전자 도입, 또는 게놈 셔플링과 같은 유전자 개변에 의해, 정방향의 활성을 부여시키면 된다.
이상으로부터, 숙주 세포가 아세틸 CoA 경로와 메탄올 경로를 갖고 있는 경우에는, 이하의 가스나 액체를 사용하여 이소프렌을 생산할 수 있다.
ㆍ CO
ㆍ CO2
ㆍ CO/H2
ㆍ CO2/H2
ㆍ CO/CO2/H2
ㆍ CO/HCOOH
ㆍ CO2/HCOOH
ㆍ CO/CH3OH
ㆍ CO2/CH3OH
ㆍ CO/H2/HCOOH
ㆍ CO2/H2/HCOOH
ㆍ CO/H2/CH3OH
ㆍ CO2/H2/CH3OH
ㆍ CO/CO2/H2/HCOOH
ㆍ CO/CO2/H2/CH3OH
ㆍ CH3OH/H2
ㆍ HCOOH/H2
ㆍ CH3OH
ㆍ HCOOH
또한, 본 발명의 재조합 세포에 대해, 이소프렌 생산을 목적으로 하지 않고, 오로지 세포를 증가시킬 목적으로 배양하는 경우에는, 일산화탄소나 이산화탄소를 탄소원으로서 사용할 필요는 없다. 예를 들어, 당류나 글리세린 등의 다른 탄소원을 사용하여, 재조합 세포를 배양하면 된다.
이하, 실시예를 갖고 본 발명을 더욱 구체적으로 설명하지만, 본 발명은 이들 실시예만으로 한정되는 것은 아니다.
실시예 1
(1) 포플러 유래 이소프렌 합성 효소 유전자의 단리와 발현 벡터의 구축
포플러(Populus nigra)의 잎 유래의 전체 RNA를 주형으로 하고, 서열 번호 3과 서열 번호 4로 표시되는 프라이머를 사용한 RT-PCR에 의해, 포플러 유래 이소프렌 합성 효소(IspS)를 코딩하는 핵산(포플러 유래 IspS 유전자, 서열 번호 1, 젠뱅크 기탁 번호:AM410988.1)을 증폭하였다. 얻어진 증폭 DNA 단편을 pT7-블루(Blue) T 벡터(타카라 바이오사)로 클로닝하여, pT7IS를 구축하였다.
한편, 클로스트리디움/이. 콜라이(E. coli) 셔틀 벡터 pIMP1(문헌[Mermelstein LD et al., Bio/technology 1992, 10, 190-195])의 BamHI/EcoRI 부위에, 서열 번호 5 및 서열 번호 6으로 표시되는 합성 DNA를 도입하여, 클로닝 사이트를 개량하고, pIM1A를 구축하였다. 또한, pIM1A의 PstI/BamHI 부위에, 서열 번호 7 및 서열 번호 8로 표시되는 합성 DNA를 도입하여, pIM1B를 구축하였다. 상기 pT7IS를 BamHI로 절단함으로써, IspS 유전자를 회수하고, 이를 pIM1B의 BamHI 부위로 도입함으로써, 포플러 유래 IspS의 발현 벡터 pIMBIS를 구축하였다. 본 발현 벡터는 pSOS95(문헌[Mingardon F et al., Appi. Environ. Microbiol. 2005, 71(3), 1215-1222]) 유래의 프로모터 및 터미네이터 영역을 IspS 유전자의 전후에 갖는다.
(2) 이소프렌 생산능을 갖는 재조합체의 제작
상기 (1)에서 제작한 pIMBIS로, 바실루스 서브틸리스 파지 φ3TI 유래 메틸트랜스페라아제 유전자를 코딩하는 pAN1(문헌[Mermelstein LD et al., Appl. Environ. Microbiol., 1993, 59(4), 1077-1081])이 도입된 이. 콜라이 ER2275(NEB사)를 형질 전환함으로써, 생체내(in vivo) 메틸화를 행하였다. 형질 전환된 이. 콜라이 ER2275로부터 메틸화된 pIMBIS를 회수하였다. 문헌[BIO/TECHNOLOGY 1992, VOL. 10, 190-195] 기재의 방법에 따라서, 일렉트로포레이션에 의해, 메틸화된 pIMBIS로 클로스트리디움 륭달리이(DSM13528/ATCC55383)를 형질 전환하여, 재조합체를 취득하였다.
(3) 재조합체에 의한 이소프렌 생산
상기 (2)에서 취득한 씨. 륭달리이의 재조합체를, 37℃, 혐기 조건 하에서 배양하였다. 배지로서, 5㎍/mL의 클라리트로마이신(Clarithromycin) 및 20㎍/mL의 티암페니콜(Thiamphenicol)을 함유하는 ATCC 미디움(medium) 1754 PETC 배지(단, 프룩토오스 및 효모 엑기스를 함유하지 않음)를 사용하였다. 100mL욕의 밀폐 가능한 유리 용기에 10mL의 배지를 투입하고, 산소 비함유 가스를 2.5 기압(절대압)의 가스압으로 충전하여, 알루미늄 캡으로 밀봉한 후, 진탕 배양하였다. 산소 비함유 가스로서, (a) CO/H2=50/50%, (b) CO/CO2/H2=33/33/34%, (c) CO2/H2=50/50%(모두 체적비)의 3종의 혼합 가스를 사용하였다.
컨트롤로서, pIMBIS 대신에 pIMB1이 도입된 재조합체를 사용하여, 마찬가지로 배양하였다.
배양 종료 후의 기상 성분에 대해 GC/MS로 분석하였다.
그 결과, pIMBIS가 도입된 재조합체에서는, 어떤 혼합 가스를 사용한 경우라도 이소프렌이 검출되었다. 한편, 컨트롤의 재조합체에서는, 모두 이소프렌은 검출되지 않았다.
이상으로부터, 포플러 유래 이소프렌 합성 효소 유전자가 도입된 클로스트리디움 륭달리이의 재조합체를 배양함으로써, 합성 가스로부터 이소프렌을 생산할 수 있는 것으로 나타났다.
실시예 2
(1) 메발론산 경로 효소 유전자와 이소프렌 합성 효소 유전자가 도입된 발현 벡터의 구축
스트렙토미세스 그리세올로스포레우스(키타사토스포라 그리세올라(Kitasatospora griseola))의 게놈 DNA를 주형으로 하고, 서열 번호 10과 서열 번호 11로 표시되는 프라이머를 사용한 PCR에 의해, 에스. 그리세올로스포레우스(S. griseolosporeus)의 메발론산 경로 효소를 코딩하는 핵산(서열 번호 9)을 증폭하였다. 이 핵산에는, 메발론산 키나아제(Mevalonate kinase), 디포스포메발론산 데카르복실라아제(Mevalonate diphosphate decarboxylase), 포스포메발론산 키나아제(Phosphomevalonate kinase), IPP 이소머라아제(isomerase), HMG-CoA(3-히드록시-3-메틸글루타릴 코엔자임 A) 리덕타아제(reductase)(HMGR) 및 HMG-CoA 신타아제(synthase)를 코딩하는 유전자 클러스터가 포함되어 있다. 얻어진 증폭 DNA 단편을 pT7-블루 T 벡터에 클로닝하여, pT7SMV를 구축하였다.
한편, 실시예 1에서 제작한 pT7IS를 주형으로 하고, 서열 번호 3과 서열 번호 12로 표시되는 프라이머를 사용하여, 포플러 유래 IspS 유전자를 포함하는 DNA 단편을 증폭하였다. 이 DNA 단편을 pT7-블루 T 벡터에 클로닝하여, pT7IS2를 구축하였다.
실시예 1에서 제작한 pIM1B의 BamHI/EcoRI 부위에, 서열 번호 13과 서열 번호 14의 올리고 DNA로 구성된 이중쇄 DNA를 도입하여, pIM1C를 구축하였다. 한편, pT7IS2를 BamHI와 KpnI로 절단하여 IspS 유전자를 포함하는 DNA 단편을 회수하였다. 이 DNA 단편을 pIM1C의 BamHI/KpnI 부위에 도입하여, pIMCIS를 구축하였다.
또한, pT7SMV를 KpnI로 절단하여, 삽입 DNA 단편을 회수하였다. 이 DNA 단편을 pIMCIS의 KpnI 부위에 도입하여, pIMCISMV를 구축하였다. pIMCISMV는 포플러 유래 이소프렌 합성 효소 및 스트렙토미세스 유래의 상기 메발론산 경로 효소군을 코딩하는 유전자를 갖고, 당해 유전자가 pSOS95(문헌[Mingardon F et al., Appl. Envirion. Microbiol. 2005, 71(3), 1215-1222]) 유래의 프로모터 및 터미네이터에 의한 유전자 발현 제어를 받는다.
(2) 이소프렌 생산능을 갖는 재조합체의 제작
실시예 1과 마찬가지로 하여, 메틸화 처리가 실시된 pIMCISMV에 의해 클로스트리디움 륭달리이(DSM13528/ATCC55383)를 형질 전환하여, 재조합체를 취득하였다.
(3) 재조합체에 의한 이소프렌 생산
실시예 1과 마찬가지로 하여, 3종의 혼합 가스를 사용하여, pIMCISMV에 의해 형질 전환한 상기 재조합체를 배양하였다.
컨트롤로서, pIMCISMV 대신에 pIM1C가 도입된 재조합체 및 실시예 1에서 제작한 pIMBIS를 갖는 재조합체를 마찬가지로 하여 배양하였다.
배양 종료 후의 기상 성분에 대해 GC/MS로 분석하였다.
그 결과, pIMCISMV가 도입된 재조합체(본 실시예)와 pIMBIS가 도입된 재조합체(실시예 1)에서는, 어떤 혼합 가스를 사용한 경우라도 이소프렌이 검출되었다. 이소프렌의 생산량에 관해서는, pIMCISMV가 도입된 재조합체(본 실시예)의 쪽이, pIMBIS가 도입된 재조합체(실시예 1)와 비교하여 2 내지 4배의 이소프렌을 생산하고 있었다. 또한, pIM1C가 도입된 재조합체에서는, 이소프렌은 검출되지 않았다.
이상으로부터, 이소프렌 합성 효소 유전자 외에 메발론산 경로 효소 유전자를 도입함으로써, 재조합체의 이소프렌 생산량을 증강할 수 있는 것으로 나타났다.
실시예 3
(1) 코돈 개변된 이소펜테닐이인산 이소머라아제(Isopentenyldiphosphate isomerase(IDI)) 유전자 및 이소프렌 합성 효소(IspS) 유전자가 도입된 발현 벡터의 구축
본 실시예에서는 코돈 개변된 대장균 유래 이소펜테닐이인산 이소머라아제(IDI) 유전자 및 포플러 유래 이소프렌 합성 효소(IspS) 유전자의 양 유전자가 도입된 클로스트리디움 륭달리이에 의한 이소프렌의 생산을 시도하였다. 코돈 개변에는 클로스트리디움 클루이베리(Clostridium kluyveri)(DSM 555)의 코돈 사용 표(Codon Usage Table)(http://www.kazusa.or.jp/codon/cgi-bin/spsearch.cgi?species=clostridium&c=i)를 참고로 하였다.
실시예 1에서 제작한 pIM1A의 PstI/BamHI 부위에, 코돈 개변된 IDI-IspS 오페론 합성 유전자(서열 번호 15, 센스쇄로 표시)를 도입하여, 발현 벡터 pIMAIS1을 구축하였다. 동일한 방법으로 코돈 개변되어 있지 않은 IDI-IspS 오페론 합성 유전자가 도입된 발현 벡터 pIMAIS2도 구축하였다.
또한, 서열 번호 15에 있어서, 염기 번호 165 내지 713의 부분이 코돈 개변된 대장균 유래 IDI 유전자, 염기 번호 780 내지 2567의 부분이 코돈 개변된 포플러 유래 IspS 유전자에 상당한다.
코돈 개변 전의 대장균 유래 IDI 유전자의 염기 서열을 서열 번호 16에 나타낸다. 코돈 개변 전의 포플러 유래 IspS 유전자의 염기 서열은 서열 번호 1에 나타낸 바와 같다.
(2) 이소프렌 생산능을 갖는 재조합체의 제작
실시예 1과 마찬가지로 하여, 메틸화 처리가 실시된 pIMAIS1 및 pIMAIS2에 의해 클로스트리디움 륭달리이(DSM13528)를 형질 전환하여, 재조합체 IS1 및 IS2를 각각 취득하였다.
(3) 재조합체에 의한 이소프렌 생산
실시예 1과 마찬가지로 하여, 3종의 혼합 가스를 사용하여 재조합체 IS1 및 IS2를 배양하였다. 배양 종료 후의 기상 성분에 대해 GC/MS로 분석하였다.
그 결과, IS1의 이소프렌 생산량은 어떤 가스 조성에 있어서도 IS2의 그것의 1.8 내지 3.0배였다. 이것으로부터, 대장균 유래 IDI 및 포플러 유래 IspS의 양 효소 유전자의 코돈을 개변함으로써, 씨. 륭달리이에서의 이소프렌 생산성을 향상시키는 것이 가능한 것을 알 수 있었다.
실시예 4
포플러스 알바(Populus alba) 유래 이소프렌 합성 효소(IspS)와 효모 유래 이소펜테닐이인산 이소머라아제(isopentenyl diphosphate isomerase(IDI))를 발현하는 재조합 씨. 륭달리이의 제작과, 이것에 의한 이소프렌의 생성
씨. 아세토부틸리쿰(C. acetobutylicum)의 코돈 빈도 패턴을 사용하여, 포플러스 알바 유래 IspS(젠뱅크 기탁 번호 Q50L36) 및 효모 유래 IDI의 유전자 서열이 코돈 최적화되었다(서열 번호 17). 클로스트리디움속에 있어서의 외래 유전자 발현을 위해, 코돈 최적화된 IspS(서열 번호 17)와 IDI 유전자가, 에스케리키아 콜리(Escherichia coli)/클로스트리디움 셔틀 벡터 pSCi01(서열 번호 18)에 클로닝되었다. IspS 유전자 및 IDI 유전자는 유도형의 테트라사이클린 프로모터와 fdx 전사 터미네이터(문헌[Nariya H. et al., Appl. Environ. Microbiol., 2011(77), 1375]) 사이에 삽입되었다. 이에 의해, 무수테트라사이클린(anhydrotetracycline)에 의해 IspS 및 IDI의 발현이 유도되는 발현 벡터 pSCi::idi-isps(서열 번호 19)가 구축되었다. 플라스미드는 대장균 NEB Express(NEB사)를 사용하여 증폭하였다. 본 숙주(DCM-, DAM)로 증폭함으로써, 플라스미드는 올바른 메틸화 패턴을 나타내고, 이에 의해 씨. 륭달리이에 의해 효율적으로 형질 전환될 수 있다.
