WO2014104202A1 - 組換え細胞、並びに、イソプレンの生産方法 - Google Patents
組換え細胞、並びに、イソプレンの生産方法 Download PDFInfo
- Publication number
- WO2014104202A1 WO2014104202A1 PCT/JP2013/084915 JP2013084915W WO2014104202A1 WO 2014104202 A1 WO2014104202 A1 WO 2014104202A1 JP 2013084915 W JP2013084915 W JP 2013084915W WO 2014104202 A1 WO2014104202 A1 WO 2014104202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- pathway
- formaldehyde
- host cell
- recombinant cell
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/026—Unsaturated compounds, i.e. alkenes, alkynes or allenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/02—Aldehyde-lyases (4.1.2)
- C12Y401/02043—3-Hexulose-6-phosphate synthase (4.1.2.43)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03027—Isoprene synthase (4.2.3.27)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/01—Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
- C12Y503/01027—6-Phospho-3-hexuloisomerase (5.3.1.27)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/03—Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
- C12Y503/03002—Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates to a recombinant cell capable of producing isoprene from methanol or the like, and a method for producing isoprene using the recombinant cell.
- Isoprene is a monomer raw material for synthetic polyisoprene, and is an especially important material in the tire industry.
- development and commercialization of technology for converting from the production process of basic chemical products that depend on petroleum to the production process from renewable resources such as plant resources has been steadily progressing.
- isoprene for example, production technology using recombinant E. coli using sugar as a raw material is known (Patent Documents 1 and 2, Non-Patent Document 1).
- methanol is produced at low cost from natural gas and synthesis gas that is a mixed gas of carbon monoxide, carbon dioxide, and hydrogen obtained from waste such as biomass and municipal waste.
- Natural gas is abundant in fossil resources, and the amount of generated CO 2 is relatively small. Therefore, natural gas is attracting attention as a next-generation energy source, and the transition from conventional oil to natural gas is progressing.
- Methanol is easy to handle and store, such as being soluble in water, and is also suitable as a carbon source for microbial culture.
- Methylotroph is a carbon compound that does not have a C—C bond in the molecule, for example, methane, methanol, methylamine, dimethylamine, trimethylamine, etc., as the sole carbon source and energy source, assimilating C1 compounds It is a generic name for microorganisms. Microorganisms called methanotroph, methane oxidizing bacteria, methanol-assimilating bacteria, methanol-assimilating yeast, methanol-assimilating microorganisms, etc. all belong to methylotrophs.
- Methylotroph uses the reaction of converting formaldehyde to organic matter having a C—C bond after converting methanol to formaldehyde as the central metabolism.
- serine pathway ribulose monophosphate pathway (RuMP pathway)
- XuMP pathway xylulose monophosphate pathway
- Methylotrophs classified as bacteria possess a serine cycle or RuMP pathway.
- methylotrophic bacteria are classified into obligate methylotrophs and facultative methylotrophs that can use other carbon compounds because of differences in methanol requirements.
- methylotroph As an application example of the above-mentioned methylotroph, production technologies such as SCP (single cell protein) from methanol, biodegradable plastics, amino acids and the like can be mentioned. However, there is no example applied to the production of basic chemicals derived from petroleum, such as isoprene. As mentioned above, all the monomer compounds used in general-purpose polymer material products currently depend on petroleum. However, it is very unlikely that petroleum of the same quality as that of today will be supplied at low cost forever. There is an urgent need to develop alternative processes. For the purpose of securing a carbon source for the production of chemicals by microorganisms, technology for saccharifying hard biomass containing cellulose, hemicellulose, lignin, etc. has been studied, but enzyme treatment for saccharification is necessary. There is a big problem in terms of cost.
- an object of the present invention is to provide a series of techniques for producing isoprene from methanol or the like.
- One aspect of the present invention for solving the above-described problem is that a gene encoding isoprene synthase is introduced into a host cell that is a methylotroph, and the gene is expressed in the host cell, and methane, methanol, A recombinant cell capable of producing isoprene from at least one C1 compound selected from the group consisting of methylamine, formic acid, formaldehyde, and formamide.
- Isoprene synthase has the effect of converting dimethylallyl diphosphate (DMAPP), which is an isomer of isopentenyl diphosphate (IPP), into isoprene.
- DMAPP dimethylallyl diphosphate
- IPP isopentenyl diphosphate
- the structural conversion between isopentenyl diphosphate and dimethylallyl diphosphate is catalyzed by isopentenyl diphosphate isomerase.
- Isopentenyl diphosphate isomerase is present in all organisms.
- the recombinant cell of this aspect is obtained by introducing a gene encoding isoprene synthase into a host cell that is a methylotroph, and the gene is expressed in the host cell.
- isoprene can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- the recombinant cell of this aspect can convert dimethylallyl diphosphate and isopentenyl diphosphate synthesized in the cell into isoprene by the action of isoprene synthase. That is, according to the recombinant cell of this aspect, isoprene can be produced from the aforementioned C1 compound.
- the formaldehyde immobilization pathway has at least one C1 carbon assimilation pathway selected from the group consisting of a serine pathway, a ribulose monophosphate pathway, and a xylulose monophosphate pathway.
- a gene encoding 3-hexulose 6-phosphate synthase and a gene encoding 6-phospho-3-hexoisomerase are further introduced, and the gene is expressed in the host cell.
- the host cell is a bacterium or a yeast.
- the yeast belongs to the genus Pichia, Hansenula, or Candida.
- Another aspect of the present invention for solving the same problem is that a gene that imparts a function of converting methanol and / or formic acid to formaldehyde, a gene that imparts formaldehyde immobilization ability, isoprene synthase, And isoprene produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. It is a recombinant cell that is possible.
- Recombinant cells of this aspect are composed of “a gene that gives a function of converting methanol and / or formic acid into formaldehyde”, “a gene that gives formaldehyde immobilization ability”, and “a gene encoding isoprene synthase”. In which these genes are expressed in the host cell.
- isoprene can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- the recombinant cells of this aspect have the same characteristics as methylotrophic because “genes that give the function of converting methanol and / or formic acid into formaldehyde” and “genes that give formaldehyde immobilization ability” have been introduced. Have. And since the “gene encoding isoprene synthase” has been introduced, isoprene synthase can be expressed in cells. As a result, isopentenyl diphosphate synthesized in the cell can be converted to isoprene. That is, isoprene can be produced from the above-described C1 compound also by the recombinant cell of this aspect.
- the formaldehyde immobilization pathway has at least one C1 carbon assimilation pathway selected from the group consisting of a serine pathway, a ribulose monophosphate pathway, and a xylulose monophosphate pathway.
- Another aspect of the present invention for solving the same problem is that a gene that gives a host cell having a ribulose monophosphate pathway the function of converting methanol and / or formic acid into formaldehyde, and a gene encoding isoprene synthase And the gene is expressed in the host cell, and isoprene can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. It is a replacement cell.
- This aspect corresponds to, for example, an embodiment in which a non-methylotroph having a ribulose monophosphate pathway is a host cell.
- the gene imparting the function of converting methanol to formaldehyde is a gene encoding methanol dehydrogenase or alcohol oxidase
- the gene imparting the function of converting formic acid to formaldehyde is a gene encoding formaldehyde dehydrogenase.
- Both methanol dehydrogenase and alcohol dehydrogenase have the action of converting methanol into formaldehyde.
- Formaldehyde dehydrogenase has a function of converting formic acid into formaldehyde.
- These enzymes are all methane metabolizing enzymes in methylotrophs belonging to bacteria.
- methylotrophs belonging to yeast do not have methane oxidation activity, but have an action of converting methanol into formaldehyde by the action of alcohol oxidase.
- Yeast also has an enzymatic activity to convert formic acid into formaldehyde.
- a gene imparting a function of converting methane to methanol is further introduced, and the gene is expressed in the host cell.
- the gene imparting the function of converting methane to methanol is a gene encoding methane monooxygenase.
- Methane monooxygenase has an action of converting methane to methanol. Methane monooxygenase is also one of the methane metabolizing enzymes in methylotrophs.
- a gene encoding 3-hexulose 6-phosphate synthase and a gene encoding 6-phospho-3-hexoisomerase are further introduced, and the gene is expressed in the host cell.
- the host cell is a bacterium or a yeast.
- the host cell has an ability to synthesize isopentenyl diphosphate by the mevalonate pathway, and a gene encoding at least one enzyme acting in the mevalonate pathway and / or an enzyme acting in the non-mevalonate pathway A gene encoding the group is further introduced and the gene is expressed in the host cell.
- the gene encoding at least one enzyme acting in the mevalonate pathway is derived from actinomycetes.
- the host cell has an ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway, and a gene encoding an enzyme group that acts in the mevalonate pathway and / or at least one that acts in a non-mevalonate pathway A gene encoding one of the enzymes is further introduced and expressed in the host cell.
- the gene encoding at least one enzyme that acts in the non-mevalonate pathway is from a source other than the host cell.
- the isoprene synthase is derived from a plant.
- the gene encoding the isoprene synthase encodes the following protein (a), (b) or (c).
- a gene encoding isopentenyl diphosphate isomerase is further introduced, and the gene is expressed in the host cell.
- DMAPP dimethylallyl diphosphate
- a treatment for suppressing the expression level of geranyl diphosphate synthase, neryl diphosphate synthase, or farnesyl diphosphate synthase is performed.
- IPP can be converted to geranyl diphosphate (GPP), neryl diphosphate (NPP), or farnesyl diphosphate (FPP).
- the recombinant cell in this aspect suppresses the expression level of geranyl diphosphate synthase (GPP synthase), neryl diphosphate synthase (NPP synthase), or farnesyl diphosphate synthase (FPP synthase). Processing to be performed. With this configuration, waste of IPP serving as a DMAPP supply source is suppressed, and isoprene production capability is further increased.