씨. 륭달리이(DSMZ No.13528)는 엄밀한 혐기 조건 하에서 YTF 배지(트립톤(tryptone) 16 g, 이스트 추출물(yeast extract) 10 g, NaCl 4 g, 2 mM 시스테인(Cysteine) 및 프룩토오스(fructose) 5 g/L, pH 5.9-6)에서 배양되었다. 일렉트로포레이션에 의한 pSCi::idi-ispS 벡터의 씨. 륭달리이로의 도입을 위해, 세포는 40 mM D, L-트레오닌(threonine)이 보충된 YTF 배지에서 OD600이 0.2-0.3까지 증식된 후, SMP 완충액(270 mM 수크로오스(sucrose), 1 mM MgCl2, 7 mM 인산나트륨(sodium phosphate), pH 6)으로 세정되어, 10% DMSO를 함유하는 0.5mL의 SMP 완충액에 재현탁되었다. 일렉트로포레이션에는 3㎍의 pSCi::idi-ispS 플라스미드 DNA가 사용되었다. 바이오라드 마이크로펄서(BioRad Micropulser)TM 전기천공 시스템(electroporator system)(바이오-라드 라보라토리(Bio-Rad Laboratory)사)은 이하와 같이 세팅되었다; 큐벳 사이즈 0.1㎜, 전압 0.625㎸, 저항값 600Ω, 전기 용량 25μF. 12시간의 1mL의 YTF 배지 중에서의 재생 후, 세포는 4㎍/mL 클라리트로마이신 및 4㎍/mL 티암페니콜을 함유하는 25mL의 YTF 배지 중에 이식되었다. 다음의 단계로서, 5-10mL의 세포 현탁액은 20mL의 융해 상태의 YTF 한천(1.5% 한천)과 혼합하여, 콜로니가 형성될 때까지 3-5일간 배양되었다. 한천 플레이트로부터 각각의 클론은 분리되고, YTF 배지(4㎍/mL 클라리트로마이신 및 4㎍/mL 티암페니콜을 포함함)에서 액체 배양되었다.
합성 가스 발효를 행하기 위해, 세포는 ATCC1754 배지(4㎍/mL 클라리트로마이신 및 4㎍/mL 티암페니콜을 포함함)에서, 합성 가스(60% CO, 10% CO2, 30% H2)를 유일한 탄소원 및 에너지원으로 하는 배지 조건 하에서, 200mL의 밀폐된 유리 보틀 내에서 50mL의 배양액 중에서, 합성 가스 2기압(절대압) 하에서 행해졌다. 이소프렌 생성의 분석은 거스텔(Gerstel)사제의 SPME(고체상 미량 추출(solid-phase-micro-extraction)) 분석 시스템이 장착된 GC/MS/MS-시스템 TQ8030(시마즈(Shimazu)사)이 사용되었다. 200mL 보틀 배양으로부터의 샘플링에는 75㎛ CAR/PDMS 파이버(fiber)(서펠코≡시그마 알드리치(Supelco≡Sigma Aldrich)사)가 사용되었다. 샘플링은 22℃하에서 30분간 행하였다. KAS 6(거스텔사)으로의 파이버 인젝션 후, 열 탈착은 200℃에서 30초간 행해졌다. 페노메넥스(Phenomenex)사제 A ZB-624 칼럼(길이 30m; 내경 0.25㎜ I.D.; 필름 두께 1.4㎛)이 가스 성분의 분리에 사용되었다. GC/MS/MS의 분석 파라미터는 이하와 같이 설정되었다.
Figure 112015040091925-pct00001
열 탈착 후, 파이버는 다음의 사용까지 300℃에서 30분간 처리되었다. 질량 분석기는 MRM(다중 반응 모니터링(multiple reaction monitoring)) 모드로 작동되었다. 이소프렌에는 68.1m/z-67.0m/z 및 67.1m/z-41.0m/z의 2종의 트랜지션이 선택되고, 아르곤이 CID(충돌 유도 분리(collision induced dissociation)) 가스로서 사용되었다. 이소프렌 표준품으로서 이소프렌(시그마 알드리치사; cat no. 19551: 순도 99%)이 사용되었다.
도 2에 도시한 바와 같이, 이소프렌 표준품은 2.7분의 보유 시간 및 특징적인 68.1m/z-67.0m/z 및 67.1m/z-41.0m/z의 트랜지션 패턴을 나타냈다. 합성 가스 발효 개시 48시간 후, 헤드 스페이스는 채취되어 GC/MS/MS에 의해 분석되었다. 도 3은 pSCi01 플라스미드를 유지하는 씨. 륭달리이에서의 GC/MS/MS 분석의 결과를 나타낸다. 도 4는 pSCi::idi-ispS 플라스미드를 유지하는 씨. 륭달리이에서의 GC/MS/MS분석의 결과를 나타낸다.
이상의 결과로부터, pSCi::idi-ispS를 유지하는 씨. 륭달리이는 이소프렌을 생성하는 것을 알 수 있었다.
실시예 5
포플러스 알바 유래 IspS, 에스케리키아 콜리 유래 IDI 및 미생물 유래 MVA(메발론산염) 경로 유전자가 도입된 재조합 씨. 륭달리이의 제작과, 이것에 의한 이소프렌의 생성
플라스미드 pSCi::MVA-IspS-idi의 이소프렌 합성 유전자 클러스터의 설계를, 도 5 및 서열 번호 20으로 나타냈다. 코돈 최적화된 각 유전자의 기탁 번호, 약어 및 유래 생물은 이하의 표에 나타냈다.
Figure 112015040091925-pct00002
MVA-IspS-idi 유전자 클러스터는 유도형 테트라사이클린 프로모터 및 fdx 전사 터미네이터 사이에 삽입됨으로써, 무수테트라사이클린에 의한 유도 발현계가 구축되었다. 구축된 발현 벡터에서 유래하는 도입 유전자의 올바른 발현은 표적된 프로테오믹스에 의해 평가되었다. 플라스미드는 대장균주 NEB Express(NEB사)에 있어서 증폭되었다.
씨. 륭달리이(DSMZ No.13528)는 엄밀한 혐기 조건 하에서 YTF 배지(트립톤 16 g, 이스트 추출물 10 g, NaCl 4 g, 2 mM 시스테인 및 프룩토오스 5 g/L, pH 5.9-6)에서 배양되었다. 일렉트로포레이션에 의한 pSCi::MVA-IspS-idi 벡터의 씨. 륭달리이로의 도입을 위해, 세포는 40mM D,L-트레오닌이 보충된 YTF 배지에서 OD600이 0.2-0.3까지 증식된 후, SMP 완충액(270 mM 수크로오스, 1mM MgCl2, 7 mM 인산나트륨, pH 6)으로 세정되어, 10%의 DMSO를 함유하는 0.5mL의 SMP 완충액에 재현탁되었다. 일렉트로포레이션에는 3㎍의 pSCi::MVA-IspS-idi 플라스미드 DNA가 사용되었다. 바이오라드 마이크로펄서TM 전기천공 시스템(바이오-라드 라보라토리사)은 이하와 같이 세팅되었다; 큐벳 사이즈 0.1㎜, 전압 0.625㎸, 저항값 600Ω, 전기 용량 25μF. 12시간의 1mL의 YTF 배지 중에서의 재생 후, 세포는 4㎍/mL 클라리트로마이신 및 4㎍/mL 티암페니콜을 함유하는 25mL의 YTF 배지 중에 이식되었다. 다음의 단계로서, 5-10mL의 세포 현탁액은 20mL의 융해 상태의 YTF 한천(1.5% 한천)과 혼합하여, 콜로니가 형성될 때까지 3-5일간 배양되었다. 한천 플레이트로부터 각각의 클론은 분리되고, YTF 배지(4㎍/mL 클라리트로마이신 및 4㎍/mL 티암페니콜을 포함함)에서 액체 배양되었다.
합성 가스 발효를 행하기 위해, 세포는 ATCC1754 배지(4㎍/mL 클라리트로마이신 및 4㎍/mL 티암페니콜을 포함함)에서, 합성 가스(60% CO, 10% CO2, 30% H2)를 유일한 탄소원 및 에너지원으로 하는 배지 조건 하에서, 200mL의 밀폐된 유리 보틀 내에서 50mL의 배양액 중에서, 합성 가스 2기압(절대압) 하에서 행해졌다. 합성 가스 발효 개시 48시간 후, 헤드 스페이스는 실시예 4와 동일한 방법으로 채취되어, 실시예 4와 동일 조건 하에서 GC/MS/MS에 의해 분석되었다.
도 6에 도시한 바와 같이, pSCi::MVA-idi-ispS 벡터를 유지하는 씨. 륭달리이가 이소프렌을 생성하고 있는 것이 나타났다.
ATCC 미디움: 1754 PETC 배지의 조성을 이하에 나타낸다.
NH4Cl 1.0g
KCl 0.1g
MgSO4ㆍ7H2O 0.2g
NaCl 0.8g
KH2PO4 0.1g
CaCl2ㆍ2H2O 20.0㎎
이스트 추출물 1.0g
미량 원소(Trace Elements)(하기 참조) 10.0mL
울프 비타민 용액(Wolfe's Vitamin Solution)(하기 참조) 10.0mL
NaHCO3 2.0g
환원제(Reducing Agent)(하기 참조) 10.0mL
증류수(Distilled water) 980.0mL
최종 pH 5.9
(미량 원소)
니트릴로트리아세트산(Nitrilotriacetic acid) 2.0g
MnSO4H2O 1.0g
Fe(SO4)2(NH4)2ㆍ6H2O 0.8g
CoCl2ㆍ6H2O 0.2g
ZnSO4ㆍ7H2O 0.2㎎
CuCl2ㆍ2H2O 20.0㎎
NiCl2ㆍ6H2O 20.0㎎
Na2MoO4ㆍ2H2O 20.0㎎
Na2SeO4 20.0㎎
Na2WO4 20.0㎎
증류수 1.0L
(울프 비타민 용액)
멸균된 즉시 사용 가능한(ready-to-use) 용액으로서 ATCC로부터 입수 가능(비타민제(Vitamin Supplement) 카탈로그 번호 MD-VS)
비오틴(Biotin) 2.0㎎
엽산(Folic acid) 2.0㎎
염산피리독신(Pyridoxine hydrochloride) 10.0㎎
티아민(Thiamine)ㆍHCl 5.0㎎
리보플라빈(Riboflavin) 5.0㎎
니코틴산(Nicotinic acid) 5.0㎎
칼슘(Calcium) D-(+)-판토텐산(pantothenate) 5.0㎎
비타민 B12 0.1㎎
p-아미노벤조산(Aminobenzoic acid) 5.0㎎
티옥트산(Thioctic acid) 5.0㎎
증류수 1.0L
(환원제)
NaOH 0.9g
L-시스테인ㆍHCl 4.0g
Na2Sㆍ9H2O 4.0g
증류수 100.0mL
SEQUENCE LISTING <110> Sekisui Chemical Co., Ltd. <120> ???????????????????? <130> 13P01212 <150> JP 2012-233571 <151> 2012-10-23 <150> JP 2013-132423 <151> 2013-06-25 <160> 20 <170> PatentIn version 3.1 <210> 1 <211> 1788 <212> DNA <213> Populus nigra <220> <221> CDS <222> (1)..(1788) <223> <400> 1 atg gca act gaa tta ttg tgc ttg cac cgt cca atc tca ctg aca cac 48 Met Ala Thr Glu Leu Leu Cys Leu His Arg Pro Ile Ser Leu Thr His 1 5 10 15 aaa ttg ttc aga aat ccc ttg cct aaa gtc atc cag gcc act ccc tta 96 Lys Leu Phe Arg Asn Pro Leu Pro Lys Val Ile Gln Ala Thr Pro Leu 20 25 30 act ttg aaa ctc aga tgt tct gta agc aca gaa aac gtc agc ttc aca 144 Thr Leu Lys Leu Arg Cys Ser Val Ser Thr Glu Asn Val Ser Phe Thr 35 40 45 gaa aca gaa aca gaa acc aga agg tct gcc aat tat gaa cca aat agc 192 Glu Thr Glu Thr Glu Thr Arg Arg Ser Ala Asn Tyr Glu Pro Asn Ser 50 55 60 tgg gat tat gat tat ttg ctg tct tcg gac act gac gaa tcg att gaa 240 Trp Asp Tyr Asp Tyr Leu Leu Ser Ser Asp Thr Asp Glu Ser Ile Glu 65 70 75 80 gta tac aaa gac aag gcc aaa aag ctg gag gct gag gtg aga aga gag 288 Val Tyr Lys Asp Lys Ala Lys Lys Leu Glu Ala Glu Val Arg Arg Glu 85 90 95 att aac aat gaa aag gca gag ttt ttg act ctg cct gaa ctg ata gat 336 Ile Asn Asn Glu Lys Ala Glu Phe Leu Thr Leu Pro Glu Leu Ile Asp 100 105 110 aat gtc caa agg tta gga tta ggt tac cgg ttc gag agt gac ata agg 384 Asn Val Gln Arg Leu Gly Leu Gly Tyr Arg Phe Glu Ser Asp Ile Arg 115 120 125 aga gcc ctt gat aga ttt gtt tct tca gga gga ttt gat gct gtt aca 432 Arg Ala Leu Asp Arg Phe Val Ser Ser Gly Gly Phe Asp Ala Val Thr 130 135 140 aaa act agc ctt cat gct act gct ctt agc ttc agg ctt ctc aga cag 480 Lys Thr Ser Leu His Ala Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln 145 150 155 160 cat ggc ttt gag gtc tct caa gaa gcg ttc agc gga ttc aag gat caa 528 His Gly Phe Glu Val Ser Gln Glu Ala Phe Ser Gly Phe Lys Asp Gln 165 170 175 aat ggc aat ttc ttg aaa aac ctt aag gag gac atc aag gca ata cta 576 Asn Gly Asn Phe Leu Lys Asn Leu Lys Glu Asp Ile Lys Ala Ile Leu 180 185 190 agc cta tat gaa gct tca ttt ctt gcc tta gaa gga gaa aat atc ttg 624 Ser Leu Tyr Glu Ala Ser Phe Leu Ala Leu Glu Gly Glu Asn Ile Leu 195 200 205 gat gag gcc aag gtg ttt gca ata tca cat cta aaa gag ctc agc gaa 672 Asp Glu Ala Lys Val Phe Ala Ile Ser His Leu Lys Glu Leu Ser Glu 210 215 220 gaa aag att gga aaa gac ctg gcc gaa cag gtg aat cat gca ttg gag 720 Glu Lys Ile Gly Lys Asp Leu Ala Glu Gln Val Asn His Ala Leu Glu 225 230 235 240 ctt cca ttg cat cga agg acg caa aga cta gaa gct gtt tgg agc att 768 Leu Pro Leu His Arg Arg Thr Gln Arg Leu Glu Ala Val Trp Ser Ile 245 250 255 gaa gca tac cgt aaa aag gaa gat gca gat caa gta ctg cta gaa ctt 816 Glu Ala Tyr Arg Lys Lys Glu Asp Ala Asp Gln Val Leu Leu Glu Leu 260 265 270 gct ata ttg gac tac aac atg att caa tca gta tac caa aga gat ctt 864 Ala Ile Leu Asp Tyr Asn Met Ile Gln Ser Val Tyr Gln Arg Asp Leu 275 280 285 cgc gag aca tca agg tgg tgg agg cgt gtg ggt ctt gca aca aag ttg 912 Arg Glu Thr Ser Arg Trp Trp Arg Arg Val Gly Leu Ala Thr Lys Leu 290 295 300 cat ttt gct aga gac agg tta att gaa agc ttt tac tgg gca gtt gga 960 His Phe Ala Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Ala Val Gly 305 310 315 320 gtt gcg ttt gaa cct caa tac agt gat tgc cgt aat tcc gta gca aaa 1008 Val Ala Phe Glu Pro Gln Tyr Ser Asp Cys Arg Asn Ser Val Ala Lys 325 330 335 atg ttt tcg ttt gta aca atc att gat gat atc tat gat gtt tat ggt 1056 Met Phe Ser Phe Val Thr Ile Ile Asp Asp Ile Tyr Asp Val Tyr Gly 340 345 350 act ctg gat gag ttg gag cta ttt aca gat gct gtt gag aga tgg gat 1104 Thr Leu Asp Glu Leu Glu Leu Phe Thr Asp Ala Val Glu Arg Trp Asp 355 360 365 gtt aat gcc atc gat gat ctt ccg gat tat atg aag ctc tgc ttc cta 1152 Val Asn Ala Ile Asp Asp Leu Pro Asp Tyr Met Lys Leu Cys Phe Leu 370 375 380 gct ctc tat aac act atc aat gag ata gct tat gat aat ctg aag gac 1200 Ala Leu Tyr Asn Thr Ile Asn Glu Ile Ala Tyr Asp Asn Leu Lys Asp 385 390 395 400 aag ggg gaa aac att ctt cca tac cta aca aaa gcg tgg gca gat tta 1248 Lys Gly Glu Asn Ile Leu Pro Tyr Leu Thr Lys Ala Trp Ala Asp Leu 405 410 415 tgc aat gca ttc cta caa gaa gca aaa tgg ttg tac aat aag tcc aca 1296 Cys Asn Ala Phe Leu Gln Glu Ala Lys Trp Leu Tyr Asn Lys Ser Thr 420 425 430 cca aca ttt gat gaa tat ttc gga aat gca tgg aaa tca tcc tca ggg 1344 Pro Thr Phe Asp Glu Tyr Phe Gly Asn Ala Trp Lys Ser Ser Ser Gly 435 440 445 cct ctt caa cta gtt ttt gcc tac ttt gcc gtt gtt caa aac atc aag 1392 Pro Leu Gln Leu Val Phe Ala Tyr Phe Ala Val Val Gln Asn Ile Lys 450 455 460 aaa gag gaa att gat aac tta caa aag tat cat gat atc atc agt agg 1440 Lys Glu Glu Ile Asp Asn Leu Gln Lys Tyr His Asp Ile Ile Ser Arg 465 470 475 480 cct tcc cac atc ttt cgt ctt tgc aac gac ttg gct tca gca tcg gct 1488 Pro Ser His Ile Phe Arg Leu Cys Asn Asp Leu Ala Ser Ala Ser Ala 485 490 495 gag ata gcg aga ggt gaa acc gcg aat tct gta tca tgc tac atg cgt 1536 Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser Val Ser Cys Tyr Met Arg 500 505 510 aca aaa ggc att tct gag gaa ctt gct act gaa tcc gta atg aat ttg 1584 Thr Lys Gly Ile Ser Glu Glu Leu Ala Thr Glu Ser Val Met Asn Leu 515 520 525 atc gac gaa acc tgg aaa aag atg aac aaa gaa aag ctt ggt ggc tct 1632 Ile Asp Glu Thr Trp Lys Lys Met Asn Lys Glu Lys Leu Gly Gly Ser 530 535 540 ctg ttt gca aaa cct ttt gtc gaa aca gct att aac ctt gca cga caa 1680 Leu Phe Ala Lys Pro Phe Val Glu Thr Ala Ile Asn Leu Ala Arg Gln 545 550 555 560 tcc cat tgc act tat cac aac gga gat gcg cat act tca cca gat gag 1728 Ser His Cys Thr Tyr His Asn Gly Asp Ala His Thr Ser Pro Asp Glu 565 570 575 ctc act agg aaa cgt gtc ctg tca gta atc aca gag cct att cta ccc 1776 Leu Thr Arg Lys Arg Val Leu Ser Val Ile Thr Glu Pro Ile Leu Pro 580 585 590 ttt gag aga taa 1788 Phe Glu Arg 595 <210> 2 <211> 595 <212> PRT <213> Populus nigra <400> 2 Met Ala Thr Glu Leu Leu Cys Leu His Arg Pro Ile Ser Leu Thr His 1 5 10 15 Lys Leu Phe Arg Asn Pro Leu Pro Lys Val Ile Gln Ala Thr Pro Leu 20 25 30 Thr Leu Lys Leu Arg Cys Ser Val Ser Thr Glu Asn Val Ser Phe Thr 35 40 45 Glu Thr Glu Thr Glu Thr Arg Arg Ser Ala Asn Tyr Glu Pro Asn Ser 50 55 60 Trp Asp Tyr Asp Tyr Leu Leu Ser Ser Asp Thr Asp Glu Ser Ile Glu 65 70 75 80 Val Tyr Lys Asp Lys Ala Lys Lys Leu Glu Ala Glu Val Arg Arg Glu 85 90 95 Ile Asn Asn Glu Lys Ala Glu Phe Leu Thr Leu Pro Glu Leu Ile Asp 100 105 110 Asn Val Gln Arg Leu Gly Leu Gly Tyr Arg Phe Glu Ser Asp Ile Arg 115 120 125 Arg Ala Leu Asp Arg Phe Val Ser Ser Gly Gly Phe Asp Ala Val Thr 130 135 140 Lys Thr Ser Leu His Ala Thr Ala Leu Ser Phe Arg Leu Leu Arg Gln 145 150 155 160 His Gly Phe Glu Val Ser Gln Glu Ala Phe Ser Gly Phe Lys Asp Gln 165 170 175 Asn Gly Asn Phe Leu Lys Asn Leu Lys Glu Asp Ile Lys Ala Ile Leu 180 185 190 Ser Leu Tyr Glu Ala Ser Phe Leu Ala Leu Glu Gly Glu Asn Ile Leu 195 200 205 Asp Glu Ala Lys Val Phe Ala Ile Ser His Leu Lys Glu Leu Ser Glu 210 215 220 Glu Lys Ile Gly Lys Asp Leu Ala Glu Gln Val Asn His Ala Leu Glu 225 230 235 240 Leu Pro Leu His Arg Arg Thr Gln Arg Leu Glu Ala Val Trp Ser Ile 245 250 255 Glu Ala Tyr Arg Lys Lys Glu Asp Ala Asp Gln Val Leu Leu Glu Leu 260 265 270 Ala Ile Leu Asp Tyr Asn Met Ile Gln Ser Val Tyr Gln Arg Asp Leu 275 280 285 Arg Glu Thr Ser Arg Trp Trp Arg Arg Val Gly Leu Ala Thr Lys Leu 290 295 300 His Phe Ala Arg Asp Arg Leu Ile Glu Ser Phe Tyr Trp Ala Val Gly 305 310 315 320 Val Ala Phe Glu Pro Gln Tyr Ser Asp Cys Arg Asn Ser Val Ala Lys 325 330 335 Met Phe Ser Phe Val Thr Ile Ile Asp Asp Ile Tyr Asp Val Tyr Gly 340 345 350 Thr Leu Asp Glu Leu Glu Leu Phe Thr Asp Ala Val Glu Arg Trp Asp 355 360 365 Val Asn Ala Ile Asp Asp Leu Pro Asp Tyr Met Lys Leu Cys Phe Leu 370 375 380 Ala Leu Tyr Asn Thr Ile Asn Glu Ile Ala Tyr Asp Asn Leu Lys Asp 385 390 395 400 Lys Gly Glu Asn Ile Leu Pro Tyr Leu Thr Lys Ala Trp Ala Asp Leu 405 410 415 Cys Asn Ala Phe Leu Gln Glu Ala Lys Trp Leu Tyr Asn Lys Ser Thr 420 425 430 Pro Thr Phe Asp Glu Tyr Phe Gly Asn Ala Trp Lys Ser Ser Ser Gly 435 440 445 Pro Leu Gln Leu Val Phe Ala Tyr Phe Ala Val Val Gln Asn Ile Lys 450 455 460 Lys Glu Glu Ile Asp Asn Leu Gln Lys Tyr His Asp Ile Ile Ser Arg 465 470 475 480 Pro Ser His Ile Phe Arg Leu Cys Asn Asp Leu Ala Ser Ala Ser Ala 485 490 495 Glu Ile Ala Arg Gly Glu Thr Ala Asn Ser Val Ser Cys Tyr Met Arg 500 505 510 Thr Lys Gly Ile Ser Glu Glu Leu Ala Thr Glu Ser Val Met Asn Leu 515 520 525 Ile Asp Glu Thr Trp Lys Lys Met Asn Lys Glu Lys Leu Gly Gly Ser 530 535 540 Leu Phe Ala Lys Pro Phe Val Glu Thr Ala Ile Asn Leu Ala Arg Gln 545 550 555 560 Ser His Cys Thr Tyr His Asn Gly Asp Ala His Thr Ser Pro Asp Glu 565 570 575 Leu Thr Arg Lys Arg Val Leu Ser Val Ile Thr Glu Pro Ile Leu Pro 580 585 590 Phe Glu Arg 595 <210> 3 <211> 59 <212> DNA <213> Artificial <220> <223> oligonucleotide primer for PCR <400> 3 ggccgcggat ccagaattta aaaggaggga ttaaaatggc aactgaatta ttgtgcttg 59 <210> 4 <211> 84 <212> DNA <213> Artificial <220> <223> oligonucleotide primer for PCR <400> 4 ccgcgccgga tccgacatta aaaaaataag agttaccatt taaggtaact cttattttta 60 ttatctctca aagggtagaa tagg 84 <210> 5 <211> 32 <212> DNA <213> Artificial <220> <223> oligonucleotide linker <400> 5 gatcgctgca ggtttaaacg gatccactac cg 32 <210> 6 <211> 32 <212> DNA <213> Artificial <220> <223> oligonucleotide linker <400> 6 aattcggtag tggatccgtt taaacctgca gc 32 <210> 7 <211> 131 <212> DNA <213> Artificial <220> <223> oligonucleotide linker <400> 7 gtttttaaca aaatatattg ataaaaataa taatagtggg tataattaag ttgttagaga 60 aaacgtataa attagggata aactatggaa cttatgaaat agattgaaat ggtttatctg 120 ttaccccgta g 131 <210> 8 <211> 139 <212> DNA <213> Artificial <220> <223> oligonucleotide linker <400> 8 gatcctacgg ggtaacagat aaaccatttc aatctatttc ataagttcca tagtttatcc 60 ctaatttata cgttttctct aacaacttaa ttatacccac tattattatt tttatcaata 120 tattttgtta aaaactgca 139 <210> 9 <211> 6441 <212> DNA <213> Streptomyces griseolosporeus <400> 9 gttgactctt ccgacctcgg tggaggaggg atcgaaggcc caccgggctc gcgccgtcgg 60 caccggtcgc gctcatgcca aggccattct gctgggagag cacgcggtcg tgtacggaac 120 cccggcgctc gcgatgccca ttccccaact cgcggtcacg gcaagcgccg gctggtccgg 180 ccgatccgcc gagagccggg gcggtccgac cttcaccatg accgggtcgg cttcccgcgc 240 ggtcacggca caggccttgg acggtctgcg acgtctgacc gcctcggtca aggcgcacac 300 gggagtgacc gacggacaac acctcgacgt cagcctcgac ggggcgattc cgcccggccg 360 cgggctcggc tccagcgccg cgaacgcacg agcgatcatc ctcgccctgg ccgacctctt 420 cggccgggag ctgaccgagg gcgaggtgtt cgacctggtg caggaggccg agaacctgac 480 gcacggccgg gccagcggcg tcgacgccgt gaccgtcggc gccaccgccc cgctcctctt 540 ccgggcgggc acggcacagg cgctggacat cggctgcgac gcactgttcg tcgtcgcgga 600 cagcggaacc gcagggagca ccaaggaggc gatcgagctg cttcgcgccg gattccgggc 660 cggggccgga aaggaggaac ggttcatgca ccgtgccgcg cacctcgtcg acgatgccag 720 ggcctccctc gccgagggcg aacccgaggc gttcggatcg tgcctgaccg agtatcacgg 780 cctgctgcgc ggggcgggtc tgagcaccga ccggatcgat gcactggtgg atgccgcgct 840 gcaggccgac agcctgggcg ccaagatcac cggtggcggt ctgggcggtt gtgttctcgc 900 gatgtcccgc ccggagcggg ccgaggaagt ggcccggcag ctgcacgccg ccggcgccgt 960 acgcacgtgg gccgtacagc tgaggaggtc cactcatgag cgctgaacag ccgtcaaccc 1020 tgctgtccgc gccgcgacgg acaccgcgac agccgttgcc cagccgaaca tcgcgctgat 1080 caagtactgg ggcaagaagg acgagcacct ggtcctgccc cgtaccgaca gcctgtcgat 1140 gactctggac atcttcccga cgaccacccg ggtccagctc gcgcccggcg ccgggcagga 1200 cacggtggcc ttcaacggcg agcccgcgac gggagaggcc gagcggcgca tcaccgcatt 1260 cctccggctg gtgcgggagc ggtcggggcg caccgaacgg gcccgcgtcg agacggagaa 1320 caccgtcccc accggggccg gcctggcctc gtcggccagc ggtttcgctg ccctcgccgt 1380 cgccgccgcc gcggcgtacg ggctcggtct cgacgcgcgg ggcctgtccc ggctggcccg 1440 acgcggctcc gggtcggcct cccggtcgat cttcgacggg ttcgccgtgt ggcacgccgg 1500 ccacgccggc ggcactcccg aggaggccga tctcggctcg tacgccgaac cggtgccggc 1560 cgtggacctg gagccggcgc tggtggtcgc ggtggtcagc gccgccccca aggcggtgtc 1620 cagccgggag gccatgcgga ggaccgtgga cacctcaccg ctgtacgagc cgtgggcggt 1680 gtccagccgg gccgacctgg cggacatcgg agccgcgctc gcccgcggca acctgccggc 1740 ggtgggcgag atcgcggagc gcaacgccct cggcatgcac gccaccatgc tggccgcacg 1800 ccccgccgtg cgctacctgt caccggcctc gctcgccgtg ctcgacggcg ttctgcagtt 1860 gcggcgggac ggcgtgccgg cctacgcgac gatggacgcc ggtcccaacg tgaaggtgct 1920 ctgcccgcgt tcggacgccg agcgggtcgc ggaagccctg cgcgccgccg cgccggtcgg 1980 agcggtgcac atcgccggtc cggggcgggg tgcccgcctg gtggcggagg aatgccggtg 2040 accggcccgc gcgcggtgac ccggcgcgcc ccgggcaagc tcttcgtcgc gggtgaatac 2100 gcggtggtgg aaccgggcaa ccgggcgatc ctggtggcag tcgaccggta cgtcaccgtc 2160 accgtgtccg acggcgccgc acccggtgtc gtcgtctcct ccgacatcgg agccggcccg 2220 gtgcaccacc cgtggcagga cgggcggctg acaggcggta cgggcacacc tcatgtggtg 2280 gcggcggtcg agaccgtggc ccgcctcctg gccgaacgcg gccggtccgt cccgccgttg 2340 gggtggtcga tcagcagcac gctgcacgag gacggccgga agttcggact gggctccagc 2400 ggcgcggtga cggtggcgac ggtcagtgcc gtcgcagccc attgcggact ggaactcacc 2460 gccgaagaac gcttccggac ggcgctgatc gcctccgccc gcatcgaccc caggggatcc 2520 ggcggagaca tcgccaccag cacctggggc ggctggatcg cctaccgggc gcccgaccgg 2580 gacgccgtac tcgacttgac ccgccgtcag ggggtcgacg aggcactccg ggcgccgtgg 2640 ccgggcttct ccgtacgact gtcgccgccc cggaacctct gcctcgaggt cggctggacc 2700 ggcaaccccg tgtccaccac gtccctcctg acggacctgc atcggcgcac ctggcggggc 2760 agccccgcgt accggaggta cgtcggggcg accggcgagc tcgtggacgc cgcagtcatc 2820 gcgctggagg acggcgacac cgagggcctg ttgcggcagg tccggcgggc ccgtcacgag 2880 atggtccgcc tcgacgacga ggtcggcctc ggcatcttca cccccgaact gacggccctc 2940 tgcgccatcg ccgaacgcgc cggcgcggcc aagccctcgg gggccggggg cggcgactgc 3000 ggcatcgcgc tgctggacgc cgaggcccgc tacgaccgct caccgttgca ccggcaatgg 3060 gccgcggccg gggtgctgcc gctactggtg tcgcctgcca cggaaggagt cgaggaatga 3120 gcagtgccca gcgcaaggac gaccatgtcc ggctcgccac ggagcagcag cgcgcgcaca 3180 gcggacgcaa ccagttcgac gacgtgtcgt tcgtccacca cgccctcgcc ggaatcgacc 3240 ggccggacgt ccgcctggcc acgacgttcg ccggcatcac ctggcgactg ccgctgtaca 3300 tcaacgcgat gacgggcggc agcgccaaga ccggcgccat caaccgggac ctggccgtcg 3360 ccgccaggga gaccggcgcc gccatcgcgt ccgggtccat gcacgccttt ttcagggacc 3420 cctcctgcgc ggacaccttc cgcgtgctgc gcaccgagaa ccccgacggt