- Another aspect of the present invention for solving the same problem is that a gene imparting a function of converting methanol and / or formic acid into formaldehyde and a gene imparting formaldehyde immobilization ability to a host cell having isoprene synthase And the gene is expressed in the host cell, and isoprene can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. It is a replacement cell.
- Recombinant cells of this aspect are those in which a "gene that provides a function of converting methanol and / or formic acid into formaldehyde” and a “gene that provides formaldehyde immobilization ability” are introduced into a host cell having isoprene synthase And the gene is expressed in the host cell.
- isoprene can be produced from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- the recombinant cells of this aspect have the same characteristics as methylotrophic because “genes that give the function of converting methanol and / or formic acid into formaldehyde” and “genes that give formaldehyde immobilization ability” have been introduced. Have. Since the host cell itself has isoprene synthase, dimethylallyl diphosphate and isopentenyl diphosphate can be converted to isoprene by the action of isoprene synthase. That is, isoprene can be produced from the above-described C1 compound also by the recombinant cell of this aspect.
- the gene imparting the function of converting methanol to formaldehyde is a gene encoding methanol dehydrogenase or alcohol oxidase
- the gene imparting the function of converting formic acid to formaldehyde is a gene encoding formaldehyde dehydrogenase.
- a gene imparting a function of converting methane to methanol is further introduced, and the gene is expressed in the host cell.
- the gene imparting the function of converting methane to methanol is a gene encoding methane monooxygenase.
- the formaldehyde immobilization pathway has at least one C1 carbon assimilation pathway selected from the group consisting of a serine pathway, a ribulose monophosphate pathway, and a xylulose monophosphate pathway.
- a gene encoding 3-hexulose 6-phosphate synthase and a gene encoding 6-phospho-3-hexoisomerase are further introduced, and the gene is expressed in the host cell.
- the host cell is a bacterium or a yeast.
- the host cell has an ability to synthesize isopentenyl diphosphate by the mevalonate pathway, and a gene encoding at least one enzyme acting in the mevalonate pathway and / or an enzyme acting in the non-mevalonate pathway A gene encoding the group is further introduced and the gene is expressed in the host cell.
- the gene encoding at least one enzyme acting in the mevalonate pathway is derived from actinomycetes.
- the host cell has an ability to synthesize isopentenyl diphosphate by a non-mevalonate pathway, and a gene encoding an enzyme group that acts in the mevalonate pathway and / or at least one that acts in a non-mevalonate pathway A gene encoding one of the enzymes is further introduced and expressed in the host cell.
- the gene encoding at least one enzyme that acts in the non-mevalonate pathway is from a source other than the host cell.
- a gene encoding isoprene synthase is further introduced, and the gene is expressed in the host cell.
- the isoprene synthase is derived from a plant.
- the gene encoding the isoprene synthase encodes the following protein (a), (b) or (c).
- a gene encoding isopentenyl diphosphate isomerase is further introduced, and the gene is expressed in the host cell.
- a treatment for suppressing the expression level of geranyl diphosphate synthase, neryl diphosphate synthase, or farnesyl diphosphate synthase is performed.
- the above recombinant cell is cultured using at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide as a carbon source,
- This aspect relates to the production method of isoprene.
- the above recombinant cell is cultured with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide as a carbon source.
- isoprene can be produced from methanol or the like.
- the recombinant cell is contacted with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide, and the recombinant cell is contacted with the aforementioned recombinant cell.
- C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide
- the above-described recombinant cell is contacted with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide, and isoprene is produced from the C1 compound.
- isoprene can be produced from methanol or the like.
- isoprene can be produced from methane, methanol, methylamine, formic acid, formaldehyde, or formamide.
- isoprene of the present invention can be produced from methane, methanol, methylamine, formic acid, formaldehyde, or formamide.
- the term “gene” can be replaced by the term “nucleic acid” or “DNA”.
- a gene encoding isoprene synthase is introduced into a host cell that is a methylotroph, and the gene is expressed in the host cell, and methane, methanol, methylamine, formic acid, formaldehyde, and A recombinant cell capable of producing isoprene from at least one C1 compound selected from the group consisting of formamide.
- a gene that imparts a function of converting methanol and / or formic acid into formaldehyde, a gene that imparts formaldehyde immobilization ability, and a gene that encodes an isoprene synthase are introduced into a host cell.
- a recombinant cell in which the gene is expressed in a host cell and is capable of producing isoprene from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. is there.
- a methylotroph is a carbon compound that does not have a C—C bond in the molecule, such as methane, methanol, methylamine, dimethylamine, trimethylamine, etc., as a sole carbon source and energy source. It refers to a chemical microorganism.
- methylotrophs inherently have a carbon assimilation metabolic pathway through formaldehyde, specifically, a function (route) for converting methanol and / or formic acid to formaldehyde and a formaldehyde immobilization ability (formaldehyde immobilization pathway). I have it.
- Examples of the immobilization pathway of formaldehyde include the serine pathway, ribulose monophosphate pathway (RuMP pathway), and xylulose monophosphate pathway (XuMP pathway) shown in FIG.
- methylotrophs possess a serine pathway, a RuMP pathway, or a XuMP pathway as a carbon assimilation metabolic pathway via formaldehyde.
- route (FIG. 1) is demonstrated.
- An important reaction for formaldehyde fixation by the serine pathway is a serine production reaction from glycine and 5,10-methylene-tetrahydrofolic acid by serine hydroxymethyltransferase. 5,10-methylene-tetrahydrofolic acid is formed by the combination of formaldehyde and tetrahydrofolic acid.
- one molecule of acetyl CoA is directly generated from one molecule of formaldehyde.
- Ru5P ribulose 5-phosphate
- HPS 3-hexulose-6-phosphate synthase
- PHI D-arabino 3-hexulose 6-phosphate from lysine
- D-arabino 3-hexulose by 6-phospho-3-hexuloisomerase (hereinafter sometimes abbreviated as “PHI”)
- F6P fructose 6-phosphate
- F6P and the like produced by this pathway are also used for glycolysis, and then produce acetyl CoA, glyceraldehyde triphosphate (G3P), and pyruvic acid.
- G3P glyceraldehyde triphosphate
- F6P it is converted into two molecules of G3P per molecule, and then two molecules of acetyl CoA are generated via two molecules of pyruvic acid.
- An important reaction for formaldehyde fixation by the XuMP pathway is the production reaction of dihydroxyacetone (Du) and glyceraldehyde triphosphate (G3P) from xylulose pentaphosphate (Xu5P) and formaldehyde by dihydroxyacetone synthase. .
- G3P produced by this pathway is also used for glycolysis and converted to pyruvic acid and acetyl CoA.
- Dihydroxyacetone can also be subjected to glycolysis by phosphorylation and converted to G3P, pyruvate, and acetyl CoA.
- the recombinant cell of the present invention is capable of producing isoprene from at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide.
- methanol can be converted to formaldehyde.
- methane in addition to methanol dehydrogenase or alcohol oxidase, methane can be converted to methanol, and subsequently methanol can be converted to formaldehyde.
- formic acid can be converted to formaldehyde.
- methylotrophs methylotrophic bacteria classified as bacteria have methane monooxygenase and methanol dehydrogenase, so that formaldehyde can be synthesized from methane or methanol.
- methylotrophs methylotrophic yeasts classified as yeast have alcohol oxidase, so that formaldehyde can be synthesized from methanol.
- methylotroph has formaldehyde dehydrogenase and can convert formic acid into formaldehyde.
- the methanol dehydrogenase includes pyrroloquinoline quinone (PQQ) -dependent methanol dehydrogenase found in methylotrophs of gram-negative bacteria, NAD (P) -dependent methanol dehydrogenase and alcohol dehydrogenase found in methylotrophs of gram-positive bacteria, gram-positive DMNA (N, N'-dimethyl-4-nitrosoaniline) -dependent methanol oxidoreductase (Park H.
- PQQ pyrroloquinoline quinone
- NAD NAD
- DMNA N, N'-dimethyl-4-nitrosoaniline
- methylamine can be converted to formaldehyde.
- These enzymes are known to be possessed by some methylotrophs and bacteria belonging to the genus Arthrobacter (Anthony C., The Biochemistry of Methylotroph, 1982, Academic Press Inc.).
- An enzyme that converts formamide to formaldehyde has been found in some microorganisms (Anthony C., The Biochemistry of Methylotroph, 1982, Academic Press Inc.).
- the type of methylotroph used as a host cell is not particularly limited, and for example, those classified into bacteria and yeasts can be employed.
- methylotrophic bacteria examples include, for example, Methylacidphilum, Methylosinus, Methylocystis, Methylobacterium, Methylocella, Methylococcus, Methylomonas, Methylobacter, Methylobacillus, Methylophilus, Methylotenera, Methylovorus, Genus, Methyloversatilis, Mycobacterium, Arthrobacter, Bacillus, Beggiatoa, Burkholderia, Granulibacter, Hyphomicrobium, Pseudomonas, Achromobactor, Paracoccus, Crenothrix, Clonothrix, Rhodohobacter, Rhodobacter Examples include bacteria belonging to the genus Thiomicrospira, Verrucomicrobia, and the like.
- Examples of methylotrophic yeasts include yeasts belonging to the genera Pichia, Candida, Saccharomyces, Hansenula, Torulopsis, Kloeckera, and the like.
- Examples of Pichia yeast include P. ⁇ haplophila, P. pastoris, P. trehalophila, P. lindnerii, and the like.
- Examples of Candida yeast include C. parapsilosis, C. methanolica, C. boidinii, C. alcomigas, and the like.
- Examples of Saccharomyces yeasts include Saccharomyces metha-nonfoams.
- Examples of Hansenula yeast include H. Hwickerhamii, H. capsulata, H. glucozyma, H.
- Torulopsis yeast examples include T. ⁇ methanolovescens, T. glabrata, T. nemodendra, T. pinus, T. methanofloat, T. enokii, T. menthanophiles, T. methanosorbosa, T. methanodomercqii, and the like.