ttcgtgatgg 3480 cgaacgtcaa cgcgaccgcg tccgtcgaca acgcccgccg ggccgtcgac ctgatcgagg 3540 cgaacgccct gcagatccac ctgaacacgg cgcaggagac gcccatgccg gagggcgacc 3600 ggtcgttcgg gtcgtggccg gcccagatcg cgaagatcac ggcggccgtc gacgtcccgg 3660 tgatcgtcaa ggaggtcggc aacgggctca gcaggcagac cctcctggcg ctgccggatc 3720 tgggggtccg ggtcgccgac gtcagcggcc gcggcggcac cgacttcgcc cgtatcgaga 3780 acagccggcg ccccctgggc gactacgcct tcctgcacgg ctgggggcag tccaccccgg 3840 cctgtctgct ggacgctcag gacgtcggct tccccctgct ggcctccggt gggatccgca 3900 acccgctcga cgtcgcccgg gcgctcgcgc tcggcgccgg cgccgtgggc tcctcgggcg 3960 tattcctgcg cacgctgatc gacgggggcg tatccgccct ggtcgcacag atctccacct 4020 ggctggacca gctcgccgcg ctgcagacca tgctcggtgc gcggaccccc gccgacctca 4080 cccgctgcga cgtgctgatc cacggcccgc tccggtcctt ctgcacggac cggggcatag 4140 acatcgggcg gttcgcccgg cgcagcagct ccgccgacat ccgttccgag atgacaggaa 4200 gcacacgatg accgaagcgc acgccaccgc cggcgtcccg atgcggtggg tggggcccgt 4260 ccgcatctcg ggaaacgtcg ccaccatcga aacccaggtg ccgctggcca cgtacgagtc 4320 tccgctctgg ccttcggtgg gccgcggcgc gaaggtgtcc cggctgaccg agaagggcat 4380 cgtcgccacg ctcgtcgacg agcgcatgac ccgttccgtg ctcgtcgagg cgaccgacgc 4440 gctcaccgcg ctctccgcgg cacggaccat cgaggcccgc atcgacgagc tgcgcgagct 4500 ggtgcgcggc tgcagccggt tcgcccagct gatcggcatc cggcacgaga tcaccggaaa 4560 cctgctgttc gtccggttcg agttcagcac cggtgacgcc tccgggcaca acatggcgac 4620 cctggcttcc gacgtgctcc tccagcatct gctggaaacg gttcccggca tctcctacgg 4680 gtcgatctcc gggaactact gcacggacaa gaaggccacc gccatcaacg gcatcctggg 4740 ccgcggcaag aacgtcgtca ccgagctgct cgtgccgcgt gacgtggtgg ccgacgtcct 4800 gaacaccacc gccgcgaaga tcgccgagct gaacctccgc aagaacctgc tcgggacact 4860 tctcgcaggc ggcatccggt cggcgaacgc ccactacgcg aacatgctgc tcgcgttcta 4920 cctggcgacc ggtcaggacg cggcgaacat cgtcgagggc tcccagggcg tcgtcacggc 4980 cgaggaccgc gacggcgacc tctacttagc ctgcacactg ccgaacctca tcgtcggcac 5040 ggttggcaac ggcaagggcc tgggcttcgt ggagaccaac ctgaaccggc tcggctgccg 5100 tgcggaccgc gagcccggcg agaacgcccg ccggctcgcc gtcatcgcgg cggccacggt 5160 gctctgcggg gagctgtcgc tgctcgcggc gcagaccaac cccggcgaac tgatgcgtgc 5220 gcatgtccaa ctggaacgag gccacacgac cgcgaaggct ggtgtctaga gcatgcccct 5280 cgccataggc atccatgatc tgtcgttcgc caccggcgag ttcggctgcc gcacaccgcc 5340 ctcgccgctc acaacggaac cgagatcggc aagtaccacg cgggcatcgg ccaggagtcg 5400 atgagcgtcc cggccgccga cgaggacatc gtgaccctgg ccgcgacggc tgccgcaccg 5460 atcgtcgccc ggcacggcag cgaccggatc cgcacggtcg tgctcgcgac cgaatcgtcg 5520 atcgaccagg cgaagtcggc cggtgtgtac gtccactccc tgctcggact gccgtcggcc 5580 acccgcgtcg tggagctgaa gcaggcctgt tacggggcca cggccggcct gcagttcgcc 5640 atcggtctgg tgcagcgcga ccccgcccag caggttctcg tcatcgccag tgacgtctcc 5700 aagtacgacc tggacagccc cggtgaggcg acgcagggcg ccgccgcggt cgccatgctc 5760 gtaggcgccg atccggggct ggtgcggatc gaggatccgt cgggcctgtt caccgtcgac 5820 gtcatggact tctggcggcc gaactaccgc accacggctc tggtcgacgg ccaggaatcc 5880 atcggcgcct acctccaggc ggtggagggg gcctggaagg actactcgga gcggggcggc 5940 cactccctgg agcagttcgc cgcgttctgc taccaccagc cgttcaccaa gatggctcac 6000 aaggcccacc ggcacctgct gaactactgc agccacgaca tccaccacga cgacgtcacg 6060 cgtgccgtcg gccggaccac cgcctacaac agggtgatcg ggaacagcta caccgcgtcc 6120 gtctacctgg gcctcgccgc gctcctcgac caggccgacg acctgaccgg tgagcgcatc 6180 ggattcctca gctacggttc cggcagcgtc gccgagttct tcggcgggat cgtcgtcgcc 6240 ggataccggg accggctgcg gacggcggcg aacatcgagg ccgtctcccg gcgacggccc 6300 atcgactacg ccggctaccg cgagctgcac gagtgggcct tccccgcccg acggggagcc 6360 cactccaccc cgcagcagac cacgggaccg ttccggctgt ccggtatcag cggccacaag 6420 cgcctctacc gagcgtgctg a 6441 <210> 10 <211> 62 <212> DNA <213> Artificial <220> <223> oligonucleotide primer for PCR <400> 10 cgggtaccaa ttttgttaat aattcaggga gggattctaa atgactcttc cgacctcggt 60 gg 62 <210> 11 <211> 71 <212> DNA <213> Artificial <220> <223> oligonucleotide primer for PCR <400> 11 aggtaccatt aaaaaaataa gagttaccat ttaaggtaac tcttattttt atcagcacgc 60 tcggtagagg c 71 <210> 12 <211> 39 <212> DNA <213> Artificial <220> <223> oligonucleotide primer for PCR <400> 12 tggtacctta ttcttttatc tctcaaaggg tagaatagg 39 <210> 13 <211> 15 <212> DNA <213> Artificial <220> <223> oligonucleotide linker <400> 13 gatccggtac ctttg 15 <210> 14 <211> 15 <212> DNA <213> Artificial <220> <223> oligonucleotide linker <400> 14 aattcaaagg taccg 15 <210> 15 <211> 2620 <212> DNA <213> Artificial <220> <223> Designed polynucleotide containing Isopentenyl diphosphate isomer ase gene and isoprene synthase gene <400> 15 ctgcagtttt taacaaaata tattgataaa aataataata gtgggtataa ttaagttgtt 60 agagaaaacg tataaattag ggataaacta tggaacttat gaaatagatt gaaatggttt 120 atctgttacc ccgtaggatc gagaatttaa aaggagggat taaaatgcaa actgaacatg 180 ttattttatt gaatgcacag ggagttccta ctggtactct ggaaaagtat gccgcacata 240 cagcagacac ccgcttacat ctcgctttct ccagttggct gtttaatgcc aaaggacaat 300 tattagttac cagaagagca ctgagcaaaa aagcatggcc tggcgtgtgg actaactctg 360 tttgtgggca tccacaactg ggagaaagca acgaagacgc agtgatcaga agatgtcgtt 420 atgagcttgg cgtggaaatt actcctcctg aatctatcta tcctgacttt agatacagag 480 ccaccgatcc tagtggcatt gtggaaaatg aagtgtgtcc tgtatttgcc gcaagaacca 540 ctagtgcatt acagatcaat gatgatgaag tgatggatta tcaatggtgt gatttagcag 600 atgtattaca tggtattgat gccactcctt gggctttcag tccttggatg gtgatgcagg 660 caacaaatag agaagccaga aaaagattat ctgcatttac ccagcttaaa taattaataa 720 ttaattcgaa cagaaaaaat aagtatttat ataacggtta attgtaagga gggtttttta 780 tggcaactga attattgtgt ttgcatagac caatctcact gacacataaa ttgttcagaa 840 atcctttgcc taaagttatc caggccactc ctttaacttt gaaacttaga tgttctgtaa 900 gcacagaaaa cgtaagcttc acagaaacag aaacagaaac cagaaggtct gccaattatg 960 aaccaaatag ctgggattat gattatttgc tgtcttctga cactgacgaa tctattgaag 1020 tatacaaaga caaggccaaa aagctggagg ctgaggtgag aagagagatt aacaatgaaa 1080 aggcagagtt tttgactctg cctgaactga tagataatgt tcaaaggtta ggattaggtt 1140 acagattcga gagtgacata aggagagccc ttgatagatt tgtttcttca ggaggatttg 1200 atgctgttac aaaaactagc cttcatgcta ctgctcttag cttcaggctt ctcagacagc 1260 atggctttga ggtatctcaa gaagctttca gcggattcaa ggatcaaaat ggcaatttct 1320 tgaaaaacct taaggaggac atcaaggcaa tactaagcct atatgaagct tcatttcttg 1380 ccttagaagg agaaaatatc ttggatgagg ccaaggtgtt tgcaatatca catctaaaag 1440 agcttagcga agaaaagatt ggaaaagacc tggccgaaca ggtgaatcat gcattggagc 1500 ttccattgca tagaaggaca caaagactag aagctgtttg gagcattgaa gcatacagaa 1560 aaaaggaaga tgcagatcaa gtactgctag aacttgctat attggactac aacatgattc 1620 aatcagtata ccaaagagat cttagagaga catcaaggtg gtggaggaga gtgggtcttg 1680 caacaaagtt gcattttgct agagacaggt taattgaaag cttttactgg gcagttggag 1740 ttgcatttga acctcaatac agtgattgta gaaattccgt agcaaaaatg ttttcttttg 1800 taacaatcat tgatgatatc tatgatgttt atggtactct ggatgagttg gagctattta 1860 cagatgctgt tgagagatgg gatgttaatg ccatcgatga tcttcctgat tatatgaagc 1920 tttgtttcct agctctttat aacactatca atgagatagc ttatgataat ctgaaggaca 1980 agggggaaaa cattcttcca tacctaacaa aagcatgggc agatttatgt aatgcattcc 2040 tacaagaagc aaaatggttg tacaataagt ccacaccaac atttgatgaa tatttcggaa 2100 atgcatggaa atcatcctca gggcctcttc aactagtttt tgcctacttt gccgttgttc 2160 aaaacatcaa gaaagaggaa attgataact tacaaaagta tcatgatatc atcagtaggc 2220 cttcccatat ctttagactt tgtaacgact tggcttcagc atctgctgag atagcaagag 2280 gtgaaaccgc aaattctgta tcatgttaca tgagaacaaa aggcatttct gaggaacttg 2340 ctactgaatc cgtaatgaat ttgatcgacg aaacctggaa aaagatgaac aaagaaaagc 2400 ttggtggctc tctgtttgca aaaccttttg ttgaaacagc tattaacctt gcaagacaat 2460 cccattgtac ttatcataac ggagatgcac atacttcacc agatgagctt actaggaaaa 2520 gagtactgtc agtaatcaca gagcctattc taccttttga gagataataa aaataagagt 2580 taccttaaat ggtaactctt atttttttaa tgtcggatcc 2620 <210> 16 <211> 549 <212> DNA <213> Escherichia coli <400> 16 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaataa 549 <210> 17 <211> 2545 <212> DNA <213> Artificial <220> <223> Designed polynucleotide containing Isopentenyl diphosphate isomer ase gene and isoprene synthase gene <400> 17 atgacagcag ataacaattc tatgccacat ggagcagttt caagttatgc gaaattagtt 60 cagaaccaaa ctccagaaga catactagag gaatttccag aaatcatacc cttacaacaa 120 agaccaaata caagaagttc ggaaacatct aatgatgaat caggtgaaac ttgtttttca 180 ggacatgatg aagaacagat caaactcatg aacgagaatt gtattgttct tgattgggac 240 gataatgcta taggtgctgg tactaaaaag gtttgtcact taatggaaaa tatcgaaaag 300 ggattgttac acagagcatt tagtgtattt atctttaatg aacaaggaga attactactt 360 caacaaagag ctacagaaaa gataacgttt cctgatttat ggaccaatac ttgttgtagt 420 catcctctat gtatagatga tgagttagga cttaaaggca aattagacga caaaatcaaa 480 ggtgctataa cagcagctgt aagaaagtta gatcatgagt taggaatacc tgaagatgag 540 actaaaacta gaggaaaatt ccattttctt aaccgtatcc attatatggc accttctaat 600 gaaccttggg gtgaacatga aatcgattat atcttgttct acaaaatcaa tgctaaggaa 660 aatcttactg tgaatcccaa tgtaaatgaa gtaagagatt ttaagtgggt tagtcctaat 720 gatctgaaaa ccatgtttgc agatccttcc tataaattta caccttggtt taagattata 780 tgcgagaatt atctctttaa ttggtgggaa caattggatg atttgagtga agttgagaat 840 gacagacaaa tacatcgaat gttatagtag tgataccgtt taaacaggaa gaatcataga 900 ggaggaatca atggaagcga gacgcagtgc caattatgaa ccaaatagct gggattatga 960 ttatcttctg agtagtgata ccgatgaaag cattgaagta tataaagata aagccaaaaa 1020 attagaagca gaagtgagac gtgaaattaa taatgaaaaa gctgaatttc tgacactgtt 1080 agaacttatt gataatgtgc agcgcctggg attaggctat agatttgaaa gcgatattag 1140 aggcgcactg gatcgttttg tgagttcagg tggatttgat gctgttacaa aaactagcct 1200 tcatggaact gcgctgagtt ttcgccttct gagacagcac ggctttgaag ttagccaaga 1260 agcctttagt ggttttaaag atcaaaatgg aaattttctg gaaaatctta aagaagatat 1320 taaagcaata ctttcactgt atgaagcaag ttttctggca cttgaaggag aaaatatact 1380 tgatgaagct aaagtttttg cgatttcaca tcttaaagaa ctgtctgaag aaaaaattgg 1440 caaagaactg gctgaacagg ttaatcatgc gctggaatta ccgcttcacc gcagaaccca 1500 aagattagaa gccgtttggt ctattgaagc atatcgtaaa aaagaagatg ccaatcaggt 1560 acttcttgaa ttagcaatac ttgattataa tatgattcag agcgtgtatc aacgtgatct 1620 tcgcgaaacc agtagatggt ggcgtcgcgt tggccttgct acgaaactgc attttgcgag 1680 agatcgtctg attgaaagct tttattgggc cgtgggtgtt gcatttgaac cacaatatag 1740 cgattgtcgt aatagtgttg caaaaatgtt tagttttgta actataattg atgatattta 1800 tgatgtttat ggtacacttg atgaactgga actttttact gatgctgtag aacgctggga 1860 tgtgaatgcg attaatgatc tgccagatta tatgaaactt tgttttcttg ccctgtataa 1920 tacaattaat gaaattgcat atgataatct taaagataaa ggagaaaata tactgcctta 1980 tttaactaaa gcatgggctg atttatgcaa tgcttttctt caggaagcga aatggctgta 2040 taataaatca acccctacgt ttgatgatta ttttggcaat gcttggaaat ctagcagtgg 2100 tccgttacag cttgtttttg cttattttgc ggttgtacaa aatattaaaa aagaagaaat 2160 tgaaaatctg caaaaatatc atgatactat ttcacgtcct tctcacatat ttcgcttatg 2220 taatgatctt gcgtcagcaa gtgcagaaat tgcccgcggt gaaaccgcaa atagcgtaag 2280 ttgctatatg agaacaaaag gaatttcaga agaacttgca actgaatctg tgatgaatct 2340 gattgatgaa acctggaaga aaatgaataa agaaaaatta ggcggttctc tgtttgctaa 2400 accatttgta gaaacggcta taaatcttgc gcgtcagtca cattgcacct atcacaatgg 2460 agatgcgcat acgtctccgg atgaacttac cagaaaaaga gtgctgagtg tgattaccga 2520 accgatactg ccatttgaac gctaa 2545 <210> 18 <211> 9237 <212> DNA <213> Artificial <220> <223> Escherichia coli/Clostridium shuttle vector pSCi01 <400> 18 tcgaccttca ggtttgtctg taactaaaaa caagtattta agcaaaaaca tcgtagaaat 60 acggtgtttt ttgttaccct aagtttcagg gccccctgct tcggggtcat tatagcgatt 120 ttttcggtat atccatcctt tttcgcacga tatacaggat tttgccaaag ggttcgtgta 180 gactttcctt ggtgtatcca acggcgtcag ccgggcagga taggtgaagt aggcccaccc 240 gcgagcgggt gttccttctt cactgtccct tattcgcacc tggcggtgct caacgggaat 300 cctgctctgc gaggctggcc ggctaccgcc ggcgtaacag atgagggcaa gcggatggct 360 gatgaaacca agccaaccag gaagggcagc ccacctatca aggtgtactg ccttccagac 420 gaacgaagag cgattgagga aaaggcggcg gcggccggca tgagcctgtc ggcctacctg 480 ctggccgtcg gccagggcta caaaatcacg ggcgtcgtgg actatgagca cgtccgcgag 540 ctggcccgca tcaatggcga cctgggccgc ctgggcggcc tgctgaaact ctggctcacc 600 gacgacccgc gcacggcgcg gttcggtgat gccacgatcc tcgccctgct ggcgaagatc 660 gaagagaagc aggacgagct tggcaaggtc atgatgggcg tggtccgccc gagggcagag 720 ccatgacttt tttagccgct aaaacggccg gggggtgcgc gtgattgcca agcacgtccc 780 catgcgctcc atcaagaaga gcgacttcgc ggagctggtg aagtacatca ccgacgagca 840 aggcaagacc gatcgggccc cctaaacgag tgactcgaga acatgtgagc aaaaggccag 900 caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctccgcccc 960 cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 1020 taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 1080 ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct ttctcatagc 1140 tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac 1200 gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac 1260 ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg 1320 aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga 1380 agaacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt 1440 agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcag 1500 cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct 1560 gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg 1620 atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta aagtatatat 1680 gagtaaactt ggtctgacag cctgcaggta atacgactca ctatagggat aacttaaatt 1740 tatatttttt actttataat atataattga ttatagaatc caaattagat aggaggacca 1800 ggtaaatgga gaataatttt attgtcaacg aaaacgagaa aagggtttta aagcagatat 1860 ttaacaactc caatatcagt agaactcaaa tttccaagaa tttagaactg aataaagcaa 1920 caatttcgaa cattcttaac aatctaaagc ataaaagttt ggtaaatgaa gttggtgaag 1980 gaaattctac taaaagtggt ggaagaaaac ctatacttct cgaaattaat caaaagtatg 2040 ggtattatat aagcatggat ttgacatatg attctgttga gttaatgtat aactattttg 2100 atgctacaat tctcaaacaa gatagttatg aactgaatga taagaatgta agtagcatat 2160 tacagatact caaatctaac ataaatgtta gcgaaaaata cgacacatta tacggtttat 2220 tagggataag tatatccata catgggattg tagatgatga acaaaacatc attaatctac 2280 catttcacaa gaatgaaaaa agaacgttta ctgatgaact taagtctttc actaatgtac 2340 cagtggttat tgaaaatgag gcaaatttaa gtgcattata cgagaaaagt ttatacatca 2400 attcgaatat taacaacttg atcacattgt ctatacataa aggtatagga gctggcatca 2460 taatcaataa gaaactctat agaggtagta atggagaagc tggagaaata ggaaagactc 2520 ttgttttaga gtctatcaat aacaatgata acaagtacta taaaatagag gatatttgta 2580 gtcaagacgc tttgatacaa aagattaata acagattagg agttacactt acatttaccg 2640 aactaataca gtattataac gaaggaaata gtattgtagc tcatgaaatc aaacagttta 2700 tcaacaaaat gactgtctta atacacaatc ttaatactca gtttaatcca gatgcaatat 2760 acatcaattg tcccttgatt aatgaacttc ctaatattct aaacgaaatc aaagaacaat 2820 tctcttgttt ttcacaagga agtcctatac aattgcattt aaccactaat gttaaacaag 2880 ctacattatt aggtggaaca ttagcaatta tgcagaaaac ccttaacata aacaatatcc 2940 aaatgaatat taaatagtta cagcagtctg agttataaaa tagatatctc ggaccgtcta 3000 ttcttcctta tttgagtggg taccaatgaa atctttcgag ctaaatcgat ttctggccca 3060 ctctttttta ttttttagta agcgtttaca aaaaatgaac aatgtgctat attacctcta 3120 aagttagttt gtttattaaa ttaaccaact aaaatgtcgg gatccaatta ggaggaatct 3180 gcgatggaaa agaaggaatt tagagtttta ataaagtatt gttttcttaa aggaaagaat 3240 acagtagaag ctaagacttg gttagataat gaatttccag attctgctcc tggtaaaagt 3300 acaattatag attggtatgc aaaatttaaa agaggagaaa tgtcaacaga agatggagaa 3360 agatctggta gaccaaaaga agttgtaact gatgaaaata taaagaagat acataaaatg 3420 atattaaatg atagaaagat gaagttaata gaaatagcag aagctttaaa aatatctaaa 3480 gaaagagttg gacatataat acatcaatat ttagatatga gaaaattatg tgcaaaatgg 3540 gttccaagag aattaacttt tgatcaaaag caaagaagag tagatgatag taagagatgt 3600 ttacaattat taacaagaaa tactccagaa tttttcagaa gatatgtaac aatggatgaa 3660 acttggttac atcattatac acctgaaagt aatagacaat cagcagaatg gacagctact 3720 ggagaaccat cacctaaaag aggaaagact caaaagagtg ctggaaaggt tatggcatca 3780 gtattttggg atgctcatgg tataatattt atagattatt tagaaaaagg aaaaacaata 3840 aattctgatt attatatggc attattagaa agattaaaag ttgaaatagc agctaaaaga 3900 ccacatatga agaagaaaaa agtattattt catcaagata atgctccttg tcataagtca 3960 ttaagaacta tggcaaagat acatgaatta ggttttgaat tattaccaca tccaccttat 4020 tcaccagatt tagctccttc tgatttcttt ttatttagtg atttaaagag aatgttagca 4080 ggaaagaagt ttggttgtaa tgaagaagtt atagcagaaa cagaagctta ttttgaagca 4140 aaacctaagg aatattatca aaatggaata aagaagttag aaggtagata taatagatgt 4200 atagcattag aaggaaatta tgtagaataa gaattcctta attaaggagc tcgataaaaa 4260 taagaagcct gcatttgcag gcttcttatt tttatggtca tagctgtttc ctggcgcgcc 4320 gccattattt ttttgaacaa ttgacaattc atttcttatt ttttattaag tgatagtcaa 4380 aaggcataac agtgctgaat agaaagaaat ttacagaaaa gaaaattata gaatttagta 4440 tgattaatta tactcattta tgaatgttta attgaataca aaaaaaaata cttgttatgt 4500 attcaattac gggttaaaat atagacaagt tgaaaaattt aataaaaaaa taagtcctca 4560 gctcttatat attaagctac caacttagta tataagccaa aacttaaatg tgctaccaac 4620 acatcaagcc gttagagaac tctatctata gcaatatttc aaatgtaccg acatacaaga 4680 gaaacattaa ctatatatat tcaatttatg agattatctt aacagatata aatgtaaatt 4740 gcaataagta agatttagaa gtttatagcc tttgtgtatt ggaagcagta cgcaaaggct 4800 tttttatttg ataaaaatta gaagtatatt tattttttca taattaattt atgaaaatga 4860 aagggggtga gcaaagtgac agaggaaagc agtatcttat caaataacaa ggtattagca 4920 atatcattat tgactttagc agtaaacatt atgactttta tagtgcttgt agctaagtag 4980 tacgaaaggg ggagctttaa aaagctcctt ggaatacata gaattcataa attaatttat 5040 gaaaagaagg gcgtatatga aaacttgtaa aaattgcaaa gagtttatta aagatactga 5100 aatatgcaaa atacattcgt tgatgattca tgataaaaca gtagcaacct attgcagtaa 5160 atacaatgag tcaagatgtt tacataaagg gaaagtccaa tgtattaatt gttcaaagat 5220 gaaccgatat ggatggtgtg ccataaaaat gagatgtttt acagaggaag aacagaaaaa 5280 agaacgtaca tgcattaaat attatgcaag gagctttaaa aaagctcatg taaagaagag 5340 taaaaagaaa aaataattta tttattaatt taatattgag agtgccgaca cagtatgcac 5400 taaaaaatat atctgtggtg tagtgagccg atacaaaagg atagtcactc gcattttcat 5460 aatacatctt atgttatgat tatgtgtcgg tgggacttca cgacgaaaac ccacaataaa 5520 aaaagagttc ggggtagggt taagcatagt tgaggcaact aaacaatcaa gctaggatat 5580 gcagtagcag accgtaaggt cgttgtttag gtgtgttgta atacatacgc tattaagatg 5640 taaaaatacg gataccaatg aagggaaaag tataattttt ggatgtagtt tgtttgttca 5700 tctatgggca aactacgtcc aaagccgttt ccaaatctgc taaaaagtat atcctttcta 5760 aaatcaaagt caagtatgaa atcataaata aagtttaatt ttgaagttat tatgatatta 5820 tgtttttcta ttaaaataaa ttaagtatat agaatagttt aataatagta tatacttaat 5880 gtgataagtg tctgacagtg tcacagaaag gatgattgtt atggattata agcggccggc 5940 cagtgggcaa gttgaaaaat tcacaaaaat gtggtataat atctttgttc attagagcga 6000 taaacttgaa tttgagaggg aacttagatg gtatttgaaa aaattgataa aaatagttgg 6060 aacagaaaag agtattttga ccactacttt gcaagtgtac cttgtaccta cagcatgacc 6120 gttaaagtgg atatcacaca aataaaggaa aagggaatga aactatatcc tgcaatgctt 6180 tattatattg caatgattgt aaaccgccat tcagagttta ggacggcaat caatcaagat 6240 ggtgaattgg ggatatatga tgagatgata ccaagctata caatatttca caatgatact 6300 gaaacatttt ccagcctttg gactgagtgt aagtctgact ttaaatcatt tttagcagat 6360 tatgaaagtg atacgcaacg gtatggaaac aatcatagaa tggaaggaaa gccaaatgct 6420 ccggaaaaca tttttaatgt atctatgata ccgtggtcaa ccttcgatgg ctttaatctg 6480 aatttgcaga aaggatatga ttatttgatt cctattttta ctatggggaa