- the host cell When the host cell is a non-methylotroph, it does not necessarily have a pathway for converting methanol or the like to formaldehyde, so it is necessary to provide at least a “function for converting methanol and / or formic acid to formaldehyde”. . Furthermore, it is preferable to provide “a function of converting methane to methanol”. These functions can be imparted by introducing a gene encoding the above-described enzyme into a host cell.
- a gene imparting a function of converting methanol into formaldehyde a gene encoding methanol dehydrogenase (for example, EC1.1.1.244, EC1.1.2.7) or a gene encoding alcohol oxidase (for example, EC1.13.13) can be used.
- a gene encoding formaldehyde dehydrogenase (for example, EC1.2.1.46) can be used as a gene that imparts a function of converting formic acid into formaldehyde.
- a gene encoding methane monooxygenase can be used as a gene imparting the function of converting methane to methanol.
- a plasmid that imparts methanol assimilation is known.
- the assimilation ability of Bacillus methanolicus depends on a plasmid encoding an enzyme group involved in methanol metabolism (Brautaset T. et al., J. Bacteriology 2004, 186 (5), 1229-1238).
- By introducing such a plasmid into a related non-methylotroph it is possible to confer methanol assimilation ability.
- By modifying such a plasmid it is possible to impart methanol-assimilating properties to various non-methylotrophs.
- non-methylotrophs are treated in the same way as methylotrophs by providing them with the function of converting methanol and / or formic acid into formaldehyde, and further by providing the ability to immobilize formaldehyde.
- the formaldehyde-immobilizing ability can be imparted, for example, by introducing a gene encoding an enzyme that acts in the serine pathway, RuMP pathway, or XuMP pathway described above into a non-methylotroph.
- the provision of the RuMP pathway is, for example, the above-described 3-hexulose 6-phosphate synthase (HPS; eg EC4.1.2.43) gene and 6-phospho-3-hexoisomerase (PHI; eg EC5.3.1.27).
- HPS 3-hexulose 6-phosphate synthase
- PHI 6-phospho-3-hexoisomerase
- This can be realized by introducing a gene. That is, ribulose 5-phosphate (Ru5P) and fructose 6-phosphate (F6P), which are substrates or products of formaldehyde immobilization reaction by HPS / PHI, are all biological organisms as metabolic intermediates of the pentose phosphate pathway and the calvin cycle. Exists universally. Therefore, by introducing HPS / PHI, it is possible to impart formaldehyde immobilization ability to all organisms including Escherichia coli, Bacillus subtilis, yeast and the like.
- the HPS gene and the PHI gene may be introduced into a host cell originally having a RuMP pathway.
- a RuMP pathway For example, an alcohol dehydrogenase such as methanol dehydrogenase (for example, EC1.1.1.244, EC1.1.2.7), 3-hexulose, or the like, which originally has a RuMP pathway or a pathway similar to this, such as Bacillus subtilis.
- an alcohol dehydrogenase such as methanol dehydrogenase (for example, EC1.1.1.244, EC1.1.2.7), 3-hexulose, or the like, which originally has a RuMP pathway or a pathway similar to this, such as Bacillus subtilis.
- the above-mentioned serine hydroxymethyltransferase (for example, EC2.1.2.1) gene can be used.
- serine hydroxymethyltransferase eg EC2.1.2. 1
- the isoprene synthase is not particularly limited as long as it can exhibit the enzyme activity in a recombinant cell.
- Isoprene synthase is found in many plants. Specific examples of isoprene synthase include those derived from Populus nigra (GenBank Accession No .: AM410988.1). In addition, those derived from Bacillus subtilis (Sivy TL. Et al., Biochem. Biophys. Res. Commu. 2002, 294 (1), 71-5) can be mentioned.
- SEQ ID NO: 1 shows the amino acid sequence corresponding to the base sequence of the gene (DNA) encoding the poplar-derived isoprene synthase, and SEQ ID NO: 2 shows only the amino acid sequence.
- the DNA having the base sequence represented by SEQ ID NO: 1 is an example of a gene encoding isoprene synthase.
- the gene encoding isoprene synthase includes at least a gene encoding the following protein (a), (b) or (c).
- the homology of the amino acid sequence in (c) is more preferably 80% or more, further preferably 90% or more, and particularly preferably 95% or more.
- genes in addition to a gene encoding isoprene synthase, other genes may be further introduced.
- the gene to be introduced include genes of enzymes that act in the isoprenoid biosynthesis pathway described below.
- All organisms including the recombinant cells of the present invention possess an isoprenoid biosynthetic pathway consisting of a mevalonate pathway (also referred to as MVA pathway) or a non-mevalonate pathway (also referred to as MEP pathway).
- Phosphoric acid (IPP) can be synthesized.
- the mevalonate pathway is provided by eukaryotes and starts from acetyl CoA.
- Enzymes acting in the mevalonate pathway include, in order from the upstream, acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl diphosphate isomerase Is mentioned.
- the non-mevalonate pathway is provided by prokaryotes, chloroplasts, and plastids, and starts with glyceraldehyde 3-phosphate and pyruvate.
- the enzymes acting in the non-mevalonate pathway include DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphocytidyl-2-C-methyl-D- in order from the upstream. Examples include erythritol kinase, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, HMB-PP synthase, and HMB-PP reductase.
- the host cell when the host cell has the ability to synthesize IPP through the mevalonate pathway, (i) a gene encoding at least one enzyme that acts in the mevalonate pathway, and / or (ii) non
- genes encoding enzymes that act in the mevalonate pathway have been introduced.
- the ability to synthesize IPP through the mevalonate pathway is enhanced.
- IPP is synthesized from both the mevalonate pathway and the non-mevalonate pathway, and the IPP synthesis ability is enhanced. And as a result, isoprene production is more efficiently performed by enhancing the ability to synthesize IPP.
- a gene encoding an enzyme group that acts in the mevalonate pathway, and / or (iv) a non-mevalon A gene encoding at least one enzyme acting in the acid pathway has also been introduced.
- IPP is synthesized from both the mevalonate pathway and the non-mevalonate pathway, and the ability to synthesize IPP is enhanced.
- the gene (iv) the ability to synthesize IPP by the non-mevalonate pathway is enhanced. And as a result, isoprene production is more efficiently performed by enhancing the ability to synthesize IPP.
- enzymes acting in the mevalonate pathway include acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyl dilin Acid isomerase is mentioned.
- the gene of (i) is introduced, for example, acetyl CoA acetyltransferase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, and isopentenyl diphosphate
- the gene to be introduced may be selected so that one or more enzymes selected from isomerases are expressed in the host cell.
- one or more enzymes may be selected from these enzyme groups and a gene encoding the enzyme may be introduced into the host cell.
- the gene of (iii) for example, an enzyme group consisting of HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, 5-phosphomevalonate kinase, diphosphomevalonate decarboxylase, and isopentenyl diphosphate isomerase
- the gene to be introduced may be selected so that is expressed in the host cell.
- the enzyme groups that act in the non-mevalonate pathway include DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphocytidyl-2-C-methyl- Examples include D-erythritol kinase, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, HMB-PP synthase, and HMB-PP reductase.
- the gene (ii) for example, DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphocytidyl-2-C-methyl-D-erythritol
- the gene (iv) is introduced, for example, DOXP synthase, DOXP reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase, 4-diphosphocytidyl-2-C-methyl-D-erythritol
- One or more enzymes selected from kinases, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, HMB-PP synthase, and HMB-PP reductase are expressed in the host cell.
- the gene to be introduced may be selected.
- one or more enzymes may be selected from these enzyme groups and a gene encoding the enzyme may be introduced into the host cell.
- the mevalonate pathway is possessed by all eukaryotes, but has also been found in non-eukaryotes.
- Streptomyces ⁇ sp. ⁇ Strain CL190 (Takagi M. et al., J. Bacteriol. 2000, 182 (15), 4153-7), Streptomyces griseolosporeus MF730 -N6 (Hamano Y. et al., Biosci. Biotechnol. Biochem. 2001, 65 (7), 1627-35).
- Lactobacillus helvecticus (Smeds A et al., DNA seq.
- the enzyme that acts in the non-mevalonate pathway encoded by the gene (ii) or (iv) is preferably derived from a source other than the host cell. With this configuration, reaction suppression due to the reaction product can be avoided.
- a mevalonate pathway enzyme group gene as a foreign gene in order to generate acetyl CoA directly from the serine pathway, which is a formaldehyde fixation pathway.
- These enzymes acting in the mevalonate pathway or non-mevalonate pathway encoded by the genes (i) to (iv) may be naturally occurring or a modified form of each enzyme. For example, it may be an amino acid substitution mutant of each enzyme or a polypeptide that is a partial fragment of each enzyme and has the same enzyme activity.
- the direct substrate of isoprene synthase is dimethylallyl diphosphate (DMAPP)
- DMAPP dimethylallyl diphosphate
- the conversion of IPP to DMAPP is enhanced by enhancing the isopentenyl diphosphate isomerase activity, and the production efficiency of isoprene is improved.
- an isopentenyl diphosphate isomerase gene may be further introduced as a foreign gene.
- the isopentenyl diphosphate isomerase gene is preferably derived from the same or related species as the host organism.
- GPP synthase geranyl diphosphate synthase
- NPP synthase neryl diphosphate synthase
- FPP synthase farnesyl diphosphate synthase
- Still another aspect of the present invention is that a host cell having isoprene synthase is introduced with a gene that imparts a function of converting methanol and / or formic acid into formaldehyde and a gene that imparts formaldehyde immobilization ability,
- host cells having isoprene synthase that can be employed in this aspect include bacteria belonging to the genus Bacillus, Acinetobacter, Agrobacterium, Erwinia, Pseudomonas, etc. described in US Pat. No. 5,849,970.