atattataaa 6540 gaagataaca aaattatact tcctttggca attcaagttc atcacgcagt atgtgacgga 6600 tttcacattt gccgttttgt aaacgaattg caggaattga taaatagtta acttcaggtt 6660 tgtctgtaac taaaaacaag tatttaagca aaaacatcgt agaaatacgg tgttttttgt 6720 taccctaagt ttaaacccag agcctacgag ttccgaacta gacaggttgg ctgataagtc 6780 cccggtctgg cgcgacatca taacggttct ggcaaatagt gacttctgaa atgagcataa 6840 aaataagaag cctgcaaatg caggcttctt atttttatgg ggaattgtta tccgctcaca 6900 attcccctat agtgagtcgt attaatttcg ccatggtacg taaggcctat ttaaatcacg 6960 tgcggccgca tgtacagcga cgtcactagt ctaagttccc tcctaaaatt caagtttatc 7020 gctctaatga acaaagatat tatactctat caatgataga gtttcaaact ctatcaatga 7080 tagagtgaat ccgttagcga ggttgagtta tcgagatttt caggagcggg tgctagctga 7140 gcccgcggaa cagctgtccc gggagaagtt cctatacttt ctagagaata ggaacttcgg 7200 aataggaact tcttagggta acaaaaaaca ccgtatttct acgatgtttt tgcttaaata 7260 cttgttttta gttacagaca aacctgaagg aattcctaag atccactttc acacttaagc 7320 tgtttctcta gtccgcaaat tattaactcc aatccaaaga gaaacgcagg ttcagctcct 7380 tgatgatcaa acagttctat agcttgtcgt aataaaggtg gcatactatc tgtagtagga 7440 gtttctctct cttcttttgc aacttgatgt tcttgatctt ccaaaacaca acctaacgtg 7500 aaatgaccta cagctgaaag agcatataat gcgttctcta atgagaatcc ttgttgacat 7560 agaaatgcca actgattttc aagtgtctca tactgctttt ctgtaggtct agttcctaag 7620 tgaactttag ccccatctct atgggatagt aaagcacatc tgaaactttt cgcgttattc 7680 ctcaaaaagt cttgccaact ttcaccttct aatggacaaa agtgtgtatg atgtctgtct 7740 aacatttcga ttgctaatgc atctaagagt gctcttttgt ttttgacatg ccagtacaat 7800 gttggttgtt caactccaag tttctgagct aatttcctgg tagttagacc ttcaattcca 7860 acttcattaa ggagttctaa tgcggaattt atcactttag acttatcgag tctactcatt 7920 ctaactaacc tcctaacaac ttaattatac ccactattat tatttttatc aatatatgcc 7980 tgcagcgacc aaaagtataa aacctttaag aactttcttt tttcttgtaa aaaaagaaac 8040 tagataaatc tctcatatct tttattcaat aatcgcatca gattgcagta taaatttaac 8100 gatcactcat catgttcata tttatcagag ctcgtgctat aattatacta attttataag 8160 gaggaaaaaa taaagagggt tataatgaac gagaaaaata taaaacacag tcaaaacttt 8220 attacttcaa aacataatat agataaaata atgacaaata taagattaaa tgaacatgat 8280 aatatctttg aaatcggctc aggaaaaggg cattttaccc ttgaattagt acagaggtgt 8340 aatttcgtaa ctgccattga aatagaccat aaattatgca aaactacaga aaataaactt 8400 gttgatcacg ataatttcca agttttaaac aaggatatat tgcagtttaa atttcctaaa 8460 aaccaatcct ataaaatatt tggtaatata ccttataaca taagtacgga tataatacgc 8520 aaaattgttt ttgatagtat agctgatgag atttatttaa tcgtggaata cgggtttgct 8580 aaaagattat taaatacaaa acgctcattg gcattatttt taatggcaga agttgatatt 8640 tctatattaa gtatggttcc aagagaatat tttcatccta aacctaaagt gaatagctca 8700 cttatcagat taaatagaaa aaaatcaaga atatcacaca aagataaaca gaagtataat 8760 tatttcgtta tgaaatgggt taacaaagaa tacaagaaaa tatttacaaa aaatcaattt 8820 aacaattcct taaaacatgc aggaattgac gatttaaaca atattagctt tgaacaattc 8880 ttatctcttt tcaatagcta taaattattt aataagtaag ttaagggatg cataaactgc 8940 atcccttaac ttgtttttcg tgtacctatt ttttgtgaat cgattatgtc ttttgcgcat 9000 tcacttcttt tctatataaa tatgagcgaa gcgaataagc gtcggaaaag cagcaaaaag 9060 tttccttttt gctgttggag catgggggtt cagggggtgc agtatcgaag ttcctatact 9120 ttctagagaa taggaacttc ggaataggaa cttcccggga atgtagaccg gggacttatc 9180 agccaacctg ttagatggcc cgcacgatca aggcgcgcca ggaaacagct atgaccg 9237 <210> 19 <211> 2545 <212> DNA <213> Artificial <220> <223> Expression vector pSCi::idi-isps <400> 19 atgacagcag ataacaattc tatgccacat ggagcagttt caagttatgc gaaattagtt 60 cagaaccaaa ctccagaaga catactagag gaatttccag aaatcatacc cttacaacaa 120 agaccaaata caagaagttc ggaaacatct aatgatgaat caggtgaaac ttgtttttca 180 ggacatgatg aagaacagat caaactcatg aacgagaatt gtattgttct tgattgggac 240 gataatgcta taggtgctgg tactaaaaag gtttgtcact taatggaaaa tatcgaaaag 300 ggattgttac acagagcatt tagtgtattt atctttaatg aacaaggaga attactactt 360 caacaaagag ctacagaaaa gataacgttt cctgatttat ggaccaatac ttgttgtagt 420 catcctctat gtatagatga tgagttagga cttaaaggca aattagacga caaaatcaaa 480 ggtgctataa cagcagctgt aagaaagtta gatcatgagt taggaatacc tgaagatgag 540 actaaaacta gaggaaaatt ccattttctt aaccgtatcc attatatggc accttctaat 600 gaaccttggg gtgaacatga aatcgattat atcttgttct acaaaatcaa tgctaaggaa 660 aatcttactg tgaatcccaa tgtaaatgaa gtaagagatt ttaagtgggt tagtcctaat 720 gatctgaaaa ccatgtttgc agatccttcc tataaattta caccttggtt taagattata 780 tgcgagaatt atctctttaa ttggtgggaa caattggatg atttgagtga agttgagaat 840 gacagacaaa tacatcgaat gttatagtag tgataccgtt taaacaggaa gaatcataga 900 ggaggaatca atggaagcga gacgcagtgc caattatgaa ccaaatagct gggattatga 960 ttatcttctg agtagtgata ccgatgaaag cattgaagta tataaagata aagccaaaaa 1020 attagaagca gaagtgagac gtgaaattaa taatgaaaaa gctgaatttc tgacactgtt 1080 agaacttatt gataatgtgc agcgcctggg attaggctat agatttgaaa gcgatattag 1140 aggcgcactg gatcgttttg tgagttcagg tggatttgat gctgttacaa aaactagcct 1200 tcatggaact gcgctgagtt ttcgccttct gagacagcac ggctttgaag ttagccaaga 1260 agcctttagt ggttttaaag atcaaaatgg aaattttctg gaaaatctta aagaagatat 1320 taaagcaata ctttcactgt atgaagcaag ttttctggca cttgaaggag aaaatatact 1380 tgatgaagct aaagtttttg cgatttcaca tcttaaagaa ctgtctgaag aaaaaattgg 1440 caaagaactg gctgaacagg ttaatcatgc gctggaatta ccgcttcacc gcagaaccca 1500 aagattagaa gccgtttggt ctattgaagc atatcgtaaa aaagaagatg ccaatcaggt 1560 acttcttgaa ttagcaatac ttgattataa tatgattcag agcgtgtatc aacgtgatct 1620 tcgcgaaacc agtagatggt ggcgtcgcgt tggccttgct acgaaactgc attttgcgag 1680 agatcgtctg attgaaagct tttattgggc cgtgggtgtt gcatttgaac cacaatatag 1740 cgattgtcgt aatagtgttg caaaaatgtt tagttttgta actataattg atgatattta 1800 tgatgtttat ggtacacttg atgaactgga actttttact gatgctgtag aacgctggga 1860 tgtgaatgcg attaatgatc tgccagatta tatgaaactt tgttttcttg ccctgtataa 1920 tacaattaat gaaattgcat atgataatct taaagataaa ggagaaaata tactgcctta 1980 tttaactaaa gcatgggctg atttatgcaa tgcttttctt caggaagcga aatggctgta 2040 taataaatca acccctacgt ttgatgatta ttttggcaat gcttggaaat ctagcagtgg 2100 tccgttacag cttgtttttg cttattttgc ggttgtacaa aatattaaaa aagaagaaat 2160 tgaaaatctg caaaaatatc atgatactat ttcacgtcct tctcacatat ttcgcttatg 2220 taatgatctt gcgtcagcaa gtgcagaaat tgcccgcggt gaaaccgcaa atagcgtaag 2280 ttgctatatg agaacaaaag gaatttcaga agaacttgca actgaatctg tgatgaatct 2340 gattgatgaa acctggaaga aaatgaataa agaaaaatta ggcggttctc tgtttgctaa 2400 accatttgta gaaacggcta taaatcttgc gcgtcagtca cattgcacct atcacaatgg 2460 agatgcgcat acgtctccgg atgaacttac cagaaaaaga gtgctgagtg tgattaccga 2520 accgatactg ccatttgaac gctaa 2545 <210> 20 <211> 9818 <212> DNA <213> Artificial <220> <223> Isoprene synthase gene cluster <400> 20 atttaaatac tatcaagaga agaataaaga aggaggttta aaaatgaaaa attgtgtaat 60 tgtgagtgct gtaagaacag caataggaag ctttaatgga tcattggcta gtacatctgc 120 aattgatctt ggtgcaactg taataaaggc tgctattgaa agagcaaaaa ttgattcaca 180 acatgttgac gaagtaataa tgggaaacgt attacaagca ggacttggac aaaatccagc 240 aagacaggca cttttgaaaa gtggattagc tgaaactgta tgtggattca ctgttaataa 300 ggtttgtggt tctggactta aatctgtagc acttgcagct caagctatac aagctggaca 360 agctcagtca atagttgctg gtggcatgga aaatatgtca ttggcacctt atcttcttga 420 tgcaaaagca agatcaggat atagattggg tgatggacaa gtgtatgatg taatattaag 480 agacggatta atgtgcgcaa ctcatggata ccatatgggt ataacagctg aaaatgtagc 540 aaaagagtat ggaataacaa gagagatgca agatgagtta gctcttcatt ctcagagaaa 600 agctgctgct gctattgaat ctggtgcttt tactgcagaa atagtaccag ttaatgtagt 660 gactaggaaa aagacttttg tttttagcca agatgaattt cctaaagcaa acagtacagc 720 agaagcatta ggcgcattaa ggcctgcttt tgataaagct ggtacagtta cagctggaaa 780 tgctagtgga attaatgacg gtgctgctgc attggttata atggaagaaa gtgctgcttt 840 agctgcagga cttactcctt tagcaaggat taaaagctat gcatctggtg gcgtaccacc 900 agcattaatg ggtatgggtc ctgttccagc aacacagaag gcattgcaat tagcaggatt 960 acagttagct gatattgatt tgattgaggc aaatgaagct tttgctgctc agtttttagc 1020 agtaggtaag aatcttggat ttgatagtga aaaagtaaac gttaatggtg gcgcaatagc 1080 acttggacat cctattggtg catcaggtgc tagaatactt gtgacattat tacacgctat 1140 gcaagctaga gataaaactt taggtcttgc aactttatgt attggcggtg gccagggtat 1200 agcaatggtt atagaaagat taaattaagg atcccaataa acagggatta acatatagga 1260 ggtaaaataa tgacaatagg catagacaaa atatcatttt tcgtacctcc ttattatata 1320 gatatgactg cattagctga ggcaagaaat gttgatcctg gtaaattcca cattggaata 1380 ggacaagatc aaatggcagt taatccaatt tctcaagata tagttacatt tgctgctaac 1440 gcagctgagg caattcttac taaagaagac aaagaagcaa ttgatatggt aatagtaggt 1500 actgaatcta gtatagatga gtctaaggct gcagctgttg ttttacacag attaatgggt 1560 attcaacctt ttgctagaag ctttgaaatt aaagaagctt gttatggcgc tacagcaggt 1620 cttcaattgg ctaaaaatca tgtagctctt catcctgata agaaagtatt agtagtggca 1680 gcagacatag caaaatatgg attgaattct ggtggtgaac ctactcaagg cgctggtgca 1740 gtagcaatgt tagtggcatc agaacctaga attcttgctt taaaagaaga taacgttatg 1800 ttgactcagg acatatatga tttttggaga ccaacaggtc atccatatcc aatggttgat 1860 ggaccattga gtaatgagac ttatattcag agctttgctc aagtttggga tgagcataag 1920 aaaagaacag gacttgattt tgctgattac gatgcattag catttcatat tccatacact 1980 aaaatgggta aaaaggcttt attagcaaag ataagtgacc aaactgaggc agaacaagaa 2040 agaatattag ctaggtacga agaaagtatt atttattcaa gaagagttgg aaatttatac 2100 actggtagcc tttatttggg tttaatatct ttacttgaga atgctacaac acttacagct 2160 ggtaatcaaa taggattgtt tagttatggc tctggtgcag tagcagaatt tttcactggc 2220 gaacttgtag caggatatca gaatcactta caaaaagaaa ctcatttagc attacttgac 2280 aatagaacag agcttagtat tgcagaatat gaggctatgt ttgctgagac acttgataca 2340 gatatagatc agacacttga agacgaattg aaatactcaa tatcagctat aaacaatact 2400 gtaaggtcat atagaaatta accatggtgg aatacaatag agacatataa ggaggacaaa 2460 aaatggttgc agattcaaga ttacctaatt ttagagctct tacaccagct cagagaagag 2520 atttcttagc tgatgcatgt ggattgtcag atgcagaaag ggcattactt gctgctcctg 2580 gtgctttacc attagcatta gcagacggta tgattgaaaa tgtttttgga tcttttgaat 2640 taccacttgg cgttgctgga aattttagag ttaacggaag agatgttctt gttccaatgg 2700 ctgtagaaga accttcagtg gtagcagcag catcttatat ggctaagctt gcaagagaag 2760 acggcggttt tcaaacttct tctactttac ctttaatgag agcacaggta caagtattag 2820 gtgtgacaga tcctcatggc gctaggttag cagttcttca agctagagct caaataatag 2880 aaagggcaaa ttcaagagat aaagttttaa taggacttgg tggtggctgc aaagatatag 2940 aagtacacgt atttccagat actcctagag gtcctatgct tgtagttcat ttaatagttg 3000 acgtaagaga cgctatgggt gctaatacag ttaatacaat ggctgaaagt gttgcacctt 3060 tagtggaaaa gattactggc ggtagtgtaa gattaagaat tctttcaaat cttgcagatc 3120 ttagattagc tagggctaga gtaagattga caccacagac attggctaca caagatagaa 3180 gtggtgaaga gataatagaa ggtgtacttg acgcatatac atttgctgct attgatccat 3240 atagggctgc tactcataat aaaggtataa tgaacggtat tgatccagtt attgtagcta 3300 ctggaaacga ttggagagca gtggaagcag gtgcacatgc ttatgcaagt agaagcggaa 3360 gttacactag cttgactaga tgggaaaaag atgctggcgg tgctcttgta ggatctatag 3420 aacttccaat gccagtagga cttgtgggtg gtgcaactaa aactcatcct ttggcaaggt 3480 tggcacttaa aataatggat ttgcaaagtg cacaacaact tggtgagata gctgctgcag 3540 ttggattggc acagaatctt ggtgcattaa gggctttagc aactgaaggt atacaaagag 3600 gccatatggc tttgcacgct agaaatattg ctttagtagc tggtgctaca ggtgatgaag 3660 ttgatgctgt tgctaggcag cttgctgctg aacatgacgt tagaacagat agggcacttg 3720 aagttttagc tgcacttaga gcaagagctt aagttcaaac actatcataa cacacaatag 3780 aaaggaggat aaaaaatggt ttcatgtagc gcaccaggta agatatattt atttggtgaa 3840 catgctgtag tatatggcga aacagctata gcatgcgctg tagaattaag gactagggta 3900 agagcagaac ttaacgattc aataacaata caatcacaga ttggtagaac aggacttgat 3960 tttgaaaagc acccatatgt atctgctgta attgaaaaga tgagaaaatc aatacctata 4020 aatggtgtat tcttgactgt tgatagtgac atacctgttg gatctggact tggatcttca 4080 gcagcagtta ctattgcttc tattggtgct ttgaatgagt tatttggttt tggacttagt 4140 cttcaagaga tagctaaatt aggacatgaa attgaaatta aagttcaggg tgcagctagt 4200 ccaacagaca catatgtaag cacttttggc ggtgtagtta caattccaga aagaagaaaa 4260 cttaaaacac cagattgtgg aatagtgatt ggtgatacag gcgtttttag ttcaactaaa 4320 gagttagtgg ctaatgtaag acagttaaga gaatcttatc ctgatcttat tgagccattg 4380 atgacttcaa taggaaaaat aagcaggatt ggtgaacaac ttgttttaag tggtgattac 4440 gcatctatag gtagattaat gaatgtgaat cagggacttt tggatgcatt aggtgtaaat 4500 atattggaac ttagccaact tatttatagt gcaagagcag ctggtgcttt tggcgcaaag 4560 ataactggtg ctggtggtgg cggttgtatg gttgcattaa ctgcacctga gaaatgtaac 4620 caagtagcag aagctgttgc aggtgctggc ggtaaggtta caataactaa gcctactgaa 4680 cagggattaa aagtagatta agcgccattc gatggtgtcc gtccagataa aaataagaag 4740 cctgcatttg caggcttctt atttttatga gcgaagcgaa taagcgtcgg aaaagcagac 4800 tctatcattg atagagtttg aaactctatc attgatagag tataatatct tgtttaaacg 4860 gtaccgaagt actaacaagt caaattaagg agggaaaaat atggaagcaa gaagatcagc 4920 aaattacgag ccaaatagtt gggattatga ctatctttta tcttcagata cagatgaatc 4980 tatagaagta tataaggata aagcaaagaa attggaagca gaagtaagaa gagagataaa 5040 taatgaaaag gcagaatttt taactcttct tgaacttata gataatgtgc aaaggcttgg 5100 attaggatat agatttgaat cagatattag aggcgcatta gatagatttg tatctagtgg 5160 cggttttgat gctgttacaa aaacatcact tcatggaaca gctcttagtt tcagattatt 5220 aaggcaacat ggatttgaag tttctcaaga agctttttct ggatttaaag accaaaatgg 5280 aaatttcctt gaaaatctta aagaagatat aaaggcaatt ttatctttat atgaagcatc 5340 atttttggca ttagaaggtg aaaacatatt agatgaggca aaagtttttg ctataagtca 5400 tcttaaagaa ctttctgaag aaaagatagg aaaagagtta gcagagcaag taaatcatgc 5460 tcttgaatta cctttacaca gaagaacaca aagattagaa gcagtgtggt ctattgaagc 5520 atacagaaag aaagaagatg ctaatcaggt attattagaa ttggcaattt tagattataa 5580 tatgatacag tctgtgtatc aaagggattt aagagagact agtagatggt ggagaagagt 5640 aggattggct acaaaattgc attttgctag agacagactt attgaatcat tttattgggc 5700 tgttggtgta gcttttgaac ctcagtatag cgattgtaga aacagtgtag caaaaatgtt 5760 cagttttgta actataatag atgacattta tgatgtatat ggaactcttg atgaattgga 5820 actttttaca gacgcagtag aaagatggga tgtgaatgca ataaatgact tacctgatta 5880 tatgaaatta tgctttcttg cattatacaa tactattaat gagattgcat atgataattt 5940 gaaagataaa ggtgaaaata ttcttcctta tttaactaaa gcttgggctg atttatgcaa 6000 cgcattctta caagaagcta aatggttgta taataaatca acaccaacat ttgatgatta 6060 ttttggtaac gcttggaaat ctagctcagg accattgcag ttagtttttg cttattttgc 6120 tgttgttcag aatataaaga aagaagaaat agagaactta caaaaatatc atgatactat 6180 atcaaggcca agtcatattt ttaggctttg taatgactta gcatctgctt ctgctgaaat 6240 tgctagaggc gaaactgcaa attcagttag ttgttacatg agaacaaagg gtataagtga 6300 agaattagca actgagagcg taatgaactt aatagatgaa acttggaaaa agatgaataa 6360 agagaaactt ggcggtagtc tttttgctaa accatttgta gagactgcaa taaatttggc 6420 aaggcaatca cattgtacat atcataatgg tgatgctcac actagccctg atgagttaac 6480 tagaaagaga gttcttagtg ttattacaga accaatattg ccttttgaaa ggtaagcatg 6540 ctctagaata gacaaatcga catttaaaaa ggaggacaat atatgataga agtaacaaca 6600 ccaggtaaat tatttatagc aggtgaatac gcagtagttg aacctggaca ccctgctata 6660 atagtagctg ttgatcagtt tgttacagta acagttgaag agacaacaga tgaaggatca 6720 atacagtctg ctcaatatag ctcattgcca attagatgga caagaagaaa tggtgagtta 6780 gttttggata taagagaaaa tccatttcat tatgttcttg cagcaataca tttgactgag 6840 aaatacgctc aagaacaaaa taaagaactt tctttttatc atcttaaggt tacttctgaa 6900 ttggattctt caaatggtag aaaatacgga ttaggaagct caggtgctgt aactgtaggt 6960 acagtaaaag cattaaatat attctatgac ttaggattag aaaatgaaga aatttttaag 7020 ctttctgcac ttgctcattt agcagtgcaa ggtaatggat catgtggtga tattgctgca 7080 agttgttatg gtggctggat agcattcagt acttttgatc atgattgggt aaaccaaaag 7140 gtagcaactg aaacacttac agatttgctt gcaatggatt ggccagagtt aatgattttt 7200 cctcttaaag tgccaaaaca attaagatta ttaattggct ggactggtag tcctgcaagt 7260 acaagcgact tagttgatag agttcatcag tctaaagaag aaaagcaagc agcttatgag 7320 caatttctta tgaaaagtag gttatgcgtg gaaacaatga ttaatggatt taatactgga 7380 aaaattagtg tgatacagaa acagataact aaaaacagac aacttcttgc tgagttatct 7440 tctttaactg gtgtagtaat tgaaactgaa gcattgaaaa acttatgcga tttagcagag 7500 tcatatactg gtgctgcaaa atcatcaggt gctggtggtg gcgattgtgg aatagttata 7560 tttagacaaa agagtggcat tttgcctctt atgactgctt gggaaaaaga cggaattaca 7620 cctcttccac ttcatgttta tacatatgga cagaaagaat gtaaagagaa gcacgaaagt 7680 aaaaggtaag tcgagaaaaa ctaaaggtac taataaaagg aggttaaaag atgttatctg 7740 gaaaagcaag ggcacacaca aatatagctc ttataaaata ttggggtaag gctaatgaag 7800 aatatatatt accaatgaac agttcacttt ctttaacatt agatgcattc tatactgaaa 7860 caactgtgat atttgacgca cattattcag aagatgtttt tatattagat ggtatacttc 7920 aaaatgaaaa acagactaaa aaggtaaaag agtttttaaa cttagtaagg cagcaagctg 7980 attgtacttg gtttgctaaa gttgaaagtc aaaattttgt gcctacagct gctggattgg 8040 cttcaagtgc aagcggattg gcagcattag caggtgcatg taacgtagct ttaggactta 8100 atttaagcgc taaggatctt tcaagattag caagaagagg ctctggatca gcttgtagaa 8160 gtatttttgg cggttttgct caatggaata agggacatag cgatgaaaca tcttttgctg 8220 aaaacattcc agcaaataat tgggaaaatg aattagctat gcttttcata ttgattaatg 8280 atggtgaaaa ggatgtttct agtagagatg gtatgaaaag aactgttgag acaagtagtt 8340 tttatcaggg ttggcttgac aatgtagaaa aggatctttc acaggttcat gaagctatta 8400 aaacaaaaga ttttcctagg ttaggtgaaa ttattgaggc aaatggattg agaatgcatg 8460 gtactacatt gggtgctgtt cctccattta catactggtc acctggatct ttgcaagcta 8520 tggcattagt tagacaggct agagcaaagg gtataccttg ctacttcact atggatgcag 8580 gaccaaatgt aaaagtactt gtagagaaga aaaatttgga agcattaaag acttttctta 8640 gcgaacattt ttctaaagaa caacttgtgc ctgcttttgc aggtccaggt attgagttat 8700 ttgaaactaa aggcatggac aaataagagc tcgacaataa acacaggtaa gtaaaggagg 8760 ttaagaaatg caaacagaac acgtaatatt attaaacgca caaggtgttc ctactggaac 8820 acttgaaaag tatgctgcac atacagctga tacaagactt catttagctt tttcttcatg 8880 gttattcaat gctaaaggac aacttcttgt aactagaaga gcactttcta agaaagcttg 8940 gcctggtgtt tggactaaca gtgtttgtgg acatcctcag ttaggtgaaa gtaatgaaga 9000 tgcagtaatt agaaggtgca gatacgaatt aggtgtagaa ataactcctc ctgagagtat 9060 atatcctgat tttaggtata gagcaactga tccatctggc atagtagaga atgaagtatg 9120 tccagtgttt gcagcaagaa ctacatcagc attgcaaatt aatgatgatg aagtaatgga 9180 ctatcagtgg tgtgacttag cagatgtttt acatggaatt gacgcaactc catgggcttt 9240 tagcccatgg atggtgatgc aagctacaaa tagagaagct agaaaaagat tgtcagcttt 9300 tacacagttg aaataagcta gctgttcaaa acaatcgcaa attaaggagg ctaataaatg 9360 ataaacgcaa aacttttaca acttatggta gaacattcaa acgatggaat tgttgtagct 9420 gaacaagaag gtaatgaaag catattgatt tatgttaatc ctgcatttga aaggttaaca 9480 ggttattgtg cagacgatat attatatcaa gatgcaaggt ttcttcaagg tgaagatcac 9540 gatcagcctg gaattgctat tataagagaa gctattagag aaggcagacc atgctgtcag 9600 gttttaagaa attatagaaa agacggatct ttattttgga atgagcttag tataactcca 9660 gtgcataatg aggctgatca attaacttat tacataggta tacaaagaga tgtaacagct 9720 caagttttcg ctgaagaaag agtgagagaa ttggaagcag aagtagcaga gcttagaaga 9780 caacagggac aggcaaagca ttaagtccag atttaaat 9818

Claims (20)

  1. 클로스트리디움(Clostridium)속 세균 또는 무렐라(Moorella)속 세균의 재조합 세포로서,
    비(非)메발론산 경로에 의한 이소펜테닐이인산 합성능을 갖고,
    도입된 핵산으로서, 이소프렌 합성 효소를 코딩하는 제1 핵산을 갖고, 당해 제1 핵산이 상기 재조합 세포 내에서 발현하며,
    도입된 핵산으로서, 메발론산 경로에서 작용하는 효소군을 코딩하는 제2 핵산을 더 갖고, 당해 제2 핵산이 상기 재조합 세포 내에서 발현하며, 메발론산 경로에 의한 이소펜테닐이인산 합성능을 더 갖고,
    상기 메발론산 경로에서 작용하는 효소군은, 메발론산 키나아제, 디포스포메발론산 데카르복실라아제, 5-포스포메발론산 키나아제, 이소펜테닐이인산 이소머라아제, HMG-CoA 리덕타아제, 및 HMG-CoA 신타아제를 포함하고,
    일산화탄소 및 이산화탄소로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 재조합 세포.