- all the above embodiments can be applied as they are.
- the above-described examples can be applied as they are to “a gene imparting a function of converting methanol and / or formic acid into formaldehyde” and “a gene imparting formaldehyde immobilization ability”. That is, each gene encoding methanol dehydrogenase, alcohol oxidase, formaldehyde dehydrogenase, methane monooxygenase and the like can be introduced into a host cell.
- a gene encoding 3-hexulose 6-phosphate synthase (HPS) and a gene encoding 6-phospho-3-hexoisomerase (PHI) may be further introduced.
- an enzyme gene acting in the biosynthesis pathway of isoprenoids may be introduced into the host cell.
- the embodiment using the genes (i) to (iv) described above can also be applied to this aspect.
- a gene encoding isoprene synthase may be further introduced into the host cell.
- an exogenous isoprene synthase is synthesized, so that the ability to produce isoprene is further enhanced.
- the isoprene synthase gene to be introduced is not particularly limited, and for example, the above-described poplar-derived isoprene synthase gene can be used.
- a host-derived isoprene synthase gene may be further introduced.
- GPP synthase geranyl diphosphate synthase
- NPP synthase neryl diphosphate synthase
- FPP synthase farnesyl diphosphate synthase
- a method for introducing a gene into a host cell is not particularly limited, and may be appropriately selected depending on the type of the host cell.
- a vector that can be introduced into a host cell and can express an integrated gene can be used.
- the vector when the host cell is a prokaryotic organism such as a bacterium, the vector contains a promoter at a position where it can replicate autonomously in the host cell or can be integrated into a chromosome, and the inserted gene can be transcribed.
- the vector contains a promoter at a position where it can replicate autonomously in the host cell or can be integrated into a chromosome, and the inserted gene can be transcribed.
- the homologous recombination method preferably targets a gene present in multiple copies on the genome, such as inverted-repeat sequence.
- methods for introducing multiple copies into the genome include a method for loading in a transposon. Examples of gene introduction methods using a plasmid into methylotrophic bacteria include pAYC32p (Chistoserdov AY., Et al., Plasmid 1986, 16, 161-167), pRP301 (Lane M., et al. Arch. Microbiol.
- the gene introduction method in methylotrophic yeast is established mainly by Pichia pastoris, and vectors such as pPIC3.5K, pPIC6, pGAPZ, pFLD (Invitrogen) are commercially available.
- Bacillus subtilis includes pMTLBS72 (Nquyen HD. Et al., Plasmid 2005, 54 (3), 241-248), pHT01 (Funakoshi), pHT43 (Funakoshi).
- Bacillus megaterium includes p3STOP1623hp (Funakoshi), pSP YocH hp (Funakoshi), and Bacillus brevis includes pNI DNA (Takara Bio).
- each gene when a plurality of types of genes are introduced into a host cell using a vector, each gene may be incorporated into one vector or may be incorporated into separate vectors. Further, when a plurality of genes are incorporated into one vector, each gene may be expressed under a common promoter or may be expressed under different promoters.
- the genes (i) to (iv) and the HPS / PHI gene are introduced. The mode to do is mentioned.
- regions related to transcription control, replication regions, etc. such as promoters and terminators, can be modified according to the purpose.
- a modification method it may be changed to another natural gene sequence in each host cell or its related species, or may be changed to an artificial gene sequence.
- the above-described recombinant cell is used as a carbon source using at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide. And isoprene is produced in the recombinant cell.
- C1 compounds used as a carbon source only one may be used and it may be used in combination of 2 or more.
- a synthetic medium containing C1 compound as the only carbon source, but a small amount of natural medium such as yeast extract, corn steep liquor, meat extract and vitamins are added to this. This also promotes the growth of bacteria.
- substances other than C1 compounds such as carbohydrates and lipids may be used as a carbon source in the cell growth stage, and the carbon source may be changed to the C1 compound in the isoprene production stage.
- the microorganism can be cultured under aerobic, microaerobic or anaerobic conditions depending on the purpose. Any of batch culture, fed-batch culture, and continuous culture may be used.
- methanol when used as the carbon source, it is usually used at a concentration of 1.0% (v / v) for bacteria and at a concentration of 3.0% (v / v) or less for yeast.
- the resistance to when it is improved, it can be cultured at higher concentrations.
- the above-described recombinant cell is contacted with at least one C1 compound selected from the group consisting of methane, methanol, methylamine, formic acid, formaldehyde, and formamide, Isoprene is produced from the C1 compound in a recombinant cell. That is, regardless of whether cell division (cell proliferation) is involved, isoprene can be produced by contacting the aforementioned C1 compound with a recombinant cell.
- the above-described C1 compound can be continuously supplied to the immobilized recombinant cells to continuously produce isoprene. Also in this aspect, about these C1 compounds, only one may be used and it may be used in combination of 2 or more.
- the produced isoprene is accumulated inside the cell or released outside the cell.
- purified isoprene can be obtained by recovering isoprene released outside the cell and isolating and purifying it.
- a methanol-utilizing yeast strain Pichia pastolis GS115 (Invitrogen) was used as a methylotroph having the XuMP pathway.
- the obtained amplified DNA fragment was cloned into pT7-Blue T vector (Takara Bio Inc.) to construct pT7IS.
- pT7IS was digested with BamHI to recover the IspS gene.
- the recovered IspS gene was introduced into the BamHI cleavage site of pPIC3.5K (Invitrogen) to construct a vector pPCIPS into which the isoprene synthase gene was introduced.
- the isoprene synthase gene was introduced into Pichia pastoris GS115 strain by pPCIPS according to Invitrogen manual “Version D 032002 / 25-0156”.
- a Geneticin (Invitrogen) resistant strain having a concentration of 1.5 mg / mL was obtained.
- a methanol-assimilating yeast GS115IPS strain retaining multiple copies of a foreign isoprene synthase gene was constructed.
- GS115IPS strain and GS11535K strain were respectively prepared in 20 mL of synthetic A medium containing methanol as the sole carbon source (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, CaSO 4 .2H 2 O per liter).
- each collected cell was cultured in a 125 mL vial sealed with a butyl rubber stopper in 45 mL of synthetic A medium and further shaken at 30 ° C. for 16 hours. .
- gas phase components were analyzed by GC / MS.
- isoprene was not detected in the GS11535K strain, but isoprene was detected in the GS115IPS strain. From the above, it was found that this example enables isoprene production by eukaryotic microorganisms (yeast) via the XuMP pathway, which is one type of methanol assimilation pathway.
- Bacillus subtilis was used as a non-methylotroph.
- the NADP-dependent methanol dehydrogenase (MDH) gene of SEQ ID NO: 5 was amplified from genomic DNA of Bacillus methanolicus (NCIMB 13114) by PCR using the primers of SEQ ID NO: 7 and SEQ ID NO: 8. The amplified DNA fragment was cloned into the pT7 Blue-T vector to construct pT7BMmdh.
- the 3-hexulose 6-phosphate synthase (HPS) gene of SEQ ID NO: 9 was amplified by PCR using the primers of SEQ ID NO: 11 and SEQ ID NO: 12 from the genomic DNA of Methylomonas aminofaciens. The amplified DNA fragment was cloned into the pT7 Blue-T vector to construct pT7MAhps.
- the 6-phospho-3-hexoisomerase (PHI) gene of SEQ ID NO: 13 was amplified from genomic DNA of Methylomonoas aminofaciens by PCR using the primers of SEQ ID NO: 15 and SEQ ID NO: 16. The amplified DNA fragment was cloned into the pT7 Blue-T vector to construct pT7MAphi.
- PCR was performed using pT7IS retaining the isoprene synthase (IspS) gene prepared in Example 1 as a template and using the primers of SEQ ID NO: 17 and SEQ ID NO: 18.
- the amplified DNA fragment was cloned into the pT7 Blue-T vector to construct pT7IS2.
- the hps gene was excised by cutting the cloning vector pT7MAhps with BglII and BamHI.
- the hps gene was introduced into the BamHI site of the expression vector pHT01 (MoBiTec) for Bacillus subtilis to prepare pHTh.
- the PHI gene was excised by cutting the cloning vector pT7MAphi with BglII and BamHI.
- the PHI gene was introduced into the BamHI site of pHTh to prepare pHThp.
- the MDH gene was excised by cutting the cloning vector pT7BMmdh with BglII and BamHI.
- the MDH gene was introduced into the BamHI site of pHThp to prepare pHThpm. Further, the IspS gene was excised by cleaving pT7IS2 with BamHI and SmaI. The IspS gene was introduced into the BamHI / SmaI site of pHThpm to construct pHThpmIS.
- the expression vector pHThpmIS holds an operon in which an HPS gene, a PHI gene, an MDH gene, and an IspS gene are arranged in this order downstream of the promoter of pHT01.
- an expression vector pHThpIS having only the HPS gene, the PHI gene, and the IspS gene was prepared in the same manner as described above.
- an expression vector pHThpm having only the HPS gene, the PHI gene, and the MDH gene was prepared.
- Each expression vector was introduced into Bacillus subtilis according to the MoBiTec manual “Bacillus subtilis Expression Vectors” to prepare a recombinant (recombinant cell). Thereby, a BShpmIS strain holding the expression vector pHThpmIS, a BShpIS strain holding the expression vector pHThhpIS, and a BSShpm strain holding the expression vector pHThpm were prepared.
- methanol assimilation induction medium methanol 10 mL, ammonium phosphate 3 g, potassium chloride 1 g, magnesium sulfate heptahydrate 0.1 g, yeast extract 0.5 g, 0.01 mM IPTG, and black 5 mg of lamphenicol was contained in 1 L of tap water
- methanol assimilation induction medium methanol 10 mL, ammonium phosphate 3 g, potassium chloride 1 g, magnesium sulfate heptahydrate 0.1 g, yeast extract 0.5 g, 0.01 mM IPTG, and black 5 mg of lamphenicol was contained in 1 L of tap water
- the cells were collected when the OD600 of the culture solution was 1.0-1.2.
- the collected whole cells were added to 45 mL of methanol assimilation induction medium similar to the above (however, the IPTG concentration was set to 0.1 mM), and at 37 ° C. in a 125 mL vial sealed with
- the BShpmIS strain and the BSShpm strain grew sufficiently, but the BShpIS strain without MDH hardly grew.
- isoprene was detected for the BShpmIS strain.
- the conversion efficiency from assimilated methanol to isoprene in the BShpmIS strain was 14%.
- the conversion efficiency from assimilated methanol to isoprene was about 0.3%.
- Methylobacterium extorquens (ATCC 55556) was used as a methylotroph having a serine pathway, and an IspS gene and an actinomycete-derived mevalonate pathway gene cluster were introduced into this strain to prepare an isoprene-producing strain.
- a DNA fragment containing the poplar-derived IspS gene was amplified using the pT7IS prepared in Example 1 as a template and the primers represented by SEQ ID NO: 19 and SEQ ID NO: 20. This DNA fragment was cloned into the pT7-Blue T vector to construct pT7IS3.
- DNA fragment containing genes encoding S. griseolosporeus mevalonate pathway enzyme group by PCR using genomic DNA of Streptomyces griseolosporeus (Kitasatospora griseola) as a template and primers represented by SEQ ID NO: 21 and SEQ ID NO: 22 (SEQ ID NO: 23) was amplified.
- This DNA fragment contains gene clusters encoding Mevalonate kinase, Mevalonate diphosphate decarboxylase, Phosphomevalonate kinase, IPP isomerase, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGR), and HMG-CoA synthase It is.
- the obtained amplified DNA fragment was cloned into the pT7-Blue T vector to construct pT7SMV.
- pT7IS3 was cut with BamHI and KpnI to obtain the IspS gene.
- the IspS gene was introduced into the BamHI / KpnI site of pCM80 (Marx CJ. Et al., Microbiology 2001, 147, 2065-2075), which is a broad host range vector, to prepare pC80IS.
- pT7SMV was cleaved with KpnI to obtain a fragment containing the actinomycetes MVA pathway gene and terminator sequence. The fragment was introduced into the KpnI site of pC80IS to construct pC80ISMV.
- the expression vector pC80ISMV has an IspS gene and actinomycetes MVA pathway enzyme gene group downstream of the promoter.
- the expression vector pC80IS was introduced into M. extorquens by electroporation to obtain a ME-IS strain.
- the expression vector pC80ISMV was introduced into M. extorquens by electroporation to obtain a ME-ISMV strain.
- the expression vector pCM80 was introduced into M. extorquens by electroporation to obtain the ME-CM80 strain.
- the ME-IS strain, the ME-ISMV strain, or the ME-CM80 strain was synthesized from a synthetic B medium containing methanol as a sole carbon source (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, CaSO 4 ⁇ 2H 2 O 0.9g, MgSO 4 ⁇ 7H 2 O 11.7g, CuSO 4 ⁇ 5H 2 O 8.4mg, KI 1.1mg, MnSO 4 H 2 O 4.2mg, NaMoO 4 ⁇ 2H 2 O 0.3 mg, H 3 BO 3 0.03 mg, CoCl 2 .6H 2 O 0.7 mg, ZnSO 4 .7H 2 O 28 mg, FeSO 4 .7H 2 O 91 mg, biotin 0.28 mg, methanol 5 mL, and tetracycline 10 mg Incubated aerobically at 30 ° C.
- Methylophilus methylotrophus (ATCC 53528) was used as a methylotroph having a RuMP pathway, and an IspS gene was introduced into this strain to produce an isoprene-producing strain.
- a DNA fragment containing the IspS gene was amplified by PCR using the pT7IS prepared in Example 1 as a template and the primers of SEQ ID NO: 19 and SEQ ID NO: 24. This DNA fragment was cloned into the pT7 Blue-T vector to prepare pT7IspS4. pT7IspS4 was cleaved with BamHI and KpnI to obtain a DNA fragment containing the IspS gene and terminator sequence. This DNA fragment was introduced into the BamHI / KpnI site of pCM80 (Example 3) to construct an expression vector pM80IS for IspS. pM80IS was introduced into M.
- MM-80IS strain methylotrophus by electroporation to obtain MM-80IS strain.
- a gene cluster (SEQ ID NO: 25) containing E. coli IDI (isopentenyl diphosphate isomerase) gene and poplar IspS gene was introduced into the BamHI / KpnI site of pCM80 to construct pC80IDIS.
- pC80IDIS was introduced into M. methylotrophus by electroporation to obtain MM-80IDIS strain.
- pCM80 was introduced into M. methylotrophus by electroporation to obtain MM-80 strain.
- MM-80IS strain, MM-80IDIS strain, or MM-80 strain is a synthetic B medium using methanol as the sole carbon source used in Example 3 (however, the methanol concentration is 1% (v / v)) Cultured at 37 ° C aerobically in 20 mL. The cells were collected when the OD600 of the culture solution was 1.0-1.2. The collected whole cells were added to 45 mL of the same synthetic B medium and cultured with shaking at 37 ° C. for 16 hours in a 125 mL vial sealed with a butyl rubber stopper. After completion of the culture, gas phase components were analyzed by GC / MS.
- isoprene was detected in the MM-80IS and MM-80IDIS strains.
- the conversion efficiency from assimilated methanol to isoprene was 12% for the MM-80IS strain and 19% for the MM-80IDIS strain.
- isoprene was not detected in the MM-80 strain. From the above, it was shown that efficient isoprene production from methanol is possible by introducing an isoprene synthase gene into a methylotroph having a RuMP pathway. It was also found that the introduction of IDI gene promotes isoprene synthesis.
- MDH methanol dehydrogenase
- the DNA fragment (hpmIS) containing the HPS gene, PHI gene, MDH gene and IspS gene was amplified by PCR using the expression vector pHThpmIS prepared in Example 2 as a template and the primers of SEQ ID NOs: 26 and 27.
- This amplified DNA fragment was cloned into the pT7Blue-T vector to prepare pT7hpmIS.
- pT7hpmIS was cleaved with NcoI and BamHI, and a DNA fragment containing the hpmIS gene was recovered.
- This DNA fragment was introduced into the NcoI / BamHI site of pET23d (Novagen) to construct an expression vector pThpmIS in E. coli.
- the expression vector pThpmIS was introduced into E. coli Rosetta (DE3) (Novagen) to obtain an E. coli RHPMI strain.
- the DNA fragment (hpIS) containing the HPS gene, the PHI gene, and the IspS gene was amplified by PCR using the expression vector pHThpIS prepared in Example 2 as a template and the primers of SEQ ID NOs: 26 and 27.
- This amplified DNA fragment was cloned into the pT7Blue-T vector to prepare pT7hpIS.
- pT7hpIS was cleaved with NcoI and BamHI, and a DNA fragment containing the hpIS gene was recovered.
- This DNA fragment was introduced into the NcoI / BamHI site of pET23d (Novagen) to construct an expression vector pThpIS in E. coli.
- the expression vector pThpIS was introduced into E. coli Rosetta (DE3) to obtain an E. coli RHPI strain.
- the DNA fragment (hpm) containing the HPS gene, PHI gene, and MDH gene was amplified by PCR using the expression vector pHThpm produced in Example 2 as a template and the primers of SEQ ID NOs: 26 and 28.
- This amplified DNA fragment was cloned into the pT7Blue-T vector to prepare pT7hpm.
- pT7hpm was cleaved with NcoI and BamHI, and a DNA fragment containing the hpm gene was recovered.
- This DNA fragment was introduced into the NcoI / BamHI site of pET23d (Novagen) to construct an expression vector pThpm in E. coli.
- the expression vector pThpm was introduced into E. coli Rosetta (DE3) to obtain an E. coli RHPM strain.
- Each recombinant Escherichia coli was mixed with methanol-utilized synthetic C medium containing IPTG at a concentration of 0.05 mM (18 g of H 3 PO 4 , 14.28 g of K 2 SO 4 , 3.9 g of KOH, CaSO 4 .2H 2 O per liter).
- the recovered whole cells were added to 45 mL of the synthetic C medium having the same composition as described above, and cultured with shaking at 37 ° C. for 24 hours in a 125 mL vial sealed with a butyl rubber stopper. After completion of the culture, gas phase components were analyzed by GC / MS.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
そして本様相の組換え細胞は、メチロトローフである宿主細胞にイソプレン合成酵素をコードする遺伝子が導入されたものであり、宿主細胞内で当該遺伝子が発現する。そして、メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である。本様相の組換え細胞は、細胞内で合成されたジメチルアリル二リン酸及びイソペンテニル二リン酸を、イソプレン合成酵素の作用によってイソプレンに変換することができる。すなわち、本様相の組換え細胞によれば、前記したC1化合物からイソプレンを生産することができる。
すなわち本様相の組換え細胞は、「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子」と「ホルムアルデヒド固定化能を付与する遺伝子」が導入されているので、メチロトローフと同様の特性を有している。そして、「イソプレン合成酵素をコードする遺伝子」が導入されているので、細胞内でイソプレン合成酵素を発現することができる。その結果、細胞内で合成されたイソペンテニル二リン酸をイソプレンに変換することができる。すなわち、本様相の組換え細胞によっても、前記したC1化合物からイソプレンを生産することができる。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
すなわち本様相の組換え細胞は、「メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子」と「ホルムアルデヒド固定化能を付与する遺伝子」が導入されているので、メチロトローフと同様の特性を有している。そして、宿主細胞自身がイソプレン合成酵素を有するので、イソプレン合成酵素の作用によってジメチルアリル二リン酸及びイソペンテニル二リン酸をイソプレンに変換することができる。すなわち、本様相の組換え細胞によっても、前記したC1化合物からイソプレンを生産することができる。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
セリン経路によるホルムアルデヒド固定に重要な反応は、セリンヒドロキシメチルトランスフェラーゼ(serine hydroxymethyltransferase)によるグリシンと5,10-メチレン-テトラヒドロ葉酸からのセリン生成反応である。5,10-メチレン-テトラヒドロ葉酸は、ホルムアルデヒドとテトラヒドロ葉酸の結合によって生じる。セリン経路では、1分子のホルムアルデヒドから1分子のアセチルCoAが直接生成する。
本経路で生成するF6P等は解糖系へも供され、その後アセチルCoAや、グリセルアルデヒド3リン酸(G3P)及びピルビン酸を生成する。F6Pの場合、1分子あたり、2分子のG3Pに変換され、次いで2分子のピルビン酸を経て2分子のアセチルCoAが生成する。
またホルムアミドをホルムアルデヒドに変換する酵素が、一部の微生物で見出されている(Anthony C., The Biochemistry of Methylotroph, 1982, Academic Press Inc.)。
配列番号1に上記ポプラ由来イソプレン合成酵素をコードする遺伝子(DNA)の塩基配列と対応のアミノ酸配列、配列番号2にアミノ酸配列のみを示す。配列番号1で表される塩基配列を有するDNAは、イソプレン合成酵素をコードする遺伝子の一例となる。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。
なお(c)におけるアミノ酸配列の相同性については、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
メバロン酸経路は真核生物が備えているものであり、アセチルCoAを出発物質としている。メバロン酸経路で作用する酵素としては、上流から順に、アセチルCoAアセチルトランスフェラーゼ、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、イソペンテニル二リン酸イソメラーゼが挙げられる。
(i)の遺伝子を導入する場合には、例えば、アセチルCoAアセチルトランスフェラーゼ、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、及びイソペンテニル二リン酸イソメラーゼから選ばれた1又は2以上の酵素が宿主細胞内で発現するように、導入する遺伝子を選択すればよい。例えば、これらの酵素群から1又は2以上の酵素を選択し、当該酵素をコードする遺伝子を宿主細胞に導入すればよい。
(iii)の遺伝子を導入する場合には、例えば、HMG-CoAシンターゼ、HMG-CoAレダクターゼ、メバロン酸キナーゼ、5-ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、及びイソペンテニル二リン酸イソメラーゼからなる酵素群が宿主細胞内で発現するように、導入する遺伝子を選択すればよい。
(ii)の遺伝子を導入する場合には、例えば、DOXPシンターゼ、DOXPレダクトイソメラーゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールシンターゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールキナーゼ、2-C-メチル-D-エリトリトール-2,4-シクロ二リン酸シンターゼ、HMB-PPシンターゼ、及びHMB-PPレダクターゼからなる酵素群が宿主細胞内で発現するように、導入する遺伝子を選択すればよい。
(iv)の遺伝子を導入する場合には、例えば、DOXPシンターゼ、DOXPレダクトイソメラーゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールシンターゼ、4-ジホスホシチジル-2-C-メチル-D-エリトリトールキナーゼ、2-C-メチル-D-エリトリトール-2,4-シクロ二リン酸シンターゼ、HMB-PPシンターゼ、及びHMB-PPレダクターゼから選ばれた1又は2以上の酵素が宿主細胞内で発現するように、導入する遺伝子を選択すればよい。例えば、これらの酵素群から1又は2以上の酵素を選択し、当該酵素をコードする遺伝子を宿主細胞に導入すればよい。
当該処理としては、GPP合成酵素、NPP合成酵素、又はFPP合成酵素をコードする遺伝子に対する各種処理、例えば、遺伝子への変異導入(コドンの改変、ノックアウト等)、プロモーターの改変、SD配列の改変、などが挙げられる。
例えば、宿主細胞が細菌等の原核生物の場合には、当該ベクターとして、宿主細胞において自立複製可能ないしは染色体中への組み込みが可能で、挿入された上記遺伝子を転写できる位置にプロモーターを含有しているものを用いることができる。例えば、当該ベクターを用いて、プロモーター、リボソーム結合配列、上記遺伝子、および転写終結配列からなる一連の構成を宿主細胞内で構築することが好ましい。
炭素源として例えばメタノールを用いる場合は、通常、細菌の場合は1.0%(v/v)濃度、酵母の場合は3.0%(v/v)濃度以下で用いるが、人為的にこれらに対する耐性を改良した場合は、それ以上の濃度でも培養可能である。
本様相においても、これらのC1化合物については、1つのみを用いてもよいし、2つ以上を組み合わせて用いてもよい。
ポプラ(Populus nigra)の葉由来の全RNAを鋳型とし、配列番号3と配列番号4で表されるプライマーを使用したRT-PCRによって、ポプラ由来イソプレン合成酵素(IspS)をコードする遺伝子(ポプラ由来IspS遺伝子、配列番号1、GenBank Accession No.: AM410988.1)を増幅した。得られた増幅DNA断片をpT7-Blue T ベクター(タカラバイオ社)へクローニングし、pT7ISを構築した。pT7ISをBamHIで切断してIspS遺伝子を回収した。回収したIspS遺伝子を、pPIC3.5K(インビトロジェン社)のBamHI切断部位へ導入し、イソプレン合成酵素遺伝子が導入されたベクターpPCIPSを構築した。
配列番号5のNADP依存型メタノールデヒドロゲナーゼ(MDH)遺伝子を、Bacillus methanolicus (NCIMB 13114)のゲノムDNAより、配列番号7及び配列番号8のプライマーを用いるPCRによって増幅した。増幅されたDNA断片をpT7 Blue-Tベクターへクローニングし、pT7BMmdhを構築した。
クローニングベクターpT7MAhpsをBglII及びBamHIで切断することによってhps遺伝子を切り出した。該hps遺伝子をBacillus subtilis用発現ベクターpHT01(MoBiTec社)のBamHIサイトへ導入し、pHThを作製した。
クローニングベクターpT7MAphiをBglII及びBamHIで切断することによってPHI遺伝子を切り出した。該PHI遺伝子をpHThのBamHIサイトへ導入し、pHThpを作製した。
クローニングベクターpT7BMmdhをBglII及びBamHIで切断することによってMDH遺伝子を切り出した。該MDH遺伝子をpHThpのBamHIサイトへ導入し、pHThpmを作製した。
さらに、pT7IS2をBamHI及びSmaIで切断することによってIspS遺伝子を切り出した。該IspS遺伝子をpHThpmのBamHI/SmaIサイトへ導入し、pHThpmISを構築した。発現ベクターpHThpmISは、pHT01のプロモーター下流にHPS遺伝子、PHI遺伝子、MDH遺伝子、及びIspS遺伝子がこの順番に配置されたオペロンを保持する。
イソプレン生産に関して、BShpmIS株についてイソプレンが検出された。BShpmIS株における、資化されたメタノールからイソプレンへの変換効率は、14%であった。BShpm株では、イソプレンが僅かに検出されたものの、資化されたメタノールからイソプレンへの変換効率は0.3%程度であった。
放線菌Streptomyces griseolosporeus (Kitasatospora griseola)のゲノムDNAを鋳型とし、配列番号21と配列番号22で表されるプライマーを使用したPCRによって、S. griseolosporeusのメバロン酸経路酵素群をコードする遺伝子を含むDNA断片(配列番号23)を増幅した。このDNA断片には、Mevalonate kinase、Mevalonate diphosphate decarboxylase、Phosphomevalonate kinase、IPP isomerase、HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (HMGR)、及びHMG-CoA synthaseをコードする遺伝子クラスタが含まれている。得られた増幅DNA断片をpT7-Blue T ベクターへクローニングし、pT7SMVを構築した。
発現ベクターpC80ISをエレクトロポレーションによってM. extorquensへ導入し、ME-IS株を得た。発現ベクターpC80ISMVをエレクトロポレーションによってM. extorquensへ導入し、ME-ISMV株を得た。コントロールとして、発現ベクターpCM80をエレクトロポレーションによってM. extorquensへ導入し、ME-CM80株を得た。
以上のことから、セリン経路を有するメチロトローフへ、MVA経路遺伝子及び、イソプレン合成酵素遺伝子を導入することによって、メタノールからの効率的なイソプレンの生産が可能であることが示された。
また、大腸菌IDI(イソペンテニル二リン酸イソメラーゼ)遺伝子とポプラIspS遺伝子とを含む遺伝子クラスター(配列番号25)を、pCM80のBamHI/KpnIサイトへ導入し、pC80IDISを構築した。pC80IDISをエレクトロポレーションによってM. methylotrophusへ導入し、MM-80IDIS株を得た。
コントロールとして、pCM80をエレクトロポレーションによってM. methylotrophusへ導入し、MM-80株を得た。
以上のことから、RuMP経路を有するメチロトローフへ、イソプレン合成酵素遺伝子を導入することによって、メタノールからの効率的なイソプレンの生産が可能であることが示された。また、IDI遺伝子を導入することによってイソプレン合成が促進されることがわかった。
Claims (39)
- メチロトローフである宿主細胞にイソプレン合成酵素をコードする遺伝子が導入されてなり、
当該遺伝子が前記宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。 - ホルムアルデヒドの固定化経路として、セリン経路、リブロースモノリン酸経路、及びキシロースモノリン酸経路からなる群より選ばれた少なくとも1つのC1炭素同化経路を有する請求項1に記載の組換え細胞。
- 3-ヘキスロース6リン酸合成酵素をコードする遺伝子と、6-ホスホ-3-ヘキスロイソメラーゼをコードする遺伝子とがさらに導入され、当該遺伝子が宿主細胞内で発現する請求項1又は2に記載の組換え細胞。
- 前記宿主細胞は、細菌又は酵母である請求項1~3のいずれかに記載の組換え細胞。
- 前記酵母は、Pichia属、Hansenula属、又はCandida属に属するものである請求項4に記載の組換え細胞。
- 宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、ホルムアルデヒド固定化能を付与する遺伝子と、イソプレン合成酵素をコードする遺伝子とが導入されてなり、
当該遺伝子が宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。 - ホルムアルデヒドの固定化経路として、セリン経路、リブロースモノリン酸経路、及びキシロースモノリン酸経路からなる群より選ばれた少なくとも1つのC1炭素同化経路を有する請求項6に記載の組換え細胞。
- リブロースモノリン酸経路を有する宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、イソプレン合成酵素をコードする遺伝子とが導入されてなり、
当該遺伝子が宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。 - メタノールをホルムアルデヒドに変換する機能を付与する遺伝子は、メタノールデヒドロゲナーゼ又はアルコールオキシダーゼをコードする遺伝子であり、ギ酸をホルムアルデヒドに変換する機能を付与する遺伝子は、ホルムアルデヒドデヒドロゲナーゼをコードする遺伝子である請求項6~8のいずれかに記載の組換え細胞。
- メタンをメタノールに変換する機能を付与する遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項6~9のいずれかに記載の組換え細胞。
- メタンをメタノールに変換する機能を付与する遺伝子は、メタンモノオキシゲナーゼをコードする遺伝子である請求項10に記載の組換え細胞。
- 3-ヘキスロース6リン酸合成酵素をコードする遺伝子と、6-ホスホ-3-ヘキスロイソメラーゼをコードする遺伝子とがさらに導入され、当該遺伝子が宿主細胞内で発現する請求項6~11のいずれかに記載の組換え細胞。
- 前記宿主細胞は、細菌又は酵母である請求項6~12のいずれかに記載の組換え細胞。
- 宿主細胞がメバロン酸経路によるイソペンテニル二リン酸合成能を有するものであり、メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子、及び/又は、非メバロン酸経路で作用する酵素群をコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項1~13のいずれかに記載の組換え細胞。
- メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子は、放線菌由来のものである請求項14に記載の組換え細胞。
- 宿主細胞が非メバロン酸経路によるイソペンテニル二リン酸合成能を有するものであり、メバロン酸経路で作用する酵素群をコードする遺伝子、及び/又は、非メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項1~13のいずれかに記載の組換え細胞。
- 非メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子は、宿主細胞以外の由来のものである請求項16に記載の組換え細胞。
- 前記イソプレン合成酵素は、植物由来のものである請求項1~17のいずれかに記載の組換え細胞。
- 前記イソプレン合成酵素をコードする遺伝子は、下記(a)、(b)又は(c)のタンパク質をコードするものである請求項1~18のいずれかに記載の組換え細胞。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。 - イソペンテニル二リン酸イソメラーゼをコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項1~19のいずれかに記載の組換え細胞。
- ゲラニル二リン酸合成酵素、ネリル二リン酸合成酵素、又はファルネシル二リン酸合成酵素の発現量を抑制する処理が行われたものである請求項1~20のいずれかに記載の組換え細胞。
- イソプレン合成酵素を有する宿主細胞に、メタノール及び/又はギ酸をホルムアルデヒドに変換する機能を付与する遺伝子と、ホルムアルデヒド固定化能を付与する遺伝子とが導入されてなり、
当該遺伝子が宿主細胞内で発現し、
メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物からイソプレンを生産可能である組換え細胞。 - メタノールをホルムアルデヒドに変換する機能を付与する遺伝子は、メタノールデヒドロゲナーゼ又はアルコールオキシダーゼをコードする遺伝子であり、ギ酸をホルムアルデヒドに変換する機能を付与する遺伝子は、ホルムアルデヒドデヒドロゲナーゼをコードする遺伝子である請求項22に記載の組換え細胞。
- メタンをメタノールに変換する機能を付与する遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項22又は23に記載の組換え細胞。
- メタンをメタノールに変換する機能を付与する遺伝子は、メタンモノオキシゲナーゼをコードする遺伝子である請求項24に記載の組換え細胞。
- ホルムアルデヒドの固定化経路として、セリン経路、リブロースモノリン酸経路、及びキシロースモノリン酸経路からなる群より選ばれた少なくとも1つのC1炭素同化経路を有する請求項22~25のいずれかに記載の組換え細胞。
- 3-ヘキスロース6リン酸合成酵素をコードする遺伝子と、6-ホスホ-3-ヘキスロイソメラーゼをコードする遺伝子とがさらに導入され、当該遺伝子が宿主細胞内で発現する請求項22~26のいずれかに記載の組換え細胞。
- 前記宿主細胞は、細菌又は酵母である請求項22~27のいずれかに記載の組換え細胞。
- 宿主細胞がメバロン酸経路によるイソペンテニル二リン酸合成能を有するものであり、メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子、及び/又は、非メバロン酸経路で作用する酵素群をコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項22~28のいずれかに記載の組換え細胞。
- メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子は、放線菌由来のものである請求項29に記載の組換え細胞。
- 宿主細胞が非メバロン酸経路によるイソペンテニル二リン酸合成能を有するものであり、メバロン酸経路で作用する酵素群をコードする遺伝子、及び/又は、非メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項22~28のいずれかに記載の組換え細胞。
- 非メバロン酸経路で作用する少なくとも1つの酵素をコードする遺伝子は、宿主細胞以外の由来のものである請求項31に記載の組換え細胞。
- イソプレン合成酵素をコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項22~32のいずれかに記載の組換え細胞。
- 前記イソプレン合成酵素は、植物由来のものである請求項33に記載の組換え細胞。
- 前記イソプレン合成酵素をコードする遺伝子は、下記(a)、(b)又は(c)のタンパク質をコードするものである請求項33又は34に記載の組換え細胞。
(a)配列番号2で表されるアミノ酸配列からなるタンパク質、
(b)配列番号2で表されるアミノ酸配列において、1~20個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレン合成酵素の活性を有するタンパク質、
(c)配列番号2で表されるアミノ酸配列と60%以上の相同性を示すアミノ酸配列を有し、かつイソプレン合成酵素の活性を有するタンパク質。 - イソペンテニル二リン酸イソメラーゼをコードする遺伝子がさらに導入され、当該遺伝子が宿主細胞内で発現する請求項22~35のいずれかに記載の組換え細胞。
- ゲラニル二リン酸合成酵素、ネリル二リン酸合成酵素、又はファルネシル二リン酸合成酵素の発現量を抑制する処理が行われたものである請求項22~36のいずれかに記載の組換え細胞。
- 請求項1~37のいずれかに記載の組換え細胞を、メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物を炭素源として用いて培養し、当該組換え細胞にイソプレンを生産させるイソプレンの生産方法。
- 請求項1~37のいずれかに記載の組換え細胞に、メタン、メタノール、メチルアミン、ギ酸、ホルムアルデヒド、及びホルムアミドからなる群より選ばれた少なくとも1つのC1化合物を接触させ、当該組換え細胞に前記C1化合物からイソプレンを生産させるイソプレンの生産方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157016066A KR20150100666A (ko) | 2012-12-27 | 2013-12-26 | 재조합 세포, 및 이소프렌의 생산 방법 |
JP2014554551A JP6355562B2 (ja) | 2012-12-27 | 2013-12-26 | 組換え細胞、並びに、イソプレンの生産方法 |
EP13869129.0A EP2940123B1 (en) | 2012-12-27 | 2013-12-26 | Recombinant cell and method for producing isoprene |
CN201380065571.7A CN104884609B (zh) | 2012-12-27 | 2013-12-26 | 重组细胞、以及异戊二烯的生产方法 |
US14/655,934 US9695447B2 (en) | 2012-12-27 | 2013-12-26 | Recombinant cell and method for producing isoprene |
CA2895094A CA2895094C (en) | 2012-12-27 | 2013-12-26 | Recombinant cell and method for producing isoprene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012285055 | 2012-12-27 | ||
JP2012-285055 | 2012-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104202A1 true WO2014104202A1 (ja) | 2014-07-03 |
Family
ID=51021276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084915 WO2014104202A1 (ja) | 2012-12-27 | 2013-12-26 | 組換え細胞、並びに、イソプレンの生産方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9695447B2 (ja) |
EP (1) | EP2940123B1 (ja) |
JP (2) | JP6355562B2 (ja) |
KR (1) | KR20150100666A (ja) |
CN (1) | CN104884609B (ja) |
CA (1) | CA2895094C (ja) |
WO (1) | WO2014104202A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160017374A1 (en) * | 2013-03-07 | 2016-01-21 | Calysta, Inc. | Compositions and methods for biological production of isoprene |
CN106544348A (zh) * | 2015-09-23 | 2017-03-29 | 中国科学院微生物研究所 | 异戊烯基焦磷酸异构酶基因及其应用 |
CN107429223A (zh) * | 2015-03-11 | 2017-12-01 | 巴斯夫欧洲公司 | 从头微生物合成萜类的方法 |
WO2018155272A1 (ja) | 2017-02-27 | 2018-08-30 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9657316B2 (en) * | 2012-08-27 | 2017-05-23 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto |
WO2015108777A1 (en) | 2014-01-16 | 2015-07-23 | Papoutsakis Eleftherios T | Synthetic methylotrophy to liquid fuels and chemicals |
KR102546640B1 (ko) * | 2016-01-26 | 2023-06-22 | 에스케이이노베이션 주식회사 | 재조합 호염성 메탄균주를 이용한 이소프렌의 제조방법 |
KR101936825B1 (ko) | 2016-01-26 | 2019-01-11 | 경상대학교산학협력단 | 이소프렌의 생산 방법 |
DE102016203889A1 (de) * | 2016-03-09 | 2017-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Regenerative Synthese von chemischen Energiespeichern und Feinchemikalien |
CN115851850A (zh) * | 2021-09-23 | 2023-03-28 | 中国科学院天津工业生物技术研究所 | 利用二氧化碳制备淀粉的方法、重组微生物和构建重组微生物的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849970A (en) | 1995-06-23 | 1998-12-15 | The Regents Of The University Of Colorado | Materials and methods for the bacterial production of isoprene |
JP2004229662A (ja) | 2003-01-08 | 2004-08-19 | Ajinomoto Co Inc | メタノール資化性菌の組換え体の製造方法 |
JP2008035831A (ja) * | 2006-08-09 | 2008-02-21 | Nitta Ind Corp | 有用部分の生産性が高められた植物及びその作製方法 |
WO2009076676A2 (en) | 2007-12-13 | 2009-06-18 | Danisco Us Inc. | Compositions and methods for producing isoprene |
WO2009132220A2 (en) | 2008-04-23 | 2009-10-29 | Danisco Us Inc. | Isoprene synthase variants for improved microbial production of isoprene |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6818424B2 (en) * | 2000-09-01 | 2004-11-16 | E. I. Du Pont De Nemours And Company | Production of cyclic terpenoids |
JP2003153695A (ja) * | 2001-09-06 | 2003-05-27 | Ajinomoto Co Inc | 目的物質の製造法 |
WO2010031068A1 (en) * | 2008-09-15 | 2010-03-18 | Danisco Us Inc. | Reduction of carbon dioxide emission during isoprene production by fermentation |
GB201201178D0 (en) * | 2012-01-25 | 2012-03-07 | Sinvent As | Novel enzymes |
CA2886137C (en) * | 2012-10-23 | 2021-10-19 | Sekisui Chemical Co., Ltd. | Recombinant cell, and method for producing isoprene |
US20150315599A1 (en) * | 2012-12-07 | 2015-11-05 | Ginkgo Bioworks, Inc | Methods and Systems for Methylotrophic Production of Organic Compounds |
WO2014138419A1 (en) * | 2013-03-07 | 2014-09-12 | Calysta Energy, Inc. | Compositions and methods for biological production of isoprene |
-
2013
- 2013-12-26 KR KR1020157016066A patent/KR20150100666A/ko not_active Application Discontinuation
- 2013-12-26 US US14/655,934 patent/US9695447B2/en active Active
- 2013-12-26 CA CA2895094A patent/CA2895094C/en active Active
- 2013-12-26 WO PCT/JP2013/084915 patent/WO2014104202A1/ja active Application Filing
- 2013-12-26 EP EP13869129.0A patent/EP2940123B1/en not_active Not-in-force
- 2013-12-26 CN CN201380065571.7A patent/CN104884609B/zh not_active Expired - Fee Related
- 2013-12-26 JP JP2014554551A patent/JP6355562B2/ja not_active Expired - Fee Related
-
2018
- 2018-03-06 JP JP2018039572A patent/JP6546674B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849970A (en) | 1995-06-23 | 1998-12-15 | The Regents Of The University Of Colorado | Materials and methods for the bacterial production of isoprene |
JP2004229662A (ja) | 2003-01-08 | 2004-08-19 | Ajinomoto Co Inc | メタノール資化性菌の組換え体の製造方法 |
JP2008035831A (ja) * | 2006-08-09 | 2008-02-21 | Nitta Ind Corp | 有用部分の生産性が高められた植物及びその作製方法 |
WO2009076676A2 (en) | 2007-12-13 | 2009-06-18 | Danisco Us Inc. | Compositions and methods for producing isoprene |
JP2011505841A (ja) * | 2007-12-13 | 2011-03-03 | ダニスコ・ユーエス・インク | イソプレンを産出する組成物及び方法 |
WO2009132220A2 (en) | 2008-04-23 | 2009-10-29 | Danisco Us Inc. | Isoprene synthase variants for improved microbial production of isoprene |
Non-Patent Citations (18)
Title |
---|
ANTHONY C.: "The Biochemistry of Methylotroph", 1982, ACADEMIC PRESS INC. |
ANTOINE R. ET AL., MOLECULAR MICROBIOLOGY, vol. 6, 1992, pages 1785 - 1799 |
BRAUTASET T. ET AL., J. BACTERIOLOGY, vol. 186, no. 5, 2004, pages 1229 - 1238 |
CHISTOSERDOV AY. ET AL., J. BACTERIOL, vol. 176, 1994, pages 4052 - 4065 |
CHISTOSERDOV AY. ET AL., PLASMID, vol. 16, 1986, pages 161 - 167 |
CHISTOSERDOVA L. ET AL., MICROBIOLOGY, vol. 146, 2000, pages 233 - 238 |
HAMANO Y. ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, no. 7, 2001, pages 1627 - 35 |
LANE M. ET AL., ARCH. MICROBIOL., vol. 144, no. 1, 1986, pages 29 - 34 |
LOMBARD J. ET AL., MOL. BIOL. EVOL., vol. 28, no. 1, 2010, pages 87 - 99 |
MARX CJ. ET AL., MICROBIOLOGY, vol. 147, 2001, pages 2065 - 2075 |
NQUYEN HD. ET AL., PLASMID, vol. 54, no. 3, 2005, pages 241 - 248 |
PARK H. ET AL., MICROBIOLOGY, vol. 156, 2010, pages 463 - 471 |
SIVY TL. ET AL., BIOCHEM. BIOPHYS. RES. COMMU., vol. 294, no. 1, 2002, pages 71 - 5 |
SMEDS A ET AL., DNA SEQ., vol. 12, no. 3, 2001, pages 187 - 190 |
TAKAGI M. ET AL., J. BACTERIOL., vol. 182, no. 15, 2000, pages 4153 - 7 |
YANG J. ET AL., PLOSONE, vol. 7, no. 4, 2012, pages E33509 |
YANG, J. ET AL.: "Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli", BIORESOUR. TECHNOL., vol. 104, January 2012 (2012-01-01), pages 642 - 647, XP055251917 * |
ZHAO, Y. ET AL.: "Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.", APPL. MICROBIOL. BIOTECHNOL., vol. 90, no. 6, 2011, pages 1915 - 1922, XP019908970 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160017374A1 (en) * | 2013-03-07 | 2016-01-21 | Calysta, Inc. | Compositions and methods for biological production of isoprene |
CN107429223A (zh) * | 2015-03-11 | 2017-12-01 | 巴斯夫欧洲公司 | 从头微生物合成萜类的方法 |
JP2018507698A (ja) * | 2015-03-11 | 2018-03-22 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | テルペンのデノボ微生物利用合成方法 |
CN106544348A (zh) * | 2015-09-23 | 2017-03-29 | 中国科学院微生物研究所 | 异戊烯基焦磷酸异构酶基因及其应用 |
CN106544348B (zh) * | 2015-09-23 | 2020-03-31 | 中国科学院微生物研究所 | 异戊烯基焦磷酸异构酶基因及其应用 |
WO2018155272A1 (ja) | 2017-02-27 | 2018-08-30 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
JPWO2018155272A1 (ja) * | 2017-02-27 | 2019-12-19 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
US11261450B2 (en) | 2017-02-27 | 2022-03-01 | Sekisui Chemical Co., Ltd. | Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene |
JP7397665B2 (ja) | 2017-02-27 | 2023-12-13 | 積水化学工業株式会社 | 組換え細胞、組換え細胞の製造方法、並びに、イソプレン又はテルペンの生産方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2940123A4 (en) | 2016-07-06 |
EP2940123B1 (en) | 2018-04-25 |
US20150337338A1 (en) | 2015-11-26 |
US9695447B2 (en) | 2017-07-04 |
EP2940123A1 (en) | 2015-11-04 |
CA2895094A1 (en) | 2014-07-03 |
JPWO2014104202A1 (ja) | 2017-01-19 |
JP6546674B2 (ja) | 2019-07-17 |
JP2018088934A (ja) | 2018-06-14 |
JP6355562B2 (ja) | 2018-07-11 |
CN104884609B (zh) | 2018-05-08 |
CA2895094C (en) | 2021-11-16 |
CN104884609A (zh) | 2015-09-02 |
KR20150100666A (ko) | 2015-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6546674B2 (ja) | 組換え細胞、並びに、イソプレンの生産方法 | |
US11821019B2 (en) | Biological production of multi-carbon compounds from methane | |
JP4613177B2 (ja) | 1,2−プロパンジオールの産生のための発展型微生物 | |
JP6342337B2 (ja) | 組換え細胞、並びに、1,4−ブタンジオールの生産方法 | |
US20230203542A1 (en) | Microbial Production of 2-Phenylethanol from Renewable Substrates | |
CN102341502A (zh) | 用于制备二醇的方法 | |
US8637283B2 (en) | Production of hydrocarbons in microorganisms | |
Pham et al. | Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology | |
Nguyen et al. | Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels | |
Guo et al. | Systems metabolic engineering of methanotrophic bacteria for biological conversion of methane to value-added compounds | |
US10011839B2 (en) | Metabolic transistor in bacteria | |
WO2018234546A1 (en) | SYNTHETIC METHYLOTROPHY | |
Kawazoe et al. | Catabolic System of 5-Formylferulic Acid, a Downstream Metabolite of a β-5-Type Lignin-Derived Dimer, in Sphingobium lignivorans SYK-6 | |
JP2014155455A (ja) | 組換え細胞、並びに、クロトニルCoA又はクロチルアルコールの生産方法 | |
JP2017055702A (ja) | 組換え細胞、組換え細胞の製造方法、並びに、ショウブノールの生産方法 | |
Tran | Biofuels Production and Bioremediation using Glycerol by Genetic Engineering and Biochemical Approaches | |
JP2017192370A (ja) | 組換え細胞、並びに、イソ酪酸の生産方法 | |
MXPA06007929A (en) | Advanced microorganism for producing 1,2-propanediol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13869129 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014554551 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2895094 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20157016066 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14655934 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013869129 Country of ref document: EP |