  2. 클로스트리디움(Clostridium)속 세균 또는 무렐라(Moorella)속 세균의 재조합 세포로서,
    메틸테트라히드로엽산, 일산화탄소 및 CoA로부터 아세틸 CoA를 합성하는 기능을 갖고,
    도입된 핵산으로서, 이소프렌 합성 효소를 코딩하는 제1 핵산을 갖고, 당해 제1 핵산이 상기 재조합 세포 내에서 발현하며,
    도입된 핵산으로서, 메발론산 경로에서 작용하는 효소군을 코딩하는 제2 핵산을 더 갖고, 당해 제2 핵산이 상기 재조합 세포 내에서 발현하며, 메발론산 경로에 의한 이소펜테닐이인산 합성능을 더 갖고,
    상기 메발론산 경로에서 작용하는 효소군은, 메발론산 키나아제, 디포스포메발론산 데카르복실라아제, 5-포스포메발론산 키나아제, 이소펜테닐이인산 이소머라아제, HMG-CoA 리덕타아제, 및 HMG-CoA 신타아제를 포함하고,
    일산화탄소 및 이산화탄소로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물로부터 이소프렌을 생산 가능한 재조합 세포.
  3. 제1항 또는 제2항에 있어서, 상기 메발론산 경로는 효모의 메발론산 경로인 재조합 세포.
  4. 제1항 또는 제2항에 있어서, 상기 메발론산 경로는 원핵생물의 메발론산 경로인 재조합 세포.
  5. 제1항 또는 제2항에 있어서, 상기 메발론산 경로는 방선균의 메발론산 경로인 재조합 세포.
  6. 제1항 또는 제2항에 있어서, 상기 이소프렌 합성 효소는 식물 유래의 것인 재조합 세포.
  7. 제1항 또는 제2항에 있어서, 상기 이소프렌 합성 효소를 코딩하는 핵산은 하기 (a)의 단백질을 코딩하는 것인 재조합 세포.
    (a) 서열 번호 2로 표시되는 아미노산 서열을 포함하는 단백질
  8. 제1항 또는 제2항에 있어서, 상기 제1 핵산 및/또는 상기 제2 핵산은, 코돈이 개변된 것인 재조합 세포.
  9. 제1항 또는 제2항에 있어서, 상기 제1 핵산 및/또는 상기 제2 핵산은, 재조합 세포의 게놈에 내장되어 있는 재조합 세포.
  10. 제1항 또는 제2항에 있어서, 상기 제1 핵산 및/또는 상기 제2 핵산은, 플라스미드에 내장되어 있는 재조합 세포.
  11. 제1항 또는 제2항에 기재된 재조합 세포를, 일산화탄소 및 이산화탄소로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 탄소원으로서 사용하여 배양하고, 당해 재조합 세포에 이소프렌을 생산시키는 이소프렌의 생산 방법.
  12. 제1항 또는 제2항에 기재된 재조합 세포에, 일산화탄소 및 이산화탄소로 이루어지는 군에서 선택된 적어도 하나의 C1 화합물을 접촉시켜, 당해 재조합 세포에 상기 C1 화합물로부터 이소프렌을 생산시키는 이소프렌의 생산 방법.
  13. 제11항에 있어서, 일산화탄소와 수소를 주성분으로 하는 가스, 또는 이산화탄소와 수소를 주성분으로 하는 가스를, 상기 재조합 세포에 제공하는 이소프렌의 생산 방법.
  14. 제11항에 있어서, 재조합 세포의 세포 밖으로 방출된 이소프렌을 회수하는 이소프렌의 생산 방법.
  15. 제12항에 있어서, 일산화탄소와 수소를 주성분으로 하는 가스, 또는 이산화탄소와 수소를 주성분으로 하는 가스를, 상기 재조합 세포에 제공하는 이소프렌의 생산 방법.
  16. 제12항에 있어서, 재조합 세포의 세포 밖으로 방출된 이소프렌을 회수하는 이소프렌의 생산 방법.
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020157010718A 2012-10-23 2013-10-22 재조합 세포, 및 이소프렌의 생산 방법 KR102056250B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012233571 2012-10-23
JPJP-P-2012-233571 2012-10-23
JPJP-P-2013-132423 2013-06-25
JP2013132423 2013-06-25
PCT/JP2013/078558 WO2014065271A1 (ja) 2012-10-23 2013-10-22 組換え細胞、並びに、イソプレンの生産方法

Publications (2)

Publication Number Publication Date
KR20150072410A KR20150072410A (ko) 2015-06-29
KR102056250B1 true KR102056250B1 (ko) 2019-12-16

Family

ID=50544650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157010718A KR102056250B1 (ko) 2012-10-23 2013-10-22 재조합 세포, 및 이소프렌의 생산 방법

Country Status (7)

Country Link
US (1) US9783828B2 (ko)
EP (2) EP4234704A3 (ko)
JP (1) JP6375227B2 (ko)
KR (1) KR102056250B1 (ko)
CN (2) CN104919038A (ko)
CA (1) CA2886137C (ko)
WO (1) WO2014065271A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104202A1 (ja) * 2012-12-27 2014-07-03 積水化学工業株式会社 組換え細胞、並びに、イソプレンの生産方法
JP6470532B2 (ja) * 2014-09-17 2019-02-13 積水化学工業株式会社 組換え細胞、並びに、有機化合物の生産方法
JP2016059313A (ja) * 2014-09-17 2016-04-25 積水化学工業株式会社 組換え細胞、並びに、イソプレン又は環式イソプレノイドの生産方法
CN106554933A (zh) * 2015-09-30 2017-04-05 中国科学院上海生命科学研究院 异戊二烯基因工程生产菌及其应用
WO2017094053A1 (ja) * 2015-11-30 2017-06-08 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、有機化合物の生産方法
US20190218577A1 (en) * 2016-09-30 2019-07-18 Invista North America S.A.R.L. Methods, synthetic hosts and reagents for the biosynthesis of isoprene and derivatives
US20190309328A1 (en) * 2016-10-28 2019-10-10 Sekisui Chemical Co., Ltd. Recombinant cells and method for producing isoprene or terpene
WO2018155272A1 (ja) 2017-02-27 2018-08-30 積水化学工業株式会社 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法
JP2018153152A (ja) * 2017-03-21 2018-10-04 積水化学工業株式会社 有機化合物生産システム、並びに、有機化合物の生産方法
US11634733B2 (en) 2017-06-30 2023-04-25 Inv Nylon Chemicals Americas, Llc Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof
WO2019006257A1 (en) 2017-06-30 2019-01-03 Invista North America .S.A.R.L. METHODS, SYNTHETIC HOSTS AND REAGENTS FOR HYDROCARBON BIOSYNTHESIS
US11505809B2 (en) 2017-09-28 2022-11-22 Inv Nylon Chemicals Americas Llc Organisms and biosynthetic processes for hydrocarbon synthesis
CN109097378B (zh) * 2018-08-13 2021-08-03 中国科学院青岛生物能源与过程研究所 一种异戊二烯合酶和其编码基因、表达载体、工程菌以及生产异戊二烯的方法及应用
CN114480242B (zh) * 2022-03-04 2023-04-25 中国科学院合肥物质科学研究院 一种用于MK-n生产的大肠杆菌工程菌及其构建方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019169A1 (en) * 2010-08-06 2012-02-09 Danisco Us Inc. Production of isoprene under neutral ph conditions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288148B2 (en) 2007-12-13 2012-10-16 Danisco Us Inc. Compositions and methods for producing isoprene
EP2245137B1 (en) 2008-01-22 2017-08-16 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol
KR101312107B1 (ko) 2008-03-12 2013-09-27 란자테크 뉴질랜드 리미티드 미생물 알콜 생산 방법
SG192545A1 (en) 2008-04-23 2013-08-30 Danisco Us Inc Isoprene synthase variants for improved microbial production of isoprene
MX2010014197A (es) 2008-06-20 2011-03-21 Ineos Usa Llc Métodos para aislar dióxido de carbono en alcoholes por medio de gasificación y fermentación.
US8592190B2 (en) 2009-06-11 2013-11-26 Ineos Bio Limited Methods for sequestering carbon dioxide into alcohols via gasification fermentation
BR112012032276A2 (pt) * 2010-06-17 2016-11-16 Danisco Us Inc composições de combustível compreendendo derivados de isopreno
US9273298B2 (en) 2010-10-27 2016-03-01 Danisco Us Inc. Isoprene synthase variants for improved production of isoprene
JP2012147682A (ja) 2011-01-17 2012-08-09 Daicel Corp 気体資源から有機物を製造する方法、及び装置
WO2013063528A2 (en) 2011-10-27 2013-05-02 Danisco Us Inc. Isoprene synthase variants with improved solubility for production of isoprene
WO2013181647A2 (en) 2012-06-01 2013-12-05 Danisco Us Inc. Compositions and methods of producing isoprene and/or industrrial bio-products using anaerobic microorganisms
US20130323820A1 (en) 2012-06-01 2013-12-05 Lanzatech New Zealand Limited Recombinant microorganisms and uses therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019169A1 (en) * 2010-08-06 2012-02-09 Danisco Us Inc. Production of isoprene under neutral ph conditions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Braus-Stromeyer SA et al., J. Bacteriol. 1997, 179(22), pp. 7197-7200*
GenBank: CAL69918.1*

Also Published As

Publication number Publication date
CN104919038A (zh) 2015-09-16
EP2913392B1 (en) 2023-06-07
CN111621453A (zh) 2020-09-04
US20150284742A1 (en) 2015-10-08
CA2886137C (en) 2021-10-19
EP4234704A3 (en) 2024-01-03
JPWO2014065271A1 (ja) 2016-09-08
JP6375227B2 (ja) 2018-08-15
CA2886137A1 (en) 2014-05-01
WO2014065271A1 (ja) 2014-05-01
EP2913392A1 (en) 2015-09-02
EP2913392A4 (en) 2016-06-22
EP4234704A2 (en) 2023-08-30
KR20150072410A (ko) 2015-06-29
US9783828B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
KR102056250B1 (ko) 재조합 세포, 및 이소프렌의 생산 방법
CA2825267C (en) Recombinant clostridium bacterium and uses thereof in isopropanol production
CN104395455B (zh) 重组微生物及其使用方法
EP2292750A2 (en) Alanine 2, 3 aminomutases
CN107075496A (zh) 抗反馈乙酰羟酸合酶变体和使用其生产l‑缬氨酸的方法
CN113832199A (zh) 重组微生物及其用途
KR20160020445A (ko) 락트산 탈수소효소 형질전환체를 이용하는 c1 화합물로부터 락테이트의 생물학적 생산을 위한 조성물 및 방법
KR20210144816A (ko) 키메라 플라스미드 라이브러리의 구축 방법
KR20160093648A (ko) 케톤을 생산하기 위한 방법 및 미생물
CA2808140A1 (en) Improved glycolic acid fermentative production with a modified microorganism
CN110997899B (zh) 嗜热赖氨酸脱羧酶的异源表达及其用途
JP5707318B2 (ja) L−リシン生産の方法
KR101608078B1 (ko) 이산화탄소 유래 숙신산 생산을 위한 균주 및 이를 이용한 이산화탄소 유래 숙신산 생산 방법
KR102320074B1 (ko) 재조합 미생물의 생산 방법
CN107815435A (zh) 具有增强的纤维素生产能力的葡糖醋杆菌
CN114591996B (zh) 一种凝结芽孢杆菌h-1的表达载体及其构建方法与应用
KR20240006686A (ko) 효소 변이체 및 이의 용도
CN107988126A (zh) 包含增加丙酮酸磷酸二激酶活性的基因修饰的重组微生物及其用途
CN115466319A (zh) 高粱SbMS1蛋白及其编码基因与应用
CN116783289A (zh) 用于生产挥发性化合物的方法和细胞
KR101270596B1 (ko) 아세테이트 키나아제 유전자가 넉아웃된 클로스트리디움 리준그달리 균주 및 이를 이용한 에탄올 생산 방법
EP3844179A1 (en) Xylr mutant for improved xylose utilization or improved co-utilization of glucose and xylose
WO2010020494A1 (de) Neuartiges, universell einsetzbares addiction-system
KR20170129474A (ko) 증가된 셀룰로스 생산능을 갖는 글루콘아세토박터 속 미생물, 그를 이용하여 셀룰로스를 생산하는 방법 및 상기 미생물을 생산하는 방법
CN109337925A (zh) 一种以黄花蒿悬浮细胞系为受体的转AaADS基因提高黄花蒿中青蒿素含量的方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant