KR101400571B1 - 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법 - Google Patents

측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법 Download PDF

Info

Publication number
KR101400571B1
KR101400571B1 KR1020087020655A KR20087020655A KR101400571B1 KR 101400571 B1 KR101400571 B1 KR 101400571B1 KR 1020087020655 A KR1020087020655 A KR 1020087020655A KR 20087020655 A KR20087020655 A KR 20087020655A KR 101400571 B1 KR101400571 B1 KR 101400571B1
Authority
KR
South Korea
Prior art keywords
delete delete
detection
wafer
measurement
alignment
Prior art date
Application number
KR1020087020655A
Other languages
English (en)
Other versions
KR20080100347A (ko
Inventor
유이치 시바자키
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20080100347A publication Critical patent/KR20080100347A/ko
Application granted granted Critical
Publication of KR101400571B1 publication Critical patent/KR101400571B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70666Aerial image, i.e. measuring the image of the patterned exposure light at the image plane of the projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706845Calibration, e.g. tool-to-tool calibration, beam alignment, spot position or focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/90Two-dimensional encoders, i.e. having one or two codes extending in two directions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/95Three-dimensional encoders, i.e. having codes extending in three directions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

계측치의 단기 안정성이 양호한 인코더 시스템 (39X1, 39X2, 39Y1, 39Y2, 62B, 62D, 62A, 62D) 에 의해 이동체 (WTB) 의 XY 평면내의 위치 정보가 공기 요동의 영향을 받지 않고 고정밀도로 계측됨과 함께, 면위치 계측 시스템 (74, 76) 에 의해 이동체의 XY 평면에 직교하는 Z 축 방향에 있어서의 위치 정보가 공기 요동의 영향을 받지 않고 고정밀도로 계측된다. 이 경우, 인코더 시스템 및 면위치 계측 시스템의 양자 모두 이동체 상면을 직접적으로 계측하고 있으므로, 심플하고 또한 직접적인 이동체의 위치 제어가 가능해진다.
노광 방법, 면위치 계측, 위치 정보, 이동체, 얼라인먼트 마크

Description

측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법{MEASURING DEVICE AND METHOD, PROCESSING DEVICE AND METHOD, PATTERN FORMING DEVICE AND METHOD, EXPOSING DEVICE AND METHOD, AND DEVICE FABRICATING METHOD}
기술분야
본 발명은, 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법에 관한 것으로서, 더욱 상세하게는, 평면내에서 이동하는 이동체의 위치 정보를 측정하는 측정 장치 및 측정 방법, 평면내에서 이동하는 이동체 상에 탑재된 물체에 소정의 처리를 실시하는 처리 장치 및 처리 방법, 상기 측정 장치 또는 상기 처리 장치를 구비하는 패턴 형성 장치, 및 상기 측정 방법을 포함하는 패턴 형성 방법, 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 장치 및 노광 방법, 그리고 상기 측정 방법, 상기 처리 방법, 노광 장치 및 노광 방법 중 어느 하나를 사용하는 디바이스 제조 방법에 관한 것이다.
배경기술
종래, 반도체 소자 (집적 회로 등), 액정 표시 소자 등의 전자 디바이스 (마이크로 디바이스) 를 제조하는 리소그래피 공정에서는, 스텝 앤드 리피트 방식의 축소 투영 노광 장치 (이른바 스테퍼), 스텝 앤드 스캔 방식의 투영 노광 장치 (이 른바 스캐닝 스테퍼 (스캐너라고도 불림)) 등이 주로 이용되고 있다.
그런데, 피노광 기판으로서의 웨이퍼의 표면은, 예를 들어 웨이퍼의 물결 등으로 인해 반드시 평탄하지는 않다. 이 때문에, 특히 스캐너 등의 주사형 노광 장치에서는, 웨이퍼 상의 어느 쇼트 영역에 레티클 패턴을 주사 노광 방식으로 전사할 때에, 노광 영역내에 설정된 복수의 검출점에 있어서의 웨이퍼 표면의 투영 광학계의 광축 방향에 관한 위치 정보 (포커스 정보) 를, 예를 들어 다점 초점 위치 검출계 (이하, 「다점 AF 계」라고도 부른다) 등을 이용하여 검출하고, 그 검출 결과에 기초하여, 노광 영역내에서 웨이퍼 표면이 항시 투영 광학계의 이미지면에 합치하도록 (이미지면의 초점 심도의 범위내가 되도록), 웨이퍼를 유지하는 테이블 또는 스테이지의 광축 방향의 위치 및 기울기를 제어하는, 이른바 포커스 레벨링 제어가 행해지고 있다 (예를 들어, 특허 문헌 1 참조).
한편, 스테퍼 또는 스캐너 등에서는 집적 회로의 미세화에 수반하여 사용되는 노광광의 파장은 해마다 단파장화되고, 또한 투영 광학계의 개구 수도 점차 증대 (대 NA 화) 되고 있고, 이로써 해상력의 향상이 도모되고 있다. 한편, 노광광의 단파장화 및 투영 광학계의 대 NA 화에 의해, 초점 심도가 매우 좁아졌기 때문에, 노광 동작시의 포커스 마진이 부족할 우려가 발생하였다. 그래서, 실질적으로 노광 파장을 짧게 하고, 또한 공기 중에 비해 초점 심도를 실질적으로 크게 (넓게) 하는 방법으로서, 액침법을 이용한 노광 장치가 최근 주목받게 되었다 (특허 문헌 2 참조).
그러나, 이 액침법을 이용한 노광 장치, 혹은 그 밖의, 투영 광학계의 하단 면과 웨이퍼 사이의 거리 (워킹 디스턴스; working distance) 가 좁은 노광 장치에서는 상기 서술한 다점 AF 계를 투영 광학계의 근방에 배치하는 것은 곤란하다. 한편, 노광 장치에는 고정밀의 노광을 실현하기 위하여 고정밀의 웨이퍼의 면위치 제어를 실현할 것이 요청되는 것에 추가하여, 높은 스루풋이 요구된다.
또한, 스테퍼 또는 스캐너 등에서는 피노광 기판 (예를 들어 웨이퍼) 을 유지하는 스테이지의 위치 계측은, 고분해능 레이저 간섭계를 이용하여 행해지는 것이 일반적이다. 그런데, 스테이지의 위치를 계측하는 레이저 간섭의 빔의 광로 길이는 수백 ㎜ 정도 이상도 있고, 또한 반도체 소자의 고집적화에 수반하는, 패턴의 미세화에 의해, 보다 고정밀의 스테이지의 위치 제어가 요구되게 되었으므로, 곧 레이저 간섭계의 빔 광로 상의 분위기의 온도 요동 (공기 요동) 에서 기인되는 계측치의 단기적인 변동을 무시할 수 없게 되고 있다.
[특허 문헌 1] 일본 공개특허공보 평6-283403호
[특허 문헌 2] 국제 공개 제2004/053955호 팜플렛
발명의 개시
과제를 해결하기 위한 수단
본 발명은, 상기 서술한 사정하에 이루어진 것으로서, 제 1 관점에서 보면, 소정의 평면내에서 이동하는 이동체의 위치 정보를 측정하는 측정 장치로서, 상기 이동체에 형성된 복수의 그레이팅과, 그 복수의 그레이팅에 광을 각각 조사하고, 각 그레이팅으로부터의 반사광을 개별적으로 수광하는 복수의 헤드를 포함하고, 상기 이동체의 상기 평면내의 위치 정보를 계측하는 인코더 시스템과; 상기 이동체에 상기 평면에 직교하는 방향으로부터 광을 조사하고, 그 반사광을 수광하여 상기 광의 조사점에 있어서의 상기 이동체 표면의 상기 평면에 직교하는 방향의 위치 정보를 계측하는 면위치 센서를 복수 포함하고, 상기 이동체의 상기 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 면위치 계측 시스템을 구비하는 측정 장치이다.
이것에 의하면, 계측치의 단기 안정성이 양호한 인코더 시스템에 의해 이동체의 평면내의 위치 정보가 공기 요동의 영향을 받지 않고, 고정밀도로 계측됨과 함께, 면위치 계측 시스템에 의해 이동체의 평면에 직교하는 방향에 있어서의 위치 정보가 공기 요동의 영향을 받지 않고, 고정밀도로 계측된다. 이 경우, 인코더 시스템 및 면위치 계측 시스템의 양자 모두, 이동체의 면을 직접적으로 계측하고 있으므로, 심플하고 또한 직접적인 이동체의 위치 제어가 가능해진다.
본 발명은, 제 2 관점에서 보면, 물체 상에 패턴을 형성하는 패턴 형성 장치로서, 상기 이동체 상에 물체가 탑재되는 본 발명의 측정 장치와; 상기 패턴을 생성하는 패턴 생성 장치를 구비하는 제 1 패턴 형성 장치이다.
이것에 의하면, 측정 장치에 의해, 물체가 탑재된 이동체, 나아가서는 그 이동체 상의 물체의 평면내의 위치 및 면위치를 고정밀도로 제어할 수 있으므로, 평면내의 위치 제어 오차 및 면위치 제어 오차에서 기인되는 패턴 형성 불량이 거의 없는 물체 상에서의 고정밀의 패턴 형성이 가능해진다.
본 발명은, 제 3 관점에서 보면, 소정의 평면내에서 이동하는 이동체에 탑재된 물체에 소정의 처리를 실시하는 처리 장치로서, 상기 이동체에 상기 평면에 직 교하는 방향으로부터 광을 조사하고, 그 반사광을 수광하여 상기 광의 조사점에 있어서의 상기 이동체 표면의 상기 평면에 직교하는 방향의 위치 정보를 계측하는 면위치 센서를 복수 포함하고, 상기 이동체의 상기 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 면위치 계측 시스템과; 상기 이동체 상에 탑재된 상기 물체에 대하여 검출 빔을 조사하여 그 검출 빔의 반사광을 수광하고, 상기 물체 표면의 복수의 검출점에 있어서의 면위치 정보를 검출하는 면위치 검출 장치와; 상기 면위치 계측 시스템과 상기 면위치 검출 장치를 동시 작동의 상태로 하고, 그 동시 작동에 의해 얻어진 상기 면위치 검출 장치에 의한 상기 복수의 검출점에서의 검출 결과를, 상기 동시 작동에 의해 얻어진 상기 면위치 계측 시스템에서의 계측 결과를 기준으로 한 데이터로 환산하는 제어 장치를 구비하는 처리 장치이다.
여기서, 「동시 작동의 상태로 한다」란, 면위치 계측 시스템과 상기 면위치 검출 장치를 동시에 기동시키는 경우에 한정하지 않고, 양자를 시간적으로 전후하여 기동시키는 경우도 포함하고, 요점은, 최종적으로 양자가 동시에 작동하고 있는 상태가 되는 것을 의미한다.
이것에 의하면, 제어 장치에 의해, 면위치 계측 시스템과 면위치 검출 장치가 동시 작동의 상태가 되고, 그 동시 작동에 의해 얻어진 상기 면위치 검출 장치에 의한 상기 복수의 검출점에서의 검출 결과가, 그 동시 작동에 의해 얻어진 상기 면위치 계측 시스템에서의 계측 결과를 기준으로 한 데이터로 환산된다. 따라서, 미리 이 환산 데이터를 취득해 둠으로써, 그 후에, 면위치 계측 시스템에 의해 이동체의 상기 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 것만으로, 물체 표면의 면위치 정보를 취득하지 않고, 물체의 상면의 면위치 제어가 가능해진다. 본 발명은, 전술한 워킹 디스턴스가 좁은 노광 장치 등에 바람직하게 적용할 수 있다.
본 발명은, 제 4 관점에서 보면, 대상 물체 상에 패턴을 형성하는 패턴 형성 장치로서, 상기 대상 물체가 상기 이동체 상에 탑재된 본 발명의 처리 장치와; 상기 패턴을 생성하는 패턴 생성 장치를 구비하는 제 2 패턴 형성 장치이다.
이것에 의하면, 처리 장치에 의해, 대상 물체가 탑재된 이동체, 나아가서는 그 이동체 상의 대상 물체의 면위치를 고정밀도로 제어할 수 있으므로, 면위치 제어 오차에서 기인되는 패턴 형성 불량이 거의 없는 물체 상에서의 고정밀의 패턴 형성이 가능해진다.
본 발명은, 제 5 관점에서 보면, 광학계를 통하여 물체 상에 패턴을 형성하는 패턴 형성 장치로서, 상기 물체가 탑재되고, 그 물체를 유지하여 제 1 축 및 이것과 교차하는 제 2 축을 포함하는 평면내에서 이동함과 함께, 그 일면에 제 1 축과 평행한 방향을 주기 방향으로 하는 격자를 갖는 제 1 그레이팅과, 제 2 축과 평행한 방향을 주기 방향으로 하는 격자를 갖는 제 2 그레이팅이 배치된 이동체와; 상기 제 1 축에 직교하는 방향에 관하여 위치가 상이한 복수의 제 1 헤드를 갖고, 상기 제 1 그레이팅과 대향하는 헤드에 의해 상기 이동체의 상기 제 1 축과 평행한 방향의 위치 정보를 계측하는 제 1 인코더와, 상기 제 2 축에 직교하는 방향에 관하여 위치가 상이한 복수의 제 2 헤드를 갖고, 상기 제 2 그레이팅과 대향하는 헤 드에 의해 상기 이동체의 상기 제 2 축 방향의 위치 정보를 계측하는 제 2 인코더를 포함하는 인코더 시스템과; 상기 이동체에 상기 평면에 직교하는 방향으로부터 광을 조사하고, 그 반사광을 수광하여 상기 광의 조사점에 있어서의 상기 이동체 표면의 상기 평면에 직교하는 방향의 위치 정보를 계측하는 면위치 센서를 복수 포함하고, 상기 이동체의 상기 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 면위치 계측 시스템과; 상기 복수의 제 1 헤드의 배열에 평행하게 상기 제 1 축에 직교하는 방향의 직선을 따라 소정 간격으로 설정된 복수의 검출점을 갖고, 대상 물체 상에 설정된 상기 복수의 검출점에 검출 빔을 각각 조사하여 그 검출 빔의 상기 대상 물체로부터의 반사광을 개별적으로 수광함으로써, 상기 복수의 검출점에 있어서의 상기 대상 물체 표면의 면위치 정보를 검출하는 면위치 검출 장치; 상기 면위치 검출 장치의 복수의 검출점 중, 양 단부 근방에 위치하는 2 개의 검출점 각각의 근방에 적어도 각 1 개 배치된 상기 면위치 센서에 의해 검출되는 상기 이동체의 상기 제 1 축에 직교하는 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 기준으로 하여 상기 면위치 검출 장치의 검출치를 이용하여 상기 물체 표면의 면위치 정보를 계측하고, 패턴 형성시에, 상기 이동체의 상기 제 1 축에 직교하는 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 계측하는 2 개의 특정 면위치 센서에 의해 계측되는 면위치 정보를 기준으로 하여, 상기 계측된 면위치 정보에 기초하여, 상기 광학계의 광축 방향 및 그 광축에 직교하는 면에 대한 경사 방향에 관한 상기 물체의 위치를 조정하는 조정 장치를 구비하는 제 3 패턴 형성 장치이다.
이것에 의하면, 계측치의 단기 안정성이 양호한 인코더 시스템에 의해 이동체의 평면내의 위치 정보가 공기 요동의 영향을 받지 않고, 고정밀도로 계측됨과 함께, 면위치 계측 시스템에 의해 이동체의 평면에 직교하는 방향에 있어서의 위치가 공기 요동의 영향을 받지 않고, 고정밀도로 계측된다. 이것에 더하여, 조정 장치에 의해, 예를 들어 패턴의 형성에 앞서, 이동체의 제 1 축에 직교하는 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 기준으로 하여 면위치 검출 장치의 검출치를 이용하여 물체 표면의 면위치 정보가 계측되고, 패턴의 형성시에도, 이동체의 제 1 축에 직교하는 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 기준으로 하여, 광학계의 광축 방향 및 그 광축에 직교하는 면에 대한 경사 방향에 관한 물체의 위치 조정이 행해진다. 따라서, 패턴의 형성에 앞서, 물체의 면위치 정보를 계측하고 있음에도 불구하고, 실제의 패턴의 형성시에는 물체의 면위치 제어를 고정밀도로 실시하는 것이 가능해진다.
본 발명은, 제 6 관점에서 보면, 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 장치로서, 상기 광학계와 대향하는 표면의 일부에 상기 물체의 탑재 영역이 형성되고, 소정의 평면내에서 제 1 및 제 2 방향으로 이동 가능한 이동체와; 상기 제 1 및 제 2 방향의 적어도 일방에 관하여 각각 검출점의 위치가 상이한 복수의 센서를 갖고, 상기 복수의 검출점에서 상기 평면과 직교하는 제 3 방향에 관한 상기 이동체의 표면의 위치 정보를 계측 가능한 계측 장치를 구비하는 제 1 노광 장치이다.
이것에 의하면, 계측 장치에 의해 이동체의 표면의 평면과 직교하는 제 3 방 향에 있어서의 위치 정보가 공기 요동의 영향을 그다지 받지 않고, 고정밀도로 계측된다.
본 발명은, 제 7 관점에서 보면, 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 장치로서, 상기 물체를 유지하여 소정의 평면내에서 제 1 및 제 2 방향으로 이동 가능한 이동체와; 상기 제 1 및 제 2 방향의 적어도 일방에 관하여 검출점의 위치가 상이한 복수의 센서를 갖고, 상기 각 검출점에서 상기 평면과 직교하는 제 3 방향에 관한 상기 이동체의 표면의 위치 정보를 계측 가능한 제 1 검출계와, 상기 제 1 검출계와는 달리, 상기 이동체에 유지되는 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는 제 2 검출계를 포함하는 계측 장치를 구비하는 제 2 노광 장치이다.
이것에 의하면, 제 1 검출계와 제 2 검출계를 이용하여, 평면과 직교하는 제 3 방향에 관한 이동체의 표면의 위치 정보와, 이동체에 유지된 물체의 제 3 방향에 관한 위치 정보를 얻을 수 있다. 이 얻어진 위치 정보의 관계를 이용함으로써, 그 후에, 제 1 검출계에 의해 이동체의 제 3 방향 및 평면에 대한 경사 방향의 위치 정보를 계측하는 것만으로, 물체 표면의 면위치 정보를 취득하지 않고, 물체의 면위치 제어가 가능해진다.
본 발명은, 제 8 관점에서 보면, 본 발명의 제 1, 제 2 노광 장치 중 어느 하나를 이용하여 물체를 노광하는 것과, 상기 노광된 물체를 현상하는 것을 포함하는 디바이스 제조 방법이다.
본 발명은, 제 9 관점에서 보면, 평면내에서 이동하는 이동체의 위치 정보를 측정하는 측정 방법으로서, 상기 이동체에 형성된 복수의 그레이팅과, 그 복수의 그레이팅에 광을 각각 조사하고, 각 그레이팅으로부터의 반사광을 개별적으로 수광하는 복수의 헤드를 포함하는 인코더 시스템을 이용하여, 상기 이동체의 상기 평면내의 위치 정보를 계측하는 제 1 공정과; 상기 이동체에 상기 평면에 직교하는 방향으로부터 광을 조사하고, 그 반사광을 수광하여 상기 광의 조사점에 있어서의 상기 이동체 표면의 상기 평면에 직교하는 방향의 위치 정보를 계측하는 면위치 센서를 복수 포함한 면위치 계측 시스템을 이용하여, 상기 이동체의 상기 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 제 2 공정을 포함하는 측정 방법이다.
이것에 의하면, 계측치의 단기 안정성이 양호한 인코더 시스템을 이용하여 이동체의 평면내의 위치가 공기 요동의 영향을 받지 않고, 고정밀도로 계측됨과 함께, 면위치 계측 시스템을 이용하여 이동체의 평면에 직교하는 방향에 있어서의 위치가 공기 요동의 영향을 받지 않고, 고정밀도로 계측된다. 이 경우, 인코더 시스템 및 면위치 계측 시스템의 양자 모두, 이동체 상면을 직접적으로 계측하고 있으므로, 심플하고 또한 직접적인 이동체의 위치 제어가 가능해진다.
본 발명은, 제 10 관점에서 보면, 상기 이동체 상에 물체가 탑재된 상태에서, 본 발명의 측정 방법을 이용하여, 상기 이동체의 위치 정보를 측정하는 공정과; 에너지 빔을 조사하여 패턴을 상기 물체 상에 형성하는 공정을 포함하는 패턴 형성 방법이다.
이것에 의하면, 본 발명의 측정 방법에 의해, 물체가 탑재된 이동체, 나아가 서는 그 이동체 상의 물체의 평면내의 위치 및 면위치를 고정밀도로 제어할 수 있으므로, 평면내의 위치 제어 오차 및 면위치 제어 오차에서 기인되는 패턴 형성 불량이 거의 없는 물체 상에서의 고정밀의 패턴 형성이 가능해진다.
본 발명은, 제 10 관점에서 보면, 본 발명의 패턴 형성 방법에 의해 물체 상에 패턴을 형성하는 공정과; 패턴이 형성된 상기 물체를 처리하는 공정을 포함하는 디바이스 제조 방법이다.
본 발명은, 제 11 관점에서 보면, 평면내에서 이동하는 이동체에 탑재된 물체에 소정의 처리를 실시하는 처리 방법으로서, 상기 이동체에 상기 평면에 직교하는 방향으로부터 광을 조사하고, 그 반사광을 수광하여 상기 광의 조사점에 있어서의 상기 이동체 표면의 상기 평면에 직교하는 방향의 위치 정보를 계측하는 면위치 센서를 복수 포함하고, 상기 이동체의 상기 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 면위치 계측 시스템과, 상기 이동체 상에 탑재된 상기 물체에 대하여 검출 빔을 조사하여 그 검출 빔의 반사광을 수광하고, 상기 물체 표면의 복수의 검출점에 있어서의 면위치 정보를 검출하는 면위치 검출 장치를 동시 작동의 상태로 하는 제 1 공정과; 상기 제 1 공정에 있어서의 동시 작동에 의해 얻어진 상기 면위치 검출 장치에 의한 상기 복수의 검출점에서의 검출 결과를, 상기 동시 작동에 의해 얻어진 상기 면위치 계측 시스템에서의 계측 결과를 기준으로 한 데이터로 환산하는 제 2 공정을 포함하는 처리 방법이다.
이것에 의하면, 면위치 계측 시스템과 면위치 검출 장치가 동시 작동되고 (제 1 공정), 그 동시 작동에 의해 얻어진 상기 면위치 검출 장치에 의한 상기 복 수의 검출점에서의 검출 결과가, 그 동시 작동에 의해 얻어진 상기 면위치 계측 시스템에서의 계측 결과를 기준으로 한 데이터로 환산된다 (제 2 공정). 따라서, 미리 이 환산 데이터를 취득해 둠으로써, 그 후에, 면위치 계측 시스템에 의해 이동체의 평면에 직교하는 방향 및 그 평면에 대한 경사 방향의 위치 정보를 계측하는 것만으로, 물체 표면의 면위치 정보를 취득하지 않고, 물체의 면의 면위치 제어가 가능해진다. 본 발명은, 전술한 워킹 디스턴스가 좁은 노광 장치 등에 바람직하게 적용할 수 있다.
본 발명은, 제 12 관점에서 보면, 상기 소정의 처리에는, 상기 물체 상에 패턴을 형성하는 처리가 포함되는 본 발명의 처리 방법에 의해, 물체 상에 패턴을 형성하는 공정과; 패턴이 형성된 상기 물체를 처리하는 공정을 포함하는 디바이스 제조 방법이다.
본 발명은, 제 13 관점에서 보면, 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 방법으로서, 상기 광학계와 대향하는 표면의 일부에 상기 물체의 탑재 영역이 형성되고, 소정의 평면내에서 제 1 및 제 2 방향으로 이동 가능한 이동체에 상기 물체를 탑재하는 공정과; 상기 제 1 및 제 2 방향의 적어도 일방에 관하여 각각 검출점의 위치가 상이한 복수의 센서를 갖는 계측 장치로, 상기 이동체 표면의 상기 평면과 직교하는 제 3 방향에 관한 위치 정보를 계측하는 공정을 포함하는 제 1 노광 방법이다.
이것에 의하면, 계측 장치에 의해 이동체의 표면의 평면과 직교하는 제 3 방향에 있어서의 위치 정보가 공기 요동의 영향을 그다지 받지 않고, 고정밀도로 계 측된다.
본 발명은, 제 14 관점에서 보면, 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 방법으로서, 소정의 평면내에서 제 1 및 제 2 방향으로 이동 가능한 이동체 상에 상기 물체를 탑재하는 공정과; 상기 제 1 및 제 2 방향의 적어도 일방에 관하여 검출점의 위치가 상이한 복수의 센서를 갖고, 상기 각 검출점에서 상기 평면과 직교하는 제 3 방향에 관한 상기 이동체의 표면의 위치 정보를 계측 가능한 제 1 검출계와, 상기 제 1 검출계와는 달리, 상기 이동체에 유지되는 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는 제 2 검출계를 포함하는 계측 장치를 이용하여, 상기 이동체 표면 및 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는 공정을 포함하는 제 2 노광 방법이다.
이것에 의하면, 제 2 공정에 있어서, 제 1 검출계와 제 2 검출계를 포함하는 계측 장치를 이용하여, 평면과 직교하는 제 3 방향에 관한 이동체의 표면의 위치 정보, 및 이동체에 유지된 물체의 제 3 방향에 관한 위치 정보, 그리고 이들 위치 정보의 관계를 계측할 수 있다.
본 발명은, 제 15 관점에서 보면, 본 발명의 제 1, 제 2 노광 방법 중 어느 하나를 이용하여 물체를 노광하는 것과, 상기 노광된 물체를 현상하는 것을 포함하는 디바이스 제조 방법이다.
도면의 간단한 설명
도 1 은, 일 실시형태에 관련된 노광 장치의 구성을 개략적으로 나타내는 도면이다.
도 2 는, 도 1 의 스테이지 장치를 나타내는 평면도이다.
도 3 은, 도 1 의 노광 장치가 구비하는 각종 계측 장치 (인코더, 얼라인먼트계, 다점 AF 계, Z 센서 등) 의 배치를 나타내는 평면도이다.
도 4(A) 는, 웨이퍼 스테이지를 나타내는 평면도, 도 4(B) 는, 웨이퍼 스테이지 (WST) 를 나타내는 일부 단면한 개략 측면도이다.
도 5(A) 는, 계측 스테이지를 나타내는 평면도, 도 5(B) 는, 계측 스테이지를 나타내는 일부 단면한 개략 측면도이다.
도 6 은, X 축 고정자 (80, 81) 의 도 2 에 있어서의 +X 측 단부 근방을 나타내는 사시도이다.
도 7(A) ∼ 도 7(D) 는, 스토퍼 기구의 작용을 설명하기 위한 도면이다.
도 8 은, 일 실시형태에 관련된 노광 장치의 제어계의 주요한 구성을 나타내는 블록도이다.
도 9(A) 및 도 9(B) 는, 어레이 형상으로 배치된 복수의 헤드를 각각 포함하는 복수의 인코더에 의한 웨이퍼 테이블의 XY 평면내의 위치 계측 및 헤드간의 계측치의 인계에 대하여 설명하기 위한 도면이다.
도 10(A) 는, 인코더의 구성의 일례를 나타내는 도면, 도 10(B) 는, 검출광으로서 격자 (RG) 의 주기 방향으로 길게 연장되는 단면 형상의 레이저 빔 (LB) 이 이용된 경우를 나타내는 도면이다.
도 11 은, 일 실시형태에 관련된 노광 장치에서 행해지는 스케일의 격자 피치 보정 및 격자 변형의 보정에 대하여 설명하기 위한 도면이다.
도 12(A) ∼ 도 12(C) 는, 일 실시형태에 관련된 노광 장치에서 행해지는 웨이퍼 얼라인먼트에 대하여 설명하기 위한 도면이다.
도 13(A) ∼ 도 13(C) 에는, 웨이퍼 테이블 (WTB)(웨이퍼 (W)) 의 Z 위치를 변화시키면서, 복수의 얼라인먼트계에 의한 웨이퍼 상의 마크의 동시 검출에 대하여 설명하기 위한 도면이다.
도 14(A) 및 도 14(B) 는, 프라이머리 얼라인먼트계의 베이스 라인 계측 동작에 대하여 설명하기 위한 도면이다.
도 15(A) 및 도 15(B) 는, 로트 선두에 행해지는, 세컨더리 얼라인먼트계의 베이스 라인 계측 동작에 대하여 설명하기 위한 도면이다.
도 16 은, 웨이퍼 교환마다 행해지는 세컨더리 얼라인먼트계의 베이스 라인 체크 동작에 대하여 설명하기 위한 도면이다.
도 17(A) 및 도 17(B) 는, 세컨더리 얼라인먼트계의 위치 조정의 동작에 대하여 설명하기 위한 도면이다.
도 18(A) ∼ 도 18(C) 는, 일 실시형태에 관련된 노광 장치에서 행해지는 포커스 매핑에 대하여 설명하기 위한 도면이다.
도 19(A) 및 도 19(B) 는, 일 실시형태에 관련된 노광 장치에서 행해지는 포커스 캘리브레이션에 대하여 설명하기 위한 도면이다.
도 20(A) 및 도 20(B) 는, 일 실시형태에 관련된 노광 장치에서 행해지는 AF 센서간 오프셋 보정에 대하여 설명하기 위한 도면이다.
도 21(A) 및 도 21(B) 는, 일 실시형태에 관련된 노광 장치에서 행해지는 트 래버스 Z 주행 보정에 대하여 설명하기 위한 도면이다.
도 22 는, 웨이퍼 스테이지 상의 웨이퍼에 대한 스텝 앤드 스캔 방식의 노광이 행해지고 있는 상태의 웨이퍼 스테이지 및 계측 스테이지의 상태를 나타내는 도면이다.
도 23 은, 웨이퍼 스테이지 (WST) 측에서, 웨이퍼 (W) 에 대한 노광이 종료된 단계의 웨이퍼 스테이지 및 계측 스테이지의 상태를 나타내는 도면이다.
도 24 는, 노광 종료 후에, 웨이퍼 스테이지와 계측 스테이지가 이간된 상태로부터 양 스테이지가 접촉하는 상태로 이행한 직후의 양 스테이지의 상태를 나타내는 도면이다.
도 25 는, 웨이퍼 테이블과 계측 테이블의 Y 축 방향의 위치 관계를 유지하면서, 계측 스테이지가 -Y 방향으로 이동하고, 웨이퍼 스테이지가 언로딩 포지션을 향하여 이동하고 있을 때의 양 스테이지의 상태를 나타내는 도면이다.
도 26 은, 계측 스테이지가 Sec-BCHK (인터벌) 를 실시하는 위치에 도달했을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 27 은, Sec-BCHK (인터벌) 이 실시되는 것과 병행하여, 웨이퍼 스테이지가 언로드 포지션으로부터 로딩 포지션으로 이동했을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 28 은, 계측 스테이지가 최적 스크램 대기 위치로 이동하고, 웨이퍼가 웨이퍼 테이블 상에 로드되었을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 29 는, 계측 스테이지가 최적 스크램 대기 위치에서 대기 중에, 웨이퍼 스테이지가 Pri-BCHK 의 전반의 처리를 실시하는 위치로 이동했을 때의 양 스테이지의 상태를 나타내는 도면이다.
도 30 은, 얼라인먼트계 (AL1, AL22, AL23) 를 이용하여, 3 개의 제 1 얼라인먼트 쇼트 영역에 부설된 얼라인먼트 마크를 동시 검출하고 있을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 31 은, 포커스 캘리브레이션 전반의 처리가 행해지고 있을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 32 는, 얼라인먼트계 (ALl, AL21 ∼ AL24) 를 이용하여, 5 개의 제 2 얼라인먼트 쇼트 영역에 부설된 얼라인먼트 마크를 동시 검출하고 있을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 33 은, Pri-BCHK 후반의 처리 및 포커스 캘리브레이션 후반의 처리의 적어도 일방이 행해지고 있을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 34 는, 얼라인먼트계 (ALl, AL21 ∼ AL24) 를 이용하여, 5 개의 제 3 얼라인먼트 쇼트 영역에 부설된 얼라인먼트 마크를 동시 검출하고 있을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 35 는, 얼라인먼트계 (ALl, AL22, AL23) 를 이용하여, 3 개의 제 4 얼라인먼트 쇼트 영역에 부설된 얼라인먼트 마크를 동시 검출하고 있을 때의 웨이퍼 스 테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 36 은, 포커스 매핑이 종료되었을 때의 웨이퍼 스테이지와 계측 스테이지의 상태를 나타내는 도면이다.
도 37 은, Y 헤드와 Z 센서의 배치가 상이한 헤드 유닛의 변형례를 설명하기 위한 도면이다.
도 38 은, Y 헤드와 Z 센서의 배치가 상이한 헤드 유닛의 다른 변형례를 설명하기 위한 도면이다.
도 39 는, 디바이스 제조 방법의 실시형태를 설명하기 위한 플로우 차트이다.
도 40 은, 도 39 의 단계 204 의 구체예를 나타내는 플로우 차트이다.
발명을 실시하기 위한 최선의 형태
이하, 본 발명의 일 실시형태를 도 1 ∼ 도 36 에 기초하여 설명한다.
도 1 에는, 일 실시형태에 관련된 노광 장치 (100) 의 구성이 개략적으로 나타나 있다. 이 노광 장치 (100) 는 스텝 앤드 스캔 방식의 주사형 노광 장치, 즉, 이른바 스캐너이다. 후술하는 바와 같이, 본 실시형태에서는, 투영 광학계 (PL) 가 형성되어 있고, 이하에 있어서는, 이 투영 광학계 (PL) 의 광축 (AX) 과 평행한 방향을 Z 축 방향, 이것에 직교하는 면내에서 레티클과 웨이퍼가 상대 주사되는 방향을 Y 축 방향, Z 축 및 Y 축에 직교하는 방향을 X 축 방향으로 하고, X 축, Y 축, 및 Z 축 중심의 회전 (경사) 방향을 각각 θx, θy, 및 θz 방향으로 하여 설명한다.
노광 장치 (100) 는, 조명계 (10), 그 조명계 (10) 로부터의 노광용 조명광 (이하, 「조명광」 또는 「노광광」이라고 부른다)(IL) 에 의해 조명되는 레티클 (R) 을 유지하는 레티클 스테이지 (RST), 레티클 (R) 로부터 사출된 조명광 (IL) 을 웨이퍼 (W) 상에 투사하는 투영 광학계 (PL) 를 포함하는 투영 유닛 (PU), 웨이퍼 스테이지 (WST) 및 계측 스테이지 (MST) 를 갖는 스테이지 장치 (50), 및 이들의 제어계 등을 구비하고 있다. 웨이퍼 스테이지 (WST) 상에는 웨이퍼 (W) 가 탑재되어 있다.
조명계 (10) 는, 예를 들어 일본 공개특허공보 2001-313250호 (대응하는 미국 특허 출원 공개 제2003/0025890호 명세서) 등에 개시되어 있는 바와 같이, 광원과, 옵티컬 인터그레이터 등을 포함하는 조도 균일화 광학계, 레티클 블라인드 등 (모두 도시 생략) 을 갖는 조명 광학계를 포함하고 있다. 이 조명계 (10) 에서는, 레티클 블라인드 (마스킹 시스템) 로 규정된 레티클 (R) 상의 슬릿 형상의 조명 영역 (IAR) 을 조명광 (노광광)(IL) 에 의해 거의 균일한 조도로 조명한다. 여기서, 조명광 (IL) 으로서는, 일례로서 ArF 엑시머 레이저광 (파장 193㎚) 이 이용되고 있다. 또한, 옵티컬 인터그레이터로서는, 예를 들어 플라이아이 렌즈, 로드 인터그레이터 (내면 반사형 인터그레이터) 혹은 회절 광학 소자 등을 사용할 수 있다.
상기 레티클 스테이지 (RST) 상에는, 회로 패턴 등이 그 패턴면 (도 1 에 있어서의 하면) 에 형성된 레티클 (R) 이, 예를 들어 진공 흡착에 의해 고정되어 있다. 레티클 스테이지 (RST) 는, 예를 들어 리니어 모터 등을 포함하는 레티클 스테이지 구동계 (11)(도 1 에서는 도시 생략, 도 8 참조) 에 의해, XY 평면내에서 미소 구동 가능함과 함께, 주사 방향 (도 1 에 있어서의 지면내 좌우 방향인 Y 축 방향) 으로 지정된 주사 속도로 구동 가능하게 되어 있다.
레티클 스테이지 (RST) 의 이동면내의 위치 정보 (θz 방향의 회전 정보를 포함한다) 는 레티클 레이저 간섭계 (이하, 「레티클 간섭계」라고 한다)(116) 에 의해, 이동경 (15)(실제로는, Y 축 방향에 직교하는 반사면을 갖는 Y 이동경 (혹은, 레트로 리플렉터) 과 X 축 방향에 직교하는 반사면을 갖는 X 이동경이 형성되어 있다) 을 통하여, 예를 들어 0.5 ∼ 1㎚ 정도의 분해능으로 항시 검출된다. 레티클 간섭계 (116) 의 계측치는 주제어 장치 (20)(도 1 에서는 도시 생략, 도 8 참조) 로 보내진다. 주제어 장치 (20) 는, 레티클 간섭계 (116) 의 계측치에 기초하여 레티클 스테이지 (RST) 의 X 축 방향, Y 축 방향 및 θz 방향의 위치를 산출함과 함께, 이 산출 결과에 기초하여 레티클 스테이지 구동계 (11) 를 제어함으로써, 레티클 스테이지 (RST) 의 위치 (및 속도) 를 제어한다. 또한, 이동경 (15) 대신에, 레티클 스테이지 (RST) 의 단면을 경면 가공하여 반사면 (이동경 (15) 의 반사면에 상당) 을 형성하는 것으로 해도 된다. 또한, 레티클 간섭계 (116) 는 Z 축, θx 및 θy 방향의 적어도 1 개에 관한 레티클 스테이지 (RST) 의 위치 정보도 계측 가능하게 해도 된다.
투영 유닛 (PU) 은, 레티클 스테이지 (RST) 의 도 1 에 있어서의 하방에 배치되어 있다. 투영 유닛 (PU) 은, 경통 (40) 과, 그 경통 (40) 내에 소정의 위치 관계로 유지된 복수의 광학 소자를 갖는 투영 광학계 (PL) 를 포함한다. 투 영 광학계 (PL) 로서는, 예를 들어 Z 축 방향과 평행한 광축 (AX) 을 따라 배열되는 복수의 렌즈 (렌즈 엘리먼트) 로 이루어지는 굴절 광학계가 이용되고 있다. 투영 광학계 (PL) 는, 예를 들어 양측 텔레센트릭으로 소정의 투영 배율 (예를 들어 1/4 배, 1/5 배 또는 1/8 배 등) 을 갖는다. 이 때문에, 조명계 (10) 로부터의 조명광 (IL) 에 의해 조명 영역 (IAR) 이 조명되면, 투영 광학계 (PL) 의 제 1 면 (물체면) 과 패턴면이 거의 일치하여 배치되는 레티클 (R) 을 통과한 조명광 (IL) 에 의해, 투영 광학계 (PL)(투영 유닛 (PU)) 를 통하여 그 조명 영역 (IAR) 내의 레티클 (R) 의 회로 패턴의 축소 이미지 (회로 패턴의 일부의 축소 이미지)가, 그 제 2 면 (이미지면) 측에 배치되는, 표면에 레지스트 (감광제) 가 도포된 웨이퍼 (W) 상의 상기 조명 영역 (IAR) 에 공액인 영역 (이하, 「노광 영역」이라고도 부른다)(IA) 에 형성된다. 도시하고 있지 않지만, 투영 유닛 (PU) 은 방진 (防振) 기구를 통하여 3 개의 지주로 지지되는 경통 정반에 탑재되는데, 예를 들어 국제 공개 제2006/038952호 팜플렛에 개시되어 있는 바와 같이, 투영 유닛 (PU) 의 상방에 배치되는 도시 생략된 메인 프레임 부재, 혹은 레티클 스테이지 (RST) 가 배치되는 베이스 부재 등에 대하여 투영 유닛 (PU) 을 매달아 지지해도 된다.
또한, 본 실시형태의 노광 장치 (100) 에서는 액침법을 적용한 노광이 행해지기 때문에, 투영 광학계 (PL) 의 개구 수 (NA) 가 실질적으로 증대하는 것에 수반하여 레티클측의 개구가 커진다. 이 때문에, 렌즈만으로 구성하는 굴절 광학계에 있어서는 페츠발의 조건을 만족하기가 어려워져, 투영 광학계가 대형화되는 경향이 있다. 이러한 투영 광학계의 대형화를 피하기 위하여, 미러와 렌즈를 포함하는 반사 굴절계 (카타디옵트릭계) 를 이용해도 된다. 또한, 웨이퍼 (W) 에는 감광층뿐만 아니라, 예를 들어 웨이퍼 또는 감광층을 보호하는 보호막 (탑 코트막) 등을 형성해도 된다.
또한, 본 실시형태의 노광 장치 (100) 에서는, 액침법을 적용한 노광을 실시하기 위하여, 투영 광학계 (PL) 를 구성하는 가장 이미지면측 (웨이퍼 (W) 측) 에 가까운 광학 소자, 여기서는 렌즈 (이하, 「선단 (先端) 렌즈」라고도 한다)(191) 를 유지하는 경통 (40) 의 하단부 주위를 둘러싸도록, 국소 액침 장치 (8) 의 일부를 구성하는 노즐 유닛 (32) 이 형성되어 있다. 본 실시형태에서는, 노즐 유닛 (32) 은, 도 1 에 나타내는 바와 같이, 그 하단면이 선단 렌즈 (191) 의 하단면과 거의 면일 (面一) 하게 설정되어 있다. 또한, 노즐 유닛 (32) 은 액체 (Lq) 의 공급구 및 회수구와, 웨이퍼 (W) 가 대향하여 배치되고, 또한 회수구가 형성되는 하면과, 액체 공급관 (31A) 및 액체 회수관 (31B) 과 각각 접속되는 공급 유로 및 회수 유로를 구비하고 있다. 액체 공급관 (31A) 과 액체 회수관 (31B) 은, 도 3 에 나타내는 바와 같이, 평면에서 보아 (상방으로부터 보아) X 축 방향 및 Y 축 방향에 대하여 45˚ 경사지고, 투영 광학계 (PL) 의 광축 (AX) 을 통과하는 Y 축 방향의 직선 (LV) 에 관하여 대칭인 배치로 되어 있다.
액체 공급관 (31A) 에는, 그 일단이 액체 공급 장치 (5)(도 1 에서는 도시 생략, 도 8 참조) 에 접속된 도시 생략된 공급관의 타단이 접속되어 있고, 액체 회수관 (31B) 에는, 그 일단이 액체 회수 장치 (6)(도 1 에서는 도시 생략, 도 8 참 조) 에 접속된 도시 생략된 회수관의 타단이 접속되어 있다.
액체 공급 장치 (5) 는 액체의 탱크, 가압 펌프, 온도 제어 장치, 그리고 액체 공급관 (31A) 에 대한 액체의 공급·정지를 제어하기 위한 밸브 등을 포함하고 있다. 밸브로서는, 예를 들어 액체의 공급·정지뿐만 아니라, 유량의 조정도 가능해지도록, 유량 제어 밸브를 사용하는 것이 바람직하다. 상기 온도 제어 장치는 액체 탱크내의 액체의 온도를, 예를 들어 노광 장치가 수납되어 있는 챔버 (도시 생략) 내의 온도와 동일한 정도의 온도로 조정한다. 또한, 액체를 공급하기 위한 탱크, 가압 펌프, 온도 제어 장치, 밸브 등은 그 모두를 노광 장치 (100) 에서 구비하고 있을 필요는 없고, 적어도 일부를 노광 장치 (100) 가 설치되는 공장 등의 설비로 대체할 수도 있다.
액체 회수 장치 (6) 는 액체의 탱크 및 흡인 펌프, 그리고 액체 회수관 (31B) 을 통한 액체의 회수·정지를 제어하기 위한 밸브 등을 포함하고 있다. 밸브로서는, 액체 공급 장치 (5) 의 밸브와 마찬가지로 유량 제어 밸브를 사용하는 것이 바람직하다. 또한, 액체를 회수하기 위한 탱크, 흡인 펌프, 밸브 등은 그 모두를 노광 장치 (100) 에서 구비하고 있을 필요는 없고, 적어도 일부를 노광 장치 (100) 가 설치되는 공장 등의 설비로 대체할 수도 있다.
본 실시형태에서는, 상기의 액체로서, ArF 엑시머 레이저광 (파장 193㎚ 의 광) 이 투과되는 순수 (이하, 특별히 필요한 경우를 제외하고, 단순히 「물」이라고 기술한다) 를 사용하는 것으로 한다. 순수는 반도체 제조 공장 등에서 용이하게 대량으로 입수할 수 있음과 함께, 웨이퍼 상의 포토 레지스트 및 광학 렌즈 등에 대한 악영향이 없는 이점이 있다.
ArF 엑시머 레이저광에 대한 물의 굴절률 n 은 대략 1.44 이다. 이 수중에서는 조명광 (IL) 의 파장은 193㎚×1/n=약 134㎚ 로 단파장화된다.
액체 공급 장치 (5) 및 액체 회수 장치 (6) 는 각각 컨트롤러를 구비하고 있고, 각각의 컨트롤러는 주제어 장치 (20) 에 의해 제어된다 (도 8 참조). 액체 공급 장치 (5) 의 컨트롤러는 주제어 장치 (20) 로부터의 지시에 따라, 액체 공급관 (31A) 에 접속된 밸브를 소정 개도로 열고, 액체 공급관 (31A), 공급 유로, 및 공급구를 통하여 선단 렌즈 (191) 와 웨이퍼 (W) 사이에 물을 공급한다. 또한, 이 때, 액체 회수 장치 (6) 의 컨트롤러는 주제어 장치 (20) 로부터의 지시에 따라 액체 회수관 (31B) 에 접속된 밸브를 소정 개도로 열고, 회수구, 회수 유로, 및 액체 회수관 (31B) 을 통하여, 선단 렌즈 (191) 와 웨이퍼 (W) 사이로부터 액체 회수 장치 (6)(액체의 탱크) 의 내부로 물을 회수한다. 이 때, 주제어 장치 (20) 는 선단 렌즈 (191) 와 웨이퍼 (W) 사이에 공급되는 물의 양과, 회수되는 물의 양이 항상 동일해지도록, 액체 공급 장치 (5) 의 컨트롤러, 액체 회수 장치 (6) 의 컨트롤러에 대하여 지령을 준다. 따라서, 선단 렌즈 (191) 와 웨이퍼 (W) 사이에 일정량의 액체 (물)(Lq)(도 1 참조) 가 유지된다. 이 경우, 선단 렌즈 (191) 와 웨이퍼 (W) 사이에 유지된 액체 (물)(Lq) 는 항상 교체되고 있다.
상기의 설명으로부터 분명하듯이, 본 실시형태에서는, 노즐 유닛 (32), 액체 공급 장치 (5), 액체 회수 장치 (6), 액체 공급관 (31A) 및 액체 회수관 (31B) 등을 포함하여, 국소 액침 장치 (8) 가 구성되어 있다. 또한, 국소 액침 장치 (8) 의 일부, 예를 들어 적어도 노즐 유닛 (32) 은 투영 유닛 (PU) 을 유지하는 메인 프레임 (전술한 경통 정반을 포함한다) 에 매달려 지지되어도 되고, 메인 프레임과는 별개의 프레임 부재에 형성해도 된다. 혹은, 전술한 바와 같이 투영 유닛 (PU) 이 매달려 지지되는 경우에는 투영 유닛 (PU) 과 일체로 노즐 유닛 (32) 을 매달아 지지해도 되지만, 본 실시형태에서는 투영 유닛 (PU) 과는 독립적으로 매달아 지지되는 계측 프레임에 노즐 유닛 (32) 을 형성하고 있다. 이 경우, 투영 유닛 (PU) 을 매달아 지지하고 있지 않아도 된다.
또한, 투영 유닛 (PU) 하방에 계측 스테이지 (MST) 가 위치하는 경우에도, 상기와 마찬가지로 후술하는 계측 테이블과 선단 렌즈 (191) 사이에 물을 채우는 것이 가능하다.
또한, 상기의 설명에서는, 일례로서 액체 공급관 (노즐) 과 액체 회수관 (노즐) 이 각각 1 개씩 형성되어 있는 것으로 했지만, 이것에 한정되지 않고, 주위의 부재와의 관계를 고려해도 배치가 가능하다면, 예를 들어 국제 공개 제99/49504호 팜플렛에 개시되어 있는 바와 같이, 노즐을 다수 갖는 구성을 채용하는 것으로 해도 된다. 요지는, 투영 광학계 (PL) 를 구성하는 최하단의 광학 부재 (선단 렌즈)(191) 와 웨이퍼 (W) 사이에 액체를 공급할 수 있는 것이면, 그 구성은 어떠한 것이어도 된다. 예를 들어, 국제 공개 제2004/053955호 팜플렛에 개시되어 있는 액침 기구, 혹은 유럽 특허 공개 제1420298호에 개시되어 있는 액침 기구 등도 본 실시형태의 노광 장치에 적용할 수 있다.
도 1 로 되돌아와, 스테이지 장치 (50) 는 베이스반 (12) 의 상방에 배치된 웨이퍼 스테이지 (WST) 및 계측 스테이지 (MST), 이들 스테이지 (WST, MST) 의 위치 정보를 계측하는 Y 축 간섭계 (16, 18) 를 포함하는 간섭계 시스템 (118)(도 8 참조), 및 노광시 등에 웨이퍼 스테이지 (WST) 의 위치 정보를 계측하는 데 사용되는 후술하는 인코더 시스템, 그리고 스테이지 (WST, MST) 를 구동하는 스테이지 구동계 (124)(도 8 참조) 등을 구비하고 있다.
웨이퍼 스테이지 (WST), 계측 스테이지 (MST) 각각의 저면에는, 도시 생략된 비접촉 베어링, 예를 들어 진공 예압형 공기 정압 베어링 (이하, 「에어 패드」라고 부른다) 이 복수 지점에 형성되어 있고, 이들 에어 패드로부터 베이스반 (12) 의 상면을 향하여 분출된 가압 공기의 정압에 의해, 베이스반 (12) 의 상방에 웨이퍼 스테이지 (WST), 계측 스테이지 (MST) 가 수 ㎛ 정도의 클리어런스를 통하여 비접촉으로 지지되어 있다. 또한, 스테이지 (WST, MST) 는 스테이지 구동계 (124) 에 의해, Y 축 방향 (도 1 에 있어서의 지면내 좌우 방향) 및 X 축 방향 (도 1 에 있어서의 지면 직교 방향) 으로 독립적으로 2 차원 방향으로 구동 가능하다.
이것을 더욱 상세히 서술하면, 바닥면 상에는, 도 2 의 평면도에 나타내는 바와 같이, 베이스반 (12) 을 사이에 두고 X 축 방향의 일측과 타측에, Y 축 방향으로 연장되는 1 쌍의 Y 축 고정자 (86, 87) 가 각각 배치되어 있다. Y 축 고정자 (86, 87) 는, 예를 들어 Y 축 방향을 따라 소정 간격으로 또한 교대로 배치된 N 극 자석과 S 극 자석의 복수의 조로 이루어지는 영구 자석군을 내장하는 자극 유닛에 의해 구성되어 있다. Y 축 고정자 (86, 87) 에는 각 2 개의 Y 축 가동자 (82, 84 및 83, 85) 가 각각 비접촉으로 걸어맞춰진 상태로 형성되어 있다. 즉, 합계 4 개의 Y 축 가동자 (82, 84, 83, 85) 는 XZ 단면 U 자 형상의 Y 축 고정자 (86 또는 87) 의 내부 공간에 삽입된 상태로 되어 있고, 대응하는 Y 축 고정자 (86 또는 87) 에 대하여 도시 생략된 에어 패드를 각각 개재하여 예를 들어 수 ㎛ 정도의 클리어런스를 통하여 비접촉으로 지지되어 있다. Y 축 가동자 (82, 84, 83, 85) 의 각각은, 예를 들어 Y 축 방향을 따라 소정 간격으로 배치된 전기자 코일을 내장하는 전기자 유닛에 의해 구성되어 있다. 즉, 본 실시형태에서는, 전기자 유닛으로 이루어지는 Y 축 가동자 (82, 84) 와 자극 유닛으로 이루어지는 Y 축 고정자 (86) 에 의해, 무빙 코일형의 Y 축 리니어 모터가 각각 구성되어 있다. 마찬가지로, Y 축 가동자 (83, 85) 와 Y 축 고정자 (87) 에 의해, 무빙 코일형의 Y 축 리니어 모터가 각각 구성되어 있다. 이하에 있어서는, 상기 4 개의 Y 축 리니어 모터의 각각을, 각각의 가동자 (82, 84, 83, 85) 와 동일한 부호를 이용하여, 적절히, Y 축 리니어 모터 (82), Y 축 리니어 모터 (84), Y 축 리니어 모터 (83), 및 Y 축 리니어 모터 (85) 라고 부르는 것으로 한다.
상기 4 개의 Y 축 리니어 모터 중, 2 개의 Y 축 리니어 모터 (82, 83) 의 가동자 (82, 83) 는 X 축 방향으로 연장되는 X 축 고정자 (80) 의 길이 방향의 일단과 타단에 각각 고정되어 있다. 또한, 나머지 2 개의 Y 축 리니어 모터 (84, 85) 의 가동자 (84, 85) 는 X 축 방향으로 연장되는 X 축 고정자 (81) 의 일단과 타단에 고정되어 있다. 따라서, X 축 고정자 (80, 81) 는 각 1 쌍의 Y 축 리니어 모터 (82, 83, 84, 85) 에 의해 Y 축을 따라 각각 구동된다.
X 축 고정자 (80, 81) 의 각각은, 예를 들어 X 축 방향을 따라 소정 간격으 로 배치된 전기자 코일을 각각 내장하는 전기자 유닛에 의해 구성되어 있다.
일방의 X 축 고정자 (81) 는 웨이퍼 스테이지 (WST) 의 일부를 구성하는 스테이지 본체 (91)(도 2 에서는 도시 생략, 도 1 참조) 에 형성된 도시 생략된 개구에 삽입 상태로 형성되어 있다. 이 스테이지 본체 (91) 의 상기 개구의 내부에는, 예를 들어 X 축 방향을 따라 소정 간격으로 또한 교대로 배치된 N 극 자석과 S 극 자석의 복수의 조로 이루어지는 영구 자석군을 갖는 자극 유닛이 형성되어 있다. 이 자극 유닛과 X 축 고정자 (81) 에 의해, 스테이지 본체 (91) 를 X 축 방향으로 구동시키는 무빙 마그넷형의 X 축 리니어 모터가 구성되어 있다. 마찬가지로, 타방의 X 축 고정자 (80) 는 계측 스테이지 (MST) 를 구성하는 스테이지 본체 (92) 에 형성된 개구에 삽입 상태로 형성되어 있다. 이 스테이지 본체 (92) 의 상기 개구의 내부에는 웨이퍼 스테이지 (WST) 측 (스테이지 본체 (91) 측) 과 동일한 자극 유닛이 형성되어 있다. 이 자극 유닛과 X 축 고정자 (80) 에 의해, 계측 스테이지 (MST) 를 X 축 방향으로 구동시키는 무빙 마그넷형의 X 축 리니어 모터가 구성되어 있다.
본 실시형태에서는, 스테이지 구동계 (124) 를 구성하는 상기 각 리니어 모터가, 도 8 에 나타나는 주제어 장치 (20) 에 의해 제어된다. 또한, 각 리니어 모터는 각각 무빙 마그넷형, 무빙 코일형 중 어느 일방에 한정되는 것이 아니고, 필요에 따라 적절히 선택할 수 있다.
또한, 한 쌍의 Y 축 리니어 모터 (84, 85) 가 각각 발생하는 추력 (推力) 을 약간 다르게 함으로써, 웨이퍼 스테이지 (WST) 의 요잉 (θz 방향의 회전) 의 제어 가 가능하다. 또한, 한 쌍의 Y 축 리니어 모터 (82, 83) 가 각각 발생하는 추력을 약간 다르게 함으로써, 계측 스테이지 (MST) 의 요잉의 제어가 가능하다.
웨이퍼 스테이지 (WST) 는, 전술한 스테이지 본체 (91) 와, 그 스테이지 본체 (91) 상에 도시 생략된 Z·레벨링 기구 (예를 들어, 보이스 코일 모터 등) 를 통하여 탑재되고, 스테이지 본체 (91) 에 대하여 Z 축 방향, θx 방향, 및 θy 방향으로 상대적으로 미소 구동되는 웨이퍼 테이블 (WTB) 을 포함하고 있다. 또한, 도 8 에서는, 상기 각 리니어 모터와 Z·레벨링 기구를 포함하여, 스테이지 구동계 (124) 로서 나타나 있다.
웨이퍼 테이블 (WTB) 상에는 웨이퍼 (W) 를 진공 흡착 등에 의해 유지하는 웨이퍼 홀더 (도시 생략) 가 형성되어 있다. 웨이퍼 홀더는 웨이퍼 테이블 (WTB) 과 일체로 형성해도 되지만, 본 실시형태에서는 웨이퍼 홀더와 웨이퍼 테이블 (WTB) 을 따로따로 구성하고, 예를 들어 진공 흡착 등에 의해 웨이퍼 홀더를 웨이퍼 테이블 (WTB) 의 오목부내에 고정시키고 있다. 또한, 웨이퍼 테이블 (WTB) 의 상면에는 웨이퍼 홀더 상에 탑재되는 웨이퍼의 표면과 거의 면일해지는, 액체 (Lq) 에 대하여 발액화 (撥液化) 처리된 표면 (발액면) 을 갖고, 또한 외형 (윤곽) 이 직사각형이고 그 중앙부에 웨이퍼 홀더 (웨이퍼의 탑재 영역) 보다 한층 큰 원형의 개구가 형성된 플레이트 (발액판)(28) 가 형성되어 있다. 플레이트 (28) 는 저열팽창률의 재료, 예를 들어 유리 또는 세라믹스 (쇼트사의 제로듀아 (상품명), Al2O3 혹은 TiC 등) 로 이루어지고, 그 표면에는, 예를 들어 불소 수지 재료, 폴리사불화에틸렌 (테플론 (등록 상표)) 등의 불소계 수지 재료, 아크릴계 수지 재료 혹은 실리콘계 수지 재료 등에 의해 발액막이 형성된다. 또한, 플레이트 (28) 는, 도 4(A) 의 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 평면도에 나타내는 바와 같이, 원형의 개구를 둘러싸는, 외형 (윤곽) 이 직사각형인 제 1 발액 영역 (28a) 과, 제 1 발액 영역 (28a) 의 주위에 배치되는 직사각형 프레임 형상 (고리 형상) 의 제 2 발액 영역 (28b) 을 갖는다. 제 1 발액 영역 (28a) 은, 예를 들어 노광 동작시, 웨이퍼의 표면으로부터 밀려나오는 액침 영역 (14) 의 적어도 일부가 형성되고, 제 2 발액 영역 (28b) 은 후술하는 인코더 시스템을 위한 스케일이 형성된다. 또한, 플레이트 (28) 는 그 표면의 적어도 일부가 웨이퍼의 표면과 면일하지 않아도 되고, 즉, 상이한 높이여도 된다. 또한, 플레이트 (28) 는 단일 플레이트이어도 되지만, 본 실시형태에서는 복수의 플레이트, 예를 들어 제 1 및 제 2 발액 영역 (28a, 28b) 에 각각 대응하는 제 1 및 제 2 발액판을 조합하여 구성한다. 본 실시형태에서는, 전술한 바와 같이 액체 (Lq) 로서 순수를 사용하므로, 이하에서는 제 1 및 제 2 발액 영역 (28a, 28b) 을 각각 제 1 및 제 2 발수판 (28a, 28b) 이라고도 부른다.
이 경우, 내측의 제 1 발수판 (28a) 에는 노광광 (IL) 이 조사되는 데 반해, 외측의 제 2 발수판 (28b) 에는 노광광 (IL) 이 거의 조사되지 않는다. 이것을 고려하여, 본 실시형태에서는, 제 1 발수판 (28a) 의 표면에는 노광광 (IL)(이 경우, 진공 자외역의 광) 에 대한 내성 (耐性) 이 충분히 있는 발수 코팅이 실시된 제 1 발수 영역이 형성되고, 제 2 발수판 (28b) 에는 그 표면에 제 1 발수 영역에 비해 노광광 (IL) 에 대한 내성이 떨어지는 발수 코팅이 실시된 제 2 발수 영역이 형성되어 있다. 일반적으로 유리판에는 노광광 (IL)(이 경우, 진공 자외역의 광) 에 대한 내성이 충분히 있는 발수 코팅을 실시하기 어려우므로, 이와 같이 제 1 발수판 (28a) 과 그 주위의 제 2 발수판 (28b) 의 2 개의 부분으로 분리하는 것은 효과적이다. 또한, 이것에 한정되지 않고, 동일한 플레이트의 상면에 노광광 (IL) 에 대한 내성이 상이한 2 종류의 발수 코팅을 실시하여, 제 1 발수 영역, 제 2 발수 영역을 형성해도 된다. 또한, 제 1 및 제 2 발수 영역에서 발수 코팅의 종류가 동일해도 된다. 예를 들어, 동일한 플레이트에 1 개의 발수 영역을 형성하기만 해도 된다.
또한, 도 4(A) 로부터 분명하듯이, 제 1 발수판 (28a) 의 +Y 측의 단부에는 그 X 축 방향의 중앙부에 직사각형의 노치가 형성되고, 이 노치와 제 2 발수판 (28b) 으로 둘러싸이는 직사각형의 공간의 내부 (노치의 내부) 에 계측 플레이트 (30) 가 매립되어 있다. 이 계측 플레이트 (30) 의 길이 방향의 중앙 (웨이퍼 테이블 (WTB) 의 센터 라인 (LL) 상) 에는 기준 마크 (FM) 가 형성됨과 함께, 그 기준 마크의 X 축 방향의 일측과 타측에, 기준 마크의 중심에 관하여 대칭인 배치로 1 쌍의 공간 이미지 계측 슬릿 패턴 (슬릿 형상의 계측용 패턴)(SL) 이 형성되어 있다. 각 공간 이미지 계측 슬릿 패턴 (SL) 으로서는, 일례로서, Y 축 방향과 X 축 방향을 따른 변을 갖는 L 자 형상의 슬릿 패턴, 혹은 X 축 및 Y 축 방향으로 각각 연장되는 2 개의 직선 형상의 슬릿 패턴 등을 사용할 수 있다.
그리고, 상기 각 공간 이미지 계측 슬릿 패턴 (SL) 하방의 웨이퍼 스테이지 (WST) 의 내부에는, 도 4(B) 에 나타내는 바와 같이, 대물 렌즈, 미러, 릴레이 렌즈 등을 포함하는 광학계가 수납된 L 자 형상의 케이스체 (36) 가, 웨이퍼 테이블 (WTB) 로부터 스테이지 본체 (91) 의 내부의 일부를 관통하는 상태에서, 일부 매립 상태로 장착되어 있다. 케이스체 (36) 는, 도시는 생략되어 있지만, 상기 1 쌍의 공간 이미지 계측 슬릿 패턴 (SL) 에 대응하여 1 쌍 형성되어 있다.
상기 케이스체 (36) 내부의 광학계는 공간 이미지 계측 슬릿 패턴 (SL) 을 투과한 조명광 (IL) 을 L 자 형상의 경로를 따라 안내하고, -Y 방향을 향하여 사출한다. 또한, 이하에 있어서는, 편의상, 상기 케이스체 (36) 내부의 광학계를 케이스체 (36) 과 동일한 부호를 이용하여 송광계 (36) 라 기술한다.
또한, 제 2 발수판 (28b) 의 상면에는 그 4 변의 각각을 따라 소정 피치로 다수의 격자선이 직접 형성되어 있다. 이것을 더욱 상세히 서술하면, 제 2 발수판 (28b) 의 X 축 방향 일측과 타측 (도 4(A) 에 있어서의 좌우 양측) 의 영역에는 Y 스케일 (39Y1, 39Y2) 이 각각 형성되고, 이 Y 스케일 (39Y1, 39Y2) 은 각각, 예를 들어 X 축 방향을 길이 방향으로 하는 격자선 (38) 이 소정 피치로 Y 축에 평행한 방향 (Y 축 방향) 을 따라 형성되는, Y 축 방향을 주기 방향으로 하는 반사형의 격자 (예를 들어 회절 격자) 에 의해 구성되어 있다.
마찬가지로, 제 2 발수판 (28b) 의 Y 축 방향 일측과 타측 (도 4(A) 에 있어서의 상하 양측) 의 영역에는 X 스케일 (39X1, 39X2) 이 각각 형성되고, 이 X 스케일 (39X1, 39X2) 은 각각, 예를 들어 Y 축 방향을 길이 방향으로 하는 격자선 (37) 이 소정 피치로 X 축에 평행한 방향 (X 축 방향) 을 따라 형성되는, X 축 방향을 주기 방향으로 하는 반사형의 격자 (예를 들어 회절 격자) 에 의해 구성되어 있다. 상기 각 스케일로서는, 제 2 발수판 (28b) 의 표면에 예를 들어 홀로그램 등에 의해 반사형의 회절 격자 (RG)(도 10(A)) 가 작성된 것이 이용되고 있다. 이 경우, 각 스케일에는 좁은 슬릿 또는 홈 등으로 이루어지는 격자가 눈금으로서 소정 간격 (피치) 으로 새겨져 있다. 각 스케일에 사용되는 회절 격자의 종류는 한정되는 것이 아니고, 기계적으로 홈 등이 형성된 것뿐만 아니라, 예를 들어 감광성 수지에 간섭 무늬를 베이킹하여 작성한 것이어도 된다. 단, 각 스케일은, 예를 들어 박판 형상의 유리에 상기 회절 격자의 눈금을, 예를 들어 138㎚ ∼ 4㎛ 사이의 피치, 예를 들어 1㎛ 피치로 새겨 작성되어 있다. 이들 스케일은 전술한 발액막 (발수막) 으로 덮여 있다. 또한, 도 4(A) 에서는, 도시의 편의상, 격자의 피치는 실제의 피치에 비해 현격히 넓게 도시되어 있다. 그 밖의 도면에 있어서도 동일하다.
이와 같이, 본 실시형태에서는, 제 2 발수판 (28b) 그 자체가 스케일을 구성하므로, 제 2 발수판 (28b) 으로서 저열팽창의 유리판을 사용하는 것으로 한 것이다. 그러나, 이것에 한정되지 않고, 격자가 형성된 저열팽창의 유리판 등으로 이루어지는 스케일 부재를 국소적인 신축이 생기지 않도록, 예를 들어 판 스프링 (또는 진공 흡착) 등에 의해 웨이퍼 테이블 (WTB) 의 상면에 고정시켜도 되고, 이 경우에는 전체면에 동일한 발수 코팅이 실시된 발수판을 플레이트 (28) 대신에 이용해도 된다. 혹은, 웨이퍼 테이블 (WTB) 을 저열팽창률의 재료로 형성하는 것 도 가능하고, 이러한 경우에는 한 쌍의 Y 스케일과 1 쌍의 X 스케일은 그 웨이퍼 테이블 (WTB) 의 상면에 직접 형성해도 된다.
웨이퍼 테이블 (WTB) 의 -Y 단면, -X 단면에는 각각 경면 가공이 실시되고, 도 2 에 나타나는 반사면 (17a), 반사면 (17b) 이 형성되어 있다. 간섭계 시스템 (118)(도 8 참조) 의 Y 축 간섭계 (16) 및 X 축 간섭계 (126)(도 1 에서는, X 축 간섭계 (126) 는 도시 생략, 도 2 참조) 는 이들 반사면 (17a, 17b) 에 각각 간섭계 빔 (측장 빔) 을 투사하고, 각각의 반사광을 수광함으로써, 각 반사면의 기준 위치 (일반적으로는 투영 유닛 (PU) 측면에 고정 미러를 배치하고, 그곳을 기준면으로 한다) 로부터의 변위, 즉, 웨이퍼 스테이지 (WST) 의 XY 평면내의 위치 정보를 계측하고, 이 계측치가 주제어 장치 (20) 에 공급된다. 본 실시형태에서는, Y 축 간섭계 (16) 및 X 축 간섭계 (126) 로서, 모두 광축을 복수 갖는 다축 간섭계가 이용되고 있고, 이들 Y 축 간섭계 (16) 및 X 축 간섭계 (126) 의 계측치에 기초하여, 주제어 장치 (20) 는 웨이퍼 테이블 (WTB) 의 X, Y 위치에 추가하여, θx 방향의 회전 정보 (즉, 피칭), θy 방향의 회전 정보 (즉, 롤링), 및 θz 방향의 회전 정보 (즉, 요잉) 도 계측 가능하다. 단, 본 실시형태에서는, 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 XY 평면내의 위치 정보 (θz 방향의 회전 정보를 포함한다) 는, 주로 상기 서술한 Y 스케일, X 스케일 등을 포함하는, 후술하는 인코더 시스템에 의해 계측되고, 간섭계 (16, 126) 의 계측치는 그 인코더 시스템의 계측치의 장기적 변동 (예를 들어 스케일의 경시적인 변형 등에 의함) 을 보정 (교정) 하는 경우 등에 보조적으로 사용된다. 또한, Y 축 간섭계 (16) 는 웨이 퍼 교환을 위해, 후술하는 언로딩 포지션, 및 로딩 포지션 부근에 있어서 웨이퍼 테이블 (WTB) 의 Y 위치 등을 계측하는 데에 사용된다. 또한, 예를 들어 로딩 동작과 얼라인먼트 동작 사이 및/또는 노광 동작과 언로딩 동작 사이에 있어서의 웨이퍼 스테이지 (WST) 의 이동에 있어서도, 간섭계 시스템 (118) 의 계측 정보, 즉, 5 자유도의 방향 (X 축, Y 축, θx, θy 및 θz 방향) 의 위치 정보의 적어도 1 개가 사용된다. 또한, 간섭계 시스템 (118) 은 그 적어도 일부 (예를 들어, 광학계 등) 가 투영 유닛 (PU) 을 유지하는 메인 프레임에 형성되거나, 혹은 전술한 바와 같이 매달아 지지되는 투영 유닛 (PU) 과 일체로 형성되어도 되지만, 본 실시형태에서는 전술한 계측 프레임에 형성되는 것으로 한다.
또한, 본 실시형태에서는, 웨이퍼 스테이지 (WST) 가 XY 평면내에서 자유롭게 이동 가능한 스테이지 본체 (91) 와, 그 스테이지 본체 (91) 상에 탑재되고, 스테이지 본체 (91) 에 대하여 Z 축 방향, θx 방향, 및 θy 방향으로 상대적으로 미소 구동 가능한 웨이퍼 테이블 (WTB) 을 포함하는 것으로 했지만, 이것에 한정되지 않고, 6 자유도로 이동 가능한 단일 스테이지를 웨이퍼 스테이지 (WST) 로서 채용해도 물론 좋다. 또한, 반사면 (17a), 반사면 (17b) 대신에, 웨이퍼 테이블 (WTB) 에 평면 미러로 이루어지는 이동경을 형성해도 된다. 또한, 투영 유닛 (PU) 에 형성되는 고정 미러의 반사면을 기준면으로 하여 웨이퍼 스테이지 (WST) 의 위치 정보를 계측하는 것으로 했지만, 그 기준면을 배치하는 위치는 투영 유닛 (PU) 에 한정되는 것이 아니고, 반드시 고정 미러를 이용하여 웨이퍼 스테이지 (WST) 의 위치 정보를 계측하지 않아도 된다.
또한, 본 실시형태에서는, 간섭계 시스템 (118) 에 의해 계측되는 웨이퍼 스테이지 (WST) 의 위치 정보가, 후술하는 노광 동작이나 얼라인먼트 동작 등에서는 이용되지 않고, 주로 인코더 시스템의 캘리브레이션 동작 (즉, 계측치의 교정) 등에 사용되는 것으로 했지만, 간섭계 시스템 (118) 의 계측 정보 (즉, 5 자유도의 방향의 위치 정보의 적어도 1 개) 를, 예를 들어 노광 동작 및/또는 얼라인먼트 동작 등에서 이용해도 된다. 본 실시형태에서는, 인코더 시스템은 웨이퍼 스테이지 (WST) 의 3 자유도의 방향, 즉, X 축, Y 축 및 θz 방향의 위치 정보를 계측한다. 그래서, 노광 동작 등에 있어서, 간섭계 시스템 (118) 의 계측 정보 중, 인코더 시스템에 의한 웨이퍼 스테이지 (WST) 의 위치 정보의 계측 방향 (X 축, Y 축 및 θz 방향) 과 상이한 방향, 예를 들어 θx 방향 및/또는 θy 방향에 관한 위치 정보만을 이용해도 되고, 그 상이한 방향의 위치 정보에 추가하여, 인코더 시스템의 계측 방향과 동일한 방향 (즉, X 축, Y 축 및 θz 방향의 적어도 1 개) 에 관한 위치 정보를 이용해도 된다. 또한, 간섭계 시스템 (118) 은 웨이퍼 스테이지 (WST) 의 Z 축 방향의 위치 정보를 계측 가능하게 해도 된다. 이 경우, 노광 동작 등에 있어서 Z 축 방향의 위치 정보를 이용해도 된다.
계측 스테이지 (MST) 는, 전술한 스테이지 본체 (92) 와, 그 스테이지 본체 (92) 상에 탑재된 계측 테이블 (MTB) 을 포함하고 있다. 계측 테이블 (MTB) 에 대해서도 도시 생략된 Z·레벨링 기구를 통하여 스테이지 본체 (92) 상에 탑재되어 있다. 그러나, 이것에 한정하지 않고, 예를 들어 계측 테이블 (MTB) 을 스테이지 본체 (92) 에 대하여 X 축 방향, Y 축 방향 및 θz 방향으로 미동 가능하게 구 성한, 소위 조미동(粗微動) 구조의 계측 스테이지 (MST) 를 채용해도 되고, 혹은 계측 테이블 (MTB) 을 스테이지 본체 (92) 에 고정시키고, 그 계측 테이블 (MTB) 을 포함하는 스테이지 본체 (92) 를 6 자유도 방향으로 구동 가능한 구성으로 해도 된다.
계측 테이블 MTB (및 스테이지 본체 (92)) 에는 각종 계측용 부재가 형성되어 있다. 이 계측용 부재로서는, 예를 들어 도 2 및 도 5(A) 에 나타내는 바와 같이, 투영 광학계 (PL) 의 이미지면 상에서 조명광 (IL) 을 수광하는 핀홀 형상의 수광부를 갖는 조도 불균일 센서 (94), 투영 광학계 (PL) 에 의해 투영되는 패턴의 공간 이미지 (투영 이미지) 를 계측하는 공간 이미지 계측기 (96), 및 예를 들어 국제 공개 제03/065428호 팜플렛 등에 개시되어 있는 샤크-하트만 (Shack-Hartman) 방식의 파면 수차 계측기 (98) 등이 채용되고 있다. 파면 수차 계측기 (98) 로서는, 예를 들어 국제 공개 제99/60361호 팜플렛 (대응 유럽 특허 제1,079,223호) 에 개시되는 것도 사용할 수 있다.
조도 불균일 센서 (94) 로서는, 예를 들어 일본 공개특허공보 소57-117238호 (대응하는 미국 특허 제4,465,368호 명세서) 등에 개시되는 것과 동일한 구성의 것을 사용할 수 있다. 또한, 공간 이미지 계측기 (96) 로서는, 예를 들어 일본 공개특허공보 2002-14005호 (대응하는 미국 특허 출원 공개 제2002/0041377호 명세서) 등에 개시되는 것과 동일한 구성의 것을 사용할 수 있다. 또한, 본 실시형태에서는 3 개의 계측용 부재 (94, 96, 98) 를 계측 스테이지 (MST) 에 형성하는 것으로 했지만, 계측용 부재의 종류 및/또는 수 등은 이것에 한정되지 않는다. 계측용 부재로서, 예를 들어 투영 광학계 (PL) 의 투과율을 계측하는 투과율 계측기 및/또는 전술한 국소 액침 장치 (8), 예를 들어 노즐 유닛 (32)(혹은 선단 렌즈 (191)) 등을 관찰하는 계측기 등을 이용해도 된다. 또한, 계측용 부재와 상이한 부재, 예를 들어 노즐 유닛 (32), 선단 렌즈 (191) 등을 청소하는 청소 부재 등을 계측 스테이지 (MST) 에 탑재해도 된다.
본 실시형태에서는, 도 5(A) 로부터도 알 수 있듯이, 사용 빈도가 높은 센서류, 조도 불균일 센서 (94) 및 공간 이미지 계측기 (96) 등은, 계측 스테이지 (MST) 의 센터 라인 (CL)(중심을 통과하는 Y 축) 상에 배치되어 있다. 이 때문에, 본 실시형태에서는, 이들 센서류를 사용한 계측을, 계측 스테이지 (MST) 를 X 축 방향으로 이동시키지 않고, Y 축 방향으로만 이동시켜 실시할 수 있다.
상기 각 센서에 추가하여, 예를 들어 일본 공개특허공보 평11-16816호 (대응하는 미국 특허 출원 공개 제2002/0061469호 명세서) 등에 개시되는, 투영 광학계 (PL) 의 이미지면 상에서 조명광 (IL) 를 수광하는 소정 면적의 수광부를 갖는 조도 모니터를 채용해도 되고, 이 조도 모니터도 센터 라인 상에 배치하는 것이 바람직하다.
또한, 본 실시형태에서는, 투영 광학계 (PL) 와 액체 (물)(Lq) 를 통하여 노광광 (조명광)(IL) 에 의해 웨이퍼 (W) 를 노광하는 액침 노광이 행해지는 데 대응하여, 조명광 (IL) 을 사용하는 계측에 사용되는 상기의 조도 불균일 센서 (94) (및 조도 모니터), 공간 이미지 계측기 (96), 그리고 파면 수차 계측기 (98) 에서는 투영 광학계 (PL) 및 물을 통하여 조명광 (IL) 을 수광하게 된다. 또한, 각 센서는, 예를 들어 광학계 등의 일부만이 계측 테이블 (MTB)(및 스테이지 본체 (92)) 에 탑재되어 있어도 되고, 센서 전체를 계측 테이블 (MTB)(및 스테이지 본체 (92)) 에 배치하도록 해도 된다.
계측 스테이지 (MST) 의 스테이지 본체 (92) 에는, 도 5(B) 에 나타내는 바와 같이, 그 -Y 측의 단면에 프레임 형상의 장착 부재 (42) 가 고정되어 있다. 또한, 스테이지 본체 (92) 의 -Y 측의 단면에는 장착 부재 (42) 의 개구 내부의 X 축 방향의 중심 위치 근방에, 전술한 1 쌍의 송광계 (36) 에 대향할 수 있는 배치로 한 쌍의 수광계 (44) 가 고정되어 있다. 각 수광계 (44) 는 릴레이 렌즈 등의 광학계와, 수광 소자, 예를 들어 포토 멀티플라이어 튜브 등과, 이들을 수납하는 케이스체에 의해 구성되어 있다. 도 4(B) 및 도 5(B), 그리고 지금까지의 설명으로부터 알 수 있듯이, 본 실시형태에서는, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 가, Y 축 방향에 관하여 소정 거리 이내로 근접한 상태 (접촉 상태를 포함한다) 에서는, 계측 플레이트 (30) 의 각 공간 이미지 계측 슬릿 패턴 (SL) 을 투과한 조명광 (IL) 이 전술한 각 송광계 (36) 에 의해 안내되고, 각 수광계 (44) 의 수광 소자에 의해 수광된다. 즉, 계측 플레이트 (30), 송광계 (36) 및 수광계 (44) 에 의해, 전술한 일본 공개특허공보 2002-14005호 (대응하는 미국 특허 출원 공개 제2002/0041377호 명세서) 등에 개시되는 것과 동일한, 공간 이미지 계측 장치 (45)(도 8 참조) 가 구성된다.
장착 부재 (42) 상에는 단면이 직사각형인 막대 형상 부재로 이루어지는 기준 부재로서의 컨피덴셜 바 (이하, 「CD 바」라고 약술한다)(46) 가 X 축 방향으로 연장되어 있다. 이 CD 바 (46) 는 풀 키네마틱 마운트 구조에 의해, 계측 스테이지 (MST) 상에 키네마틱하게 지지되어 있다.
CD 바 (46) 는 원기 (原器: 계측 기준) 가 되기 때문에, 저열팽창률의 광학 유리 세라믹스, 예를 들어 쇼트사의 제로듀아 (상품명) 등이 그 소재로서 채용되고 있다. 이 CD 바 (46) 의 상면 (표면) 은, 이른바 기준 평면판과 동일한 정도로 그 평탄도가 높게 설정되어 있다. 또한, 이 CD 바 (46) 의 길이 방향의 일측과 타측의 단부 근방에는, 도 5(A) 에 나타내는 바와 같이, Y 축 방향을 주기 방향으로 하는 기준 격자 (예를 들어, 회절 격자)(52) 가 각각 형성되어 있다. 이 1 쌍의 기준 격자 (52) 는 소정 거리 (L 이라 한다) 를 두고 CD 바 (46) 의 X 축 방향의 중심, 즉, 전술한 센터 라인 (CL) 에 관하여 대칭인 배치로 형성되어 있다.
또한, 이 CD 바 (46) 의 상면에는, 도 5(A) 에 나타나는 바와 같은 배치로 복수의 기준 마크 (M) 가 형성되어 있다. 이 복수의 기준 마크 (M) 는 동일 피치로 Y 축 방향에 관하여 3 행의 배열로 형성되고, 각 행의 배열이 X 축 방향에 관하여 서로 소정 거리만큼 어긋나 형성되어 있다. 각 기준 마크 (M) 로서는, 후술하는 프라이머리 얼라인먼트계, 세컨더리 얼라인먼트계에 의해 검출 가능한 치수의 2 차원 마크가 이용되고 있다. 기준 마크 (M) 는 그 형상 (구성) 이 전술한 기준 마크 (FM) 와 상이해도 되지만, 본 실시형태에서는 기준 마크 (M) 와 기준 마크 (FM) 는 동일한 구성이고, 또한 웨이퍼 (W) 의 얼라인먼트 마크와도 동일한 구성으로 되어 있다. 또한, 본 실시형태에서는 CD 바 (46) 의 표면, 및 계측 테이블 (MTB)(전술한 계측용 부재를 포함해도 된다) 의 표면도 각각 발액막 (발수막) 으로 덮여 있다.
계측 테이블 (MTB) 의 +Y 단면, -X 단면도 전술한 웨이퍼 테이블 (WTB) 과 동일한 반사면 (19a, 19b) 이 형성되어 있다 (도 2 및 도 5(A) 참조). 간섭계 시스템 (118)(도 8 참조) 의 Y 축 간섭계 (18), X 축 간섭계 (130)(도 1 에서는, X 축 간섭계 (130) 는 도시 생략, 도 2 참조) 는, 이들 반사면 (19a, 19b) 에, 도 2에 나타내는 바와 같이, 간섭계 빔 (측장 빔) 을 투사하고, 각각의 반사광을 수광함으로써, 각 반사면의 기준 위치로부터의 변위, 즉, 계측 스테이지 (MST) 의 위치 정보 (예를 들어, 적어도 X 축 및 Y 축 방향의 위치 정보와 θz 방향의 회전 정보를 포함한다) 를 계측하고, 이 계측치가 주제어 장치 (20) 에 공급된다. 그런데, X 축 고정자 (81) 와 X 축 고정자 (80) 에는, 도 2 에 나타내는 바와 같이, 스토퍼 기구 (48A, 48B) 가 형성되어 있다. 스토퍼 기구 (48A) 는 X 축 고정자 (80, 81) 의 +X 측 단부 근방을 사시도로 나타내는 도 6 에 나타나 있는 바와 같이, X 축 고정자 (81) 에 형성된, 예를 들어 오일 댐퍼로 이루어지는 완충 장치로서의 쇼크 업소버 (47A) 와, X 축 고정자 (80) 의 쇼크 업소버 (47A) 에 대향하는 위치 (+X 단부의 -Y 측의 단면) 에 형성된 셔터 (49A) 를 포함하고 있다. X 축 고정자 (80) 의 쇼크 업소버 (47A) 에 대향하는 위치에는 개구 (51A) 가 형성되어 있다.
셔터 (49A) 는, 도 6 에 나타내는 바와 같이, X 축 고정자 (80) 에 형성된 개구 (51A) 의 -Y 측에 형성되고, 예를 들어 에어 실린더 등을 포함하는 구동 기구 (34A) 에 의해 화살표 A, A' 방향 (Z 축 방향) 으로 구동 가능하다. 따라서, 셔터 (49A) 에 의해 개구 (51A) 를 열린 상태 또는 닫힌 상태로 할 수 있다. 이 셔터 (49A) 에 의한 개구 (51A) 의 개폐 상태는, 그 셔터 (49A) 근방에 형성된 개폐 센서 (도 6 에서는 도시 생략, 도 8 참조)(101) 에 의해 검출되고, 그 검출 결과가 주제어 장치 (20) 로 보내진다.
스토퍼 기구 (48B) 도 스토퍼 기구 (48A) 와 동일하게 구성되어 있다. 즉, 도 2 에 나타내는 바와 같이, 스토퍼 기구 (48B) 는 X 축 고정자 (81) 의 -X 단부 근방에 형성된 쇼크 업소버 (47B) 와, X 축 고정자 (80) 의 상기 쇼크 업소버 (47B) 에 대향하는 위치에 형성된 셔터 (49B) 를 포함하고 있다. 또한, X 축 고정자 (80) 의 셔터 (49B) 의 +Y 측 부분에는 개구 (51B) 가 형성되어 있다.
여기서, 상기 스토퍼 기구 (48A, 48B) 의 작용에 대하여, 스토퍼 기구 (48A) 를 대표적으로 들어, 도 7(A) ∼ 도 7(D) 에 기초하여 설명한다.
도 7(A) 에 나타내는 바와 같이, 셔터 (49A) 가 개구 (51A) 를 폐색하는 상태에 있는 경우에는, 도 7(B) 에 나타내는 바와 같이, X 축 고정자 (81) 와 X 축 고정자 (80) 가 접근한 경우에도, 쇼크 업소버 (47A) 와 셔터 (49A) 가 접촉 (맞닿음) 함으로써, 그 이상 X 축 고정자 (80, 81) 끼리가 접근할 수 없게 된다. 이 경우, 도 7(B) 에 나타내는 바와 같이 쇼크 업소버 (47A) 의 피스톤 로드 (104a) 의 선단에 고정된 헤드부 (104d) 가 가장 -Y 측으로 이동한 경우 (즉, 쇼크 업소버 (47A) 의 도시 생략된 스프링이 가장 수축하여, 그 전체 길이가 가장 짧아진 경우) 에도 웨이퍼 테이블 (WTB) 과 계측 테이블 (MTB) 은 접촉하지 않는 구성으로 되어 있다.
한편, 도 7(C) 에 나타내는 바와 같이, 구동 기구 (34A) 를 통하여, 셔터 (49A) 가 하강 구동되면, 개구 (51A) 가 개방된 상태가 된다. 이 경우, X 축 고정자 (81, 80) 가 서로 접근하면, 도 7(D) 에 나타내는 바와 같이, 쇼크 업소버 (47A) 의 피스톤 로드 (104a) 의 선단부의 적어도 일부를 개구 (51A) 내에 침입시킬 수 있어, 도 7(B) 에 나타내는 상태보다 X 축 고정자 (81, 80) 끼리를 접근시키는 것이 가능해진다. 이와 같은 X 축 고정자 (81, 80) 가 가장 접근한 상태에서는, 웨이퍼 테이블 (WTB) 과 계측 테이블 (MTB)(CD 바 (46)) 을 접촉시키는 (혹은, 300㎛ 정도의 거리로 근접시키는) 것이 가능하다 (도 14(B) 등 참조).
개구 (51A) 의 안길이 (깊이) 는, 도 7(D) 에 나타내는 바와 같이, X 축 고정자 (81, 80) 가 가장 접근한 상태에 있어서도 쇼크 업소버 (47A) 와 개구 (51A) 의 종단부 (바닥에 상당하는 부분) 사이에 갭이 형성되도록 설정해도 되고, 쇼크 업소버 (47A) 의 피스톤 로드 (104a) 의 헤드부 (104d) 가 종단부에 접하도록 설정해도 된다. 또한, X 축 고정자 (81, 80) 가 X 축 방향으로 상대 이동한 경우라도, 쇼크 업소버 (47A) 와 개구 (51A) 의 벽부가 접촉하지 않도록, 상대 이동량에 따라 미리 개구부의 폭을 설정해 두어도 된다.
또한, 본 실시형태에서는, X 축 고정자 (81) 와 X 축 고정자 (80) 에 1 쌍의 스토퍼 기구 (48A, 48B) 가 형성되는 것으로 했지만, 스토퍼 기구 (48A, 48B) 의 일방만이 형성되는 것으로 해도 되고, 혹은 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 에 상기 서술과 동일한 스토퍼 기구를 형성하는 것으로 해도 된다.
도 2 로 되돌아와, X 축 고정자 (80) 의 +X 단부에는 간격 검지 센서 (43A) 와 충돌 검지 센서 (43B) 가 형성되고, X 축 고정자 (81) 의 +X 단부에는 Y 축 방향으로 길고 가느다란 판 형상 부재 (41A) 가 +Y 측에 돌출 형성되어 있다. 또한, X 축 고정자 (80) 의 -X 단부에는, 도 2 에 나타내는 바와 같이, 간격 검지 센서 (43C) 와 충돌 검지 센서 (43D) 가 형성되고, X 축 고정자 (81) 의 -X 단부에는 Y 축 방향으로 길고 가느다란 판 형상 부재 (41B) 가 +Y 측에 돌출 형성되어 있다.
간격 검지 센서 (43A) 는, 예를 들어 투과형 포토 센서 (예를 들어 LED-PTr 의 투과형 포토 센서) 로 이루어지고, 도 6 에 나타내는 바와 같이, U 자 형상의 고정 부재 (142) 와, 그 고정 부재 (142) 의 대향하는 1 쌍의 면 각각에 형성된 발광부 (144A) 및 수광부 (144B) 를 포함한다. 이 간격 검지 센서 (43A) 에 의하면, 도 6 의 상태로부터, X 축 고정자 (80) 와 X 축 고정자 (81) 가 더욱 접근한 경우에는, 수광부 (144B) 와 발광부 (144A) 사이에 판 형상 부재 (41A) 가 들어가고, 그 판 형상 부재 (41A) 의 하반부에 의해 발광부 (144A) 로부터의 광이 차단되어, 수광부 (144B) 에서 수광되는 광량이 서서히 감소하고, 그 출력 전류가 서서히 작아진다. 따라서, 주제어 장치 (20) 는 그 출력 전류를 검출함으로써, X 축 고정자 (80, 81) 의 간격이 소정 거리 이하가 된 것을 검지할 수 있다.
충돌 검지 센서 (43B) 는, 도 6 에 나타내는 바와 같이, U 자 형상의 고정 부재 (143) 와, 그 고정 부재 (143) 의 대향하는 1 쌍의 면 각각에 형성된 발광부 (145A) 및 수광부 (145B) 를 포함한다. 이 경우, 발광부 (145A) 는, 도 6 에 나타내는 바와 같이, 전술한 간격 검지 센서 (43A) 의 발광부 (144A) 보다 약간 높은 위치에 배치되고, 이것에 대응하여 수광부 (145B) 는 간격 검지 센서 (43A) 의 수광부 (144B) 보다 약간 높은 위치에 배치되어 있다.
이 충돌 검지 센서 (43B) 에 의하면, X 축 고정자 (81, 80) 가 더욱 접근하고, 웨이퍼 테이블 (WTB) 과 CD 바 (46)(계측 테이블 (MTB)) 가 접촉한 단계 (또는 300㎛ 정도의 거리에 근접한 단계) 에서, 발광부 (145A) 와 수광부 (145B) 사이에 판 형상 부재 (41A) 의 상반부가 위치 결정되기 때문에, 발광부 (145A) 로부터의 광이 수광부 (145B) 에 입사되지 않게 된다. 따라서, 주제어 장치 (20) 는 수광부 (145B) 로부터의 출력 전류가 제로 (0) 가 되는 것을 검출함으로써, 양 테이블이 접촉한 (또는 300㎛ 정도의 거리에 근접한) 것을 검지할 수 있다.
또한, X 축 고정자 (80) 의 -X 단부 근방에 형성된 간격 검지 센서 (43C) 및 충돌 검지 센서 (43D) 도, 상기 서술한 간격 검지 센서 (43A) 및 충돌 검지 센서 (43B) 와 동일하게 구성되고, 판 형상 부재 (41B) 도 전술한 판 형상 부재 (41A) 와 동일하게 구성되어 있다.
본 실시형태의 노광 장치 (100) 에서는, 도 1 에서는 도면의 착종 (錯綜) 을 피하는 관점에서 도시가 생략되어 있지만, 실제로는 도 3 에 나타내는 바와 같이, 투영 유닛 (PU) 의 중심 (투영 광학계 (PL) 의 광축 (AX), 본 실시형태에서는 전술한 노광 영역 (IA) 의 중심과도 일치) 을 통과하고 또한 Y 축과 평행한 직선 (LV) 상에서, 그 광축으로부터 -Y 측으로 소정 거리 떨어진 위치에 검출 중심을 갖는 프라이머리 얼라인먼트계 (AL1) 가 배치되어 있다. 이 프라이머리 얼라인먼트계 (AL1) 는 지지 부재 (54) 를 통하여 도시 생략된 메인 프레임의 하면에 고정되어 있다. 이 프라이머리 얼라인먼트계 (AL1) 를 사이에 두고, X 축 방향의 일측과 타측에는 그 직선 (LV) 에 관하여 거의 대칭으로 검출 중심이 배치되는 세컨더리 얼라인먼트계 (AL21, AL22 와 AL23, AL24) 가 각각 형성되어 있다. 즉, 5 개의 얼라인먼트계 ((AL1, AL21 ∼ AL24)) 는 그 검출 중심이 X 축 방향에 관하여 상이한 위치에 배치되어 있고, 즉, X 축 방향을 따라 배치되어 있다.
각 세컨더리 얼라인먼트계 (AL2n)(n = 1 ∼ 4) 는 세컨더리 얼라인먼트계 (AL24) 에 대하여 대표적으로 나타내는 바와 같이, 회전 중심 (O) 을 중심으로 하여 도 3 에 있어서의 시계 방향 및 반시계 방향으로 소정 각도 범위에서 회전 운동 가능한 아암 (56n)(n = 1 ∼ 4) 의 선단 (회전 운동단) 에 고정되어 있다. 본 실시형태에서는, 각 세컨더리 얼라인먼트계 (AL2n) 는 그 일부 (예를 들어, 얼라인먼트광을 검출 영역에 조사하고, 또한 검출 영역내의 대상 마크로부터 발생하는 광을 수광 소자로 안내하는 광학계를 적어도 포함한다) 가 아암 (56n) 에 고정되고, 나머지의 일부는 투영 유닛 (PU) 을 유지하는 메인 프레임에 형성된다. 세컨더리 얼라인먼트계 (AL21, AL22, AL23, AL24) 는 각각 회전 중심 (O) 를 중심으로 하여 회전 운동함으로써 X 위치가 조정된다. 즉, 세컨더리 얼라인먼트계 (AL21, AL22, AL23, AL24) 는 그 검출 영역 (또는 검출 중심) 이 독립적으로 X 축 방향으로 이동 가능하다. 따라서, 프라이머리 얼라인먼트계 (AL1) 및 세컨더리 얼라인먼트계 (AL21, AL22, AL23, AL24) 는 X 축 방향에 관하여 그 검출 영역의 상대 위치가 조정 가능하게 되어 있다. 또한, 본 실시형태에서는, 아암의 회전 운동에 의해 세컨더리 얼라인먼트계 (AL21, AL22, AL23, AL24) 의 X 위치가 조정되는 것으로 했지만, 이것에 한정되지 않고, 세컨더리 얼라인먼트계 (AL21, AL22, AL23, AL24) 를 X 축 방향으로 왕복 구동하는 구동 기구를 형성해도 된다. 또한, 세컨더리 얼라인먼트계 (AL21, AL22, AL23, AL24) 의 적어도 1 개를 X 축 방향뿐만 아니라 Y 축 방향으로도 이동 가능하게 해도 된다. 또한, 각 세컨더리 얼라인먼트계 (AL2n) 는 그 일부가 아암 (56n) 에 의해 이동되므로, 도시 생략된 센서, 예를 들어 간섭계, 혹은 인코더 등에 의해, 아암 (56n) 에 고정되는 그 일부의 위치 정보가 계측 가능하게 되어 있다. 이 센서는 세컨더리 얼라인먼트계 (AL2n) 의 X 축 방향의 위치 정보를 계측하기만 해도 되지만, 다른 방향, 예를 들어 Y 축 방향 및/또는 회전 방향 (θx 및 θy 방향의 적어도 일방을 포함한다) 의 위치 정보도 계측 가능하게 해도 된다.
상기 각 아암 (56n) 의 상면에는 차동 배기형의 에어 베어링으로 이루어지는 버큠 패드 (58n)(n = 1 ∼ 4) 가 형성되어 있다. 또한, 아암 (56n) 은, 예를 들어 모터 등을 포함하는 회전 구동 기구 (60n)(n = 1 ∼ 4, 도 3 에서는 도시 생략, 도 8 참조) 에 의해, 주제어 장치 (20) 의 지시에 따라 회전 운동 가능하다. 주제어 장치 (20) 는 아암 (56n) 의 회전 조정 후에, 각 버큠 패드 (58n) 를 작동시 켜 각 아암 (56n) 을 도시 생략된 메인 프레임에 흡착 고정시킨다. 이로써, 각 아암 (56n) 의 회전 각도 조정 후의 상태, 즉, 프라이머리 얼라인먼트계 (AL1) 및 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 원하는 위치 관계가 유지된다. 또한, 각 아암의 회전의 구체적인 조정, 즉, 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 프라이머리 얼라인먼트계 (AL1) 에 대한 상대 위치의 조정 방법에 대해서는 후술한다.
또한, 메인 프레임의 아암 (56n) 에 대향하는 부분이 자성체라면, 버큠 패드 (58) 대신에 전자석을 채용해도 된다.
본 실시형태에서는, 프라이머리 얼라인먼트계 (AL1) 및 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 각각으로서, 예를 들어 웨이퍼 상의 레지스트를 감광시키지 않는 브로드 밴드한 검출광속을 대상 마크에 조사하고, 그 대상 마크로부터의 반사광에 의해 수광면에 결상된 대상 마크의 이미지와 도시 생략된 지표 (각 얼라인먼트계내에 형성된 지표판 상의 지표 패턴) 의 이미지를 촬상 소자 (CCD 등) 를 이용하여 촬상하고, 그들의 촬상 신호를 출력하는 화상 처리 방식의 FIA (Field Image Alig㎚ent) 계가 이용되고 있다. 프라이머리 얼라인먼트계 (AL1) 및 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 각각으로부터의 촬상 신호는 도 8 의 주제어 장치 (20) 에 공급되도록 되어 있다.
또한, 상기 각 얼라인먼트계로서는, FIA 계에 한정하지 않고, 예를 들어 코 히어런트한 검출광을 대상 마크에 조사하고, 그 대상 마크로부터 발생하는 산란광 또는 회절광을 검출하거나, 혹은 그 대상 마크로부터 발생하는 2 개의 회절광 (예를 들어, 동일 차수의 회절광, 혹은 동일 방향으로 회절하는 회절광) 을 간섭시켜 검출하는 얼라인먼트 센서를 단독으로 혹은 적절히 조합하여 사용하는 것은 물론 가능하다. 또한, 본 실시형태에서는 5 개의 얼라인먼트계 ((AL1, AL21 ∼ AL24)) 를 형성하는 것으로 하고 있지만, 그 수는 5 개에 한정되는 것이 아니고, 2 개 이상 또한 4 개 이하, 혹은 6 개 이상이어도 되고, 홀수가 아니라 짝수이어도 된다. 또한, 본 실시형태에서는, 5 개의 얼라인먼트계 ((AL1, AL21 ∼ AL24)) 는 지지 부재 (54) 를 통하여 투영 유닛 (PU) 을 유지하는 메인 프레임의 하면에 고정되는 것으로 했지만, 이것에 한정되지 않고, 예를 들어 전술한 계측 프레임에 형성해도 된다.
본 실시형태의 노광 장치 (100) 에서는, 도 3 에 나타내는 바와 같이, 전술한 노즐 유닛 (32) 의 주위를 사방에서 둘러싸는 상태에서, 인코더 시스템의 4 개의 헤드 유닛 (62A ∼ 62D) 이 배치되어 있다. 이들 헤드 유닛 (62A ∼ 62D) 은, 도 3 등에서는 도면의 착종을 피하는 관점에서 도시가 생략되어 있지만, 실제로는, 지지 부재를 통하여, 전술한 투영 유닛 (PU) 을 유지하는 메인 프레임에 매단 상태에서 고정되어 있다. 또한, 헤드 유닛 (62A ∼ 62D) 은, 예를 들어 투영 유닛 (PU) 이 매달아 지지되는 경우에는 투영 유닛 (PU) 과 일체로 매달아 지지해도 되고, 혹은 전술한 계측 프레임에 형성해도 된다.
헤드 유닛 (62A, 62C) 은 투영 유닛 (PU) 의 +X 측, -X 측에 각각 X 축 방향을 길이 방향으로 하고, 또한 투영 광학계 (PL) 의 광축 (AX) 에 관하여 대칭으로 광축 (AX) 으로부터 거의 동일 거리 떨어져 배치되어 있다. 또한, 헤드 유닛 (62B, 62D) 은 투영 유닛 (PU) 의 +Y 측, -Y 측에 각각 Y 축 방향을 길이 방향으로 하고, 또한 투영 광학계 (PL) 의 광축 (AX) 으로부터 거의 동일 거리 떨어져 배치되어 있다.
헤드 유닛 (62A, 62C) 은, 도 3 에 나타내는 바와 같이, X 축 방향을 따라 투영 광학계 (PL) 의 광축 (AX) 을 통과하고 또한 X 축과 평행한 직선 (LH) 상에 소정 간격으로 배치된 복수 (여기서는 6 개) 의 Y 헤드 (64) 를 구비하고 있다. 헤드 유닛 (62A) 은, 전술한 Y 스케일 (39Y1) 을 이용하여, 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 Y 축 방향의 위치 (Y 위치) 를 계측하는 다안 (多眼: 여기서는 6 안) 의 Y 리니어 인코더 (이하, 적절히 「Y 인코더」 또는 「인코더」라고 약술한다)(70A)(도 8 참조) 를 구성한다. 마찬가지로, 헤드 유닛 (62C) 은, 전술한 Y 스케일 (39Y2) 을 이용하여, 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 Y 위치를 계측하는 다안 (여기서는 6 안) 의 Y 인코더 (70C)(도 8 참조) 를 구성한다. 여기서, 헤드 유닛 (62A, 62C) 이 구비하는 인접하는 Y 헤드 (64)(즉, 계측 빔) 의 간격은 전술한 Y 스케일 (39Y1, 39Y2) 의 X 축 방향의 폭 (보다 정확하게는, 격자선 (38) 의 길이) 보다 좁게 설정되어 있다. 또한, 헤드 유닛 (62A, 62C) 이 각각 구비하는 복수의 Y 헤드 (64) 중 가장 내측에 위치하 는 Y 헤드 (64) 는, 투영 광학계 (PL) 의 광축에 가능한 한 가까이 배치하기 위하여, 투영 광학계 (PL) 의 경통 (40) 의 하단부 (보다 정확하게는 선단 렌즈 (191) 를 둘러싸는 노즐 유닛 (32) 의 횡측) 에 고정되어 있다.
헤드 유닛 (62B) 은, 도 3 에 나타내는 바와 같이, 상기 직선 (LV) 상에 Y 축 방향을 따라 소정 간격으로 배치된 복수, 여기서는 7 개의 X 헤드 (66) 를 구비하고 있다. 또한, 헤드 유닛 (62D) 은, 상기 직선 (LV) 상에 소정 간격으로 배치된 복수, 여기서는 11 개 (단, 도 3 에서는 프라이머리 얼라인먼트계 (AL1) 와 겹치는 11 개 중 3 개는 도시 생략) 의 X 헤드 (66) 를 구비하고 있다. 헤드 유닛 (62B) 은, 전술한 X 스케일 (39X1) 을 이용하여, 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 X 축 방향의 위치 (X 위치) 를 계측하는 다안 (여기서는 7 안) 의 X 리니어 인코더 (이하, 적절히 「X 인코더」 또는 「인코더」라고 약술한다)(70B)(도 8 참조) 를 구성한다. 또한, 헤드 유닛 (62D) 은, 전술한 X 스케일 (39X2) 을 이용하여, 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 X 위치를 계측하는 다안 (여기서는 11 안) 의 X 인코더 (70D)(도 8 참조) 를 구성한다. 또한, 본 실시형태에서는, 예를 들어 후술하는 얼라인먼트시 등에 헤드 유닛 (62D) 이 구비하는 11 개의 X 헤드 (66) 중 2 개의 X 헤드 (66) 가, X 스케일 (39X1), X 스케일 (39X2) 에 동시에 각각 대향하는 경우가 있다. 이 경우에는, X 스케일 (39X1) 과 이것에 대향하는 X 헤드 (66) 에 의해, X 리니어 인코더 (70B) 가 구성되 고, X 스케일 (39X2) 과 이것에 대향하는 X 헤드 (66) 에 의해, X 리니어 인코더 (70D) 가 구성된다.
여기서, 11 개의 X 헤드 (66) 중 일부, 여기서는 3 개의 X 헤드는 프라이머리 얼라인먼트계 (AL1) 의 지지 부재 (54) 의 하방에 장착되어 있다. 또한, 헤드 유닛 (62B, 62D) 이 각각 구비하는 인접하는 X 헤드 (66)(계측 빔) 의 간격은 전술한 X 스케일 (39X1, 139X2) 의 Y 축 방향의 폭 (보다 정확하게는, 격자선 (37) 의 길이) 보다 좁게 설정되어 있다. 또한, 헤드 유닛 (62B, 62D) 이 각각 구비하는 복수의 X 헤드 (66) 중 가장 내측에 위치하는 X 헤드 (66) 는, 투영 광학계 (PL) 의 광축에 가능한 한 가까이 배치하기 위하여, 투영 광학계 (PL) 의 경통의 하단부 (보다 정확하게는 선단 렌즈 (191) 를 둘러싸는 노즐 유닛 (32) 의 횡측) 에 고정되어 있다.
또한, 세컨더리 얼라인먼트계 (AL21) 의 -X 측, 세컨더리 얼라인먼트계 (AL24) 의 +X 측에, 프라이머리 얼라인먼트계 (AL1) 의 검출 중심을 통과하는 X 축에 평행한 직선 상 또한 그 검출 중심에 대하여 거의 대칭으로 검출점이 배치되는 Y 헤드 (64y1, 64y2) 가 각각 형성되어 있다. Y 헤드 (64y1, 64y2) 의 간격은 전술한 거리 (L) 에 거의 동등하게 설정되어 있다. Y 헤드 (64y1, 64y2) 는 웨이퍼 스테이지 (WST) 상의 웨이퍼 (W) 의 중심이 상기 직선 (LV) 상에 있는 도 3 에 나타나는 상태에서는, Y 스케일 (39Y2, 39Y1) 에 각각 대향하도록 되어 있다. 후술하는 얼라인먼트 동작시 등에서는, Y 헤드 (64y1, 64y2) 에 대향하여 Y 스케일 (39Y2, 39Y1) 이 각각 배치되고, 이 Y 헤드 (64y1, 64y2)(즉, 이들 Y 헤드 (64y1, 64y2) 에 의해 구성되는 Y 인코더 (70C, 70A) 에 의해 웨이퍼 스테이지 (WST) 의 Y 위치 (및 θz 회전) 가 계측된다.
또한, 본 실시형태에서는, 세컨더리 얼라인먼트계의 후술하는 베이스 라인 계측시 등에, CD 바 (46) 의 한 쌍의 기준 격자 (52) 와 Y 헤드 (64y1, 64y2) 가 각각 대향하고, Y 헤드 (64y1, 64y2) 와 대향하는 기준 격자 (52) 에 의해, CD 바 (46) 의 Y 위치가 각각의 기준 격자 (52) 의 위치에서 계측된다. 이하에서는, 기준 격자 (52) 에 각각 대향하는 Y 헤드 (64y1, 64y2) 에 의해 구성되는 인코더를 Y 축 리니어 인코더 (70E, 70F)(도 8 참조) 라고 부른다.
상기 서술한 6 개의 리니어 인코더 (70A ∼ 70F) 의 계측치는 주제어 장치 (20) 에 공급되고, 주제어 장치 (20) 는 리니어 인코더 (70A ∼ 70D) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치를 제어함과 함께, 리니어 인코더 (70E, 70F) 의 계측치에 기초하여, CD 바 (46) 의 θz 방향의 회전을 제어한다.
본 실시형태의 노광 장치 (100) 에서는, 도 3 에 나타내는 바와 같이, 조사계 (90a) 및 수광계 (90b) 로 이루어지는, 예를 들어 일본 공개특허공보 평6-283403호 (대응하는 미국 특허 제5,448,332호 명세서) 등에 개시되는 것과 동일한 구성의 경사 입사 방식의 다점 초점 위치 검출계 (이하, 「다점 AF 계」라고 약술한다) 가 형성되어 있다. 본 실시형태에서는, 일례로서, 전술한 헤드 유닛 (62C) 의 -X 단부의 -Y 측에 조사계 (90a) 가 배치되고, 이것에 대치되는 상태로, 전술한 헤드 유닛 (62A) 의 +X 단부의 -Y 측에 수광계 (90b) 가 배치되어 있다.
이 다점 AF 계 (90a, 90b) 의 복수의 검출점은 피검면 상에서 X 축 방향을 따라 소정 간격으로 배치된다. 본 실시형태에서는, 예를 들어 1 행 M 열 (M 은 검출점의 총수) 또는 2 행 N 열 (N 은 검출점의 총수의 1/2) 의 행매트릭스 형상으로 배치된다. 도 3 중에서는, 각각 검출 빔이 조사되는 복수의 검출점을 개별적으로 도시하지 않고, 조사계 (90a) 및 수광계 (90b) 의 사이에서 X 축 방향으로 연장되는 길고 가느다란 검출 영역 (AF) 으로서 나타내고 있다. 이 검출 영역 (AF) 은 X 축 방향의 길이가 웨이퍼 (W) 의 직경과 동일한 정도로 설정되어 있으므로, 웨이퍼 (W) 를 Y 축 방향으로 1 회 스캔하는 것만으로, 웨이퍼 (W) 의 거의 전체면에서 Z 축 방향의 위치 정보 (면위치 정보) 를 계측할 수 있다. 또한, 이 검출 영역 (AF) 은 Y 축 방향에 관하여, 전술한 액침 영역 (14)(노광 영역 (IA)) 과 얼라인먼트계 (AL1, AL21, AL22, AL23, AL24) 의 검출 영역 사이에 배치되어 있으므로, 다점 AF 계와 얼라인먼트계에서 그 검출 동작을 병행하여 실시하는 것이 가능하게 되어 있다. 다점 AF 계는 투영 유닛 (PU) 을 유지하는 메인 프레임 등에 형성해도 되지만, 본 실시형태에서는 전술한 계측 프레임에 형성하는 것으로 한다.
또한, 복수의 검출점은 1 행 M 열 또는 2 행 N 열로 배치되는 것으로 했지만, 행수 및/또는 열수는 이것에 한정되지 않는다. 단, 행수가 2 이상인 경우는, 상이한 행의 사이에서도 검출점의 X 축 방향의 위치를 다르게 하는 것이 바람직하다. 또한, 복수의 검출점은 X 축 방향을 따라 배치되는 것으로 했지만. 이것에 한정하지 않고, 복수의 검출점의 전부 또는 일부를 Y 축 방향에 관하여 상이한 위치에 배치해도 된다. 예를 들어, X 축 및 Y 축의 양방과 교차하는 방향을 따라 복수의 검출점을 배치해도 된다. 즉, 복수의 검출점은 적어도 X 축 방향에 관하여 위치가 상이하면 된다. 또한, 본 실시형태에서는 복수의 검출점에 검출 빔을 조사하는 것으로 했지만, 예를 들어 검출 영역 (AF) 의 전역에 검출 빔을 조사해도 된다. 또한, 검출 영역 (AF) 은 X 축 방향의 길이가 웨이퍼 (W) 의 직경과 동일한 정도가 아니어도 된다.
본 실시형태의 노광 장치 (100) 는 다점 AF 계의 복수의 검출점 중 양단에 위치하는 검출점의 근방, 즉, 검출 영역 (AF) 의 양 단부 근방에, 전술한 직선 (LV) 에 관하여 대칭인 배치로, 각 1 쌍의 Z 위치 계측용의 면위치 센서 (이하, 「Z 센서」라고 약술한다)(72a, 72b 및 72c, 72d) 가 형성되어 있다. 이들 Z 센서 (72a ∼ 72d) 는 도시 생략된 메인 프레임의 하면에 고정되어 있다. Z 센서 (72a ∼ 72d) 로서는, 웨이퍼 테이블 (WTB) 에 대하여 상방으로부터 광을 조사하고, 그 반사광을 수광하여 그 광의 조사점에 있어서의 웨이퍼 테이블 (WTB) 표면의 XY 평면에 직교하는 Z 축 방향의 위치 정보를 계측하는 센서, 일례로서 CD 드라이브 장치 등에서 사용되는 광 픽업과 같은 구성의 광학식의 변위 센서 (CD 픽업 방 식의 센서) 가 이용되고 있다. 또한, Z 센서 (72a ∼ 72d) 는 전술한 계측 프레임 등에 형성해도 된다.
또한, 전술한 헤드 유닛 (62C) 은 복수의 Y 헤드 (64) 를 연결하는 X 축 방향의 직선 (LH) 을 사이에 두고 일측과 타측에 위치하는, 직선 (LH) 에 평행한 2 개의 직선 상을 각각 따라 또한 소정 간격으로 배치된 복수 (여기서는 각 6 개, 합계 12 개) 의 Z 센서 (74i,j) (i = 1, 2, j=1, 2, ……, 6) 를 구비하고 있다. 이 경우, 쌍을 이루는 Z 센서 (741,j, 742,j) 는 상기 직선 (LH) 에 관하여 대칭으로 배치되어 있다. 또한, 복수 쌍 (여기서는 6 쌍) 의 Z 센서 (741,j, 742,j) 와 복수의 Y 헤드 (64) 는 X 축 방향에 관하여 교대로 배치되어 있다. 각 Z 센서 (74i,j) 로서는, 예를 들어 전술한 Z 센서 (72a ∼ 72d) 와 동일한 CD 픽업 방식의 센서가 이용되고 있다.
여기서, 직선 (LH) 에 관하여 대칭인 위치에 있는 각 쌍의 Z 센서 (741,j, 742,j) 의 간격은 전술한 Z 센서 (74c, 74d) 의 간격과 동일 간격으로 설정되어 있다. 또한, 1 쌍의 Z 센서 (741,4, 742,4) 는 Z 센서 (72a, 72b) 와 동일한, Y 축 방향에 평행한 직선 상에 위치하고 있다.
또한, 전술한 헤드 유닛 (62A) 은 전술한 직선 (LV) 에 관하여, 상기 서술한 복수의 Z 센서 (74i,j) 와 대칭으로 배치된 복수, 여기서는 12 개의 Z 센서 (76p,q)(p = 1, 2, q = 1, 2,……, 6) 을 구비하고 있다. 각 Z 센서 (76p,q) 로서는, 예를 들어 전술한 Z 센서 (72a ∼ 72d) 와 동일한 CD 픽업 방식의 센서가 이용되고 있다. 또한, 한 쌍의 Z 센서 (761,3, 762,3) 는 Z 센서 (72c, 72d) 와 동일한 Y 축 방향의 직선 상에 위치하고 있다.
또한, 도 3 에서는, 계측 스테이지 (MST) 의 도시가 생략됨과 함께, 그 계측 스테이지 (MST) 와 선단 렌즈 (191) 사이에 유지되는 물 (Lq) 로 형성되는 액침 영역이 부호 14 로 나타나 있다. 또한, 이 도 3 에 있어서, 부호 78 은 다점 AF 계 (90a, 90b) 의 빔로 근방에 소정 온도로 온도 조정된 드라이 에어를, 도 3 중의 흰색 화살표로 나타내는 바와 같이, 예를 들어 다운 플로우로 송풍하는 국소 공조 시스템을 나타낸다. 또한, 부호 UP 는 웨이퍼 테이블 (WTB) 상의 웨이퍼의 언로드가 행해지는 언로딩 포지션을 나타내고, 부호 LP 는 웨이퍼 테이블 (WTB) 상으로 웨이퍼 로드가 행해지는 로딩 포지션을 나타낸다. 본 실시형태에서는, 언로드 포지션 (UP) 과 로딩 포지션 (LP) 은 직선 (LV) 에 관하여 대칭으로 설정되어 있다. 또한, 언로드 포지션 (UP) 과 로딩 포지션 (LP) 을 동일 위치로 해도 된다.
도 8 에는, 노광 장치 (100) 의 제어계의 주요한 구성이 나타나 있다. 이 제어계는, 장치 전체를 통괄적으로 제어하는 마이크로 컴퓨터 (또는 워크 스테이션) 로 이루어지는 주제어 장치 (20) 를 중심으로 하여 구성되어 있다. 또한, 도 8 에 있어서는, 전술한 조도 불균일 센서 (94), 공간 이미지 계측기 (96) 및 파면 수차 계측기 (98) 등의 계측 스테이지 (MST) 에 형성된 각종 센서가 통합하여 센서군 (99) 으로서 나타나 있다.
상기 서술한 바와 같이 하여 구성된 본 실시형태의 노광 장치 (100) 에서는, 전술한 바와 같은 웨이퍼 테이블 (WTB) 상의 X 스케일, Y 스케일의 배치 및 전술한 바와 같은 X 헤드, Y 헤드의 배치를 채용한 점에서, 도 9(A) 및 도 9(B) 등에 예시되는 바와 같이, 웨이퍼 스테이지 (WST) 의 유효 스트로크 범위 (즉, 본 실시형태에서는, 얼라인먼트 및 노광 동작을 위하여 이동하는 범위) 에서는, 반드시 X 스케일 (39X1, 39X2) 과 헤드 유닛 (62B, 62D)(X 헤드 (66)) 이 각각 대향하고, 또한 Y 스케일 (39Y1, 39Y2) 과 헤드 유닛 (62A, 62C)(Y 헤드 (64)) 또는 Y 헤드 (64y1, 64y2) 가 각각 대향하도록 되어 있다. 또한, 도 9(A) 및 도 9(B) 중에서는, 대응하는 X 스케일 또는 Y 스케일에 대향한 헤드가 동그라미로 둘러싸여 표시되어 있다.
이 때문에, 주제어 장치 (20) 는, 전술한 웨이퍼 스테이지 (WST) 의 유효 스트로크 범위에서는, 인코더 (70A ∼ 70D) 의 적어도 3 개의 계측치에 기초하여, 스테이지 구동계 (124) 를 구성하는 각 모터를 제어함으로써, 웨이퍼 스테이지 (WST) 의 XY 평면내의 위치 정보 (θz 방향의 회전 정보를 포함한다) 를 고정밀도로 제어할 수 있다. 인코더 (70A ∼ 70D) 의 계측치가 받는 공기 요동의 영향은 간섭계에 비하면 무시할 수 있을 만큼 작으므로, 공기 요동에서 기인되는 계측치의 단기 안정성은 간섭계에 비해 현격히 좋다. 또한, 본 실시형태에서는, 웨이퍼 스 테이지 (WST) 의 유효 스트로크 범위 및 스케일의 사이즈 (즉, 회절 격자의 형성 범위) 등에 따라, 헤드 유닛 (62B, 62D, 62A, 62C) 의 사이즈 (예를 들어, 헤드의 수 및/또는 간격 등) 를 설정하고 있다. 따라서, 웨이퍼 스테이지 (WST) 의 유효 스트로크 범위에서는, 4 개의 스케일 (39X1, 39X2, 39Y1, 39Y2) 이 모두 헤드 유닛 (62B, 62D, 62A, 62C) 과 각각 대향하지만, 4 개의 스케일이 모두 대응하는 헤드 유닛과 대향하지 않아도 된다. 예를 들어, X 스케일 (39X1, 39X2) 의 일방 및/또는 Y 스케일 (39Y1, 39Y2) 의 일방이 헤드 유닛으로부터 벗어나도 된다. X 스케일 (39X1, 39X2) 의 일방, 또는 Y 스케일 (39Y1, 39Y2) 의 일방이 헤드 유닛으로부터 벗어나는 경우, 웨이퍼 스테이지 (WST) 의 유효 스트로크 범위에서는 3 개의 스케일이 헤드 유닛과 대향하므로, 웨이퍼 스테이지 (WST) 의 X 축, Y 축 및 θz 방향의 위치 정보를 상시 계측 가능하다. 또한, X 스케일 (39X1, 39X2) 의 일방 및 Y 스케일 (39Y1, 39Y2) 의 일방이 헤드 유닛으로부터 벗어나는 경우, 웨이퍼 스테이지 (WST) 의 유효 스트로크 범위에서는 2 개의 스케일이 헤드 유닛과 대향하므로, 웨이퍼 스테이지 (WST) 의 θz 방향의 위치 정보는 상시 계측할 수 없지만, X 축 및 Y 축 방향의 위치 정보는 상시 계측 가능하다. 이 경우, 간섭계 시스템 (118) 에 의해 계측되는 웨이퍼 스테이지 (WST) 의 θz 방향의 위치 정보를 병용하여, 웨이퍼 스테이지 (WST) 의 위치 제어를 실시해도 된다.
또한, 도 9(A) 중에 흰색 화살표로 나타내는 바와 같이 웨이퍼 스테이지 (WST) 를 X 축 방향으로 구동할 때, 그 웨이퍼 스테이지 (WST) 의 Y 축 방향의 위치를 계측하는 Y 헤드 (64) 가, 도 9(A) 중에 화살표 (e1, e2) 로 나타내는 바와 같이, 근처의 Y 헤드 (64) 로 순차적으로 교체된다. 예를 들어, 실선의 동그라미로 둘러싸이는 Y 헤드 (64) 로부터의 점선의 동그라미로 둘러싸이는 Y 헤드 (64) 로 교체된다. 이 때문에, 그 교체 전후에 계측치가 인계된다. 즉, 본 실시형태에서는, 이 Y 헤드 (64) 의 교체 및 계측치의 인계를 원활하게 행하기 위하여, 전술한 바와 같이, 헤드 유닛 (62A, 62C) 이 구비하는 인접하는 Y 헤드 (64) 의 간격을, Y 스케일 (39Y1, 39Y2) 의 X 축 방향의 폭보다 좁게 설정한 것이다.
또한, 본 실시형태에서는, 전술한 바와 같이, 헤드 유닛 (62B, 62D) 이 구비하는 인접하는 X 헤드 (66) 의 간격은 전술한 X 스케일 (39X1, 39X2) 의 Y 축 방향의 폭보다 좁게 설정되어 있으므로, 상기 서술과 마찬가지로, 도 9(B) 중에 흰색 화살표로 나타내는 바와 같이 웨이퍼 스테이지 (WST) 를 Y 축 방향으로 구동할 때, 그 웨이퍼 스테이지 (WST) 의 X 축 방향의 위치를 계측하는 X 헤드 (66) 가 순차적으로 근처의 X 헤드 (66) 로 교체되고 (예를 들어, 실선의 동그라미로 둘러싸이는 X 헤드 (66) 로부터 점선의 동그라미로 둘러싸이는 X 헤드 (66) 로 교체된다), 그 교체 전후에 계측치가 인계된다.
다음으로, 인코더 (70A ∼ 70F) 의 구성 등에 대하여, 도 10(A) 에 확대하여 나타나는 Y 인코더 (70A) 를 대표적으로 들어 설명한다. 이 도 10(A) 에서는, Y 스케일 (39Y1) 에 검출광 (계측 빔) 을 조사하는 헤드 유닛 (62A) 의 하나의 Y 헤 드 (64) 를 나타내고 있다.
Y 헤드 (64) 는 크게 나누면, 조사계 (64a), 광학계 (64b) 및 수광계 (64c) 의 3 부분으로 구성되어 있다.
조사계 (64a) 는 레이저광 (LB) 을 Y 축 및 Z 축에 대하여 45˚ 를 이루는 방향으로 사출하는 광원, 예를 들어 반도체 레이저 (LD) 와, 그 반도체 레이저 (LD) 로부터 사출되는 레이저 빔 (LB) 의 광로 상에 배치된 렌즈 (L1) 를 포함한다.
광학계 (64b) 는 그 분리면이 XZ 평면과 평행한 편광 빔 스플리터 (PBS), 1 쌍의 반사 미러 (R1a, R1b), 렌즈 (L2a, L2b), 4 분의 1 파장판 (이하, λ/4 판이라고 기술한다)(WP1a, WP1b), 및 반사 미러 (R2a, R2b) 등을 구비하고 있다.
상기 수광계 (64c) 는 편광자 (검광자) 및 광 검출기 등을 포함한다.
이 Y 인코더 (70A) 에 있어서, 반도체 레이저 (LD) 로부터 사출된 레이저 빔 (LB) 은 렌즈 (L1) 를 통하여 편광 빔 스플리터 (PBS) 에 입사하고, 편광 분리되어 2 개의 빔 (LB1, LB2) 이 된다. 편광 빔 스플리터 (PBS) 를 투과한 빔 (LB1) 은 반사 미러 (R1a) 를 통하여 Y 스케일 (39Y1) 에 형성된 반사형 회절 격자 (RG) 에 도달하고, 편광 빔 스플리터 (PBS) 에서 반사된 빔 (LB2) 은 반사 미러 (R1b) 를 통하여 반사형 회절 격자 (RG) 에 도달한다. 또한, 여기서 「편광 분리」란, 입사 빔을 P 편광 성분과 S 편광 성분으로 분리하는 것을 의미한다.
빔 (LB1, LB2) 의 조사에 의해 회절 격자 (RG) 로부터 발생하는 소정 차수의 회절 빔, 예를 들어 1 차 회절 빔은 각각, 렌즈 (L2b, L2a) 를 통하여 λ/4 판 (WP1b, WP1a) 에 의해 원편광으로 변환된 후, 반사 미러 (R2b, R2a) 에 의해 반사되고 다시 λ/4 판 (WP1b, WP1a) 을 통과하고, 왕로와 동일한 광로를 역방향으로 되집어 편광 빔 스플리터 (PBS) 에 도달한다.
편광 빔 스플리터 (PBS) 에 도달한 2 개의 빔은 각각 그 편광 방향이 원래의 방향에 대하여 90 도 회전하고 있다. 이 때문에, 먼저 편광 빔 스플리터 (PBS) 를 투과한 빔 (LB1) 의 1 차 회절 빔은 편광 빔 스플리터 (PBS) 에서 반사되어 수광계 (64c) 에 입사함과 함께, 먼저 편광 빔 스플리터 (PBS) 에서 반사된 빔 (LB2) 의 1 차 회절 빔은 편광 빔 스플리터 (PBS) 를 투과하여 빔 (LB1) 의 1 차 회절 빔과 동일한 축에 합성되어 수광계 (64c) 에 입사한다.
그리고, 상기 2 개의 1 차 회절 빔은 수광계 (64c) 의 내부에서, 검광자에 의해 편광 방향이 가지런해지고, 서로 간섭하여 간섭광이 되고, 이 간섭광이 광 검출기에 의해 검출되고, 간섭광의 강도에 따른 전기 신호로 변환된다.
상기의 설명으로부터 알 수 있듯이, Y 인코더 (70A) 에서는, 간섭시키는 2 개의 빔의 광로 길이가 매우 짧고 또한 거의 동등하기 때문에, 공기 요동의 영향을 거의 무시할 수 있다. 그리고, Y 스케일 (39Y1)(즉, 웨이퍼 스테이지 (WST)) 이 계측 방향 (이 경우, Y 축 방향) 으로 이동하면, 2 개의 빔 각각의 위상이 변화하여 간섭광의 강도가 변화한다. 이 간섭광의 강도의 변화가 수광계 (64c) 에 의해 검출되고, 그 강도 변화에 따른 위치 정보가 Y 인코더 (70A) 의 계측치으로서 출력된다. 그 밖의 인코더 (70B, 70C, 70D) 등도 인코더 (70A) 와 동일하게 하여 구성되어 있다. 각 인코더로서는, 분해능이, 예를 들어 0.1㎚ 정도인 것이 이용되고 있다. 또한, 본 실시형태의 인코더에서는, 도 10(B) 에 나타내는 바와 같이, 검출광으로서 격자 (RG) 의 주기 방향으로 길게 연장되는 단면 형상의 레이저 빔 (LB) 을 이용해도 된다. 도 10(B) 에서는, 격자 (RG) 와 비교하여 빔 (LB) 을 과장하여 크게 도시하고 있다.
그런데, 인코더의 스케일은 사용 시간의 경과와 함께 열팽창 그 외에 의해 회절 격자가 변형되거나, 회절 격자의 피치가 부분적 또는 전체적으로 변화하거나 하는 등, 기계적인 장기 안정성이 결여되어 있다. 이 때문에, 그 계측치에 포함되는 오차가 사용 시간의 경과와 함께 커지므로, 이것을 보정할 필요가 있다. 이하, 본 실시형태의 노광 장치 (100) 에서 행해지는 스케일의 격자 피치 보정 및 격자 변형의 보정에 대하여, 도 11 에 기초하여 설명한다.
이 도 11 에 있어서, 부호 IBY1, IBY2 는 Y 축 간섭계 (16) 로부터 웨이퍼 테이블 (WTB) 의 반사면 (17a) 에 조사되는 다수의 광축 중 2 개의 광축의 측장 빔을 나타내고, 부호 IBX1, IBX2 는 X 축 간섭계 (126) 로부터 웨이퍼 테이블 (WTB) 의 반사면 (17b) 에 조사되는 다수의 광축 중 2 개의 광축의 측장 빔을 나타낸다. 이 경우, 측장 빔 (IBY1, IBY2) 은 상기 직선 (LV)(복수의 X 헤드 (66) 의 중심을 연결한 직선에 일치) 에 관하여 대칭으로 배치되고, Y 축 간섭계 (16) 의 실질적인 측장축은 상기 직선 (LV) 에 일치한다. 이 때문에, Y 축 간섭계 (16) 에 의하면, 아베 오차 없이 웨이퍼 테이블 (WTB) 의 Y 위치를 계측할 수 있다. 마 찬가지로, 측장 빔 (IBX1, IBX2) 은 투영 광학계 (PL) 의 광축을 통과하는, X 축과 평행한 직선 (LH)(복수의 Y 헤드 (64) 의 중심을 연결한 직선에 일치) 에 관하여 대칭으로 배치되고, X 축 간섭계 (126) 의 실질적인 측장축은 투영 광학계 (PL) 의 광축을 통과하는, X 축과 평행한 직선 (LH) 에 일치한다. 이 때문에, X 축 간섭계 (16) 에 의하면, 아베 오차 없이 웨이퍼 테이블 (WTB) 의 X 위치를 계측할 수 있다.
먼저, X 스케일의 격자선의 변형 (격자선의 구부러짐) 과, Y 스케일의 격자선의 피치의 보정에 대하여 설명한다. 여기서는, 설명을 간단하게 하기 위하여, 반사면 (17b) 은 이상적인 평면인 것으로 한다.
먼저, 주제어 장치 (20) 는 Y 축 간섭계 (16), X 축 간섭계 (126) 의 계측치에 기초하여 웨이퍼 스테이지 (WST) 를 구동시키고, 도 11 에 나타내는 바와 같이, Y 스케일 (39Y1, 39Y2) 이 각각 대응하는 헤드 유닛 (62A, 62C)(적어도 1 개의 헤드) 의 바로 아래에 배치되고, 또한 Y 스케일 (39Y1, 39Y2)(회절 격자) 의 +Y 측의 일단이 각각 대응하는 헤드 유닛 (62A, 62C) 과 일치하는 위치에 웨이퍼 스테이지 (WST) 를 위치 결정한다.
다음으로, 주제어 장치 (20) 는 Y 축 간섭계 (16) 의 계측치의 단기 변동을 무시할 수 있을 정도의 저속으로, 또한 X 축 간섭계 (126) 의 계측치를 소정치로 고정하면서, Y 축 간섭계 (16) 및 Z 센서 (741,4, 742,4, 761,3, 762,3) 의 계측치에 기초하여, 피칭량, 롤링량 및 요잉량을 모두 제로로 유지하면서, 도 11 중에 화살표 F 로 나타내는 바와 같이, 예를 들어 Y 스케일 (39Y1, 39Y2) 의 타단 (-Y 측의 일단) 이 각각 대응하는 헤드 유닛 (62A, 62C) 과 일치할 때까지 (전술한 유효 스트로크 범위에서), 웨이퍼 스테이지 (WST) 를 +Y 방향으로 이동시킨다. 이 이동 중에, 주제어 장치 (20) 는 Y 리니어 인코더 (70A, 70C) 의 계측치 및 Y 축 간섭계 (16) 의 계측치 (측정 빔 (IBY1, IBY2) 에 의한 계측치) 를 소정의 샘플링 간격으로 입력하고, 그 입력한 계측치에 기초하여 Y 리니어 인코더 (70A, 70C) 의 계측치와 Y 축 간섭계 (16) 의 계측치의 관계를 구한다. 즉, 주제어 장치 (20) 는 웨이퍼 스테이지 (WST) 의 이동에 수반하여 헤드 유닛 (62A, 62C) 에 순차적으로 대향하여 배치되는 Y 스케일 (39Y1, 39Y2) 의 격자 피치 (인접하는 격자선의 간격) 및 그 격자 피치의 보정 정보를 구한다. 보정 정보는, 예를 들어 가로축이 간섭계의 계측치, 세로축이 인코더의 계측치로 한 경우의 양자의 관계를 곡선으로 나타내는 보정 맵 등으로서 구할 수 있다. 이 경우의 Y 축 간섭계 (16) 의 계측치는, 전술한 극히 저속으로 웨이퍼 스테이지 (WST) 를 스캔했을 때에 얻어지는 것이기 때문에, 장기적인 변동 오차는 물론, 공기 요동 등에서 기인하는 단기적인 변동 오차도 대부분 포함되지 않아, 오차를 무시할 수 있는 정확한 값으로 생각해도 지장 없다. 또한, 상기 범위내에서, 도 11 중에 화살표 F' 로 나타내는 바와 같이, 웨이퍼 스테이지 (WST) 를 -Y 방향으로 이동시키고, 상기와 동일한 순서로, Y 스케일 (39Y1, 39Y2) 의 격자 피치 (인접하는 격자선의 간격) 및 그 격자 피치의 보정 정보를 구해도 된다. 여기서는, Y 스케일 (39Y1, 39Y2) 의 양단이 대응하는 헤 드 유닛 (62A, 62C) 을 횡단하는 범위에 걸쳐 웨이퍼 스테이지 (WST) 를 Y 축 방향으로 구동하는 것으로 했지만, 이것에 한정되지 않고, 예를 들어 웨이퍼의 노광 동작시에 웨이퍼 스테이지 (WST) 가 이동되는 Y 축 방향의 범위에서 웨이퍼 스테이지 (WST) 를 구동해도 된다.
또한, 주제어 장치 (20) 는 상기의 웨이퍼 스테이지 (WST) 의 이동 중에, 그 이동에 수반하여 X 스케일 (39X1, 39X2) 에 순차적으로 대향하여 배치되는 헤드 유닛 (62B, 62D) 의 복수의 X 헤드 (66) 로부터 얻어지는 계측치와, 각 계측치에 대응하는 간섭계 (16) 의 계측치를 이용하여, 소정의 통계 연산을 실시하여, 그 복수의 X 헤드 (66) 에 순차적으로 대향한 격자선 (37) 의 변형 (구부러짐) 의 보정 정보도 구하고 있다. 이 때, 주제어 장치 (20) 는, 예를 들어 X 스케일 (39X1, 39X2) 에 순차적으로 대향하여 배치되는 헤드 유닛 (62B, 62D) 의 복수의 헤드의 계측치 (또는 중량 첨부 평균치) 등을 격자 구부러짐의 보정 정보로서 산출한다. 이것은, 반사면 (17b) 이 이상적인 평면인 경우에는, 웨이퍼 스테이지 (WST) 를 +Y 방향 또는 -Y 방향으로 보내는 과정에서, 반복하여 동일한 흔들림 패턴이 출현할 것이므로, 복수의 X 헤드 (66) 에서 취득한 계측 데이터를 평균화하는 등에 의해, 그 복수의 X 헤드 (66) 에 순차적으로 대향한 격자선 (37) 의 변형 (구부러짐) 의 보정 정보를 정확하게 구할 수 있기 때문이다.
또한, 반사면 (17b) 이 이상적인 평면이 아닌 경우에는, 미리 그 반사면의 요철 (구부러짐) 을 계측하여 그 구부러짐의 보정 데이터를 구해 둔다. 그리 고, 상기 서술한 웨이퍼 스테이지 (WST) 의 +Y 방향 또는 -Y 방향으로의 이동시에, X 축 간섭계 (126) 의 계측치를 소정치로 고정시키는 대신에, 그 보정 데이터에 기초하여, 웨이퍼 스테이지 (WST) 의 X 위치를 제어함으로써, 웨이퍼 스테이지 (WST) 를 정확하게 Y 축 방향으로 이동시키는 것으로 하면 된다. 이와 같이 하면, 상기와 완전히 동일하게, Y 스케일의 격자 피치의 보정 정보 및 격자선 (37) 의 변형 (구부러짐) 의 보정 정보를 얻을 수 있다. 또한, 복수의 X 헤드 (66) 에서 취득한 계측 데이터는 반사면 (17b) 이 상이한 부위 기준에서의 복수의 데이터로서, 어느 헤드도 동일한 격자선의 변형 (구부러짐) 을 계측하고 있는 것이므로, 상기의 평균화 등에 의해, 반사면의 구부러짐 보정 잔차 (殘差) 가 평균화되어 참값에 근접한다 (환언하면, 복수의 헤드에서 취득한 계측 데이터 (격자선의 구부러짐 정보) 를 평균화함으로써, 구부러짐 잔차의 영향을 약하게 할 수 있다) 는 부수적인 효과도 있다.
다음으로, Y 스케일의 격자선의 변형 (격자선의 구부러짐) 과, X 스케일의 격자선의 피치의 보정에 대하여 설명한다. 여기서는, 설명을 간단하게 하기 위하여, 반사면 (17a) 은 이상적인 평면인 것으로 한다. 이 경우, 상기 서술한 보정의 경우와, X 축 방향과 Y 축 방향을 바꿔 넣은 처리를 실시하면 된다.
즉, 주제어 장치 (20) 는, 먼저 웨이퍼 스테이지 (WST) 를 구동하고, X 스케일 (39X1, 39X2) 이 각각 대응하는 헤드 유닛 (62B, 62D)(적어도 1 개의 헤드) 의 바로 아래에 배치되고, 또한 X 스케일 (39X1, 39X2)(회절 격자) 의 +X 측 (또는 -X 측) 의 일단이 각각 대응하는 헤드 유닛 (62B, 62D) 과 일치하는 위치에 웨이퍼 스테이지 (WST) 를 위치 결정한다. 다음으로, 주제어 장치 (20) 는 X 축 간섭계 (126) 의 계측치의 단기 변동을 무시할 수 있을 정도의 저속으로, 또한 Y 축 간섭계 (16) 의 계측치를 소정치로 고정하면서, X 축 간섭계 (126) 등의 계측치에 기초하여, 피칭량, 롤링량 및 요잉량을 모두 제로로 유지하면서, 예를 들어 X 스케일 (39X1, 39X2) 의 타단 (-Y 측 (또는 +Y 측) 의 일단) 이 각각 대응하는 헤드 유닛 (62A, 62C) 과 일치할 때까지 (전술한 유효 스트로크 범위에서), 웨이퍼 스테이지 (WST) 를 +X 방향 (또는 -X 방향) 으로 이동시킨다. 이 이동 중에, 주제어 장치 (20) 는 X 리니어 인코더 (70B, 70D) 의 계측치 및 X 축 간섭계 (126) 의 계측치 (측정 빔 (IBX1, IBX2) 에 의한 계측치) 를 소정의 샘플링 간격으로 입력하고, 그 입력한 계측치에 기초하여 X 리니어 인코더 (70B, 70D) 의 계측치와 X 축 간섭계 (126) 의 계측치의 관계를 구하는 것으로 하면 된다. 즉, 주제어 장치 (20) 는 웨이퍼 스테이지 (WST) 의 이동에 수반하여 헤드 유닛 (62B, 62D) 에 순차적으로 대향하여 배치되는 X 스케일 (39X1, 39X2) 의 격자 피치 및 그 격자 피치의 보정 정보를 구한다. 보정 정보는, 예를 들어 가로축을 간섭계의 계측치, 세로축을 인코더의 계측치로 한 경우의 양자의 관계를 곡선으로 나타내는 맵 등으로서 구할 수 있다. 이 경우의 X 축 간섭계 (126) 의 계측치는, 전술한 극히 저속으로 웨이퍼 스테이지 (WST) 를 스캔했을 때에 얻어지는 것이므로, 장기적인 변동 오차는 물론, 공기 요동 등에서 기인하는 단기적인 변동 오차도 거의 포함되지 않아, 오차 를 무시할 수 있는 정확한 값이라 생각해도 지장 없다.
또한, 주제어 장치 (20) 는, 상기의 웨이퍼 스테이지 (WST) 의 이동 중에, 그 이동에 수반하여 Y 스케일 (39Y1, 39Y2) 에 순차적으로 대향하여 배치되는 헤드 유닛 (62A, 62C) 의 복수의 Y 헤드 (64) 로부터 얻어지는 계측치와, 각 계측치에 대응하는 간섭계 (126) 의 계측치를 이용하여, 소정의 통계 연산을 행하고, 그 복수의 Y 헤드 (64) 에 순차적으로 대향한 격자선 (38) 의 변형 (구부러짐) 의 보정 정보도 구하고 있다. 이 때, 주제어 장치 (20) 는, 예를 들어 Y 스케일 (39Y1, 39Y2) 에 순차적으로 대향하여 배치되는 헤드 유닛 (62A, 62C) 의 복수의 헤드의 계측치 (또는 중량 첨부 평균식) 등을 격자 구부러짐의 보정 정보로서 산출한다. 이것은, 반사면 (17a) 이 이상적인 평면인 경우에는, 웨이퍼 스테이지 (WST) 를 +X 방향 또는 -X 방향으로 보내는 과정에서, 반복하여 동일한 흔들림 패턴이 출현할 것이므로, 복수의 Y 헤드 (64) 에서 취득한 계측 데이터를 평균화하는 등에 의해, 그 복수의 Y 헤드 (64) 에 순차적으로 대향한 격자선 (38) 의 변형 (구부러짐) 의 보정 정보를 정확하게 구할 수 있기 때문이다.
또한, 반사면 (17a) 이 이상적인 평면이 아닌 경우에는, 미리 그 반사면의 요철 (구부러짐) 을 계측하여 그 구부러짐의 보정 데이터를 구해 둔다. 그리고, 상기 서술한 웨이퍼 스테이지 (WST) 의 +X 방향 또는 -X 방향으로의 이동시에, Y 축 간섭계 (16) 의 계측치를 소정치로 고정시키는 대신에, 그 보정 데이터에 기초하여, 웨이퍼 스테이지 (WST) 의 Y 위치를 제어함으로써, 웨이퍼 스테이지 (WST) 를 정확하게 X 축 방향으로 이동시키는 것으로 하면 된다. 이와 같이 하면, 상기와 완전히 동일하게, X 스케일의 격자 피치의 보정 정보 및 격자선 (38) 의 변형 (구부러짐) 의 보정 정보를 얻을 수 있다.
이와 같이 하여, 주제어 장치 (20) 는 소정의 타이밍마다, 예를 들어 로트마다 등에, Y 스케일의 격자 피치의 보정 정보 및 격자선 (37) 의 변형 (구부러짐) 의 보정 정보, 그리고 X 스케일의 격자 피치의 보정 정보 및 격자선 (38) 의 변형 (구부러짐) 의 보정 정보를 얻는다.
그리고, 로트내의 웨이퍼의 노광 처리 중 등에는, 주제어 장치 (20) 는 헤드 유닛 (62A, 62C) 으로부터 얻어지는 계측치 (즉, 인코더 (70A, 70C) 의 계측치) 를 Y 스케일의 격자 피치의 보정 정보 및 상기 서술한 격자선 (38) 의 변형 (구부러짐) 의 보정 정보에 기초하여 보정하면서, 웨이퍼 스테이지 (WST) 의 Y 축 방향의 위치 제어를 실시한다. 이로써, Y 스케일의 격자 피치의 경시적인 변화 및 격자선 (38) 의 구부러짐의 영향을 받지 않고, Y 리니어 인코더 (70A, 70C) 를 이용하여, 웨이퍼 스테이지 (WST) 의 Y 축 방향의 위치 제어를 고정밀도로 행하는 것이 가능해진다.
또한, 로트내의 웨이퍼의 노광 처리 중 등에는, 주제어 장치 (20) 는 헤드 유닛 (62B, 62D) 으로부터 얻어지는 계측치 (즉, 인코더 (70B, 70D) 의 계측치) 를 X 스케일의 격자 피치의 보정 정보 및 격자선 (38) 의 변형 (구부러짐) 의 보정 정보에 기초하여 보정하면서, 웨이퍼 스테이지 (WST) 의 X 축 방향의 위치 제어를 실시한다. 이로써, X 스케일의 격자 피치의 경시적인 변화 및 격자선 (37) 의 구 부러짐의 영향을 받지 않고, X 리니어 인코더 (70B, 70D) 를 이용하여, 웨이퍼 스테이지 (WST) 의 X 축 방향의 위치 제어를 고정밀도로 행하는 것이 가능해진다.
또한, 상기 서술한 설명에서는, Y 스케일 (39Y1, 39Y2), 및 X 스케일 (39X1, 39X2) 의 어느 것에 대해서도, 격자 피치 및 격자선 구부러짐의 보정 정보의 취득을 실시하는 것으로 했지만, 이것에 한정되지 않고, Y 스케일 (39Y1, 39Y2) 및 X 스케일 (39X1, 39X2) 중 어느 하나에 대해서만, 격자 피치 및 격자선 구부러짐의 보정 정보의 취득을 실시해도 되고, Y 스케일 (44A, 44C) 및 X 스케일 (44B, 44D) 의 양자에 대하여, 격자 피치, 격자선 구부러짐 중 어느 하나에 대한 보정 정보만을 취득해도 된다. 예를 들어, 격자선 구부러짐의 보정 정보의 취득만을 실시하는 경우에는, Y 축 간섭계 (16) 를 사용하지 않고, Y 리니어 인코더 (70A, 70C) 의 계측치에 기초하여 웨이퍼 스테이지 (WST) 를 Y 축 방향으로 이동시키거나, 혹은 X 축 간섭계 (126) 를 사용하지 않고, X 리니어 인코더 (70B, 70D) 의 계측치에 기초하여 웨이퍼 스테이지 (WST) 를 X 축 방향으로 이동시키는 것으로 해도 된다.
다음으로, 본 실시형태의 노광 장치 (100) 에서 행해지는, 웨이퍼 얼라인먼트에 대하여, 도 12(A) ∼ 도 12(C) 를 이용하여 간단하게 설명한다. 또한, 상세한 것에 대해서는 후술한다.
여기서는, 도 12(C) 에 나타내는 레이아웃 (쇼트 맵) 에서 복수의 쇼트 영역이 형성되어 있는 웨이퍼 (W) 상의 착색된 16 개의 쇼트 영역 (AS) 을 얼라인먼트 쇼트 영역으로 하는 경우의 동작에 대하여 설명한다. 또한, 도 12(A), 도 12(B) 에서는, 계측 스테이지 (MST) 의 도시는 생략되어 있다.
전제로서, 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 는 얼라인먼트 쇼트 영역 (AS) 의 배치에 맞추어, 그 X 축 방향의 위치 조정이 사전에 행해져 있는 것으로 한다. 또한, 이 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 구체적인 위치 조정의 수법에 대해서는 후술한다.
먼저, 주제어 장치 (20) 는 로딩 포지션 (LP) 에 웨이퍼 (W) 중심이 위치 결정된 웨이퍼 스테이지 (WST) 를, 도 12(A) 중의 왼쪽 비스듬히 상방을 향하여 이동시키고, 웨이퍼 (W) 의 중심이 직선 (LV) 상에 위치하는, 소정의 위치 (후술하는 얼라인먼트 개시 위치) 에 위치 결정한다. 이 경우의 웨이퍼 스테이지 (WST) 의 이동은 주제어 장치 (20) 에 의해, X 인코더 (70D) 의 계측치 및 Y 축 간섭계 (16) 의 계측치에 기초하여, 스테이지 구동계 (124) 의 각 모터를 구동함으로써 행해진다. 얼라인먼트 개시 위치에 위치 결정된 상태에서는, 웨이퍼 (W) 가 탑재된 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치 (θz 회전을 포함한다) 의 제어는, X 스케일 (39X1, 39X2) 에 각각 대향하는 헤드 유닛 (62D) 이 구비하는 2 개의 X 헤드 (66), 및 Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 Y 헤드 (64y2, 64y1)(4 개의 인코더) 의 계측치에 기초하여 행해진다.
다음으로, 주제어 장치 (20) 는, 상기 4 개의 인코더의 계측치에 기초하여, 웨이퍼 스테이지 (WST) 를 +Y 방향으로 소정 거리 이동시켜 도 12(A) 에 나타나는 위치에 위치 결정하고, 프라이머리 얼라인먼트계 (AL1), 세컨더리 얼라인먼트계 (AL22, AL23) 를 이용하여, 3 개의 제 1 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고 (도 12(A) 중의 별 마크 참조), 상기 3 개의 얼라인먼트계 (AL1, AL22, AL23) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다. 또한, 이 때 얼라인먼트 마크를 검출하고 있지 않은, 양단의 세컨더리 얼라인먼트계 (AL21, AL24) 는 웨이퍼 테이블 (WTB)(또는 웨이퍼) 에 검출광을 조사하지 않도록 해도 되고, 조사하도록 해도 된다. 또한, 본 실시형태의 웨이퍼 얼라인먼트에서는, 프라이머리 얼라인먼트계 (AL1) 가 웨이퍼 테이블 (WTB) 의 센터 라인 상에 배치되도록, 웨이퍼 스테이지 (WST) 는 그 X 축 방향의 위치가 설정되고, 이 프라이머리 얼라인먼트계 (AL1) 는 웨이퍼의 자오선 상에 위치하는 얼라인먼트 쇼트 영역의 얼라인먼트 마크를 검출한다. 또한, 웨이퍼 (W) 상에서 각 쇼트 영역의 내부에 얼라인먼트 마크가 형성되는 것으로 해도 되지만, 본 실시형태에서는 각 쇼트 영역의 외부, 즉, 웨이퍼 (W) 의 다수의 쇼트 영역을 구획하는 스트리트 라인 (스크라이브 라인) 상에 얼라인먼트 마크가 형성되어 있는 것으로 한다.
다음으로, 주제어 장치 (20) 는, 상기 4 개의 인코더의 계측치에 기초하여, 웨이퍼 스테이지 (WST) 를 +Y 방향으로 소정 거리 이동시켜 5 개의 얼라인먼트계 (ALl, AL21 ∼ AL24) 가 웨이퍼 (W) 상의 5 개의 제 2 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출 가능해지는 위치 에 위치 결정하고, 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여, 5 개의 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고, 상기 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다.
다음으로, 주제어 장치 (20) 는, 상기 4 개의 인코더의 계측치에 기초하여, 웨이퍼 스테이지 (WST) 를 +Y 방향으로 소정 거리 이동시켜 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 가 웨이퍼 (W) 상의 5 개의 제 3 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출 가능해지는 위치에 위치 결정하고, 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여, 5 개의 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고 (도 12(B) 중의 별 마크 참조), 상기 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다.
다음으로, 주제어 장치 (20) 는, 상기 4 개의 인코더의 계측치에 기초하여, 웨이퍼 스테이지 (WST) 를 +Y 방향으로 소정 거리 이동시켜 프라이머리 얼라인먼트계 (AL1), 세컨더리 얼라인먼트계 (AL22, AL23) 를 이용하여, 웨이퍼 (W) 상의 3 개의 제 4 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출 가능해지는 위치에 위치 결정하고, 상기 3 개의 얼라인먼트계 (ALl, AL22, AL23) 를 이용하여, 3 개의 얼라인먼트 마크를 거의 동시에 또한 개별 적으로 검출하고, 상기 3 개의 얼라인먼트계 (AL1, AL22, AL23) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다.
그리고, 주제어 장치 (20) 는, 이와 같이 하여 얻은 합계 16 개의 얼라인먼트 마크의 검출 결과와 대응하는 상기 4 개의 인코더의 계측치와, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인을 이용하여, 예를 들어 일본 공개특허공보 소61-44429호 (대응하는 미국 특허 제4,780,617호 명세서) 등에 개시되는 EGA 방식으로 통계 연산을 실시하여, 상기 4 개의 인코더 (4 개의 헤드 유닛) 의 계측축으로 규정되는 좌표계 (예를 들어, 투영 광학계 (PL) 의 광축을 원점으로 하는 XY 좌표계) 상에 있어서의 웨이퍼 (W) 상의 모든 쇼트 영역의 배열을 산출한다.
이와 같이, 본 실시형태에서는, 웨이퍼 스테이지 (WST) 를 +Y 방향으로 이동시키고, 그 이동 경로 상에 있어서의 4 지점에 웨이퍼 스테이지 (WST) 를 위치 결정함으로써, 합계 16 지점의 얼라인먼트 쇼트 영역 (AS) 에 있어서의 얼라인먼트 마크의 위치 정보를, 16 지점의 얼라인먼트 마크를 단일 얼라인먼트계에서 순차적으로 검출하는 경우 등에 비하여, 현격히 단시간에 얻을 수 있다. 이 경우에 있어서, 예를 들어 얼라인먼트계 (ALl, AL22, AL23) 에 대하여 보면 특히 알기 쉽지만, 상기의 웨이퍼 스테이지 (WST) 의 이동하는 동작과 연동하여, 이들 얼라인먼트계 (AL1, AL22, AL23) 는 각각, 검출 영역 (예를 들어, 검출광의 조사 영역에 상당) 내에 순차적으로 배치되는, Y 축 방향을 따라 배열된 복수의 얼라인먼트 마크를 검 출한다. 이 때문에, 상기의 얼라인먼트 마크의 계측시에, 웨이퍼 스테이지 (WST) 를 X 축 방향으로 이동시킬 필요가 없게 되어 있다.
또한, 이 경우, 웨이퍼 스테이지 (WST) 의 XY 평면내에서의 위치 (특히 Y 위치 (즉, 복수의 얼라인먼트계에 대한 웨이퍼 (W) 의 진입 정도)) 에 의해, 복수의 얼라인먼트계에 의해 거의 동시에 검출되는 웨이퍼 (W) 상의 얼라인먼트 마크의 검출 점수 (계측 점수) 가 상이하다. 이 때문에, 웨이퍼 스테이지 (WST) 를 복수 얼라인먼트계의 배열 방향 (X 축 방향) 에 직교하는 Y 축 방향으로 이동시킬 때에, 웨이퍼 (W) 상의 서로 상이한 위치의 마크를, 웨이퍼 스테이지 (WST) 의 위치에 따라, 환언하면 웨이퍼 (W) 상의 쇼트 배열에 따라, 필요한 수의 얼라인먼트계를 이용하여 동시에 검출할 수 있다.
그런데, 웨이퍼 (W) 의 표면은 이상적인 평면이 아니고, 다소의 요철이 있는 것이 통상이다. 따라서, 웨이퍼 테이블 (WTB) 의 Z 축 방향 (투영 광학계 (PL) 의 광축 (AX) 에 평행한 방향) 의 어느 위치에서만, 상기 서술한 복수의 얼라인먼트계에 의한 동시 계측을 실시하는 경우에는, 적어도 1 개의 얼라인먼트계는 얼라인먼트 마크의 검출을 디포커스 상태에서 실시할 개연성이 높다. 그래서, 본 실시형태에서는, 다음과 같이 하여, 얼라인먼트 마크의 검출을 디포커스 상태에서 실시하는 것에서 기인하는 얼라인먼트 마크의 위치의 계측 오차를 억제하고 있다.
즉, 주제어 장치 (20) 는, 상기 서술한 각 얼라인먼트 쇼트 영역에 있어서의 얼라인먼트 마크의 검출을 위한 웨이퍼 스테이지 (WST) 의 위치 결정 위치마다, 복 수의 얼라인먼트계 (AL1, AL21 ∼ AL24) 와 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 에 탑재되어 있는 웨이퍼 (W) 사이의, XY 평면에 수직인 Z 축 방향 (포커스 방향) 에 있어서의 상대 위치 관계를 스테이지 구동계 (124) 의 일부를 구성하는 도시 생략된 Z·레벨링 기구로 변경하면서, 웨이퍼 (W) 상의 서로 상이한 위치에 형성된 얼라인먼트 마크 각각을 각 얼라인먼트 마크에 대응하는 각 얼라인먼트계에 의해 거의 동시에 검출시키도록 스테이지 구동계 (124)(Z·레벨링 기구) 와 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 제어한다.
도 13(A) ∼ 도 13(C) 에는, 전술한 제 3 얼라인먼트 쇼트 영역에 있어서의 얼라인먼트 마크의 검출 위치에 웨이퍼 스테이지 (WST) 가 위치 결정된 도 12(B) 에 나타나는 상태에 있어서의 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의한 웨이퍼 (W) 상의 마크 검출의 모습이 나타나 있다. 이들 도 13(A) ∼ 도 13(C) 는, 각각 상이한 Z 위치에 웨이퍼 테이블 (WTB)(웨이퍼 (W)) 을 위치시키고 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여 거의 동시에 상이한 얼라인먼트 마크를 검출하고 있는 모습을 나타내는 것이다. 도 13(A) 의 상태에서는, 양단의 얼라인먼트계 (AL21, AL24) 가 포커스 상태이고 나머지 얼라인먼트계는 디포커스 상태로 되어 있다. 도 13(B) 의 상태에서는, 얼라인먼트계 (AL22, AL23) 가 포커스 상태이고 나머지 얼라인먼트계는 디포커스 상태로 되어 있다. 도 13(C) 의 상태에서는, 중앙의 얼라인먼트계 (AL1) 만이 포커스 상태이고 나머지 얼라인먼트계는 디포커스 상태로 되어 있다.
이와 같이, 웨이퍼 테이블 (WTB)(웨이퍼 (W)) 의 Z 위치를 변화시킴으로써, 복수의 얼라인먼트계 (AL1, AL21 ∼ AL24) 와 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 에 탑재되어 있는 웨이퍼 (W) 사이의, Z 축 방향 (포커스 방향) 에 있어서의 상대 위치 관계를 변경하면서, 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의한 얼라인먼트 마크의 동시 계측을 실시함으로써, 어느 얼라인먼트계에 대해서도 거의 베스트 포커스 상태에서의 얼라인먼트 마크의 계측이 가능해진다. 따라서, 주제어 장치 (20) 는, 각 얼라인먼트계에 대하여, 예를 들어 가장 양호한 포커스 상태에서의 마크의 검출 결과를 우선하여 사용하는 것 등에 의해, 웨이퍼 (W) 표면의 요철 및 복수의 얼라인먼트계의 베스트 포커스차의 영향을 받지 않고, 웨이퍼 (W) 상의 서로 상이한 위치에 형성된 마크를 고정밀도로 검출할 수 있다.
또한, 상기 설명에서는, 각 얼라인먼트계에 대하여, 예를 들어 가장 양호한 포커스 상태에서의 마크의 검출 결과를 우선하여 사용하는 것으로 했지만, 이것에 한정되지 않고, 주제어 장치 (20) 는 디포커스 상태에서의 마크의 검출 결과도 이용하여, 얼라인먼트 마크의 위치 정보를 구해도 된다. 이 경우에는, 디포커스 상태에 따른 중량을 곱하여, 디포커스 상태에서의 마크의 검출 결과도 사용하는 것으로 해도 된다. 또한, 예를 들어 웨이퍼에 형성되는 레이어의 재료 등에 따라서는, 베스트 포커스 상태에서의 마크의 검출 결과보다, 디포커스 상태에서의 마크의 검출 결과가 양호해지는 경우가 있다. 이 경우, 각 얼라인먼트계에 대하여, 가장 양호한 결과가 얻어지는 포커스 상태, 즉, 디포커스 상태에서 마크의 검출을 실시하고, 그 검출 결과를 이용하여 마크의 위치 정보를 구해도 된다.
또한, 도 13(A) ∼ 도 13(C) 로부터도 알 수 있듯이, 모든 얼라인먼트계의 광축이 모두 동일한 이상의 방향 (Z 축 방향) 과 정확하게 일치하고 있다고는 한정할 수 없고, 이 Z 축에 대한 광축의 기울기 (텔레센트리시티) 의 영향에 의해 얼라인먼트 마크의 위치의 검출 결과에 오차가 포함될 우려가 있다. 따라서, 모든 얼라인먼트계의 광축의 Z 축에 대한 기울기를 미리 계측해 두고, 그 계측 결과에 기초하여, 얼라인먼트 마크의 위치의 검출 결과를 보정하는 것이 바람직하다.
다음으로, 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인 계측 (베이스 라인 체크) 에 대하여 설명한다. 여기서, 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인이란, 투영 광학계 (PL) 에 의한 패턴 (예를 들어 레티클 (R) 의 패턴) 의 투영 위치와 프라이머리 얼라인먼트계 (AL1) 의 검출 중심의 위치 관계 (또는 거리) 를 의미한다.
a. 이 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인 계측이 개시되는 시점에서는, 도 14(A) 에 나타내는 바와 같이, 노즐 유닛 (32) 에 의해, 투영 광학계 (PL) 와 계측 테이블 (MTB) 및 CD 바 (46) 의 적어도 일방과의 사이에 액침 영역 (14) 이 형성되어 있다. 즉, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 는 이간된 상태에 있다.
프라이머리 얼라인먼트계 (AL1) 의 베이스 라인 계측시에, 먼저, 주제어 장치 (20) 는, 도 14(A) 에 나타내는 바와 같이, 전술한 계측 플레이트 (30) 의 중앙 에 위치하는 기준 마크 (FM) 를 프라이머리 얼라인먼트계 (AL1) 로 검출 (관찰) 한다 (도 14(A) 중의 별 마크 참조). 그리고, 주제어 장치 (20) 는, 그 프라이머리 얼라인먼트계 (AL1) 의 검출 결과와 그 검출시에 있어서의 인코더 (70A ∼ 70D) 의 계측치를 대응시켜 메모리에 기억한다. 이 처리를, 이하에서는, 편의상 Pri-BCHK 의 전반의 처리라고 부르는 것으로 한다. 이 Pri-BCHK 의 전반의 처리시에는, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치는, X 스케일 (39X1, 39X2) 에 대향하는 도 14(A) 중에 동그라미로 둘러싸여 표시되는 2 개의 X 헤드 (66)(인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 대향하는 도 14(A) 중에 동그라미로 둘러싸여 표시되는 2 개의 Y 헤드 (64y2, 64y1)(인코더 (70A, 70C)) 에 기초하여 제어되어 있다.
b. 다음으로, 주제어 장치 (20) 는, 도 14(B) 에 나타내는 바와 같이, 계측 플레이트 (30) 가 투영 광학계 (PL) 의 바로 아래에 위치되도록, 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 이동을 개시한다. 이 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 이동 개시 후, 주제어 장치 (20) 는, 간격 검지 센서 (43A, 43C) 의 출력 에 기초하여 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 의 접근을 감지하고, 이것에 전후하여, 즉, 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 이동 중에, 전술한 구동 기구 (34A, 34B) 를 통하여 셔터 (49A, 49B) 를 열기 시작하여 그 셔터를 개방함으로써, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 의 추가적인 접근을 허가한다. 또한, 주제어 장치 (20) 는, 셔터 (49A, 49B) 의 개방을 개폐 센서 (101) 의 검출 결과에 기초하여 확인한다.
c. 그 다음에, 주제어 장치 (20) 는, 충돌 검지 센서 (43B, 43C) 의 출력에 기초하여, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 가 접촉하는 (또는 300㎛ 정도의 거리에 근접하는) 것을 검지하면 즉시, 웨이퍼 스테이지 (WST) 를 일단 정지시킨다. 그 후, 주제어 장치 (20) 는, 계측 스테이지 (MST) 와 웨이퍼 스테이지 (WST) 를 접촉 상태를 유지한 채 (혹은 300㎛ 정도의 거리를 유지한 채) 일체적으로 더욱 +Y 방향으로 이동시킨다. 그리고, 이 이동의 도중에 액침 영역 (14) 이 CD 바 (46) 로부터 웨이퍼 테이블 (WTB) 에 수수(授受)된다.
d. 그리고, 도 14(B) 에 나타나는 위치에 웨이퍼 스테이지 (WST) 가 도달하면, 주제어 장치 (20) 는 양 스테이지 (WST, MST) 를 정지시키고, 투영 광학계 (PL) 에 의해 투영된 레티클 (R) 상의 한 쌍의 계측 마크의 투영 이미지 (공간 이미지) 를 계측 플레이트 (30) 를 포함하는 전술한 공간 이미지 계측 장치 (45) 를 이용하여 계측한다. 예를 들어, 전술한 일본 공개특허공보 2002-14005호 (대응하는 미국 특허 출원 공개 제2002/0041377호 명세서) 등에 개시되는 방법과 마찬가지로, 한 쌍의 공간 이미지 계측 슬릿 패턴 (SL) 을 사용한 슬릿 스캔 방식의 공간 이미지 계측 동작으로 한 쌍의 계측 마크의 공간 이미지를 각각 계측하고, 그 계측 결과 (웨이퍼 테이블 (WTB) 의 XY 위치에 따른 공간 이미지 강도) 를 메모리에 기억한다. 이 레티클 (R) 상의 한 쌍의 계측 마크의 공간 이미지의 계측 처리를, 이하에서는, 편의상 Pri-BCHK 의 후반의 처리라고 부르는 것으로 한다. 이 Pri-BCHK 의 후반의 처리시에는, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치는 X 스 케일 (39X1, 39X2) 에 대향하는 도 14(B) 중에 동그라미로 둘러싸여 표시되는 2 개의 X 헤드 (66)(인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 대향하는 도 14(B) 중에 동그라미로 둘러싸여 표시되는 2 개의 Y 헤드 (64)(인코더 (70A, 70C)) 에 기초하여 제어되어 있다.
그리고, 주제어 장치 (20) 는, 전술한 Pri-BCHK 의 전반의 처리의 결과와 Pri-BCHK 의 후반의 처리의 결과에 기초하여, 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인을 산출한다.
또한, 상기 서술한 바와 같이 하여, 이 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인 계측이 종료된 시점 (즉, Pri-BCHK 의 후반의 처리가 종료된 시점) 에서는, 계측 스테이지 (MST) 와 웨이퍼 스테이지 (WST) 는 접촉 상태 (혹은 300㎛ 정도의 거리 떨어진 상태) 에 있다.
다음으로, 주로 로트의 웨이퍼에 대한 처리를 개시하기 직전 (로트 선두) 에 행해지는 세컨더리 얼라인먼트계 (AL2n)(n = 1 ∼ 4) 의 베이스 라인 계측 동작에 대하여 설명한다. 여기서, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인이란, 프라이머리 얼라인먼트계 (AL1)(의 검출 중심) 를 기준으로 하는 각 세컨더리 얼라인먼트계 (AL2n)(의 검출 중심) 의 상대 위치를 의미한다. 또한, 세컨더리 얼라인먼트계 (AL2n)(n = 1 ∼ 4) 는, 예를 들어 로트내의 웨이퍼의 쇼트 맵 데이터에 따라, 전술한 회전 구동 기구 (60n) 에 의해 구동되어 X 축 방향의 위치가 설정되어 있는 것으로 한다.
e. 로트 선두에 행해지는 세컨더리 얼라인먼트계의 베이스 라인 계측 (이하, 적절히 Sec-BCHK 라고도 부른다) 시에는, 주제어 장치 (20) 는 먼저, 도 15(A) 에 나타내는 바와 같이, 로트 선두의 웨이퍼 (W)(프로세스 웨이퍼) 상의 특정 얼라인먼트 마크를 프라이머리 얼라인먼트계 (AL1) 로 검출하고 (도 15(A) 중의 별 마크 참조), 그 검출 결과와 그 검출시의 인코더 (70A ∼ 70D) 의 계측치를 대응시켜 메모리에 저장한다. 이 도 15(A) 의 상태에서는, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치는 X 스케일 (39X1, 39X2) 에 대향하는 2 개의 X 헤드 (66)(인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 대향하는 2 개의 Y 헤드 (64y2, 64y1)(인코더 (70A, 70C)) 에 기초하여, 주제어 장치 (20) 에 의해 제어되어 있다.
f. 다음으로, 주제어 장치 (20) 는, 웨이퍼 스테이지 (WST) 를 -X 방향으로 소정 거리 이동시키고, 도 15(B) 에서 나타내는 바와 같이, 상기의 특정 얼라인먼트 마크를 세컨더리 얼라인먼트계 (AL21) 로 검출하고 (도 15(B) 중의 별 마크 참조), 그 검출 결과와 그 검출시의 인코더 (70A ∼ 70D) 의 계측치를 대응시켜 메모리에 저장한다. 이 도 15(B) 의 상태에서는, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치는 X 스케일 (39X1, 39X2) 에 대향하는 2 개의 X 헤드 (66)(인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 대향하는 2 개의 Y 헤드 (64)(인코더 (70A, 70C)) 에 기초하여 제어되어 있다.
g. 동일하게 하여, 주제어 장치 (20) 는, 웨이퍼 스테이지 (WST) 를 +X 방향으로 순차적으로 이동시켜 상기의 특정 얼라인먼트 마크를 나머지의 세컨더리 얼라인먼트계 (AL22, AL23, AL24) 로 순차적으로 검출하고, 그 검출 결과와 검출시의 인코더 (70A ∼ 70D) 의 계측치를 순차적으로 대응시켜 메모리에 저장한다.
h. 그리고, 주제어 장치 (20) 는, 상기 e. 의 처리 결과와 상기 f. 또는 g. 의 처리 결과에 기초하여, 각 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인을 각각 산출한다.
이와 같이, 로트 선두의 웨이퍼 (W)(프로세스 웨이퍼) 를 이용하여, 그 웨이퍼 (W) 상의 동일한 얼라인먼트 마크를 프라이머리 얼라인먼트계 (AL1) 와 각 세컨더리 얼라인먼트계 (AL2n) 로 검출함으로써, 각 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인을 구하므로, 이 처리에 의해, 결과적으로, 프로세스에서 기인되는 얼라인먼트계간의 검출 오프셋의 차이도 보정된다. 또한, 웨이퍼의 얼라인먼트 마크의 대신에, 웨이퍼 스테이지 (WST) 또는 계측 스테이지 (MST) 상의 기준 마크를 이용하여, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인 계측을 행해도 된다. 이 경우, 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인 계측에서 사용되는 계측 플레이트 (30) 의 기준 마크 (FM) 를 겸용하는, 즉, 기준 마크 (FM) 를 세컨더리 얼라인먼트계 (AL2n) 로 각각 검출해도 된다. 혹은, 예를 들어 세컨더리 얼라인먼트계 (AL2n) 와 동일한 위치 관계에서 n 개의 기준 마크를 웨이퍼 스테이지 (WST) 또는 계측 스테이지 (MST) 에 형성하여, 세컨더리 얼라인먼트계 (AL2n) 에 의한 기준 마크의 검출을 거의 동시에 실행 가능하게 해도 된다. 이 기준 마크로서, 예를 들어 CD 바 (46) 의 기준 마크 (M) 를 이용해도 된다. 또한, 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인 계측용의 기준 마크 (FM) 에 대하여 소정의 위치 관계에서, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인 계측용의 기준 마크를 웨이퍼 스테이지 (WST) 에 형성하여, 프라이머리 얼라인먼트계 (AL1) 에 의한 기준 마크 (FM) 의 검출과 거의 동시에, 세컨더리 얼라인먼트계 (AL2n) 에 의한 기준 마크의 검출을 실행 가능하게 해도 된다. 이 경우, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인 계측용의 기준 마크는 1 개이어도 되지만, 복수, 예를 들어 세컨더리 얼라인먼트계 (AL2n) 와 동일 수 형성해도 된다. 또한, 본 실시형태에서는 프라이머리 얼라인먼트계 (AL1) 및 세컨더리 얼라인먼트계 (AL2n) 가 각각 2 차원 마크 (X, Y 마크) 를 검출 가능하므로, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인 계측시에 2 차원 마크를 사용함으로써, 세컨더리 얼라인먼트계 (AL2n) 의 X 축 및 Y 축 방향의 베이스 라인을 동시에 구할 수 있다. 본 실시형태에서는, 기준 마크 (FM, M) 및 웨이퍼의 얼라인먼트 마크는, 예를 들어 X 축 및 Y 축 방향으로 각각 복수개의 라인 마크가 주기적으로 배열되는 1 차원의 X 마크 및 Y 마크를 포함한다.
다음으로, 로트내의 웨이퍼의 처리 중에, 소정의 타이밍, 예를 들어 웨이퍼 의 노광 종료부터 다음 웨이퍼의 웨이퍼 테이블 (WTB) 상으로의 로드가 완료될 때까지, 즉, 웨이퍼 교환 중에 행해지는 Sec-BCHK 의 동작에 대하여 설명한다. 이 경우의 Sec-BCHK 는 웨이퍼 교환마다라는 인터벌로 행해지므로, 이하에서는 Sec-BCHK (인터벌) 라고도 기술한다.
이 Sec-BCHK (인터벌) 시에는, 주제어 장치 (20) 는, 도 16 에 나타내는 바와 같이, 프라이머리 얼라인먼트계 (AL1) 의 검출 중심이 배치되는 상기 직선 (LV) 과 센터 라인 (CL) 이 거의 일치하고, 또한 CD 바 (46) 가 프라이머리 얼라인먼트계 (AL1) 및 세컨더리 얼라인먼트계 (AL2n) 에 대향하도록 계측 스테이지 (MST) 를 이동시킨다. 그리고, CD 바 (46) 상의 한 쌍의 기준 격자 (52) 와 각각과 대향하는 도 16 중에 동그라미로 둘러싸여 표시되는 Y 헤드 (64y1, 64y2)(Y 축 리니어 인코더 (70E, 70F)) 의 계측치에 기초하여, CD 바 (46) 의 θz 회전을 조정함과 함께, 계측 테이블 (MTB) 의 센처 라인 (CL) 상 또는 그 근방에 위치하는 기준 마크 (M) 를 검출하는 도 16 중에 동그라미로 둘러싸여 표시되는 프라이머리 얼라인먼트계 (AL1) 의 계측치에 기초하여, 예를 들어 간섭계의 계측치를 이용하여 CD 바 (46) 의 XY 위치를 조정한다.
그리고, 이 상태에서, 주제어 장치 (20) 는, 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 를 이용하여, 각각의 세컨더리 얼라인먼트계의 시야내에 있는 CD 바 (46) 상의 기준 마크 (M) 를 동시에 계측함으로써, 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 베이스 라인을 각각 구한다. 그리고, 그 후의 처리시에는, 새롭게 계측한 베이스 라인을 사용함으로써, 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 베이스 라인의 드리프트가 보정된다.
또한, 상기의 Seo-BCHK (인터벌) 는, 복수의 세컨더리 얼라인먼트계에 의한 상이한 기준 마크의 동시 계측에 의해 실시하는 것으로 했지만, 이것에 한정되지 않고, CD 바 (46) 상의 동일한 기준 마크 (M) 를 복수의 세컨더리 얼라인먼트계로 순차적으로 (비동시에) 계측함으로써, 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 베이스 라인을 각각 구하는 것으로 해도 된다.
다음으로, 도 17(A) 및 도 17(B) 에 기초하여, 세컨더리 얼라인먼트계 (AL2n) 의 위치 조정의 동작에 대하여 간단하게 설명한다.
조정 전에, 프라이머리 얼라인먼트계 (AL1) 와 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 위치 관계가 도 17(A) 의 위치 관계였던 것으로 한다.
주제어 장치 (20) 는, 도 17(B) 에 나타내는 바와 같이, 프라이머리 얼라인먼트계 (AL1) 및 4 개의 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 가 CD 바 (46) 의 상방에 위치하도록 계측 스테이지 (MST) 를 이동시킨다. 다음으로, 상기 서술한 Sec-BCHK (인터벌) 시와 동일하게 하여, Y 축 리니어 인코더 (70E, 70F)(Y 헤드 (64y1, 64y2) 의 계측치에 기초하여, CD 바 (46) 의 θz 회전을 조정함과 함께, 계측 테이블 (MST) 의 센터 라인 (CL) 상 또는 그 근방에 위치하는 기준 마크 (M) 를 검출하는 프라이머리 얼라인먼트계 (AL1) 의 계측치에 기초하여 CD 바 (46) 의 XY 위치를 조정한다. 이것과 동시에, 주제어 장치 (20) 는, 다음의 노광 대상인 웨이퍼 상의 얼라인먼트 쇼트 영역의 사이즈 및 배치 (즉, 웨이퍼 상의 얼라인먼트 마크의 배치) 의 정보를 포함하는 쇼트 맵 정보에 기초하여, 회전 구동 기구 (601 ∼ 604) 를 구동시켜 각 세컨더리 얼라인먼트계 (AL2n) 가 그 선단에 형성된 아암 (56) 을 각각의 회전 중심을 중심으로 하여 도 17(B) 중의 화살표로 나타내는 바와 같이 각각 회전시킨다. 이 경우, 주제어 장치 (20) 는, 각 세컨더리 얼라인먼트계 (AL2n) 의 검출 결과를 모니터하면서, CD 바 (46) 상의 원하는 기준 마크 (M) 가 각각의 세컨더리 얼라인먼트계 (AL2n) 의 시야 (검출 영역) 에 들어가는 위치에서 각 아암 (56) 의 회전을 정지시킨다. 이로써, 검출해야 할 얼라인먼트 쇼트 영역에 첨부된 얼라인먼트 마크의 배치에 맞추어, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인이 조정 (변경) 된다. 즉, 세컨더리 얼라인먼트계 (AL2n) 의 검출 영역의 X 축 방향의 위치가 변경된다. 이것에 의해, 웨이퍼 (W) 를 Y 축 방향으로만 이동시키는 것만으로, 각 세컨더리 얼라인먼트계 (AL2n) 에 의해 웨이퍼 (W) 상에서 X 축 방향의 위치가 거의 동일하고 또한 Y 축 방향의 위치가 상이한 복수의 얼라인먼트 마크를 순차적으로 검출할 수 있다. 본 실시형태에서는, 웨이퍼 얼라인먼트 동작, 즉, 프라이머리 얼라인먼트계 (AL1) 및 세컨더리 얼라인먼트계 (AL2n) 에 의한 웨이퍼의 얼라인먼트 마크의 검출 동작에 있어서, 후술과 같이 웨이퍼 (W) 를 Y 축 방향으로만 1 차원 이동시키는 것으로 하고 있지만, 그 동작의 도 중에 적어도 1 개의 세컨더리 얼라인먼트계 (AL2n) 의 검출 영역과 웨이퍼 (W) 를 Y 축 방향과 상이한 방향 (예를 들어 X 축 방향) 으로 상대 이동시켜도 된다. 이 경우, 세컨더리 얼라인먼트계 (AL2n) 의 이동에 의해 검출 영역의 위치를 조정해도 되지만, 조정 시간이나 베이스 라인의 변화 등을 고려하면, 웨이퍼 (W) 만을 이동시켜도 된다.
그리고, 이와 같이 하여 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인을 조정한 후, 주제어 장치 (20) 는, 각 버큠 패드 (58n) 를 작동시켜 각 아암 (56n) 을 도시 생략된 메인 프레임에 흡착 고정시킨다. 이로써, 각 아암 (56n) 의 회전 각도 조정 후의 상태가 유지된다.
또한, 상기 설명에서는, CD 바 (46) 상의 상이한 위치에 형성된 기준 마크 (M) 를 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 에서 동시에 또한 개별적으로 검출하는 것으로 했지만, 이것에 한정되지 않고, 예를 들어 웨이퍼 (W)(프로세스 웨이퍼) 상의 상이한 위치에 형성된 얼라인먼트 마크를 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 에서 동시에 또한 개별적으로 검출하고, 각 아암 (56n) 의 회전을 조정함으로써, 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인을 조정하는 것도 가능하다. 또한, 본 실시형태에서는, CD 바 (46) 의 기준 마크 (M) 등을 이용하여 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인 (검출 영역의 위치) 을 조정하는 것으 로 했지만, 조정 동작은 이것에 한정되는 것이 아니고, 예를 들어 세컨더리 얼라인먼트계 (AL2n) 를 전술한 센서로 그 위치를 계측하면서 목표 위치까지 이동시키기만 해도 된다. 이 경우, 그 센서에 의해 계측된 세컨더리 얼라인먼트계 (AL2n) 의 위치 또는 이동량에 기초하여 이동 전에 계측된 베이스 라인을 보정하거나, 혹은 이동 후에 베이스 라인 계측을 재차 실행하거나, 또는 적어도 세컨더리 얼라인먼트계 (AL2n) 의 베이스 라인 계측을 그 이동 후에 실시하는 시퀀스를 채용하면 된다.
다음으로, 본 실시형태의 노광 장치 (100) 에서 행해지는 웨이퍼 (W) 표면의 Z 축 방향에 관한 위치 정보 (면위치 정보) 의 검출 (이하, 포커스 매핑이라고 부른다) 에 대하여 설명한다.
이 포커스 매핑시에는, 주제어 장치 (20) 는, 도 18(A) 에 나타내는 바와 같이, X 스케일 (39X2) 에 대향하는 X 헤드 (66)(X 리니어 인코더 (70D)) 와, Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 2 개의 Y 헤드 (64y2, 64y1)(Y 리니어 인코더 (70A, 70C)) 에 기초하여 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치를 관리하고 있다. 이 도 18 (A) 의 상태에서는, 전술한 직선 (LV) 에, 웨이퍼 테이블 (WTB) 의 중심 (웨이퍼 (W) 의 중심에 거의 일치) 을 통과하는 Y 축에 평행한 직선 (센터 라인) 이 일치한 상태가 되어 있다.
그리고, 이 상태에서, 주제어 장치 (20) 는, 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 주사 (스캔) 를 개시하고, 이 주사 개시 후, 웨이퍼 스테이지 (WST) 가 +Y 방향으로 이동하고, 다점 AF 계 (90a, 90b) 의 검출 빔이 웨이퍼 (W) 상에 닿기 시작할 때까지의 동안에, Z 센서 (72a ∼ 72d) 와 다점 AF 계 (90a, 90b) 를 함께 작동시킨다 (ON 으로 한다).
그리고, 이 Z 센서 (72a ∼ 72d) 와 다점 AF 계 (90a, 90b) 가 동시에 작동하고 있는 상태에서, 도 18(B) 에 나타내는 바와 같이, 웨이퍼 스테이지 (WST) 가+Y 방향으로 진행하고 있는 동안에, 소정의 샘플링 간격으로, Z 센서 (72a ∼ 72d) 로 계측되는 웨이퍼 테이블 (WTB) 표면 (플레이트 (28) 의 표면) 의 Z 축 방향에 관한 위치 정보 (면위치 정보) 와, 다점 AF 계 (90a, 90b) 에서 검출되는 복수의 검출점에 있어서의 웨이퍼 (W) 표면의 Z 축 방향에 관한 위치 정보 (면위치 정보) 를 입력하고, 그 입력한 각 면위치 정보와 각 샘플링시의 Y 리니어 인코더 (70A, 70C) 의 계측치의 삼자를 서로 대응시켜 도시 생략된 메모리에 순서대로 저장한다.
그리고, 다점 AF 계 (90a, 90b) 의 검출 빔이 웨이퍼 (W) 에 닿지 않게 되면, 주제어 장치 (20) 는, 상기의 샘플링을 종료하고, 다점 AF 계 (90a, 90b) 의 각 검출점에 대한 면위치 정보를, 동시에 입력한 Z 센서 (72a ∼ 72d) 에 의한 면위치 정보를 기준으로 하는 데이터로 환산한다.
이것을 더욱 상세히 서술하면, Z 센서 (72a, 72b) 의 계측치의 평균치에 기초하여, 플레이트 (28) 의 -X 측 단부 근방의 영역 (Y 스케일 (39Y2) 이 형성된 영역) 상의 소정의 점 (예를 들어, Z 센서 (72a, 72b) 각각의 계측점의 중점, 즉, 다점 AF 계 (90a, 90b) 의 복수의 검출점의 배열과 거의 동일한 X 축 상의 점에 상 당: 이하, 이 점을 왼쪽 계측점이라고 부른다) 에 있어서의 면위치 정보를 구한다. 또한, Z 센서 (72c, 72d) 의 계측치의 평균치에 기초하여, 플레이트 (28) 의 +X 측 단부 근방의 영역 (Y 스케일 (39Y1) 이 형성된 영역) 상의 소정의 점 (예를 들어, Z 센서 (72c, 72d) 각각의 계측점의 중점, 즉, 다점 AF 계 (90a, 90b) 의 복수의 검출점의 배열과 거의 동일한 X 축 상의 점에 상당: 이하, 이 점을 오른쪽 계측점이라고 부른다) 에 있어서의 면위치 정보를 구한다. 그리고, 주제어 장치 (20) 는, 도 18(C) 에 나타내는 바와 같이, 다점 AF 계 (90a, 90b) 의 각 검출점에 있어서의 면위치 정보를 왼쪽 계측점 (P1) 의 면위치와 오른쪽 계측점 (P2) 의 면위치를 연결하는 직선을 기준으로 하는 면위치 데이터 (z1 ∼ zk) 로 환산한다. 이와 같은 환산을, 주제어 장치 (20) 는 모든 샘플링시에 입력한 정보에 대하여 실시한다.
이와 같이 하여, 미리 상기의 환산 데이터를 취득해 둠으로써, 예를 들어 노광시 등에는, 전술한 Z 센서 (741,j, 742,j 및 761,q, 762,q) 로 웨이퍼 테이블 (WTB) 표면 (Y 스케일 (39Y2) 이 형성된 영역 상의 점, 및 Y 스케일 (39Y1) 이 형성된 영역 상의 점) 을 계측하고, 웨이퍼 테이블 (WTB) 의 Z 위치와 XY 평면에 대한 경사 (주로 θy 회전) 를 산출한다. 이 산출한 웨이퍼 테이블 (WTB) 의 Z 위치와 XY 평면에 대한 경사와 전술한 면위치 데이터 (z1 ∼ zk) 를 사용함으로써, 웨이퍼 표면의 면위치 정보를 실제로 취득하지 않고, 웨이퍼 (W) 상면의 면위치 제어가 가능해진다. 따라서, 다점 AF 계를 투영 광학계 (PL) 로부터 멀어진 위치에 배치해 도 아무런 지장이 없기 때문에, 워킹 디스턴스가 좁은 노광 장치 등이라도, 본 실시형태의 포커스 매핑은 바람직하게 적용할 수 있다.
또한, 상기의 설명에서는, 왼쪽 계측점 (P1) 의 면위치와 오른쪽 계측점 (P2) 의 면위치를 Z 센서 (72a, 72b) 의 계측치의 평균치, Z 센서 (72c, 72d) 의 평균식에 각각 기초하여 산출하는 것으로 했지만, 이것에 한정되지 않고, 다점 AF 계 (90a, 90b) 의 각 검출점에 있어서의 면위치 정보를, 예를 들어 Z 센서 (72a, 72c) 에 의해 계측되는 면위치를 연결하는 직선을 기준으로 하는 면위치 데이터로 환산해도 된다. 이 경우, 각 샘플링 타이밍으로 취득한 Z 센서 (72a) 의 계측치와 Z 센서 (72b) 의 계측치의 차, 및 Z 센서 (72c) 의 계측치와 Z 센서 (72d) 의 계측치의 차를 각각 구해 둔다. 그리고, 노광시 등에 면위치 제어를 실시할 때에, Z 센서 (741,j, 742,j 및 761,q, 762,q) 로 웨이퍼 테이블 (WTB) 표면을 계측하여 웨이퍼 테이블 (WTB) 의 Z 위치와 XY 평면에 대한 경사 (θy 회전뿐만 아니라 θx 회전도) 를 산출함으로써, 그 산출한 웨이퍼 테이블 (WTB) 의 Z 위치와 XY 평면에 대한 경사와 전술한 면위치 데이터 (z1 ∼ zk) 및 상기 차이를 사용함으로써, 웨이퍼 표면의 면위치 정보를 실제로 취득하지 않고, 웨이퍼 (W) 의 면위치 제어가 가능해진다.
이상의 설명은, 웨이퍼 테이블 (WTB) 표면에 요철이 존재하지 않는 것을 전제로 하고 있다. 그러나, 실제로는, 도 18(C) 에 나타내는 바와 같이, 웨이퍼 테이블 (WTB) 의 표면, 즉, Y 스케일 (39Y2) 이 형성된 제 1 부분 영역 (28b1) 의 표면 및 Y 스케일 (39Y1) 이 형성된 제 2 부분 영역 (28b2) 의 표면 등에는 요철이 있다. 그러나, 이와 같이 웨이퍼 테이블 (WTB) 의 표면에 요철이 존재하는 경우라도, 웨이퍼 (W) 의 자오선 (웨이퍼 중심을 통과하는 Y 축에 평행한 직선) 상의 점에서는 매우 고정밀한 면위치 제어가 가능하다.
이하, 이것에 대하여 설명한다.
포커스 매핑을 실시할 때, 매핑시의 기준이 되는 Z 센서 (72a ∼ 72d) 는, 웨이퍼 테이블 (WTB) 표면 상의 어느 위치 (XY 좌표 위치) 의 면위치 정보를 검출하고 있다. 그리고, 포커스 매핑은 상기 서술한 설명으로부터 분명하듯이, 웨이퍼 스테이지 (WST) 의 X 위치를 고정시키고, +Y 방향으로 일직선으로 웨이퍼 스테이지 (WST) 를 이동시키면서 행해진다. 즉, 포커스 매핑을 실시할 때에 Z 센서 (72a ∼ 72d) 가 그 면위치 정보를 검출하는 라인 (제 2 발수판 (28b) 표면 상) 도 Y 축에 평행한 직선이 된다.
그 포커스 매핑을 하고 있을 때 (웨이퍼 스테이지 (WST) 가 +Y 방향으로 이동하고 있을 때) 에, 웨이퍼의 자오선 상에 위치하는 쇼트 영역은 웨이퍼 스테이지 (WST) 를 X 축 방향으로 이동시키지 않고, 노광 위치 (투영 광학계 (PL) 아래) 에 배치되게 된다. 자오선 상의 쇼트 영역이 노광 위치에 도달했을을 때에, Z 센서 (72a, 72b) 와 동일한 Y 축에 평행한 직선 상에 있고, 또한 1 쌍의 Z 센서 (741,4, 742,4), Z 센서 (72c, 72d) 와 동일한 Y 축에 평행한 직선 상에 있는 한 쌍의 Z 센서 (761,3, 762,3) 는 포커스 매핑시에 Z 센서 (72a, 72b) 및 Z 센서 (72c, 72d) 가 각각 면위치 정보를 검출하고 있던 웨이퍼 테이블 (WTB) 상의 점과 동일한 점에 있어서의 면위치 정보를 검출하게 된다. 즉, 다점 AF 계 (90a, 90b) 에 의한 면위치 정보의 검출의 기준이 되는, Z 센서가 계측하는 기준면이 포커스 매핑시와 노광시에서 동일해진다. 이 때문에, 웨이퍼 테이블 (WTB) 의 표면에 요철 또는 물결 등이 생겼다 하더라도, 자오선 상의 쇼트 영역을 노광할 때에는, 그 요철 및 물결 등을 고려하지 않고, 포커스 매핑시에 얻어진 Z 위치를 그대로 Z 위치로서 이용하여, 노광시의 웨이퍼의 포커스 제어를 실시할 수 있으므로, 고정밀의 포커스 제어가 가능해진다.
자오선 상 이외의 쇼트 영역을 노광할 때, 웨이퍼 테이블 (WTB) 의 표면에 요철 및 물결 등이 없는 경우에는, 상기 자오선 상의 쇼트 영역과 동일한 정도의 포커스 제어 정밀도를 확보할 수 있지만, 웨이퍼 테이블 (WTB) 의 표면에 요철 또는 물결 등이 있는 경우에는, 포커스 제어 정밀도는 후술하는 트래버스 Z 주행 보정의 정밀도에 의존한다. 또한, 주제어 장치 (20) 는 자오선 상 이외의 쇼트 영역을 노광하기 위하여, 웨이퍼 스테이지 (WST) 를 예를 들어 X 축 방향으로 이동시킬 때 등에는, 그 웨이퍼 스테이지 (WST) 의 이동에 수반하여, 복수의 Z 센서간에 있어서 계측치의 인계를 행한다.
다음으로, 포커스 캘리브레이션에 대하여 설명한다. 포커스 캘리브레이션이란, 어느 기준 상태에 있어서의 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보와, 다점 AF 계 (90a, 90b) 의 계측 플레이트 (30) 표면의 대표적인 검출점에 있어서의 검출 결과 (면위치 정보) 의 관계를 구하 는 처리 (포커스 캘리브레이션의 전반의 처리) 와, 상기의 기준 상태와 동일한 상태에 있어서, 공간 이미지 계측 장치 (45) 를 이용하여 검출한 투영 광학계 (PL) 의 베스트 포커스 위치에 대응하는, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 구하는 처리 (포커스 캘리브레이션의 후반의 처리) 를 행하고, 이들의 처리 결과에 기초하여, 다점 AF 계 (90a, 90b) 의 대표적인 검출점에 있어서의 오프셋, 즉, 투영 광학계 (PL) 의 베스트 포커스 위치와 다점 AF 계의 검출 원점의 편차를 구하는 등의 처리를 의미한다.
이 포커스 캘리브레이션시에, 주제어 장치 (20) 는, 도 19(A) 에 나타내는 바와 같이, X 스케일 (39X1, 39X2) 에 각각 대향하는 2 개의 X 헤드 (66)(X 리니어 인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 2 개의 Y 헤드 (64y2, 64y1)(Y 리니어 인코더 (70A, 70C)) 에 기초하여, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치를 관리하고 있다. 이 도 19(A) 의 상태에서는, 전술한 직선 (LV) 에 웨이퍼 테이블 (WTB) 의 센터 라인이 일치한 상태가 되어 있다. 또한, 이 도 19(A) 의 상태에서는, 웨이퍼 테이블 (WTB) 은 Y 축 방향에 관해서는 전술한 계측 플레이트 (30) 에 다점 AF 계 (90a, 90b) 로부터의 검출 빔이 조사되는 위치에 있다. 또한, 여기서는 도시가 생략되어 있지만, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 +Y 측에 계측 스테이지 (MST) 가 있고, 전술한 CD 바 (46) 및 웨이퍼 테이블 (WTB) 과 투영 광학계 (PL) 의 선단 렌즈 (191) 사이에 물이 유지되어 있다 (도 31 참조).
(a) 이 상태에서, 주제어 장치 (20) 는 다음과 같은 포커스 캘리브레이션의 전반의 처리를 실시한다. 즉, 주제어 장치 (20) 는 다점 AF 계 (90a, 90b) 의 검출 영역의 양 단부에 위치하는 검출점 각각의 근방의 전술한 Z 센서 (72a, 72b, 72c, 72d) 에 의해 검출되는 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 검출하면서, 그 면위치 정보를 기준으로 하여, 다점 AF 계 (90a, 90b) 를 이용하여 전술한 계측 플레이트 (30)(도 3 참조) 표면의 면위치 정보를 검출한다. 이로써, 전술한 직선 (LV) 에 웨이퍼 테이블 (WTB) 의 센터 라인이 일치한 상태에 있어서의 Z 센서 (72a, 72b, 72c, 72d) 의 계측치 (웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 와, 다점 AF 계 (90a, 90b) 의 계측 플레이트 (30) 표면의 검출점 (복수의 검출점 중 중앙 또는 그 근방에 위치하는 검출점) 에 있어서의 검출 결과 (면위치 정보) 의 관계가 구해진다.
(b) 다음으로, 주제어 장치 (20) 는 웨이퍼 스테이지 (WST) 를 +Y 방향으로 소정 거리 이동시키고, 계측 플레이트 (30) 가 투영 광학계 (PL) 의 바로 아래에 배치되는 위치에서 웨이퍼 스테이지 (WST) 를 정지시킨다. 그리고, 주제어 장치 (20) 는 다음과 같은 포커스 캘리브레이션의 후반의 처리를 실시한다. 즉, 주제어 장치 (20) 는, 도 19(B) 에 나타내는 바와 같이, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 계측하는 각 1 쌍의 Z 센서 (741,4, 742,4, 761,3, 762,3) 에 의해 계측되는 면위치 정보를 기준으로 하여 계측 플레이트 (30)(웨이퍼 테이블 (WTB)) 의 투영 광학계 (PL) 의 광축 방향에 관한 위치 (Z 위치) 를 제어하면서, 공간 이미지 계측 장치 (45) 를 이용하여, 레티클 (R), 또는 레티클 스테이지 (RST) 상의 도시 생략된 마크판에 형성된 계측 마크의 공간 이미지를 슬릿 스캔 방식으로 계측하고, 그 계측 결과에 기초하여 투영 광학계 (PL) 의 베스트 포커스 위치를 측정한다. 이 경우, 도 19(B) 에 나타내는 바와 같이, 액침 영역 (14) 이 투영 광학계 (PL) 와 계측 플레이트 (30)(웨이퍼 테이블 (WTB)) 사이에 형성되어 있으므로, 상기의 공간 이미지의 계측은 투영 광학계 (PL) 및 물을 통하여 행해진다. 또한, 도 19(B) 에서는 도시가 생략되어 있지만, 공간 이미지 계측 장치 (45) 의 계측 플레이트 (30) 등은 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 에 탑재되고, 수광 소자 등은 계측 스테이지 (MST) 에 탑재되어 있으므로, 상기의 공간 이미지의 계측은 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 가 접촉 상태 (또는 근접 상태) 를 유지한 채 행해진다 (도 33 참조). 상기의 측정에 의해, 전술한 직선 (LV) 에 웨이퍼 테이블 (WTB) 의 센터 라인이 일치한 상태에 있어서의 Z 센서 (741,4, 742,4, 761,3, 762,3) 의 계측치 (즉, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 가 구해진다. 이 계측치는 투영 광학계 (PL) 의 베스트 포커스 위치에 대응하고 있다.
(c) 이로써, 주제어 장치 (20) 는, 상기 (a) 의 포커스 캘리브레이션 전반의 처리에서 구한 Z 센서 (72a, 72b, 72c, 72d) 의 계측치 (웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 와 다점 AF 계 (90a, 90b) 에 의한 계측 플레이트 (30) 표면의 검출 결과 (면위치 정보) 의 관계와, 상기 (b) 의 포커스 캘리브레이션 후반의 처리에서 구한 투영 광학계 (PL) 의 베스트 포커스 위치에 대응하는 Z 센서 (741,4, 742,4, 761,3, 762,3) 의 계측치 (즉, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 에 기초하여, 다점 AF 계 (90a, 90b) 의 대표적인 검출점에 있어서의 오프셋, 즉, 투영 광학계 (PL) 의 베스트 포커스 위치와 다점 AF 계의 검출 원점의 편차를 구하는 것이 가능해진다. 본 실시형태에서는, 이 대표적인 검출점은, 예를 들어 복수의 검출점의 중앙 또는 그 근방의 검출점이지만, 그 수 및/또는 위치 등은 임의이어도 된다. 이 경우에 있어서, 주제어 장치 (20) 는, 그 대표적인 검출점에 있어서의 오프셋이 제로가 되도록 다점 AF 계의 검출 원점의 조정을 실시한다. 이 조정은, 예를 들어 수광계 (90b) 내부의 도시 생략된 평행 평면판의 각도 조정에 의해 광학적으로 행해도 되고, 혹은 전기적으로 검출 오프셋을 조정해도 된다. 또는, 검출 원점의 조정을 실시하지 않고, 그 오프셋을 기억해 두어도 된다. 여기서는, 상기의 광학적 수법에 의해, 그 검출 원점의 조정이 행해지는 것으로 한다. 이로써, 다점 AF 계 (90a, 90b) 의 포커스 캘리브레이션이 종료된다. 또한, 광학적 검출 원점의 조정에서는, 대표적인 검출점 이외의 나머지 검출점 모두에서 그 오프셋을 제로로 하는 것은 어려우므로, 나머지 검출점에서는 광학적 조정 후의 오프셋을 기억해 두는 것이 바람직하다.
다음으로, 다점 AF 계 (90a, 90b) 의 복수의 검출점에 개별적으로 대응하는 복수의 수광 소자 (센서) 간의 검출치의 오프셋 보정 (이하, AF 센서간 오프셋 보정이라고 부른다) 에 대하여 설명한다.
이 AF 센서간 오프셋 보정시에는, 주제어 장치 (20) 는, 도 20(A) 에 나타내는 바와 같이, 소정의 기준 평면을 구비한 전술한 CD 바 (46) 에 대하여 다점 AF 계 (90a, 90b) 의 조사계 (90a) 로부터 검출 빔을 조사시키고, CD 바 (46) 표면 (기준 평면) 으로부터의 반사광을 수광한 다점 AF 계 (90a, 90b) 의 수광계 (90b) 로부터의 출력 신호를 입력한다.
이 경우에 있어서, CD 바 (46) 표면이, XY 평면에 평행하게 설정되어 있다면, 주제어 장치 (20) 는, 상기 서술한 바와 같이 하여 입력한 출력 신호에 기초하여, 복수의 검출점에 개별적으로 대응하는 복수의 센서의 검출치 (계측치) 의 관계를 구하고, 그 관계를 메모리에 기억하거나, 혹은 모든 센서의 검출치가, 예를 들어 전술한 포커스 캘리브레이션시의 대표적인 검출점에 대응하는 센서의 검출치와 동일치가 되도록, 각 센서의 검출 오프셋을 전기적으로 조정함으로써, AF 센서간 오프셋 보정을 실시할 수 있다.
그런데, 본 실시형태에서는, 다점 AF 계 (90a, 90b) 의 수광계 (90b) 로부터의 출력 신호의 입력시에, 주제어 장치 (20) 는, 도 20(A) 에 나타내는 바와 같이, Z 센서 (72a, 72b, 72c, 72d) 를 이용하여 CD 바 (46) 표면의 기울기를 검출하고 있으므로, 반드시 CD 바 (46) 표면을 XY 평면에 평행하게 설정할 필요는 없다. 즉, 도 20(B) 에 모식적으로 나타내는 바와 같이, 각 검출점에 있어서의 검출치가 각각 동일 도면 중의 화살표로 나타내는 바와 같은 값으로 되어 있고, 검출치의 상단을 연결하는 선이 동일 도면 중의 점선으로 나타내는 바와 같은 요철이 있는 것이라면, 그 검출치의 상단을 연결하는 선이 동일 도면 중의 실선으로 나타내어지는 바와 같이 각 검출치를 조정하면 된다.
다음으로, 웨이퍼 테이블 (WTB) 표면, 보다 정확하게는 제 2 발수판 (28b) 표면의 X 축 방향에 관한 요철의 영향을 보정하기 위한 정보를 구하는 트래버스 Z 주행 보정에 대하여 설명한다. 여기서, 트래버스 Z 주행 보정은 웨이퍼 테이블 (WTB) 를 X 축 방향으로 이동시키면서, 소정의 샘플링 간격으로 웨이퍼 테이블 (WTB) 의 제 2 발수판 (28b) 표면의 좌우 영역의 면위치 정보를 검출하는 Z 센서의 계측치와, 다점 AF 계에 의한 웨이퍼의 면위치 정보의 검출치를 동시에 입력함으로써 행해진다.
이 트래버스 Z 주행 보정시에는, 주제어 장치 (20) 는, 전술한 포커스 매핑시와 마찬가지로, 도 21(A) 에 나타내는 바와 같이, X 스케일 (39X1, 39X2) 에 각각 대향하는 2 개의 X 헤드 (66)(X 리니어 인코더 (70B, 70D) 와, Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 2 개의 Y 헤드 (64y2, 64y1)(Y 리니어 인코더 (70A, 70C)) 에 기초하여, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치를 관리하고 있다. 이 도 21(A) 의 상태에서는, 웨이퍼 테이블 (WTB) 의 센터 라인은 전술한 직선 (LV) 보다 +X 측에 있고, 주제어 장치 (20) 는 웨이퍼 테이블 (WTB) 의 제 2 발수판 (28b) 표면의 좌우 영역의 -X 측 단부 근방의 점의 면위치 정보를 Z 센서 (72a, 72b) 및 Z 센서 (72c, 72d) 를 이용하여 계측함과 동시에, 다점 AF 계 (90a, 90b)를 이용하여 웨이퍼의 면위치 정보를 검출하고 있다.
그 다음에, 주제어 장치 (20) 는, 도 21(A) 중에 흰색 화살표로 나타내는 바와 같이, 웨이퍼 스테이지 (WST) 를 -X 방향으로 소정 속도로 이동시킨다. 이 이동 중에, 주제어 장치 (20) 는, 상기 서술한 Z 센서 (72a, 72b) 및 Z 센서 (72c, 72d) 의 계측치와, 다점 AF 계 (90a, 90b) 의 검출치의 동시 입력을 소정의 샘플링 간격으로 반복하여 실행한다. 그리고, 도 21(B) 에 나타내는 바와 같이, 웨이퍼 테이블 (WTB) 의 제 2 발수판 (28b) 표면의 좌우 영역의 +X 측 단부 근방의 점에 Z 센서 (72a, 72b) 및 Z 센서 (72c, 72d) 가 대향한 상태에서의 상기의 동시 입력이 완료된 시점에서 작업을 종료한다.
그리고, 주제어 장치 (20) 는, 다점 AF 계 (90a, 90b) 의 각 검출점에 대한 면위치 정보와, 동시에 입력한 Z 센서 (72a ∼ 72d) 에 의한 면위치 정보의 관계를 구한다. 그리고, 상이한 샘플링시에 대하여 구한 복수의 관계로부터, 제 2 발수판 (28b) 표면의 X 축 방향에 관한 요철을 산출한다. 즉, 이 경우, 다점 AF 계 (90a, 90b) 는 센서간 오프셋이 조정되어 있으므로, 제 2 발수판 (28b) 표면의 동일한 점이면, 어느 검출점에 대응하는 센서의 검출치도 동일한 값이 될 것이다. 따라서, 상이한 검출점에 대응하는 센서로 제 2 발수판 (28b) 표면의 동일한 점을 검출했을 때의 검출치의 차이는 제 2 발수판 (28b) 표면의 요철 및 그 이동시의 웨이퍼 테이블의 Z 축 방향의 위치 변동을 그대로 반영한 것이다. 그래서, 이 관계를 이용함으로써, 상이한 샘플링시에 대하여 구한 복수의 관계로부터, 제 2 발 수판 (28b) 표면의 X 축 방향에 관한 요철을 산출하는 것이다.
이와 같이, 주제어 장치 (20) 는 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 을 X 축 방향으로 이동시키면서, 다점 AF 계 (90a, 90b) 를 이용하여 순차적으로 검출한 결과에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 이 X 축 방향으로 이동할 (상이한 X 위치에 있을) 때에 생기는 웨이퍼 테이블 (WTB) 표면의 Z 축 방향에 있어서의 위치 변동에 관한 정보를 구하고 있다. 주제어 장치 (20) 는 노광시에 이 정보를 보정량으로서 가미하면서, 웨이퍼 (W) 의 포커스 제어를 실시한다.
다음으로, 본 실시형태의 노광 장치 (100) 에 있어서의, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 를 사용한 병행 처리 동작에 대하여, 도 22 ∼ 도 36 에 기초하여 설명한다. 또한, 이하의 동작 중, 주제어 장치 (20) 에 의해, 국소 액침 장치 (8) 의 액체 공급 장치 (5) 및 액체 회수 장치 (6) 의 각 밸브의 개폐 제어가 전술한 바와 같이 행해져, 투영 광학계 (PL) 의 선단 렌즈 (191) 의 사출면측에는 항시 물이 채워져 있다. 그러나, 이하에서는, 설명을 알기 쉽게하기 위하여, 액체 공급 장치 (5) 및 액체 회수 장치 (6) 의 제어에 관한 설명은 생략한다. 또한, 이후의 동작 설명은, 다수의 도면을 이용하여 실시하지만, 도면마다 동일한 부재에 부호가 붙어 있거나 붙어 있지 않다. 즉, 도면 마다 기재하고 있는 부호가 상이하지만, 그들 도면은 부호의 유무에 상관없이 동일한 구성이다. 지금까지 설명에 사용한 각 도면에 대해서도 동일하다.
도 22 에는, 웨이퍼 스테이지 (WST) 상의 웨이퍼 (W)(여기서는, 일례로서 어 느 로트 (1 로트는 25 매 또는 50 매) 의 중간의 웨이퍼로 한다) 에 대한 스텝 앤드 스캔 방식의 노광이 행해지고 있는 상태가 나타나 있다. 이 때, 계측 스테이지 (MST) 는 웨이퍼 스테이지 (WST) 와 소정의 거리를 유지하고 추종하여 이동하고 있다. 이 때문에, 노광 종료 후에, 웨이퍼 스테이지 (WST) 와의 전술한 접촉 상태 (또는 근접 상태) 로 이행할 때의 계측 스테이지 (MST) 의 이동 거리는 상기의 소정의 거리와 동일한 거리로 충분하게 된다.
이 노광 중, 주제어 장치 (20) 에 의해, X 스케일 (39X1, 39X2) 에 각각 대향하는 도 22 중에 동그라미로 둘러싸여 표시되어 있는 2 개의 X 헤드 (66)(X 인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 도 22 중에 동그라미로 둘러싸여 표시되어 있는 2 개의 Y 헤드 (64)(Y 인코더 (70A, 70C)) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 XY 평면내의 위치 (θz 회전을 포함한다) 가 제어되어 있다. 또한, 주제어 장치 (20) 에 의해, 웨이퍼 테이블 (WTB) 의 Z 축 방향의 위치와 θy 회전 (롤링) 및 θx 회전 (피칭) 은 웨이퍼 테이블 (WTB) 표면의 X 축 방향 일측과 타측의 단부에 각각 대향하는 각 1 쌍의 Z 센서 (741,j, 742,j, 761,q, 762,q) 의 계측치에 기초하여 제어되어 있다. 또한, 웨이퍼 테이블 (WTB) 의 Z 축 방향의 위치와 θy 회전 (롤링) 을 Z 센서 (741,j, 742,j, 761,q, 762,q) 의 계측치에 기초하여 제어하고, θX 회전 (피칭) 은 Y 축 간섭계 (16) 의 계측치에 기초하여 제어해도 된다. 어느 쪽으로 해도, 이 노광 중 의 웨이퍼 테이블 (WTB) 의 Z 축 방향의 위치, θy 회전 및 θx 회전의 제어 (웨이퍼 (W) 의 포커스 레벨링 제어) 는 사전에 행해진 전술한 포커스 매핑의 결과에 기초하여 행해진다.
또한, 이 노광 중에는, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 가 소정 거리보다 접근하는 것을 방지하기 위하여, 셔터 (49A, 49B) 가 개구 (51A, 51B) 를 폐색한 상태로 설정되어 있다.
상기의 노광 동작은 주제어 장치 (20) 에 의해, 사전에 행해진 전술한 웨이퍼 얼라인먼트 (EGA) 의 결과 및 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 최신의 베이스 라인 등에 기초하여, 웨이퍼 (W) 상의 각 쇼트 영역의 노광을 위한 주사 개시 위치 (가속 개시 위치) 로 웨이퍼 스테이지 (WST) 가 이동되는 쇼트간 이동 동작과, 레티클 (R) 에 형성된 패턴을 주사 노광 방식으로 각 쇼트 영역에 전사하는 주사 노광 동작을 반복함으로써 행해진다. 또한, 상기의 노광 동작은 선단 렌즈 (191) 와 웨이퍼 (W) 사이에 물을 유지한 상태에서 행해진다. 또한, 도 22 에 있어서의 -Y 측에 위치하는 쇼트 영역으로부터 +Y 측에 위치하는 쇼트 영역의 순서로 행해진다.
또한, 주제어 장치 (20) 는 노광 중에 인코더 (70A ∼ 70D) 의 계측치와 간섭계 (16, 126) 의 계측치를 축적하고, 필요에 따라 전술한 보정 맵을 갱신하는 것으로 해도 된다.
그리고, 도 23 에 나타내는 바와 같이, 웨이퍼 (W) 에 대한 노광이 종료되기 전, 예를 들어 웨이퍼 (W) 상의 상이한 쇼트 영역이 순차적으로 노광될 때에, 최종의 쇼트 영역이 노광되기 전에, 주제어 장치 (20) 는 구동 기구 (34A, 34B) 를 통하여 셔터 (49A, 49B) 의 하강 구동을 개시하고, 개구 (51A, 51B) 를 개방 상태로 설정한다. 주제어 장치 (20) 는 개폐 센서 (101) 를 통하여, 셔터 (49A, 49B) 가 전면 개방 상태가 된 것을 확인한 후에, X 축 간섭계 (130) 의 계측치를 일정치로 유지하면서 Y 축 간섭계 (18) 의 계측치에 기초하여 스테이지 구동계 (124) 를 제어하고, 계측 스테이지 (MST)(계측 테이블 (MTB)) 를 도 24 에 나타나는 위치까지 이동시킨다. 이 때, CD 바 (46)(계측 테이블 (MTB)) 의 -Y 측의 단면과 웨이퍼 테이블 (WTB) 의 +Y 측의 단면은 접촉하고 있다. 또한, 예를 들어 각 테이블의 Y 축 방향의 위치를 계측하는 간섭계 또는 인코더의 계측치를 모니터하여 계측 테이블 (MTB) 과 웨이퍼 테이블 (WTB) 을 Y 축 방향으로 300㎛ 정도 이간시켜, 비접촉 상태 (근접 상태) 를 유지해도 된다.
그 다음에, 도 25 에 나타내는 바와 같이, 주제어 장치 (20) 는, 웨이퍼 테이블 (WTB) 과 계측 테이블 (MTB) 의 Y 축 방향의 위치 관계를 유지하면서, 계측 스테이지 (MST) 를 -Y 방향으로 구동시키는 동작을 개시함과 함께, 웨이퍼 스테이지 (WST) 를 언로딩 포지션 (UP) 을 향하여 구동하는 동작을 개시한다. 이 동작이 개시되면, 본 실시형태에서는 계측 스테이지 (MST) 가 -Y 방향으로만 이동되고, 웨이퍼 스테이지 (WST) 가 -Y 방향 및 -X 방향으로 이동된다.
이와 같이 하여, 주제어 장치 (20) 에 의해, 웨이퍼 스테이지 (WST), 계측 스테이지 (MST) 가 동시에 구동되면, 투영 유닛 (PU) 의 선단 렌즈 (191) 와 웨이 퍼 (W) 사이에 유지되어 있던 물 (액침 영역 (14) 의 물) 이 웨이퍼 스테이지 (WST) 및 계측 스테이지 (MST) 의 -Y 측으로의 이동에 수반하여, 웨이퍼 (W) → 플레이트 (28) → CD 바 (46) → 계측 테이블 (MTB) 의 순서로 이동한다. 또한, 상기의 이동 중, 웨이퍼 테이블 (WTB), 계측 테이블 (MTB) 은 전술한 접촉 상태 (또는 근접 상태) 를 유지하고 있다. 또한, 도 25 에는, 액침 영역 (14) 의 물이 플레이트 (28) 로부터 CD 바 (46) 로 건네지기 직전의 상태가 나타나 있다.
도 25 의 상태로부터, 추가로 웨이퍼 스테이지 (WST), 계측 스테이지 (MST) 가 -Y 방향으로 동시에 약간 구동되면, Y 인코더 (70A, 70C) 에 의한 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 위치 계측을 할 수 없게 되므로, 이 직전에, 주제어 장치 (20) 는, 웨이퍼 스테이지 (WST)(웨이퍼 테이블 (WTB)) 의 Y 위치 및 θz 회전의 제어를 Y 인코더 (70A, 70C) 의 계측치에 기초하는 제어로부터 Y 축 간섭계 (16) 의 계측치에 기초하는 제어로 전환한다. 그리고, 소정 시간 후, 도 26 에 나타내는 바와 같이, 계측 스테이지 (MST) 가 전술한 Sec-BCHK (인터벌) 를 실시하는 위치에 도달하므로, 주제어 장치 (20) 는, 그 위치에서 계측 스테이지 (MST) 를 정지시킴과 함께, X 스케일 (39X1) 에 대향하는 도 26 중에 동그라미로 둘러싸여 표시되는 X 헤드 (66)(X 리니어 인코더 (70B)) 에 의해 웨이퍼 스테이지 (WST) 의 X 위치를 계측하고 또한 Y 위치 및 θz 회전 등은 Y 축 간섭계 (16) 에 의해 계측하면서, 웨이퍼 스테이지 (WST) 를 다시 언로딩 포지션 (UP) 을 향하여 구동시키고, 언로딩 포지션 (UP) 에서 정지시킨다. 또한, 도 26 의 상태에서 는, 계측 테이블 (MTB) 과 선단 렌즈 (191) 사이에 물이 유지되어 있다.
그 다음에, 주제어 장치 (20) 는, 도 26 및 도 27 에 나타내는 바와 같이, 계측 스테이지 (MST) 의 CD 바 (46) 를 이용하여, 전술한 순서로 프라이머리 얼라인먼트계 (AL1) 에 대한 4 개의 세컨더리 얼라인먼트계의 상대 위치를 계측하는 Sec-BCHK (인터벌) 를 실시한다. 이 Sec-BCHK (인터벌) 과 병행하여, 주제어 장치 (20) 는, 언로드 포지션 (UP) 에 정지하고 있는 웨이퍼 스테이지 (WST) 상의 웨이퍼 (W) 를 도시 생략된 언로드 아암의 구동계에 지령을 주어 언로드시킴과 함께, 그 언로드시에 상승 구동시킨 상하 이동핀 (CT)(도 26 에서는 도시 생략, 도 27 참조) 을 소정량 상승시킨 채, 웨이퍼 스테이지 (WST) 를 +X 방향으로 구동시켜 로딩 포지션 (LP) 으로 이동시킨다. 여기서, 웨이퍼의 언로드는, 상하 이동핀 (CT) 이 웨이퍼 (W) 를 하방으로부터 지지하여 들어올리고, 그 웨이퍼 (W) 의 하방에 언로드 아암이 진입하고, 상하 이동핀 (CT) 이 약간 내려가거나 혹은 언로드 아암이 약간 상승하는 등에 의해, 상하 이동핀 (CT) 으로부터 언로드 아암으로 웨이퍼를 주고 받음으로써 행해진다.
다음으로, 주제어 장치 (20) 는, 도 28 에 나타내는 바와 같이, 계측 스테이지 (MST) 를 웨이퍼 스테이지 (WST) 로부터 멀어진 상태로부터 웨이퍼 스테이지 (WST) 와의 전술한 접촉 상태 (또는 근접 상태) 로 이행시키기 위한 최적의 대기 위치 (이하, 「최적 스크램 대기 위치」라고 부른다) 로 이동시키고, 전술한 순서로 셔터 (49A, 49B) 를 닫는다. 이것과 병행하여, 주제어 장치 (20) 는, 도시 생략된 로드 아암의 구동계에 지령을 주어, 웨이퍼 테이블 (WTB) 상에 새로운 웨이 퍼 (W) 를 로드시킨다. 이 웨이퍼 (W) 의 로드는, 로드 아암에 유지된 웨이퍼 (W) 가 로드 아암으로부터 소정량 상승한 상태를 유지하고 있는 상하 이동핀 (CT) 에 건네지고, 로드 아암이 퇴피한 후, 상하 이동핀 (CT) 이 하강함으로써, 웨이퍼 (W) 가 웨이퍼 홀더 상에 탑재되고, 도시 생략된 진공 척에 의해 흡착된다는 순서로 행해진다. 이 경우, 상하 이동핀 (CT) 이 소정량 상승한 상태를 유지하고 있으므로, 상하 이동핀 (CT) 이 하강 구동되어 웨이퍼 홀더의 내부에 수납되어 있는 경우에 비해 웨이퍼 로드를 단시간에 실시할 수 있다. 또한, 도 28 에는, 웨이퍼 (W) 가 웨이퍼 테이블 (WTB) 상에 로드된 상태가 나타나 있다.
본 실시형태에 있어서, 상기 서술한 계측 스테이지 (MST) 의 최적 스크램 대기 위치는, 웨이퍼 상의 얼라인먼트 쇼트 영역에 부설된 얼라인먼트 마크의 Y 좌표에 따라 적절히 설정된다. 이로써, 상기의 접촉 상태 (또는 근접 상태) 로의 이행시에, 계측 스테이지 (MST) 를 그 최적 스크램 대기 위치로 이동시키는 동작이 불필요하게 되므로, 최적 스크램 대기 위치로부터 멀어진 위치에 대기시키는 경우에 비해, 계측 스테이지 (MST) 의 이동 횟수를 1 회 삭감할 수 있다. 또한, 본 실시형태에서는, 상기의 최적 스크램 대기 위치로서는, 웨이퍼 스테이지 (WST) 가 전술한 웨이퍼 얼라인먼트를 위하여 정지하는 위치에서, 상기의 접촉 상태 (또는 근접 상태) 로 이행할 수 있도록, 최적 스크램 대기 위치가 정해진다.
다음으로, 주제어 장치 (20) 는, 도 29 에 나타내는 바와 같이, 웨이퍼 스테이지 (WST) 를 로딩 포지션 (LP) 으로부터, 계측 플레이트 (30) 상의 기준 마크 (FM) 가 프라이머리 얼라인먼트계 (AL1) 의 시야 (검출 영역) 내에 위치 결정되는 위치 (즉, 전술한 Pri-BCHK 의 전반의 처리를 실시하는 위치) 로 이동시킨다. 이 이동의 도중에, 주제어 장치 (20) 는, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치의 제어를 X 축 방향에 대해서는 인코더 (70B) 의 계측치, Y 축 방향 및 θz 회전에 대해서는 Y 축 간섭계 (16) 의 계측치에 근거한 제어로부터, X 스케일 (39X1, 39X2) 에 대향하는 도 29 중에 동그라미로 둘러싸여 표시되는 2 개의 X 헤드 (66)(인코더 (70B, 70D)) 와, Y 스케일 (39Y1, 39Y2) 에 대향하는 도 29 중에 동그라미로 둘러싸여 표시되는 2 개의 Y 헤드 (64y2, 64y1)(인코더 (70A, 70C)) 의 계측치에 근거하는 제어로 전환한다.
그리고, 주제어 장치 (20) 는, 기준 마크 (FM) 를 프라이머리 얼라인먼트계 (AL1) 를 이용하여 검출하는 전술한 Pri-BCHK 의 전반의 처리를 실시한다. 이 때, 계측 스테이지 (MST) 는 전술한 최적 스크램 대기 위치에서 대기 중이다.
다음으로, 주제어 장치 (20) 는, 상기 서술한 4 개의 인코더의 계측치에 기초하여, 웨이퍼 스테이지 (WST) 의 위치를 관리하면서, 전술한 3 개의 제 1 얼라인먼트 쇼트 영역 (AS)(도 12(C) 참조) 에 부설된 얼라인먼트 마크를 검출하는 위치를 향한 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 이동을 개시한다. 이 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 이동 개시 후, 주제어 장치 (20) 는 전술한 순서로 셔터 (49A, 49B) 를 개방하고, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 의 추가적인 접근을 허가한다. 또한, 주제어 장치 (20) 는 셔터 (49A, 49B) 의 개방을 개폐 센서 (101) 의 검출 결과에 기초하여 확인한다.
그리고, 웨이퍼 스테이지 (WST) 가 도 30 에 나타나는 위치에 도달하면, 주제어 장치 (20) 는, 충돌 검지 센서 (43B, 43C) 의 출력에 기초하여, 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 가 접촉하는 (또는 300㎛ 정도의 거리에 근접하는) 것을 검지하고, 즉시 웨이퍼 스테이지 (WST) 를 정지시킨다. 이에 앞서, 주제어 장치 (20) 는, Z 센서 (72a ∼ 72d) 의 전부 또는 일부가 웨이퍼 테이블 (WTB) 과 대향한 시점 또는 그 전의 시점에서, 그들 Z 센서 (72a ∼ 72d) 를 작동시키고 (온 (ON) 으로 하고), 웨이퍼 테이블 (WTB) 의 Z 위치 및 경사 (θy 회전 및 θx 회전) 의 계측을 개시한다.
웨이퍼 스테이지 (WST) 의 정지 후, 주제어 장치 (20) 는, 프라이머리 얼라인먼트계 (AL1), 세컨더리 얼라인먼트계 (AL22, AL23) 를 이용하여, 3 개의 제 1 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고 (도 30 중의 별 마크 참조), 상기 3 개의 얼라인먼트계 (AL1, AL22, AL23) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다. 또한, 이 경우의 3 개의 제 1 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크의 동시 검출은, 전술한 바와 같이, 웨이퍼 테이블 (WTB) 의 Z 위치를 변화시킴으로써, 복수의 얼라인먼트계 (AL1, AL21 ∼ AL24) 와 웨이퍼 테이블 (WTB) 에 탑재되어 있는 웨이퍼 (W) 사이의, Z 축 방향 (포커스 방향) 에 있어서의 상대 위치 관계를 변경하면서 행해지고 있다.
상기 서술한 바와 같이 본 실시형태에서는, 제 1 얼라인먼트 쇼트 영역 (AS) 의 얼라인먼트 마크의 검출을 실시하는 위치에서, 계측 스테이지 (MST) 와 웨이퍼 스테이지 (WST) 의 접촉 상태 (또는 근접 상태) 로의 이행이 완료되고, 그 위치로부터, 주제어 장치 (20) 에 의해, 그 접촉 상태 (또는 근접 상태) 에서의 양 스테이지 (WST, MST) 의 +Y 방향으로의 이동 (전술한 5 개의 제 2 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 검출하는 위치를 향한 스텝 이동) 이 개시된다. 이 양 스테이지 (WST, MST) 의 +Y 방향으로의 이동 개시에 앞서, 주제어 장치 (20) 는, 도 30 에 나타내는 바와 같이, 다점 AF 계 (90a, 90b) 의 검출 빔의 웨이퍼 테이블 (WTB) 에 대한 조사를 개시한다. 이로써, 웨이퍼 테이블 (WTB) 상에 다점 AF 계의 검출 영역이 형성된다.
그리고, 상기의 양 스테이지 (WST, MST) 의 +Y 방향으로의 이동 중에, 도 31 에 나타나는 위치에 양 스테이지 (WST, MST) 가 도달하면, 주제어 장치 (20) 는, 전술한 포커스 캘리브레이션 전반의 처리를 행하고, 전술한 직선 (LV) 에 웨이퍼 테이블 (WTB) 의 센터 라인이 일치한 상태에 있어서의 Z 센서 (72a, 72b, 72c, 72d) 의 계측치 (웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 와, 다점 AF 계 (90a, 90b) 에 의한 계측 플레이트 (30) 표면의 검출 결과 (면위치 정보) 의 관계를 구한다. 이 때, 액침 영역 (14) 은 CD 바 (46) 와 웨이퍼 테이블 (WTB) 의 경계 부근에 형성되어 있다. 즉, 액침 영역 (14) 의 물이 CD 바 (46) 로부터 웨이퍼 테이블 (WTB) 로 건네지기 직전 상태가 되어 있다.
그리고, 양 스테이지 (WST, MST) 가 접촉 상태 (또는 근접 상태) 를 유지한 채 +Y 방향으로 다시 이동하여, 도 32 에 나타나는 위치에 도달하면, 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여, 5 개의 제 2 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고 (도 32 중의 별 마크 참조), 상기 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다. 또한, 이 경우의 5 개의 제 2 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크의 동시 검출도, 전술한 바와 같이, 웨이퍼 테이블 (WTB) 의 Z 위치를 변화시키면서 행해진다.
또한, 이 때, X 스케일 (39X1) 에 대향하고, 또한 상기 직선 (LV) 상에 위치하는 X 헤드가 존재하지 않기 때문에, 주제어 장치 (20) 는, X 스케일 (39X2) 에 대향하는 X 헤드 (66)(X 리니어 인코더 (70D)) 및 Y 리니어 인코더 (70A, 70C) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치를 제어하고 있다.
상기 서술한 바와 같이, 본 실시형태에서는, 제 2 얼라인먼트 쇼트 영역 (AS) 의 얼라인먼트 마크의 검출이 종료된 시점에서, 합계 8 개의 얼라인먼트 마크의 위치 정보 (2 차원 위치 정보) 를 검출할 수 있다. 그래서, 이 단계에서, 주제어 장치 (20) 는, 이들 위치 정보를 이용하여 예를 들어 전술한 EGA 방식으로 통계 연산을 실시하여, 웨이퍼 (W) 의 스케일링 (쇼트 배율) 을 구하고, 그 산출한 쇼트 배율에 기초하여, 투영 광학계 (PL) 의 광학 특성, 예를 들어 투영 배율을 조정해도 된다. 본 실시형태에서는, 투영 광학계 (PL) 를 구성하는 특정 가동 렌 즈를 구동하거나, 혹은 투영 광학계 (PL) 를 구성하는 특정 렌즈간에 형성된 기밀실 내부의 기체의 압력을 변경하는 등에 의해, 투영 광학계 (PL) 의 광학 특성을 조정하는 조정 장치 (68)(도 8 참조) 를 제어하여 투영 광학계 (PL) 의 광학 특성을 조정한다. 즉, 주제어 장치 (20) 는, 얼라인먼트계 (AL1, AL21 ∼ AL24) 가 웨이퍼 (W) 상의 소정 수 (여기서는 8 개) 의 마크를 다 검출한 단계에서, 그들 검출 결과에 기초하여, 투영 광학계 (PL) 의 광학 특성을 조정시키도록 조정 장치 (68) 를 제어하는 것으로 해도 된다. 또한, 마크의 개수는 8 개, 혹은 검출 대상의 마크의 총수의 절반 등에 한정되는 것이 아니고, 예를 들어 웨이퍼의 스케일링 등의 산출에 필요한 개수 이상이면 된다.
또한, 주제어 장치 (20) 는, 상기의 5 개의 제 2 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크의 동시 검출의 종료 후, 접촉 상태 (또는 근접 상태) 에서의 양 스테이지 (WST, MST) 의 +Y 방향으로의 이동을 다시 개시함과 동시에, 도 32 에 나타내는 바와 같이, Z 센서 (72a ∼ 72d) 와 다점 AF 계 (90a, 90b) 를 이용한 전술한 포커스 매핑을 개시한다.
그리고, 양 스테이지 (WST, MST) 가, 도 33 에 나타나는 계측 플레이트 (30) 가 투영 광학계 (PL) 의 바로 아래에 배치되는 위치에 도달하면, 주제어 장치 (20) 는 전술한 Pri-BCHK 후반의 처리 및 전술한 포커스 캘리브레이션 후반의 처리를 실시한다.
그리고, 주제어 장치 (20) 는, 전술한 Pri-BCHK 의 전반의 처리의 결과와 Pri-BCHK 의 후반의 처리의 결과에 기초하여, 프라이머리 얼라인먼트계 (AL1) 의 베이스 라인을 산출한다. 이와 함께, 주제어 장치 (20) 는, 전술한 포커스 캘리브레이션 전반의 처리에서 얻어진 Z 센서 (72a, 72b, 72c, 72d) 의 계측치 (웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 와, 다점 AF 계 (90a, 90b) 에 의한 계측 플레이트 (30) 표면의 검출 결과 (면위치 정보) 의 관계와, 전술한 포커스 캘리브레이션 후반의 처리에서 얻어진 투영 광학계 (PL) 의 베스트 포커스 위치에 대응하는 Z 센서 (741,4, 742,4, 761,3, 762,3) 의 계측치 (즉, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보) 에 기초하여, 다점 AF 계 (90a, 90b) 의 대표적인 검출점에 있어서의 오프셋을 구하고, 그 오프셋이 제로가 되도록 전술한 광학적 수법에 의해 다점 AF 계의 검출 원점을 조정한다.
이 경우에 있어서, 스루풋의 관점에서, 상기 서술한 Pri-BCHK 의 후반의 처리 및 포커스 캘리브레이션 후반의 처리의 일방만을 실시해도 되고, 양방의 처리를 실시하지 않고, 다음의 처리로 이행해도 된다. 물론, Pri-BCHK 의 후반의 처리를 실시하지 않는 경우에는, 전술한 Pri-BCHK 의 전반의 처리를 실시할 필요도 없고, 이 경우에는, 주제어 장치 (20) 는, 전술한 로딩 포지션 (LP) 으로부터 제 1 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 검출하는 위치로 웨이퍼 스테이지 (WST) 를 이동시키면 된다.
또한, 이 도 33 의 상태에서는, 전술한 포커스 매핑은 계속 진행되고 있다.
상기의 접촉 상태 (또는 근접 상태) 에서의 양 스테이지 (WST, MST) 의 +Y 방향으로의 이동에 의해, 웨이퍼 스테이지 (WST) 가, 도 34 에 나타나는 위치에 도달하면, 주제어 장치 (20) 는, 웨이퍼 스테이지 (WST) 를 그 위치에서 정지시킴과 함께, 계측 스테이지 (MST) 에 대해서는 그대로 +Y 방향으로의 이동을 계속 진행시킨다. 그리고, 주제어 장치 (20) 는, 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여, 5 개의 제 3 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고 (도 34 중의 별 마크 참조), 상기 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다. 또한, 이 경우의 5 개의 제 3 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크의 동시 검출도, 전술한 바와 같이, 웨이퍼 테이블 (WTB) 의 Z 위치를 변화시키면서 행해진다. 또한, 이 시점에서도 포커스 매핑은 계속 진행되고 있다.
한편, 상기의 웨이퍼 스테이지 (WST) 의 정지로부터 소정 시간 후에, 전술한 쇼크 업소버 (47A, 47B) 가 X 축 고정자 (80) 에 형성된 개구 (51A, 51B) 로부터 이탈하고, 계측 스테이지 (MST) 와 웨이퍼 스테이지 (WST) 는 접촉 (또는 근접 상태) 으로부터 이간 상태로 이행한다. 이 이간 상태로의 이행 후, 주제어 장치 (20) 는, 셔터 (49A, 49B) 를 구동 기구 (34A, 34B) 를 통하여 상승 구동시킴으로써, 개구 (51A, 51B) 를 폐색한 상태로 설정함과 함께, 계측 스테이지 (MST) 가 노광 개시까지 대기하는 노광 개시 대기 위치에 도달하면, 그 위치에서 정지시킨다.
다음으로, 주제어 장치 (20) 는, 전술한 3 개의 제 4 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 검출하는 위치를 향한 웨이퍼 스테이지 (WST) 의 +Y 방향으로의 이동을 개시한다. 이 때, 포커스 매핑은 계속 진행되고 있다. 한편, 계측 스테이지 (MST) 는 상기 노광 개시 대기 위치에서 대기하고 있다.
그리고, 웨이퍼 스테이지 (WST) 가 도 35 에 나타나는 위치에 도달하면, 주제어 장치 (20) 는 즉시 웨이퍼 스테이지 (WST) 를 정지시키고, 프라이머리 얼라인먼트계 (AL1), 세컨더리 얼라인먼트계 (AL22, AL23) 를 이용하여, 웨이퍼 (W) 상의 3 개의 제 4 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크를 거의 동시에 또한 개별적으로 검출하고 (도 35 중의 별 마크 참조), 상기 3 개의 얼라인먼트계 (AL1, AL22, AL23) 의 검출 결과와 그 검출시의 상기 4 개의 인코더의 계측치를 관련지어 도시 생략된 메모리에 저장한다. 또한, 이 경우의 3 개의 제 4 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크의 동시 검출도, 전술한 바와 같이, 웨이퍼 테이블 (WTB) 의 Z 위치를 변화시키면서 행해진다. 이 시점에서도 포커스 매핑은 계속 진행되고, 계측 스테이지 (MST) 는 상기 노광 개시 대기 위치에서 대기한 채이다. 그리고, 주제어 장치 (20) 는, 이와 같이 하여 얻은 합계 16 개의 얼라인먼트 마크의 검출 결과와 대응하는 4 개의 인코더의 계측치를 이용하여, 예를 들어 전술한 EGA 방식으로 통계 연산을 실시하여, 상기 4 개의 인코더의 계측축으로 규정되는 XY 좌표계 상에 있어서의 웨이퍼 (W) 상의 모든 쇼트 영역 의 배열 정보 (좌표치) 를 산출한다.
다음으로, 주제어 장치 (20) 는, 웨이퍼 스테이지 (WST) 를 다시 +Y 방향으로 이동시키면서, 포커스 매핑을 계속 진행한다. 그리고, 다점 AF 계 (90a, 90b) 로부터의 검출 빔이 웨이퍼 (W) 표면으로부터 벗어나면, 도 36 에 나타내는 바와 같이 포커스 매핑을 종료한다. 그 후, 주제어 장치 (20) 는, 전술한 웨이퍼 얼라인먼트 (EGA) 의 결과 및 최신의 5 개의 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 베이스 라인의 계측 결과 등에 기초하여, 스텝 앤드 스캔 방식의 노광을 액침 노광으로 실시하여, 웨이퍼 (W) 상의 복수의 쇼트 영역에 레티클 패턴을 순차적으로 전사한다. 이후, 로트내의 나머지 웨이퍼에 대하여 동일한 동작이 반복하여 행해진다.
이상 설명한 바와 같이, 본 실시형태에 의하면, 계측치의 단기 안정성이 양호한 인코더 (70A ∼ 70D) 등을 포함하는 인코더 시스템에 의해 웨이퍼 테이블 (WTB) 의 XY 평면내의 위치 정보가 공기 요동 등의 영향을 받지 않고 고정밀도로 계측됨과 함께, Z 센서 (72a ∼ 72d, 741,1 ∼ 742,6, 및 761,1 ∼ 762,6) 등을 포함하는 면위치 계측 시스템에 의해 웨이퍼 테이블 (WTB) 의 XY 평면에 직교하는 Z 축 방향에 있어서의 위치 정보가 공기 요동 등의 영향을 받지 않고 고정밀도로 계측된다. 이 경우, 상기 인코더 시스템 및 상기 면위치 계측 시스템의 양자 모두, 웨이퍼 테이블 (WTB) 상면을 직접적으로 계측하고 있으므로, 심플하고 또한 직접적인 웨이퍼 테이블 (WTB), 나아가서는 웨이퍼 (W) 의 위치 제어가 가능해진다.
또한, 본 실시형태에 의하면, 전술한 포커스 매핑시에, 주제어 장치 (20) 에 의해, 상기 면위치 계측 시스템과 다점 AF 계 (90a, 90b) 가 동시에 작동되고, 다점 AF 계 (90a, 90b) 의 검출 결과가, 면위치 계측 시스템의 계측 결과를 기준으로 한 데이터로 환산된다. 따라서, 미리 이 환산 데이터를 취득해 둠으로써, 그 후에, 면위치 계측 시스템에 의해 웨이퍼 테이블 (WTB) 의 Z 축 방향의 위치 정보, 및 XY 평면에 대한 경사 방향의 위치 정보를 계측하는 것만으로, 웨이퍼 (W) 의 면위치 정보를 취득하지 않고, 웨이퍼 (W) 의 면위치 제어가 가능해진다. 따라서, 본 실시형태에서는, 선단 렌즈 (191) 와 웨이퍼 (W) 표면 사이의 워킹 디스턴스가 좁지만, 특별히 지장 없이, 노광시의 웨이퍼 (W) 의 포커스 레벨링 제어를 고정밀도로 실행할 수 있다.
본 실시형태에서는, 전술한 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 를 사용한 병행 처리 동작의 설명으로부터 분명하듯이, 웨이퍼 스테이지 (WST) 로의 웨이퍼 (W) 의 반입이 행해지는 위치 (로딩 포지션 (LP)) 로부터, 웨이퍼 (W) 에 대하여 소정의 처리, 예를 들어 노광 (패턴 형성) 이 행해지는 위치까지 웨이퍼 (W) 가 이동하는 과정에 있어서, 주제어 장치 (20) 는, 면위치 계측 시스템과 다점 AF 계 (90a, 90b) 의 동시 작동 및 상기 서술한 데이터의 환산 처리 (포커스 매핑) 를 행하고 있다.
또한, 본 실시형태에서는, 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의한 검출해야 할 복수의 마크의 검출 동작 (예를 들어, 전술한 웨이퍼 얼라인먼트 동작) 을 개시하고부터 그 복수의 마크의 검출 동작을 완료할 때까지의 과정에 있어서, 주제어 장치 (20) 는, 상기 면위치 계측 시스템과 다점 AF 계 (90a, 90b) 의 동시 작동을 개시시킴과 함께 상기 데이터의 환산 처리를 개시하고 있다.
또한, 본 실시형태에 의하면, 상기 서술한 바와 같이, 웨이퍼 테이블 (WTB), 나아가서는 웨이퍼 (W) 의 면위치를 고정밀도로 제어할 수 있으므로, 면위치 제어 오차에서 기인되는 노광 불량이 거의 없는 고정밀의 노광이 가능해지고, 이로 인해 패턴의 이미지를, 이미지가 흐려지는 현상을 수반하지 않고, 웨이퍼 (W) 상에 형성하는 것이 가능해진다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 예를 들어 노광에 앞서, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 기준으로 하여, 다점 AF 계 (90a, 90b) 의 검출치 (계측치) 을 이용하여 웨이퍼 (W) 의 면위치 정보가 계측되고, 노광시에도, 웨이퍼 테이블 (WTB) 의 X 축 방향의 일측과 타측의 단부에 있어서의 면위치 정보를 기준으로 하여, 투영 광학계 (PL) 의 광축 (AX) 에 평행한 방향 및 광축 (AX) 에 직교하는 면에 대한 경사 방향에 관한 웨이퍼 (W) 의 위치 조정이 행해진다. 따라서, 노광에 앞서, 웨이퍼 (W) 의 면위치 정보를 계측하고 있음에도 불구하고, 실제의 노광시에는, 웨이퍼 (W) 의 면위치 제어를 고정밀도로 행하는 것이 가능해진다.
또한, 본 실시형태에 의하면, 공간 이미지 계측 장치 (45) 는, 그 일부가 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 에 형성되고, 또한 나머지 일부가 계측 스테이지 (MST) 에 형성되어 있어, 투영 광학계 (PL) 에 의해 형성되는 계측 마크 의 공간 이미지를 계측한다. 이 때문에, 예를 들어 전술한 포커스 캘리브레이션시에 있어서, 그 공간 이미지 계측 장치 (45) 에 의해, 투영 광학계 (PL) 의 베스트 포커스 위치를 계측할 때에, 공간 이미지 계측 장치 (45) 의 일부가 형성된 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 투영 광학계 (PL) 의 광축에 평행한 방향에 관한 위치를 그 베스트 포커스 위치의 기준으로 하여 계측을 실시하는 것이 가능해진다. 따라서, 조명광 (IL) 으로 웨이퍼를 노광할 때에, 이 베스트 포커스 위치의 계측 결과에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 투영 광학계 (PL) 의 광축에 평행한 방향에 관한 위치가 고정밀도로 조정된다. 또한, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 에는, 공간 이미지 계측 장치 (45) 의 일부가 형성될 뿐이므로, 그 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 이 대형화되지 않고, 그 위치 제어성을 양호하게 확보할 수 있다. 또한, 공간 이미지 계측 장치 (45) 의 나머지 일부를 모두 계측 스테이지 (MST) 에 형성하지 않고, 계측 스테이지 (MST) 및 그 외부에 각각 형성해도 된다.
또한, 본 실시형태에 의하면, Y 축 간섭계 (18) 및 X 축 간섭계 (130) 에 의해 계측 스테이지 (MST) 의 위치 정보가 계측되고, 4 개의 리니어 인코더 (70A ∼ 70D) 에 의해 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 위치 정보가 계측된다. 여기서, 리니어 인코더 (70A ∼ 70D) 는, 웨이퍼 테이블 (WTB) 상에 배치되고 또한 Y 축, X 축에 각각 평행한 방향을 주기 방향으로 하는 격자를 갖는 복수의 그레이팅 (즉, Y 스케일 (39Y1, 39Y2) 또는 X 스케일 (39X1, 39X2)) 과, 스케일 (39Y1, 39Y2, 39X1, 39X2) 이 대향하여 배치되는 복수의 헤드 (Y 헤드 (64) 또는 X 헤드 (66)) 를 포함하는 반사형의 인코더이다. 이 때문에, 리니어 인코더 (70A ∼ 70D) 는, 각 헤드로부터 대향하는 스케일 (그레이팅) 에 조사되는 빔의 광로 길이가 Y 축 간섭계 (18) 및 X 축 간섭계 (130) 에 비해 현격히 짧으므로, 공기 요동의 영향을 받기 어렵고, Y 축 간섭계 (18) 및 X 축 간섭계 (130) 에 비해 계측치의 단기 안정성이 우수하다. 따라서, 웨이퍼를 유지하는 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 을 안정적으로 위치 제어하는 것이 가능해진다.
또한, 본 실시형태에 의하면, Y 축 방향을 계측 방향으로 하는 복수의 Y 헤드 (64) 의 X 축 방향의 배치 간격은 Y 스케일 (39Y1, 39Y2) 의 X 축 방향의 폭보다 좁고, X 축 방향을 계측 방향으로 하는 복수의 X 헤드 (66) 의 Y 축 방향의 배치 간격은 X 스케일 (39X1, 39X2) 의 Y 축 방향의 폭보다 좁다. 이 때문에, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 을 이동시킬 때에, 복수의 Y 헤드 (64) 를 순차적으로 전환하면서, Y 스케일 (39Y1 또는 39Y2) 에 검출광 (빔) 을 조사하는 Y 리니어 인코더 (70A 또는 70C) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 위치를 계측할 수 있고, 이것과 병행하여 복수의 X 헤드 (66) 를 순차적으로 전환하면서, X 스케일 (39X1 또는 39X2) 에 검출광 (빔) 을 조사하는 X 리니어 인코더 (70B 또는 70D) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 X 위치를 계측할 수 있다.
또한, 본 실시형태에 의하면, 전술한 스케일의 격자 피치의 보정 정보의 취득을 위한 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 축 방향으로의 이동시에, 주제어 장치 (20) 에 의해, X 스케일 (39X1, 39X2) 을 구성하는 각 격자선 (37) 의 구부러짐을 보정하기 위한 보정 정보 (격자 구부러짐의 보정 정보) 가 전술한 순서로 구해진다. 그리고, 주제어 장치 (20) 에 의해, 헤드 유닛 (62B, 62D) 으로부터 얻어지는 계측치를, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 위치 정보 및 X 스케일 (39X1, 39X2) 의 격자 구부러짐의 보정 정보, (그리고 격자 피치의 보정 정보) 에 기초하여 보정하면서, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 X 축 방향으로의 구동이 X 스케일 (39X1, 39X2) 과 헤드 유닛 (62B, 62D) 을 이용하여 행해진다. 따라서, X 스케일 (39X1, 39X2) 을 구성하는 각 격자의 구부러짐의 영향을 받지 않고, X 스케일 (39X1, 39X2) 을 사용하는 헤드 유닛 (62B, 62D)(인코더 (70B, 70D)) 을 이용하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 X 축 방향의 구동을 고정밀도로 행하는 것이 가능해진다. 또한, 상기와 동일한 것을 Y 축 방향에 대해서도 실시함으로써, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 축 방향의 구동도 고정밀도로 행할 수 있다.
또한, 본 실시형태에 의하면, 웨이퍼 스테이지 (WST) 가 Y 축 방향으로 직선적으로 이동하는 동안에, 복수의 검출점이 X 축 방향에 소정 간격으로 설정되는 다점 AF 계 (90a, 90b) 에 의해 웨이퍼 (W) 표면의 면위치 정보가 검출됨과 함께, X 축 방향을 따라 일렬로 검출 영역이 배열되는 복수의 얼라인먼트계 (ALl, AL21 ∼ AL24) 에 의해 웨이퍼 (W) 상에서 서로 위치가 상이한 얼라인먼트 마크가 검출된다. 즉, 웨이퍼 스테이지 (WST)(웨이퍼 (W)) 가, 다점 AF 계 (90a, 90b) 의 복수의 검출점 (검출 영역 (AF)) 과, 복수의 얼라인먼트계 (AL1, AL21 ∼ AL24) 의 검출 영역을 직선적으로 통과하는 것만으로, 웨이퍼 (W) 의 거의 전체면의 면위치 정보의 검출과, 웨이퍼 (W) 상에서 검출해야 할 모든 얼라인먼트 마크 (예를 들어, EGA 에 있어서의 얼라인먼트 쇼트 영역의 얼라인먼트 마크) 의 검출이 종료되므로, 얼라인먼트 마크의 검출 동작과 면위치 정보 (포커스 정보) 의 검출 동작을 무관하게 (따로 따로) 실시하는 경우에 비해 스루풋을 향상시킬 수 있다.
본 실시형태에서는, 전술한 웨이퍼 스테이지 (WST) 와 계측 스테이지 (MST) 를 사용한 병행 처리 동작의 설명으로부터 분명하듯이, 주제어 장치 (20) 는, 로딩 포지션으로부터 노광 위치 (노광 영역 (IA)) 를 향한 웨이퍼 스테이지 (WST) 의 이동 도중에 (즉, 웨이퍼 스테이지 (WST) 의 Y 축 방향으로의 이동 중에), 웨이퍼 (W) 상에서 X 축 방향의 위치가 상이한 복수의 마크 (얼라인먼트 쇼트 영역의 얼라인먼트 마크) 를 복수의 얼라인먼트계 (AL1, AL21 ∼ AL24) 로 동시에 검출시킴과 함께, 웨이퍼 스테이지 (WST) 의 Y 축 방향으로의 이동에 수반하여 복수의 얼라인먼트계의 검출 영역을 통과한 웨이퍼 (W) 의 면위치 정보를 다점 AF 계 (90a, 90b)로 검출시킨다. 이 때문에, 얼라인먼트 마크의 검출 동작과 면위치 정보 (포커스 정보) 의 검출 동작을 무관하게 실시하는 경우에 비해 스루풋을 향상시킬 수 있 다. 또한, 본 실시형태에서는 X 축 방향에 관하여 로딩 포지션과 노광 위치가 상이한 것으로 했지만, X 축 방향의 위치를 거의 동일하게 해도 된다. 이 경우, 로딩 포지션으로부터 얼라인먼트계 (및 다점 AF 계) 의 검출 영역까지 웨이퍼 스테이지 (WST) 를 거의 일직선으로 이동시킬 수 있다. 또한, 로딩 포지션과 언로딩 포지션을 동일 위치로 해도 된다.
또한, 본 실시형태에 의하면, 1 쌍의 Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 1 쌍의 Y 헤드 (64y2, 64y1)(1 쌍의 Y 축 리니어 인코더 (70A, 70C)) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 축 방향의 위치와 θz 회전 (요잉) 을 계측하면서, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 을 Y 축 방향으로 이동시킬 수 있다. 또한, 이 경우, 웨이퍼 (W) 상에 형성되는 쇼트 영역의 배열 (사이즈 등) 에 맞추어 프라이머리 얼라인먼트계 (AL1) 에 대한 세컨더리 얼라인먼트계 (AL21 ∼ AL24) 의 X 축 방향의 상대적인 위치를 조정한 상태에서, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 축 방향으로의 이동을 실현할 수 있으므로, 웨이퍼 (W) 상에서 Y 축 방향의 위치가 동일하고 또한 X 축 방향의 위치가 상이한 복수의 쇼트 영역 (예를 들어, 얼라인먼트 쇼트 영역) 의 얼라인먼트 마크를 복수의 얼라인먼트계 (AL1, AL21 ∼ AL24) 로 동시에 계측하는 것이 가능해진다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 인코더 시스템 (Y 리니어 인코더 (70A, 70C), X 리니어 인코더 (70B, 70D)) 에 의한 계측치에 기초하 여 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 위치를 제어하면서, 웨이퍼 (W) 상의 얼라인먼트 마크가 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여 검출된다. 즉, Y 스케일 (39Y1, 39Y2) 에 각각 대향하는 Y 헤드 (64)(Y 리니어 인코더 (70A, 70C)) 와 X 스케일 (39X1, 39X2) 에 각각 대향하는 X 헤드 (66)(X 리니어 인코더 (70B, 70D)) 의 계측치에 기초하여, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 위치를 고정밀도로 제어하면서, 웨이퍼 (W) 상의 얼라인먼트 마크를 얼라인먼트계 (AL1, AL21 ∼ AL24) 를 이용하여 검출하는 것이 가능해진다.
또한, 본 실시형태에 의하면, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 XY 평면내에서의 위치에 의해, 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의해 동시 검출되는 웨이퍼 (W) 상의 얼라인먼트 마크의 검출점 수 (계측점 수) 가 상이하므로, 예를 들어 전술한 웨이퍼 얼라인먼트시 등에, 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 를 X 축으로 교차하는 방향, 예를 들어 Y 축 방향으로 이동할 때에, 웨이퍼 (W) 상에서 서로 위치가 상이한 얼라인먼트 마크를 웨이퍼 테이블 (WTB)(웨이퍼 스테이지 (WST)) 의 Y 축 방향의 위치에 따라, 환언하면 웨이퍼 (W) 상의 쇼트 영역의 배치 (레이아웃) 에 따라, 필요한 수의 얼라인먼트계를 이용하여 동시 검출하는 것이 가능해진다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 웨이퍼 (W) 상에 얼라인먼트계에서 검출해야 할 얼라인먼트 마크가 잔존하고 있는 단계 (예를 들어, 전술한 제 2 얼라인먼트 쇼트 영역 (AS) 에 부설된 얼라인먼트 마크의 검출이 종료된 시점) 에서, 그때까지 얼라인먼트계에서 검출된 웨이퍼 (W) 상의 복수 (예를 들어 8 개) 의 얼라인먼트 마크의 검출 결과에 기초하여, 투영 광학계 (PL) 의 광학 특성을 조정시키도록 조정 장치 (68) 가 제어되는 경우가 있다. 이러한 경우에는, 이 투영 광학계 (PL) 의 광학 특성의 조정 후에, 예를 들어 투영 광학계 (PL) 에 의한 소정의 계측 마크 (또는 패턴) 의 이미지의 검출 등을 실시하는 경우에, 상기의 조정에 수반하여 계측 마크의 이미지가 시프트되어도, 그 시프트 후의 계측 마크의 이미지를 계측하므로, 결과적으로 투영 광학계 (PL) 의 광학 특성의 조정에 수반하는 계측 마크의 이미지의 시프트가 계측 오차 요인이 되는 경우가 없다. 또한, 검출해야 할 얼라인먼트 마크를 모두 다 검출하기 전에, 그때까지 검출된 얼라인먼트 마크의 검출 결과에 기초하여 상기 조정을 개시하므로, 상기 조정을 나머지 얼라인먼트 마크의 검출 동작과 병행하여 실시할 수 있다. 즉, 본 실시형태에서는, 상기 조정에 필요로 하는 시간을, 제 3 얼라인먼트 쇼트 영역 (AS) 의 얼라인먼트 마크의 검출을 개시하고부터 제 4 얼라인먼트 쇼트 영역 (AS) 의 얼라인먼트 마크의 검출이 종료될 때까지의 시간에 오버랩시킬 수 있다. 이로써, 모든 마크를 다 검출하고 나서 상기 조정을 개시하던 종래 기술과 비교하여 스루풋의 향상이 가능하다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 투영 광학계 (PL) 에 의한 패턴 (예를 들어 레티클 (R) 의 패턴) 의 이미지의 투영 위치와 얼라인먼트계 (AL1) 의 검출 중심의 위치 관계 (얼라인먼트계 (AL1) 의 베이스 라인) 를 계 측하는 동작 (예를 들어, 전술한 Pri-BCHK 의 전반의 처리) 을 개시하고부터 그 동작을 완료할 때까지 (예를 들어, 전술한 Pri-BCHK 의 후반의 처리를 종료할 때까지), 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의한 웨이퍼 (W) 상의 얼라인먼트 마크 (예를 들어, 전술한 3 개의 제 1 얼라인먼트 쇼트 영역 및 5 개의 제 2 얼라인먼트 쇼트 영역의 얼라인먼트 마크) 의 검출 동작이 행해진다. 즉, 얼라인먼트계에 의한 마크의 검출 동작의 적어도 일부를 상기 위치 관계의 계측 동작과 병행하여 실시할 수 있다. 따라서, 상기 위치 관계의 계측 동작이 완료된 시점에서는, 웨이퍼 (W) 상에서 검출해야 할 복수의 얼라인먼트 마크의 얼라인먼트계에 의한 검출 동작의 적어도 일부를 종료시킬 수 있다. 이로써, 상기 위치 관계의 계측 동작 전 또는 후에 상기 복수의 얼라인먼트 마크의 얼라인먼트계에 의한 검출 동작을 실시하는 경우에 비해 스루풋의 향상이 가능하다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 웨이퍼 (W) 상에서 검출해야 할 복수의 얼라인먼트 마크의 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의한 검출 동작 (예를 들어, 전술한 웨이퍼 얼라인먼트 동작, 즉, 제 1 얼라인먼트 쇼트 영역 (AS) 으로부터 제 4 얼라인먼트 쇼트 영역 (AS) 에 각각 부설된 합계 16 개의 얼라인먼트 마크의 검출 동작) 을 개시하고부터 그 동작을 완료하기 전까지, 투영 광학계 (PL) 에 의한 레티클 (R) 의 패턴의 이미지의 투영 위치와 얼라인먼트계 (AL1) 의 검출 중심의 위치 관계 (얼라인먼트계 (AL1) 의 베이스 라인) 의 계측 동작이 행해진다. 즉, 얼라인먼트계에 의한 마크의 검출 동작의 일부와 병행하 여, 상기 위치 관계의 계측 동작을 실시할 수 있다. 따라서, 웨이퍼 (W) 상에서 검출해야 할 복수의 얼라인먼트 마크의 얼라인먼트계 (AL1, AL21 ∼ AL24) 에 의한 검출 동작이 행해지는 동안에, 상기 위치 관계의 계측 동작을 종료시킬 수 있다. 이로써, 웨이퍼 (W) 상에서 검출해야 할 복수의 얼라인먼트 마크의 얼라인먼트계에 의한 검출 동작 전 또는 후에 상기 위치 관계의 계측 동작을 실시하는 경우에 비해 스루풋의 향상이 가능하다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 웨이퍼 (W) 상에서 검출해야 할 복수의 마크의 검출 동작 (예를 들어, 전술한 웨이퍼 얼라인먼트 동작, 즉, 16 개의 얼라인먼트 마크의 검출 동작) 이 개시되고부터 그 검출 동작이 완료되기 전까지, 웨이퍼 테이블 (WTB) 과 계측 테이블 (MTB) 의 접촉 상태 (또는 예를 들어, 300㎛ 이하로 근접시키는 근접 상태) 와, 그 양 테이블을 이간시키는 이간 상태의 전환 동작이 행해진다. 환언하면, 본 실시형태에 의하면, 상기 접촉 상태 (또는 근접 상태) 에 있어서 웨이퍼 (W) 상에서 검출해야 할 복수의 마크의 얼라인먼트계에 의한 검출 동작이 개시되고, 복수의 마크의 모든 검출 동작을 완료하기 전에, 상기 접촉 상태 (또는 근접 상태) 로부터 상기 이간 상태로의 전환이 행해지도록 그 양 테이블이 제어된다. 따라서, 웨이퍼 (W) 상에서 검출해야 할 복수의 마크의 검출 동작이 행해지는 동안에, 상기 상태의 전환 동작을 종료시킬 수 있다. 이로써, 웨이퍼 (W) 상에서 검출해야 할 복수의 마크의 검출 동작 전 또는 후에 상기 상태의 전환 동작을 실시하는 경우에 비해 스루풋의 향상이 가 능하다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 는, 얼라인먼트계 (AL1) 의 베이스 라인의 계측 동작을 상기 이간 상태에 있어서 개시하고, 또한 상기 접촉 상태 (또는 근접 상태) 에 있어서 종료한다.
또한, 본 실시형태에 의하면, 주제어 장치 (20) 에 의해, 복수의 얼라인먼트계와 웨이퍼 (W) 의 Z 축 방향 (포커스 방향) 의 상대 위치 관계를 도시 생략된 Z·레벨링 기구로 변경하면서, 웨이퍼 (W) 상에서 서로 위치가 상이한 얼라인먼트 마크를 대응하는 복수의 얼라인먼트계에 의해 동시에 검출시키도록 스테이지 구동계 (124)(Z·레벨링 기구) 와 얼라인먼트계 (AL1, AL21 ∼ AL24) 가 제어된다. 환언하면, 복수의 얼라인먼트계와 웨이퍼 (W) 의 포커스 방향의 상대 위치 관계를 복수의 얼라인먼트계로 동시에 변경하면서, 웨이퍼 (W) 상에서 서로 위치가 상이한 마크가 대응하는 복수의 얼라인먼트계에 의해 동시에 계측된다. 이로써, 각 얼라인먼트계에 대하여, 예를 들어 가장 양호한 포커스 상태에서 마크 검출을 실시할 수 있고, 그 검출 결과를 우선하여 사용하는 것 등에 의해, 웨이퍼 (W) 표면의 요철, 및 복수의 얼라인먼트계에서의 베스트 포커스차의 영향을 받지 않고, 웨이퍼 (W) 상에서 서로 위치가 상이한 마크를 고정밀도로 검출할 수 있다. 또한, 본 실시형태에서는, 얼라인먼트계 (AL1, AL21 ∼ AL24) 가 X 축 방향을 거의 따라 배치되는 것으로 했지만, 복수의 얼라인먼트계와 웨이퍼 (W) 의 포커스 방향의 상대 위치 관계를 복수의 얼라인먼트계로 동시에 변경하면서, 웨이퍼 (W) 상에서 서로 위 치가 상이한 마크를 대응하는 복수의 얼라인먼트계에 의해 동시에 계측하는 수법은 얼라인먼트계가 상기 서술한 배치와 다른 배치라도 유효하다. 요점은, 복수의 얼라인먼트계에서, 웨이퍼 (W) 상의 서로 상이한 위치에 형성된 마크를 거의 동시에 검출할 수 있으면 된다.
또한, 상기 실시형태에서는, 도 3 에 나타내는 바와 같이, 헤드 유닛 (62C) 이 구비하는 복수 쌍 (6 쌍) 의 Z 센서 (741,j, 742,j) 와 복수의 Y 헤드 (64) 가 X 축 방향에 관하여 교대로 배치되고, 마찬가지로 헤드 유닛 (62C) 이 구비하는 복수 쌍 (6 쌍) 의 Z 센서 (761,q, 762,q) 와 복수의 Y 헤드 (64) 가 X 축 방향에 관하여 교대로 배치되어 있는 경우에 대하여 설명하였지만, 본 발명이 이것에 한정되는 것은 아니다. 예를 들어, 도 37 에 나타나는 헤드 유닛 (62C', 62A') 을 전술한 헤드 유닛 (62C, 62A) 대신에 이용해도 된다. 헤드 유닛 (62C') 에서는, Z 센서 (74) 와 Y 헤드 (64) 가 직선 (LH) 상에 교대로 배치되고, 또한 헤드 유닛 (62A') 에서는, Z 센서 (76) 와 Y 헤드 (64) 가 직선 (LH) 상에 교대로 배치되어 있다. 혹은, 도 38 에 나타나는 헤드 유닛 (162C, 162A) 을 전술한 헤드 유닛 (62C, 62A) 대신에 이용해도 된다. 헤드 유닛 (162C) 에서는, Y 헤드 (64) 대신에 Z 센서의 기능도 구비한 Y 헤드 (64') 가 이용되고 있고, 마찬가지로 헤드 유닛 (162A) 에서는, Y 헤드 (64) 대신에 Z 센서의 기능도 구비한 Y 헤드 (64') 가 이용되고 있다. 이 경우, Y 축 방향과 Z 축 방향에 관하여 웨이퍼 테이블 (WTB) 상의 동일한 계측 영역이 공통의 계측점이 된다. 이 경우, 헤드 유닛 (162C) 의 Y 헤드 (64') 의 특정한 하나와, 전술한 Z 센서 (72a, 72b) 는 동일한 Y 축 방향의 직선 상에 배치되는 것이 바람직하고, 헤드 유닛 (162A) 의 Y 헤드 (64') 의 특정한 하나와, 전술한 Z 센서 (72c, 72d) 는 동일한 Y 축 방향의 직선 상에 배치되는 것이 바람직하다. 또한, X, Y, Z 모두에서, 웨이퍼 테이블 (WTB) 상의 동일한 계측 영역이 공통의 계측점이 되도록, 센서 (헤드의 배치 및/또는 계측 광학계의 둘러침) 를 연구하도록 해도 된다. 이 밖에, 전술한 각 쌍의 Z 센서 (741,j, 742,j) 를 Y 헤드 (64) 의 +Y 측과 -Y 측에 배치하고, 마찬가지로, 전술한 각 쌍의 Z 센서 (761,j, 762,j) 를 Y 헤드의 +Y 측과 -Y 측에 배치해도 된다. 이 경우, Z 센서 (741,j, 742,j) 및 이들에 끼워지는 Y 헤드 (64), 그리고 Z 센서 (72a, 72b) 는 동일한 Y 축 방향의 직선 상에 배치되는 것이 바람직하고, Z 센서 (761,j, 762,j) 및 이들에 끼워지는 Y 헤드 (64), 그리고 Z 센서 (72a, 72b) 는 동일한 Y 축 방향의 직선 상에 배치되는 것이 바람직하다. 또한, 이 경우, Z 센서 (741,j, 742,j) 및 Z 센서 (761,j, 762,j) 는 Y 헤드 (64) 에 대하여 대칭의 배치이어도 되고, 대칭의 배치가 아니어도 된다.
또한, 상기 실시형태에서는, Y 축 방향 위치의 계측에 사용되는 1 쌍의 Y 스케일 (39Y1, 39Y2) 과, X 축 방향 위치의 계측에 사용되는 1 쌍의 X 스케일 (39X1, 39X2) 이 웨이퍼 테이블 (WTB) 상에 형성되고, 이것에 대응하여, 한 쌍의 헤드 유닛 (62A, 62C) 이 투영 광학계 (PL) 를 사이에 두고 X 축 방향의 일측과 타측에 배치 되고, 2 개의 헤드 유닛 (62B, 62D) 이 투영 광학계 (PL) 를 사이에 두고 Y 축 방향의 일측과 타측에 배치되는 경우에 대하여 예시하였다. 그러나, 이것에 한정되지 않고, Y 축 방향 위치의 계측용의 Y 스케일 (39Y1, 39Y2) 및 X 축 방향 위치의 계측용의 X 스케일 (39X1, 39X2) 중, 적어도 일방이 1 쌍이 아니고 1 개만 웨이퍼 테이블 (WTB) 상에 형성되어 있어도 되고, 혹은 한 쌍의 헤드 유닛 (62A, 62C) 및 2 개의 헤드 유닛 (62B, 62D) 중, 적어도 일방이 1 개만 형성되어 있어도 된다. 또한, 스케일의 연장 방향 및 헤드 유닛의 연장 방향은 상기 실시형태의 X 축 방향, Y 축 방향과 같은 직교 방향에 한정되는 것이 아니고, 서로 교차하는 방향이면 된다.
또한, 상기의 설명에서는, 웨이퍼 스테이지 (WST) 에서 웨이퍼 교환을 실시하고 있는 동안에, 계측 스테이지 (MST) 의 CD 바 (46) 를 이용하여, Sec-BCHK (인터벌) 를 실시하는 경우에 대하여 설명했지만, 이것에 한정되지 않고, 계측 스테이지 (MST) 의 계측용 부재를 이용하여, 조도 불균일 계측 (및 조도 계측), 공간 이미지 계측, 파면 수차 계측 등의 적어도 하나를 실시하고, 그 계측 결과를 그 후에 행해지는 웨이퍼의 노광에 반영시키는 것으로 해도 된다. 구체적으로는, 예를 들어 계측 결과에 기초하여 조정 장치 (68) 에 의해 투영 광학계 (PL) 의 조정을 실시하는 것으로 할 수 있다.
또한, 상기 실시형태에서는, 스케일의 격자 피치의 보정 정보를 취득하는 캘리브레이션시에, 웨이퍼 테이블 (WTB) 을 간섭계의 계측치의 단기 변동을 무시할 수 있을 정도의 저속 (극히 저속) 으로 이동시키는 경우에 대하여 설명했지만, 이것에 한정되지 않고, 극저속이 아닌 속도로 이동시키는 것도 가능하다. 이 경우, 예를 들어 Y 스케일 (39Y1, 39Y2) 의 격자 피치의 보정 정보 등을 취득하는 경우에는, 웨이퍼 테이블을 X 축 방향에 관하여 상이한 위치에 설정하고, 각각의 위치에서 상기 실시형태와 마찬가지로 웨이퍼 테이블을 Y 축 방향으로 이동시키면서, 그 이동 중에 인코더 (70A, 70C) 계측치와 Y 간섭계 (16) 의 계측치 헤드 유닛 (62A, 62C) 의 계측치를 동시에 입력하고, 2 회의 동시 입력 동작으로 얻어진 샘플링값을 이용하여 연립 방정식을 세우고, 이 연립 방정식을 풂으로써, Y 스케일의 격자 피치의 보정 정보 (예를 들어, 보정 맵) 를 각각 독립적으로 구하는 것으로 해도 된다.
또한, 상기 실시형태에서는, 도 10(A) 에 나타내는 바와 같이, 빔 스플리터 등의 광학 소자로 광원부터의 광을 분기하고, 분기 후의 광을 반사하는 2 매의 반사 미러를 구비한 회절 간섭 방식의 인코더를 인코더 (70A ∼ 70F) 로서 사용하는 것으로 했지만, 이것에 한정되지 않고, 3 격자의 회절 간섭식 인코더, 혹은 예를 들어, 일본 공개특허공보 2005-114406호 등에 개시되는 바와 같은, 광 반사 블록을 구비한 인코더 등을 이용해도 된다. 또한, 상기 실시형태에서는, 헤드 유닛 (62A ∼ 62D) 은 소정 간격으로 배치된 복수의 헤드를 갖는 것으로 했지만, 이것에 한정되지 않고, Y 스케일 또는 X 스케일의 피치 방향으로 가늘고 길게 연장되는 영역에 광 빔을 사출하는 광원과, 광 빔의 Y 스케일 또는 X 스케일 (회절 격자) 로부 터의 반사광 (회절광) 을 수광하는, Y 스케일 또는 X 스케일의 피치 방향으로 광 빔을 수광하는, 간극 없이 배열된 다수의 수광 소자를 구비한 단일 헤드를 채용해도 된다.
또한, 상기 실시형태에서는, 헤드 유닛 (62A ∼ 62D) 으로부터의 검출광을 투과 가능한 보호 부재 (예를 들어, 박막 또는 유리판 등) 로 반사형의 회절 격자를 덮어, 회절 격자의 손상 등을 방지해도 된다. 또한, 상기 실시형태에서는 XY 평면과 거의 평행한 웨이퍼 스테이지 (WST) 의 상면에 반사형의 회절 격자를 형성하는 것으로 했지만, 예를 들어 웨이퍼 스테이지 (WST) 의 하면에 반사형의 회절 격자를 형성해도 된다. 이 경우, 헤드 유닛 (62A ∼ 62D) 은 웨이퍼 스테이지 (WST) 의 하면이 대향하는, 예를 들어 베이스 플레이트에 배치된다. 또한, 상기 실시형태에서는 웨이퍼 스테이지 (WST) 를 수평면내에서 이동시키는 것으로 했지만, 수평면과 교차하는 평면 (예를 들어, ZX 평면 등) 내에서 이동시켜도 된다. 또한, 레티클 스테이지 (RST) 가 2 차원 이동하는 경우, 전술한 인코더 시스템과 동일한 구성의 인코더 시스템을 형성하여 레티클 스테이지 (RST) 의 위치 정보를 계측해도 된다.
또한, 상기 실시형태에서는 간섭계 시스템 (118) 이 5 자유도의 방향 (X 축, Y 축, θx, θy 및 θz 방향) 에 관하여 웨이퍼 스테이지 (WST) 의 위치 정보를 계측 가능한 것으로 했지만, Z 축 방향의 위치 정보도 계측 가능하게 해도 된다. 이 경우, 적어도 노광 동작시에, 전술한 인코더 시스템의 계측치와 간섭계 시스템 (118) 의 계측치 (적어도 Z 축 방향의 위치 정보를 포함한다) 를 이용하여 웨이퍼 스테이지 (WST) 의 위치 제어를 실시해도 된다. 이 간섭계 시스템 (118) 은, 예를 들어 일본 공개특허공보 2000-323404호 (대응 미국 특허 제7,116,401호), 일본 공표특허공보 2001-513267호 (대응 미국 특허 제6,208,407호) 등에 개시되어 있는 바와 같이, XY 평면에 대하여 소정 각도 (예를 들어 45 도) 경사진 반사면을 웨이퍼 스테이지 (WST) 의 측면에 형성하고, 이 반사면을 통하여 측정 빔을, 예를 들어 전술한 경통 정반 혹은 계측 프레임 등에 형성되는 반사면에 조사함으로써, 웨이퍼 스테이지 (WST) 의 Z 축 방향의 위치 정보를 계측한다. 이 간섭계 시스템 (118) 에서는, 복수의 측정 빔을 사용함으로써, Z 축 방향에 추가하여 θx 방향 및/또는 θy 방향의 위치 정보도 계측 가능해진다. 이 경우, 웨이퍼 스테이지 (WST) 의 이동경에 조사되는 θx 방향 및/또는 θy 방향의 위치 정보를 계측하기 위한 측정 빔은 이용하지 않아도 된다.
또한, 상기 실시형태에서는, 복수의 Z 센서 (74i,j, 76p,q) 가 헤드 유닛 (62C, 62A) 에 형성되는 것으로 했지만, 이것에 한정되지 않고, Z 센서와 동일한 면위치 센서를 예를 들어 계측 프레임 등에 형성해도 된다. 또한, 인코더 헤드 및 Z 센서는 각각, 웨이퍼 스테이지의 상면과의 간격이 투영 광학계 (PL) 의 선단 광학 소자 (191) 와 동일한 정도 이하, 예를 들어 좁은 것이 바람직하다. 이것에 의해 계측 정밀도의 향상을 도모할 수 있다. 이 경우, AF 센서를 형성하는 것이 어렵기 때문에, 간단한 Z 센서는 유효해진다. 또한, 상기 실시형태에서는 노즐 유닛 (32) 의 하면과 투영 광학계 (PL) 의 선단 광학 소자의 하단면이 거의 면일한 것으로 했지만, 이것에 한정되지 않고, 예를 들어 노즐 유닛 (32) 의 하면을 선단 광학 소자의 사출면보다 투영 광학계 (PL) 의 이미지면 (즉, 웨이퍼) 의 근처에 배치해도 된다. 즉, 국소 액침 장치 (8) 는 상기 서술한 구조에 한정되지 않고, 예를 들어 유럽 특허 공개 제1420298호, 국제 공개 제2004/055803호 팜플렛, 국제 공개 제2004/057590호 팜플렛, 국제 공개 제2005/029559호 팜플렛 (대응 미국 특허 공개 제2006/0231206호), 국제 공개 제2004/086468호 팜플렛 (대응 미국 특허 공개 제2005/0280791호), 일본 공개특허공보 2004-289126호 (대응 미국 특허 제6,952,253호) 등에 기재되어 있는 것을 사용할 수 있다. 또한, 예를 들어 국제 공개 제2004/019128호 팜플렛 (대응 미국 특허 공개 제2005/0248856호) 에 개시되어 있는 바와 같이, 선단 광학 소자의 이미지면측의 광로에 추가하여, 선단 광학 소자의 물체면측의 광로도 액체로 채우도록 해도 된다. 또한, 선단 광학 소자의 표면의 일부 (적어도 액체와의 접촉면을 포함한다) 또는 전부에 친액성 및/또는 용해 방지 기능을 갖는 박막을 형성해도 된다. 또한, 석영은 액체와의 친화성이 높고, 또한 용해 방지막도 불필요하지만, 형석은 적어도 용해 방지막을 형성하는 것이 바람직하다.
또한, 상기 실시형태에서는, 액체로서 순수 (물) 를 사용하는 것으로 했지만, 본 발명이 이것에 한정되지 않는 것은 물론이다. 액체로서는, 화학적으로 안정적이고, 조명광 (IL) 의 투과율이 높고 안전한 액체, 예를 들어 불소계 불활성 액체를 사용해도 된다. 이 불소계 불활성 액체로서는, 예를 들어 플로리나트 (미국 쓰리엠사의 상품명) 를 사용할 수 있다. 이 불소계 불활성 액체는 냉각 효과의 점에서도 우수하다. 또한, 액체로서, 조명광 (IL) 에 대한 굴절률이 순수 (굴절률은 1.44 정도) 보다 높은, 예를 들어 1.5 이상인 액체를 이용해도 된다. 이 액체로서는, 예를 들어 굴절률이 약 1.50 인 이소프로판올, 굴절률이 약 1.61 인 글리세롤 (글리세린) 과 같은 C-H 결합 혹은 O-H 결합을 갖는 소정 액체, 헥산, 헵탄, 데칸 등의 소정 액체 (유기 용제), 혹은 굴절률이 약 1.60 인 데칼린 (Decalin: Decahydronaphthalene) 등을 들 수 있다. 혹은, 이들 액체 중 임의의 2 종류 이상의 액체가 혼합된 것이어도 되고, 순수에 이들 액체의 적어도 하나가 첨가 (혼합) 된 것이어도 된다. 혹은, 액체로서는, 순수에 H+, Cs+, K+, Cl-, SO4 2-, PO4 2 - 등의 염기 또는 산을 첨가 (혼합) 한 것이어도 된다. 나아가서는, 순수에 Al 산화물 등의 미립자를 첨가 (혼합) 한 것이어도 된다. 이들 액체는 ArF 엑시머 레이저광을 투과 가능하다. 또한, 액체로서는, 광의 흡수 계수가 작고, 온도 의존성이 적고, 투영 광학계 (선단의 광학 부재) 및/또는 웨이퍼의 표면에 도포되어 있는 감광재 (또는 보호막 (탑 코트막) 혹은 반사 방지막 등) 에 대하여 안정적인 것이 바람직하다. 또한, F2 레이저를 광원으로 하는 경우에는 폼블린 (fomblin) 오일을 선택하면 된다. 또한, 액체로서는, 순수보다 조명광 (IL) 에 대한 굴절률이 높은 액체, 예를 들어 굴절률이 1.6 ∼ 1.8 정도인 것을 사용해도 된다. 액체로서, 초임계 유체를 사용하는 것도 가능하다. 또한, 투영 광학계 (PL) 의 선단 광학 소자를, 예를 들어 석영 (실리카), 혹은 불화칼슘 (형석), 불화바륨, 불화스트론튬, 불화리튬, 및 불화나트륨 등의 불화 화합물의 단결정 재료로 형성해도 되고, 석영이나 형석보다 굴절률이 높은 (예를 들어 1.6 이상) 재료로 형성해도 된다. 굴절률이 1.6 이상인 재료로서는, 예를 들어 국제 공개 제2005/059617호 팜플렛에 개시되는 사파이어, 이산화게르마늄 등, 혹은 국제 공개 제2005/059618호 팜플렛에 개시되는 염화칼륨 (굴절률은 약 1.75) 등을 사용할 수 있다.
또한, 상기 실시형태에서, 회수된 액체를 재이용하도록 해도 되고, 이 경우에는 회수된 액체로부터 불순물을 제거하는 필터를 액체 회수 장치, 또는 회수관 등에 형성해 두는 것이 바람직하다.
또한, 상기 실시형태에서는, 노광 장치가 액침형의 노광 장치인 경우에 대하여 설명했지만, 이것에 한정되는 것이 아니고, 액체 (물) 을 통하지 않고 웨이퍼 (W) 의 노광을 실시하는 드라이 타입의 노광 장치에도 채용할 수 있다.
또한, 상기 실시형태에서는, 웨이퍼 스테이지 (WST)(이동체), 계측 스테이지 (MST)(다른 이동체), 얼라인먼트계 ((AL1, AL21 ∼ AL24)), 다점 AF 계 (90a, 90b), Z 센서, 간섭계 시스템 (118), 및 인코더 시스템 (70A ∼ 70F) 등의 모두를 구비한 노광 장치에 본 발명이 적용된 경우에 대하여 설명했지만, 본 발명이 이것에 한정되는 것은 아니다. 예를 들어, 계측 스테이지 (MST) 등이 형성되어 있지 않은 노광 장치에도 본 발명은 적용이 가능하다. 본 발명은, 상기 각 구성 부분 중, 웨이퍼 스테이지 (이동체) 와 이것 이외의 일부의 구성 부분을 구비하고 있으면 적 용이 가능하다. 일례를 들면, 예를 들어 마크 검출계를 포인트하는 발명은 적어도 웨이퍼 스테이지 (WST) 와 얼라인먼트계를 구비한 장치이면 적용이 가능하다. 또한, 간섭계 시스템과 인코더 시스템은 반드시 양방 형성할 필요가 없음은 물론이다.
또한, 상기 실시형태에서는, 공간 이미지 계측 장치 (45) 가, 상이한 스테이지, 구체적으로는 웨이퍼 스테이지 (WST) 와 계측 스테이지 (WST) 로 분리하여 배치된 경우에 대하여 설명했지만, 분리하여 배치되는 센서는 공간 이미지 계측 장치에 한정되는 것이 아니고, 예를 들어 파면 수차 계측기 등이어도 된다. 또한, 상이한 스테이지는, 기판 스테이지와 계측 스테이지의 조합에 한정되는 것은 아니다.
또한, 상기 실시형태에서는, 스텝 앤드 스캔 방식 등의 주사형 노광 장치에 본 발명이 적용된 경우에 대하여 설명했지만, 이것에 한정되지 않고, 스테퍼 등의 정지형 노광 장치에 본 발명을 적용해도 된다. 스테퍼 등이라도, 노광 대상의 물체가 탑재된 스테이지의 위치를 인코더로 계측함으로써, 동일하게, 공기 요동에서 기인되는 위치 계측 오차의 발생을 대부분 제로로 할 수 있다. 이 경우, 인코더의 계측치의 단기 변동을 간섭계의 계측치를 이용하여 보정하는 보정 정보와 인코더의 계측치에 기초하여, 스테이지를 고정밀도에 위치 결정하는 것이 가능해지고, 결과적으로 고정밀의 레티클 패턴의 물체 상으로의 전사가 가능해진다. 또한, 쇼트 영역과 쇼트 영역을 합성하는 스텝 앤드 스티치 방식의 축소 투영 노광 장치, 프록시미티 방식의 노광 장치, 또는 미러 프로젝션·얼라이너 등에도 본 발 명은 적용할 수 있다. 또한, 예를 들어 일본 공개특허공보 평10-163099호 및 일본 공개특허공보 평10-214783호 (대응 미국 특허 제6,590,634호), 일본 공표특허공보 2000-505958호 (대응 미국 특허 제5,969,441호), 미국 특허 제6,208,407호 등에 개시되어 있는 바와 같이, 복수의 웨이퍼 스테이지를 구비한 멀티 스테이지형의 노광 장치에도 본 발명을 적용할 수 있다.
또한, 상기 실시형태의 노광 장치에 있어서의 투영 광학계는 축소계뿐만 아니라 등배 및 확대계 중 어느 것이어도 되고, 투영 광학계 (PL) 는 굴절계뿐만 아니라, 반사계 및 반사 굴절계 중 어느 것이어도 되고, 그 투영 이미지는 도립상 및 정립상 중 어느 것이어도 된다. 그리고, 투영 광학계 (PL) 를 통하여 조명광 (IL) 이 조사되는 노광 영역 (IA) 은 투영 광학계 (PL) 의 시야내에서 광축 (AX) 을 포함하는 온 액시스 (on axis) 영역이지만, 예를 들어 국제 공개 제2004/107011호 팜플렛에 개시되어 있는 바와 같이, 복수의 반사면을 갖고 또한 중간 이미지를 적어도 1 회 형성하는 광학계 (반사계 또는 반굴계) 가 그 일부에 형성되고, 또한 단일 광축을 갖는, 이른바 인라인형의 반사 굴절계와 마찬가지로, 그 노광 영역은 광축 (AX) 을 포함하지 않는 오프 액시스 (off-axis) 영역이어도 된다. 또한, 전술한 조명 영역 및 노광 영역은 그 형상이 직사각형인 것으로 했지만, 이것에 한정되지 않고, 예를 들어 원호, 사다리꼴, 혹은 평행 사변형 등이어도 된다.
또한, 상기 실시형태의 노광 장치의 광원은 ArF 엑시머 레이저에 한정되지 않고, KrF 엑시머 레이저 (출력 파장 248㎚), F2 레이저 (출력 파장 157㎚), Ar2 레 이저 (출력 파장 126㎚), Kr2 레이저 (출력 파장 146㎚) 등의 펄스 레이저 광원, 혹은 g 선 (파장 436㎚), i 선 (파장 365㎚) 등의 휘선을 발하는 초고압 수은 램프 등을 사용하는 것도 가능하다. 또한, YAG 레이저의 고조파 발생 장치 등을 사용할 수도 있다. 이 밖에, 예를 들어 국제 공개 제1999/46835호 팜플렛 (대응 미국 특허 7,023,610호) 에 개시되어 있는 바와 같이, 진공 자외광으로서 DFB 반도체 레이저 또는 화이버 레이저로부터 발진되는 적외역, 또는 가시역의 단일 파장 레이저광을, 예를 들어 에르븀 (또는 에르븀과 이테르븀의 양방) 이 도핑된 화이버 앰프로 증폭시키고, 비선형 광학 결정을 이용하여 자외광으로 파장 변환한 고조파를 이용해도 된다.
또한, 상기 실시형태에서는, 노광 장치의 조명광 (IL) 으로서는 파장 100㎚ 이상의 광에 한정되지 않고, 파장 100㎚ 미만의 광을 이용해도 됨은 말할 필요도 없다. 예를 들어, 최근, 70㎚ 이하의 패턴을 노광하기 위하여, SOR 또는 플라즈마 레이저를 광원으로서, 연 X 선 영역 (예를 들어, 5 ∼ 15㎚ 의 파장역) 의 EUV (Extreme Ultraviolet) 광을 발생시킴과 함께, 그 노광 파장 (예를 들어 13.5㎚) 아래에서 설계된 전반사 축소 광학계, 및 반사형 마스크를 사용한 EUV 노광 장치의 개발이 이루어지고 있다. 이 장치에 있어서는, 원호 조명을 이용하여 마스크와 웨이퍼를 동기 주사하여 스캔 노광하는 구성이 고려되므로, 이러한 장치에도 본 발명을 바람직하게 적용할 수 있다. 이 밖에, 전자선 또는 이온 빔 등의 하전 입자선을 사용하는 노광 장치에도 본 발명은 적용할 수 있다.
또한, 상기 서술한 실시형태에 있어서는, 광 투과성의 기판 상에 소정의 차광 패턴 (또는 위상 패턴·감광 패턴) 을 형성한 광 투과형 마스크 (레티클) 를 사용하였지만, 이 레티클 대신에, 예를 들어 미국 특허 제6,778,257호에 개시되어 있는 바와 같이, 노광해야 할 패턴의 전자 데이터에 기초하여, 투과 패턴 또는 반사 패턴, 혹은 발광 패턴을 형성하는 전자 마스크 (가변 성형 마스크, 액티브 마스크, 혹은 이미지 제너레이터라고도 불리고, 예를 들어 비발광형 화상 표시 소자 (공간 광 변조기) 의 일종인 DMD (Digital Micro-mirror Device) 등을 포함한다) 를 이용해도 된다.
또한, 예를 들어 국제 공개 제2001/035168호 팜플렛에 개시되어 있는 바와 같이, 간섭 무늬를 웨이퍼 상에 형성함으로써, 웨이퍼 상에 라인 앤드 스페이스 패턴을 형성하는 노광 장치 (리소그래피 시스템) 에도 본 발명을 적용할 수 있다.
또한, 예를 들어 일본 공표특허공보 2004-519850호 (대응 미국 특허 제6,611,316호) 에 개시되어 있는 바와 같이, 2 개의 레티클 패턴을 투영 광학계를 통하여 웨이퍼 상에서 합성하고, 1 회의 스캔 노광에 의해 웨이퍼 상의 하나의 쇼트 영역을 거의 동시에 이중 노광하는 노광 장치에도 본 발명을 적용할 수 있다.
또한, 물체 상에 패턴을 형성하는 장치는, 전술한 노광 장치 (리소그래피 시스템) 에 한정되지 않고, 예를 들어 잉크젯 방식으로 물체 상에 패턴을 형성하는 장치에도 본 발명을 적용할 수 있다.
또한, 상기 실시형태에서 패턴을 형성해야 할 물체 (에너지 빔이 조사되는 노광 대상의 물체) 는 웨이퍼에 한정되는 것이 아니고, 유리 플레이트, 세라믹 기 판, 필름 부재, 혹은 마스크 블랭크스 등, 다른 물체이어도 된다.
노광 장치의 용도로서는 반도체 제조용 노광 장치에 한정되지 않고, 예를 들어, 사각형의 유리 플레이트에 액정 표시 소자 패턴을 전사하는 액정용 노광 장치, 유기 EL, 박막 자기 헤드, 촬상 소자 (CCD 등), 마이크로 머신 및 DNA 칩 등을 제조하기 위한 노광 장치에도 널리 적용할 수 있다. 또한, 반도체 소자 등의 마이크로 디바이스뿐만 아니라, 광 노광 장치, EUV 노광 장치, X 선 노광 장치, 및 전자선 노광 장치 등에서 사용되는 레티클 또는 마스크를 제조하기 위하여, 유리 기판 또는 실리콘 웨이퍼 등에 회로 패턴을 전사하는 노광 장치에도 본 발명을 적용할 수 있다.
또한, 본 발명의 측정 장치 및 측정 방법은 노광 장치에 한정되지 않고, 그 밖의 기판의 처리 장치 (예를 들어, 레이저 리페어 장치, 기판 검사 장치, 기타), 혹은 그 밖의 정밀 기계에 있어서의 시료의 위치 결정 장치, 와이어 본딩 장치 등의 평면내에서 이동하는 스테이지 등의 이동체를 구비한 장치에도 널리 적용할 수 있다.
또한, 상기 실시형태의 노광 장치 (패턴 형성 장치) 는 본원 청구의 범위에 거론된 각 구성 요소를 포함하는 각종 서브시스템을 소정의 기계적 정밀도, 전기적 정밀도, 광학적 정밀도를 유지하도록 조립함으로써 제조된다. 이들 각종 정밀도를 확보하기 위하여, 이 조립의 전후에는, 각종 광학계에 대해서는 광학적 정밀도를 달성하기 위한 조정, 각종 기계계에 대해서는 기계적 정밀도를 달성하기 위한 조정, 각종 전기계에 대해서는 전기적 정밀도를 달성하기 위한 조정이 행해진다. 각종 서브시스템으로부터 노광 장치로의 조립 공정은 각종 서브시스템 상호의 기계적 접속, 전기 회로의 배선 접속, 기압 회로의 배관 접속 등이 포함된다. 이 각종 서브시스템으로부터 노광 장치로의 조립 공정 전에, 각 서브시스템 개개의 조립 공정이 있는 것은 말할 필요도 없다. 각종 서브시스템의 노광 장치로의 조립 공정이 종료되면, 종합 조정이 행해져, 노광 장치 전체로서의 각종 정밀도가 확보된다. 또한, 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린 룸에서 실시하는 것이 바람직하다.
또한, 상기 실시형태에서 인용한 노광 장치 등에 관한 모든 공보, 국제 공개 팜플렛, 미국 특허 출원 공개 명세서 및 미국 특허 명세서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
다음으로 상기 서술한 노광 장치 (패턴 형성 장치) 를 리소그래피 공정에서 사용하는 디바이스의 제조 방법의 실시형태에 대하여 설명한다.
도 39 에는, 디바이스 (IC 혹은 LSI 등의 반도체 칩, 액정 패널, CCD, 박막 자기 헤드, 마이크로 머신 등) 의 제조예의 플로우 차트가 나타나 있다. 도 39에 나타내는 바와 같이, 먼저, 단계 201 (설계 단계) 에 있어서, 디바이스의 기능·성능 설계 (예를 들어, 반도체 디바이스의 회로 설계 등) 를 실시하고, 그 기능을 실현하기 위한 패턴 설계를 실시한다. 계속해서, 단계 202 (마스크 제작 단계) 에 있어서, 설계한 회로 패턴을 형성한 마스크를 제작한다. 한편, 단계 203 (웨이퍼 제조 단계) 에 있어서, 실리콘 등의 재료를 이용하여 웨이퍼를 제조한다.
다음으로, 단계 204 (웨이퍼 처리 단계) 에 있어서, 단계 201 ∼ 단계 203 에서 준비한 마스크와 웨이퍼를 사용하여, 후술하는 바와 같이, 리소그래피 기술 등에 의해 웨이퍼 상에 실제의 회로 등을 형성한다. 그 다음에, 단계 205 (디바이스 조립 단계) 에 있어서, 단계 204 에서 처리된 웨이퍼를 이용하여 디바이스 조립을 실시한다. 이 단계 205 에는 다이싱 공정, 본딩 공정, 및 패키징 공정 (칩 봉입) 등의 공정이 필요에 따라 포함된다.
마지막으로, 단계 206 (검사 단계) 에 있어서, 단계 205 에서 작성된 디바이스의 동작 확인 테스트, 내구 테스트 등의 검사를 실시한다. 이러한 공정을 거친 후에 디바이스가 완성되고, 이것이 출하된다.
도 40 에는, 반도체 디바이스에 있어서의, 상기 단계 204 의 상세한 플로우예가 나타나 있다. 도 40 에 있어서, 단계 211 (산화 단계) 에 있어서는 웨이퍼의 표면을 산화시킨다. 단계 212 (CVD 단계) 에 있어서는 웨이퍼 표면에 절연막을 형성한다. 단계 213 (전극 형성 단계) 에 있어서는 웨이퍼 상에 전극을 증착에 의해 형성한다. 단계 214 (이온 주입 단계) 에 있어서는 웨이퍼에 이온을 주입한다. 이상의 단계 211 ∼ 단계 214 각각은, 웨이퍼 처리의 각 단계의 전처리 공정을 구성하고 있고, 각 단계에 있어서 필요한 처리에 따라 선택되어 실행된다.
웨이퍼 프로세스의 각 단계에 있어서, 상기 서술한 전처리 공정이 종료되면, 이하와 같이 하여 후처리 공정이 실행된다. 이 후처리 공정에서는, 먼저, 단계 215 (레지스트 형성 단계) 에 있어서, 웨이퍼에 감광제를 도포한다. 계속해서, 단계 216 (노광 단계) 에 있어서, 위에서 설명한 노광 장치 (패턴 형성 장치) 및 그 노광 방법 (패턴 형성 방법) 에 의해 마스크의 회로 패턴을 웨이퍼에 전사한다. 다음으로, 단계 217 (현상 단계) 에 있어서는 노광된 웨이퍼를 현상하고, 단계 218 (에칭 단계) 에 있어서, 레지스트가 잔존하고 있는 부분 이외의 부분의 노출 부재를 에칭에 의해 제거한다. 그리고, 단계 219 (레지스트 제거 단계) 에 있어서, 에칭이 끝나 불필요해진 레지스트를 제거한다.
이들 전처리 공정과 후처리 공정을 반복하여 실시함으로써, 웨이퍼 상에 다중으로 회로 패턴이 형성된다.
이상 설명한 본 실시형태의 디바이스 제조 방법을 이용하면, 노광 공정 (단계 216) 에 있어서 상기 실시형태의 노광 장치 (패턴 형성 장치) 및 그 노광 방법 (패턴 형성 방법) 이 사용되므로, 중첩 정밀도를 높게 유지하면서, 높은 스루풋의 노광을 실시할 수 있다. 따라서, 미세 패턴이 형성된 고집적도의 마이크로 디바이스의 생산성을 향상시킬 수 있다.
산업상이용가능성
이상 설명한 바와 같이, 본 발명의 측정 장치 및 측정 방법은 물체를 유지하여 이동시키는 이동체의 평면내의 위치 및 평면에 직교하는 방향에 있어서의 위치를 측정하는 데 적합하다. 또한, 본 발명의 처리 장치 및 처리 방법은 평면내에서 이동하는 이동체 상에 탑재된 물체에 소정의 처리를 실시하는 데 적합하다. 또한, 본 발명의 패턴 형성 장치 및 패턴 형성 방법은 물체 상에 패턴을 형성하는 데 적합하다. 또한, 본 발명의 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법은 반도체 소자 또는 액정 표시 소자 등의 전자 디바이스를 제조하는 데 적합하다.

Claims (167)

  1. 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 장치로서,
    상기 물체를 탑재하고, 상기 광학계의 광 축과 수직인 소정의 평면내에서 서로 직교하는 제 1 및 제 2 방향으로 이동 가능한 이동체와;
    상기 제 1 및 제 2 방향의 적어도 일방에 관하여 검출점의 위치가 상이한 복수의 센서를 갖고, 상기 각 검출점에서 상기 평면과 직교하는 제 3 방향에 관한 상기 이동체의 위치 정보를 계측 가능한 제 1 검출계와, 상기 제 1 검출계와는 달리, 상기 이동체에 유지되는 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는 제 2 검출계를 포함하는 계측 장치를 구비하는, 노광 장치.
  2. 제 1 항에 있어서,
    상기 제 2 검출계는, 상기 제 1 및 제 2 방향의 일방을 따라 연장되는 검출 영역을 갖고, 상기 검출 영역내의 복수점에서의 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는, 노광 장치.
  3. 제 2 항에 있어서,
    상기 계측 장치는, 상기 제 2 검출계에 의해, 상기 일방의 방향과 교차하는 방향에 관하여 상기 검출 영역과 상대 이동되는 상기 물체의 전체면에서 상기 제 3 방향의 위치 정보를 계측 가능한, 노광 장치.
  4. 제 3 항에 있어서,
    상기 검출 영역은, 상기 일방의 방향에 관하여 상기 물체와 동일한 범위에 걸쳐 형성되는, 노광 장치.
  5. 제 1 항에 있어서,
    상기 에너지 빔에 의한 상기 물체의 노광 동작시, 상기 제 1 검출계에 의해 상기 이동체의 위치 정보를 계측하면서, 상기 제 2 검출계에 의해 계측된 상기 물체의 위치 정보에 기초하여, 상기 광학계를 통하여 형성되는 패턴 이미지와 상기 물체의 위치 관계를 조정하는 조정 장치를 추가로 구비하는, 노광 장치.
  6. 제 5 항에 있어서,
    상기 조정 장치는, 상기 물체를 이동시켜 상기 패턴 이미지와의 위치 및 경사의 조정을 실시하는, 노광 장치.
  7. 제 1 항에 있어서,
    상기 제 1 검출계는, 상기 복수의 검출점이 상기 제 1 및 제 2 방향의 일방을 따라 배치됨과 함께, 상기 제 2 검출계는, 상기 제 1 및 제 2 방향의 타방에 관하여 상기 복수의 검출점과 떨어져 배치되는 검출 영역을 갖고, 상기 제 1 검출계는, 상기 복수의 검출점과는 별도로 상기 검출 영역의 근방에 배치되는 적어도 2 개의 검출점을 포함하는, 노광 장치.
  8. 제 7 항에 있어서,
    상기 계측 장치는, 상기 제 2 검출계에 의한 상기 물체의 위치 정보의 계측시에, 상기 제 1 검출계에 의해 상기 적어도 2 개의 검출점에서의 상기 이동체의 위치 정보를 계측하는, 노광 장치.
  9. 제 1 항에 있어서,
    상기 제 1 및 제 2 검출계에 의해 계측되는 위치 정보에 대응시키는 제어 장치를 추가로 구비하는, 노광 장치.
  10. 제 1 항에 있어서,
    상기 광학계를 유지하는 프레임 부재를 추가로 구비하고,
    상기 복수의 센서는, 상기 프레임 부재에 매달아 지지되는, 노광 장치.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 제 1 검출계는, 상기 평면내에서의 상기 이동체의 위치 정보의 계측에 사용되고, 반사형의 격자가 형성되는 격자부에 대해, 각각 상기 복수의 센서에 의해 제 1 계측광을 조사하고,
    상기 제 2 검출계는, 상기 물체에 대해 그 상방으로부터 제 2 계측광을 조사하는, 노광 장치.
  12. 제 11 항에 있어서,
    상기 계측 장치는, 상기 격자부에 대해 각각 빔을 조사하는 복수의 헤드를 갖고, 상기 평면내에서의 상기 이동체의 위치 정보를 계측하는 인코더 시스템을 포함하는, 노광 장치.
  13. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 계측 장치는, 상기 광학계와 소정의 위치 관계로 배치되고, 또한 표면에 격자부가 형성되는 상기 이동체가 상대 이동되는 헤드 유닛을 갖는 인코더 시스템을 포함하는, 노광 장치.
  14. 제 13 항에 있어서,
    상기 광학계를 유지하는 프레임 부재를 추가로 구비하고,
    상기 헤드 유닛은, 상기 프레임 부재에 매달아 지지되는, 노광 장치.
  15. 제 13 항에 있어서,
    상기 이동체의 표면 중 상기 탑재 영역과 상이한 영역내에 상기 검출점이 유지되는 상기 복수의 센서 중 적어도 1 개에 의해 상기 이동체의 상기 제 3 방향의 위치 정보가 계측되고, 상기 상이한 영역은 상기 격자부가 배치되는 영역의 적어도 일부를 포함하는, 노광 장치.
  16. 제 13 항에 있어서,
    상기 헤드 유닛은, 상기 제 3 방향에 관하여 상기 이동체의 표면과의 간격이 상기 광학계와 상기 이동체의 표면의 간격 이하인, 노광 장치.
  17. 제 13 항에 있어서,
    상기 인코더 시스템에 의해 계측되는 위치 정보는 적어도 상기 에너지 빔에 의한 상기 물체의 노광 동작에서 사용되는, 노광 장치.
  18. 제 13 항에 있어서,
    상기 격자부에서 기인하여 생기는 상기 인코더 시스템의 계측 오차를 보정하는 보정 장치를 추가로 구비하는, 노광 장치.
  19. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 광학계와 상기 물체 사이를 액체로 채워 액침 영역을 형성하는 액침 시스템을 추가로 구비하고,
    상기 물체는, 상기 광학계 및 상기 액침 영역의 액체를 통하여 상기 에너지 빔으로 노광되는, 노광 장치.
  20. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 노광 장치를 이용하여 물체를 노광하는 것과,
    상기 노광된 물체를 현상하는 것을 포함하는, 디바이스 제조 방법.
  21. 광학계를 통하여 물체를 에너지 빔으로 노광하는 노광 방법으로서,
    상기 광학계의 광축과 수직인 소정의 평면내에서 서로 직교하는 제 1 및 제 2 방향으로 이동 가능한 이동체 상에 상기 물체를 탑재하는 공정과;
    상기 제 1 및 제 2 방향의 적어도 일방에 관하여 검출점의 위치가 상이한 복수의 센서를 갖고, 상기 각 검출점에서 상기 평면과 직교하는 제 3 방향에 관한 상기 이동체의 위치 정보를 계측 가능한 제 1 검출계와, 상기 제 1 검출계와는 달리, 상기 이동체에 유지되는 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는 제 2 검출계를 포함하는 계측 장치를 이용하여, 상기 이동체 및 상기 물체의 상기 제 3 방향의 위치 정보를 계측하는 공정을 포함하는, 노광 방법.
  22. 제 21 항에 있어서,
    상기 제 1 및 제 2 방향의 일방을 따라 연장되는 검출 영역을 갖는 상기 제 2 검출계에 의해, 상기 검출 영역내의 복수점에서의 상기 물체의 상기 제 3 방향의 위치 정보가 계측되는, 노광 방법.
  23. 제 22 항에 있어서,
    상기 제 2 검출계에 의해, 상기 일방의 방향과 교차하는 방향에 관하여 상기 검출 영역과 상대 이동되는 상기 물체의 전체면에서 상기 제 3 방향의 위치 정보가 계측되는, 노광 방법.
  24. 제 23 항에 있어서,
    상기 검출 영역은, 상기 일방의 방향에 관하여 상기 물체와 동일한 범위에 걸쳐 형성되는, 노광 방법.
  25. 제 21 항에 있어서,
    상기 에너지 빔에 의한 상기 물체의 노광 동작시에, 상기 제 1 검출계에 의해 상기 이동체의 위치 정보를 계측하면서, 상기 제 2 검출계에 의해 계측된 상기 물체의 위치 정보에 기초하여, 상기 광학계를 통하여 형성되는 패턴 이미지와 상기 물체의 위치 관계를 조정하는 공정을 추가로 포함하는, 노광 방법.
  26. 제 25 항에 있어서,
    상기 조정하는 공정에서는, 상기 물체를 이동시켜 상기 패턴 이미지와의 위치 및 경사의 조정을 실시하는, 노광 방법.
  27. 제 21 항에 있어서,
    상기 제 1 검출계는 상기 복수의 검출점이 상기 제 1 및 제 2 방향의 일방 을 따라 배치됨과 함께, 상기 제 2 검출계는, 상기 제 1 및 제 2 방향의 타방에 관하여 상기 복수의 검출점과 떨어져 배치되는 검출 영역을 갖고, 상기 제 1 검출계는 상기 복수의 검출점과는 별도로 상기 검출 영역의 근방에 배치되는 적어도 2 개의 검출점을 포함하는, 노광 방법.
  28. 제 27 항에 있어서,
    상기 계측 장치는, 상기 제 2 검출계에 의한 상기 물체의 위치 정보의 계측시에, 상기 제 1 검출계에 의해 상기 적어도 2 개의 검출점에서의 상기 이동체의 위치 정보를 계측하는, 노광 방법.
  29. 제 21 항에 있어서,
    상기 제 1 및 제 2 검출계에 의해 계측되는 위치 정보를 대응시키는 공정을 추가로 포함하는, 노광 방법.
  30. 제 21 항에 있어서,
    상기 광학계를 유지하는 프레임 부재에 매달아 지지되는 상기 복수의 센서에 의해 상기 이동체의 위치 정보가 계측되는, 노광 방법.
  31. 제 21 항 내지 제 30 항 중 어느 한 항에 있어서,
    상기 평면내에서의 상기 이동체의 위치 정보의 계측에 사용되고, 반사형의 격자가 형성되는 격자부에 대해, 각각 상기 복수의 센서에 의해 제 1 계측광을 조사하는 상기 제 1 검출계에 의해, 상기 이동체의 위치 정보가 계측되고,
    상기 물체에 대해 그 상방으로부터 제 2 계측광을 조사하는 상기 제 2 검출계에 의해, 상기 물체의 위치 정보가 계측되는, 노광 방법.
  32. 제 31 항에 있어서,
    상기 격자부에 대해 각각 빔을 조사하는 복수의 헤드를 갖는 인코더 시스템에 의해, 상기 평면내에서의 상기 이동체의 위치 정보가 계측되는, 노광 방법.
  33. 제 21 항 내지 제 30 항 중 어느 한 항에 있어서,
    상기 광학계와 소정의 위치 관계로 배치되고, 또한 표면에 격자부가 형성되는 상기 이동체가 상대 이동되는 헤드 유닛을 갖는 인코더 시스템에 의해, 상기 평면내에서의 상기 이동체의 위치 정보가 계측되는, 노광 방법.
  34. 제 33 항에 있어서,
    상기 광학계를 유지하는 프레임 부재에 매달아 지지되는 상기 헤드 유닛을 통하여 상기 격자부에 빔이 조사되는, 노광 방법.
  35. 제 33 항에 있어서,
    상기 이동체의 표면 중 상기 탑재 영역과 상이한 영역내에 상기 검출점이 유지되는 상기 복수의 센서의 적어도 1 개에 의해 상기 이동체의 상기 제 3 방향의 위치 정보가 계측되고, 상기 상이한 영역은 상기 격자부가 배치되는 영역의 적어도 일부를 포함하는, 노광 방법.
  36. 제 33 항에 있어서,
    상기 헤드 유닛은, 상기 제 3 방향에 관하여 상기 이동체의 표면과의 간격이 상기 광학계와 상기 이동체의 표면의 간격 이하인, 노광 방법.
  37. 제 33 항에 있어서,
    상기 인코더 시스템에 의해 계측되는 위치 정보는 적어도 상기 에너지 빔에 의한 상기 물체의 노광 동작에서 사용되는, 노광 방법.
  38. 제 33 항에 있어서,
    상기 격자부에서 기인해 생기는 상기 인코더 시스템의 계측 오차를 보정하는 공정을 추가로 포함하는, 노광 방법.
  39. 제 21 항 내지 제 30 항 중 어느 한 항에 있어서,
    상기 광학계의 아래에 공급되는 액체에 의해 액침 영역이 형성되고,
    상기 물체는, 상기 광학계와 상기 액침 영역의 액체를 통하여 상기 에너지 빔으로 노광되는, 노광 방법.
  40. 제 21 항 내지 제 30 항 중 어느 한 항에 기재된 노광 방법을 이용하여 물체를 노광하는 것과,
    상기 노광된 물체를 현상하는 것을 포함하는, 디바이스 제조 방법.
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 삭제
  64. 삭제
  65. 삭제
  66. 삭제
  67. 삭제
  68. 삭제
  69. 삭제
  70. 삭제
  71. 삭제
  72. 삭제
  73. 삭제
  74. 삭제
  75. 삭제
  76. 삭제
  77. 삭제
  78. 삭제
  79. 삭제
  80. 삭제
  81. 삭제
  82. 삭제
  83. 삭제
  84. 삭제
  85. 삭제
  86. 삭제
  87. 삭제
  88. 삭제
  89. 삭제
  90. 삭제
  91. 삭제
  92. 삭제
  93. 삭제
  94. 삭제
  95. 삭제
  96. 삭제
  97. 삭제
  98. 삭제
  99. 삭제
  100. 삭제
  101. 삭제
  102. 삭제
  103. 삭제
  104. 삭제
  105. 삭제
  106. 삭제
  107. 삭제
  108. 삭제
  109. 삭제
  110. 삭제
  111. 삭제
  112. 삭제
  113. 삭제
  114. 삭제
  115. 삭제
  116. 삭제
  117. 삭제
  118. 삭제
  119. 삭제
  120. 삭제
  121. 삭제
  122. 삭제
  123. 삭제
  124. 삭제
  125. 삭제
  126. 삭제
  127. 삭제
  128. 삭제
  129. 삭제
  130. 삭제
  131. 삭제
  132. 삭제
  133. 삭제
  134. 삭제
  135. 삭제
  136. 삭제
  137. 삭제
  138. 삭제
  139. 삭제
  140. 삭제
  141. 삭제
  142. 삭제
  143. 삭제
  144. 삭제
  145. 삭제
  146. 삭제
  147. 삭제
  148. 삭제
  149. 삭제
  150. 삭제
  151. 삭제
  152. 삭제
  153. 삭제
  154. 삭제
  155. 삭제
  156. 삭제
  157. 삭제
  158. 삭제
  159. 삭제
  160. 삭제
  161. 삭제
  162. 삭제
  163. 삭제
  164. 삭제
  165. 삭제
  166. 삭제
  167. 삭제
KR1020087020655A 2006-02-21 2007-02-21 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법 KR101400571B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00044591 2006-02-21
JP2006044591 2006-02-21
PCT/JP2007/053842 WO2007097466A1 (ja) 2006-02-21 2007-02-21 測定装置及び方法、処理装置及び方法、パターン形成装置及び方法、露光装置及び方法、並びにデバイス製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020137014297A Division KR101400570B1 (ko) 2006-02-21 2007-02-21 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법

Publications (2)

Publication Number Publication Date
KR20080100347A KR20080100347A (ko) 2008-11-17
KR101400571B1 true KR101400571B1 (ko) 2014-05-28

Family

ID=38437501

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020087020655A KR101400571B1 (ko) 2006-02-21 2007-02-21 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법
KR1020137014297A KR101400570B1 (ko) 2006-02-21 2007-02-21 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020137014297A KR101400570B1 (ko) 2006-02-21 2007-02-21 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법

Country Status (9)

Country Link
US (7) US8027021B2 (ko)
EP (4) EP2813893A1 (ko)
JP (3) JP5177674B2 (ko)
KR (2) KR101400571B1 (ko)
CN (2) CN102866591B (ko)
HK (4) HK1175858A1 (ko)
SG (2) SG178816A1 (ko)
TW (1) TWI463277B (ko)
WO (1) WO2007097466A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170097186A (ko) * 2014-12-24 2017-08-25 가부시키가이샤 니콘 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006215624A1 (en) * 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
US20060219947A1 (en) * 2005-03-03 2006-10-05 Asml Netherlands B.V. Dedicated metrology stage for lithography applications
US8547522B2 (en) * 2005-03-03 2013-10-01 Asml Netherlands B.V. Dedicated metrology stage for lithography applications
TWI550688B (zh) 2006-01-19 2016-09-21 尼康股份有限公司 液浸曝光裝置及液浸曝光方法、以及元件製造方法
KR101495471B1 (ko) * 2006-02-21 2015-02-23 가부시키가이샤 니콘 패턴 형성 장치, 마크 검출 장치, 노광 장치, 패턴 형성 방법, 노광 방법 및 디바이스 제조 방법
EP2003680B1 (en) 2006-02-21 2013-05-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
CN102866591B (zh) 2006-02-21 2015-08-19 株式会社尼康 曝光装置及方法、以及元件制造方法
US7656529B1 (en) * 2006-05-30 2010-02-02 Mehrdad Nikoonahad Overlay error measurement using fourier optics
US20080094592A1 (en) 2006-08-31 2008-04-24 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
CN103645608B (zh) 2006-08-31 2016-04-20 株式会社尼康 曝光装置及方法、组件制造方法以及决定方法
KR101634893B1 (ko) * 2006-08-31 2016-06-29 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
TWI574304B (zh) 2006-09-01 2017-03-11 尼康股份有限公司 Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, component manufacturing method, and correcting method
EP2993523B1 (en) 2006-09-01 2017-08-30 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR101360507B1 (ko) * 2006-09-29 2014-02-07 가부시키가이샤 니콘 이동체 시스템, 패턴 형성 장치, 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
US8098362B2 (en) * 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8547527B2 (en) * 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
JP5489068B2 (ja) * 2007-07-24 2014-05-14 株式会社ニコン 位置計測システム、露光装置、位置計測方法、露光方法及びデバイス製造方法、並びに工具及び計測方法
KR101409149B1 (ko) * 2007-07-24 2014-06-17 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
US8867022B2 (en) * 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US20090051895A1 (en) * 2007-08-24 2009-02-26 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, device manufacturing method, and processing system
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
JP5120691B2 (ja) * 2007-08-24 2013-01-16 株式会社ニコン マーク検出方法及び装置、露光方法及び装置、並びにデバイス製造方法
JPWO2009028157A1 (ja) 2007-08-24 2010-11-25 株式会社ニコン 移動体駆動方法及び移動体駆動システム、並びにパターン形成方法及びパターン形成装置
US8023106B2 (en) * 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US9304412B2 (en) * 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
JP5125318B2 (ja) * 2007-08-24 2013-01-23 株式会社ニコン 露光装置及びデバイス製造方法
JP5158330B2 (ja) * 2007-08-24 2013-03-06 株式会社ニコン 露光装置及びデバイス製造方法
JP5170824B2 (ja) * 2007-08-24 2013-03-27 株式会社ニコン 露光装置及びデバイス製造方法
US9013681B2 (en) * 2007-11-06 2015-04-21 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US9256140B2 (en) * 2007-11-07 2016-02-09 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method with measurement device to measure movable body in Z direction
US8665455B2 (en) * 2007-11-08 2014-03-04 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8422015B2 (en) * 2007-11-09 2013-04-16 Nikon Corporation Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method
US8711327B2 (en) * 2007-12-14 2014-04-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8269945B2 (en) * 2007-12-28 2012-09-18 Nikon Corporation Movable body drive method and apparatus, exposure method and apparatus, pattern formation method and apparatus, and device manufacturing method
US8237916B2 (en) * 2007-12-28 2012-08-07 Nikon Corporation Movable body drive system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
TWI643035B (zh) 2007-12-28 2018-12-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
US8792079B2 (en) * 2007-12-28 2014-07-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method having encoders to measure displacement between optical member and measurement mount and between measurement mount and movable body
US8228482B2 (en) * 2008-05-13 2012-07-24 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8817236B2 (en) 2008-05-13 2014-08-26 Nikon Corporation Movable body system, movable body drive method, pattern formation apparatus, pattern formation method, exposure apparatus, exposure method, and device manufacturing method
US8786829B2 (en) * 2008-05-13 2014-07-22 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2131245A3 (en) * 2008-06-02 2012-08-01 ASML Netherlands BV Lithographic apparatus and its focus determination method
US8508735B2 (en) * 2008-09-22 2013-08-13 Nikon Corporation Movable body apparatus, movable body drive method, exposure apparatus, exposure method, and device manufacturing method
US8325325B2 (en) 2008-09-22 2012-12-04 Nikon Corporation Movable body apparatus, movable body drive method, exposure apparatus, exposure method, and device manufacturing method
US8994923B2 (en) * 2008-09-22 2015-03-31 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
US8599359B2 (en) 2008-12-19 2013-12-03 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and carrier method
US8902402B2 (en) 2008-12-19 2014-12-02 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
US8773635B2 (en) * 2008-12-19 2014-07-08 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8760629B2 (en) 2008-12-19 2014-06-24 Nikon Corporation Exposure apparatus including positional measurement system of movable body, exposure method of exposing object including measuring positional information of movable body, and device manufacturing method that includes exposure method of exposing object, including measuring positional information of movable body
JP2010251745A (ja) 2009-04-10 2010-11-04 Asml Netherlands Bv 液浸リソグラフィ装置及びデバイス製造方法
US8792084B2 (en) * 2009-05-20 2014-07-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8970820B2 (en) 2009-05-20 2015-03-03 Nikon Corporation Object exchange method, exposure method, carrier system, exposure apparatus, and device manufacturing method
US8553204B2 (en) * 2009-05-20 2013-10-08 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
US8488109B2 (en) 2009-08-25 2013-07-16 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US20110096312A1 (en) * 2009-09-28 2011-04-28 Nikon Corporation Exposure apparatus and device fabricating method
US20110096306A1 (en) * 2009-09-28 2011-04-28 Nikon Corporation Stage apparatus, exposure apparatus, driving method, exposing method, and device fabricating method
US20110096318A1 (en) * 2009-09-28 2011-04-28 Nikon Corporation Exposure apparatus and device fabricating method
US20110102761A1 (en) * 2009-09-28 2011-05-05 Nikon Corporation Stage apparatus, exposure apparatus, and device fabricating method
US20110123913A1 (en) * 2009-11-19 2011-05-26 Nikon Corporation Exposure apparatus, exposing method, and device fabricating method
US20110128523A1 (en) * 2009-11-19 2011-06-02 Nikon Corporation Stage apparatus, exposure apparatus, driving method, exposing method, and device fabricating method
US8488106B2 (en) * 2009-12-28 2013-07-16 Nikon Corporation Movable body drive method, movable body apparatus, exposure method, exposure apparatus, and device manufacturing method
NL2006913A (en) 2010-07-16 2012-01-17 Asml Netherlands Bv Lithographic apparatus and method.
CN102722089B (zh) * 2011-06-28 2014-06-18 清华大学 一种无接触式粗精动叠层六自由度定位装置
KR101256870B1 (ko) * 2011-12-01 2013-04-22 주식회사 져스텍 반발력 보상 선형 구동 시스템
US9207549B2 (en) 2011-12-29 2015-12-08 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement
EP2610593B1 (en) * 2011-12-29 2020-02-12 Robert Bosch GmbH Positioning system and method for positioning supporting means for supporting an article
CN102540896B (zh) * 2012-02-29 2013-07-17 清华大学 化学机械抛光传输机器人的非线性模糊结合递归控制系统
WO2013132081A2 (en) * 2012-03-08 2013-09-12 Mapper Lithography Ip B.V. Lithography system and method for processing a target, such as a wafer
JP6102230B2 (ja) * 2012-12-07 2017-03-29 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
WO2015124344A1 (en) 2014-02-20 2015-08-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9983485B2 (en) 2014-07-16 2018-05-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
CN104776798B (zh) * 2015-02-04 2017-11-03 雷茂裕 圆柱工件外形尺寸和形位公差测量装置及其测量方法
KR102574558B1 (ko) 2015-02-23 2023-09-04 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 관리 방법, 중첩 계측 방법 및 디바이스 제조 방법
JP6719729B2 (ja) * 2015-02-23 2020-07-08 株式会社ニコン 基板処理システム及び基板処理方法、並びにデバイス製造方法
KR102552792B1 (ko) 2015-02-23 2023-07-06 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 디바이스 제조 방법
WO2017057587A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP6738415B2 (ja) 2015-10-09 2020-08-12 エーエスエムエル ネザーランズ ビー.ブイ. 検査及びメトロロジのための方法及び装置
JP6423839B2 (ja) * 2016-09-26 2018-11-14 ファナック株式会社 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム
WO2018141713A1 (en) 2017-02-03 2018-08-09 Asml Netherlands B.V. Exposure apparatus
EP3364247A1 (en) * 2017-02-17 2018-08-22 ASML Netherlands B.V. Methods & apparatus for monitoring a lithographic manufacturing process
CN112334834B (zh) * 2018-07-03 2023-10-17 应用材料公司 使用各自进行多次扫描的多个写入列来制作准确的光栅图案的系统和方法
DE102019210023A1 (de) 2019-07-08 2021-01-14 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
WO2021028202A1 (en) 2019-08-09 2021-02-18 Asml Netherlands B.V. Metrology device and phase modulator apparatus therefor
CN114207530A (zh) 2019-08-09 2022-03-18 Asml荷兰有限公司 在对准中用以减小标记大小的相位调制器
KR20220065872A (ko) 2019-11-01 2022-05-20 에이에스엠엘 네델란즈 비.브이. 계측 방법 및 리소그래피 장치
DE102020204773A1 (de) * 2020-04-15 2021-10-21 Robert Bosch Gesellschaft mit beschränkter Haftung Sensoranordnung, umfassend eine Mehrzahl von einzelnen und separaten Sensorelementen
JP2023000112A (ja) * 2021-06-17 2023-01-04 キオクシア株式会社 計測装置および計測プログラム
EP4134744A1 (en) * 2021-08-09 2023-02-15 ASML Netherlands B.V. A sensor positioning method, a positioning system, a lithographic apparatus, a metrology apparatus, and a device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610715A (en) * 1994-03-30 1997-03-11 Canon Kabushiki Kaisha Displacement detecting system, an expose apparatus, and a device manufacturing method employing a scale whose displacement is detected by a selected detection head
KR20010092288A (ko) * 2000-03-14 2001-10-24 시마무라 테루오 위치맞춤방법, 노광방법, 노광장치 및 디바이스제조방법
KR20020053716A (ko) * 2000-12-27 2002-07-05 시마무라 테루오 형상측정방법, 형상측정장치, 노광방법, 노광장치, 및디바이스 제조방법

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE224448C (ko)
DE221563C (ko)
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
JPS5947731A (ja) 1982-09-10 1984-03-17 Hitachi Ltd 投影露光装置におけるオ−トフオ−カス機構
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
US4780617A (en) 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
US5618920A (en) 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
JPH07105323B2 (ja) * 1985-11-22 1995-11-13 株式会社日立製作所 露光方法
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JPS63292005A (ja) 1987-05-25 1988-11-29 Nikon Corp 走り誤差補正をなした移動量検出装置
JPH0743245B2 (ja) * 1987-07-03 1995-05-15 キヤノン株式会社 アライメント装置
US5021649A (en) * 1989-03-28 1991-06-04 Canon Kabushiki Kaisha Relief diffraction grating encoder
JP2784225B2 (ja) 1989-11-28 1998-08-06 双葉電子工業株式会社 相対移動量測定装置
JP2785146B2 (ja) 1990-02-09 1998-08-13 キヤノン株式会社 自動焦点調整制御装置
FI106559B (fi) 1990-10-22 2001-02-28 Aqualon Co Natriumformiaattipitoisia fluidisoituja polymeerisuspensioita
DE4033556A1 (de) 1990-10-22 1992-04-23 Suess Kg Karl Messanordnung fuer x,y,(phi)-koordinatentische
JPH04179115A (ja) 1990-11-08 1992-06-25 Nec Kyushu Ltd 縮小投影露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
DE4219311C2 (de) 1991-06-13 1996-03-07 Sony Magnescale Inc Verschiebungsdetektor
JPH0541442A (ja) * 1991-08-02 1993-02-19 Kokusai Electric Co Ltd ウエーハ計数方法及びその装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JPH05129184A (ja) 1991-10-30 1993-05-25 Canon Inc 投影露光装置
JPH0661324A (ja) * 1992-05-22 1994-03-04 Nec Corp 半導体ウエハー欠陥検査装置
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP3316833B2 (ja) 1993-03-26 2002-08-19 株式会社ニコン 走査露光方法、面位置設定装置、走査型露光装置、及び前記方法を使用するデバイス製造方法
KR100300618B1 (ko) 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
JP3303386B2 (ja) 1993-02-03 2002-07-22 株式会社ニコン 投影露光装置及び方法
JPH07190741A (ja) 1993-12-27 1995-07-28 Nippon Telegr & Teleph Corp <Ntt> 測定誤差補正法
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH0992593A (ja) 1995-09-21 1997-04-04 Nikon Corp 投影露光装置
JPH1063011A (ja) 1996-08-14 1998-03-06 Nikon Corp 走査型露光装置及び走査露光方法
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
CN1244018C (zh) 1996-11-28 2006-03-01 株式会社尼康 曝光方法和曝光装置
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
JPH10223528A (ja) 1996-12-30 1998-08-21 Nikon Corp 投影露光装置及び位置合わせ方法
JPH10289943A (ja) 1997-04-16 1998-10-27 Canon Inc ステージ装置およびデバイス製造方法
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JPH1116816A (ja) * 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
JP4210871B2 (ja) * 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO1999046835A1 (fr) 1998-03-11 1999-09-16 Nikon Corporation Dispositif a laser ultraviolet et appareil d'exposition comportant un tel dispositif a laser ultraviolet
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP4505989B2 (ja) 1998-05-19 2010-07-21 株式会社ニコン 収差測定装置並びに測定方法及び該装置を備える投影露光装置並びに該方法を用いるデバイス製造方法、露光方法
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
US7116401B2 (en) 1999-03-08 2006-10-03 Asml Netherlands B.V. Lithographic projection apparatus using catoptrics in an optical sensor system, optical arrangement, method of measuring, and device manufacturing method
TW490596B (en) 1999-03-08 2002-06-11 Asm Lithography Bv Lithographic projection apparatus, method of manufacturing a device using the lithographic projection apparatus, device manufactured according to the method and method of calibrating the lithographic projection apparatus
JP2001168024A (ja) * 1999-09-29 2001-06-22 Nikon Corp 露光装置及びデバイス製造方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
KR20010085493A (ko) * 2000-02-25 2001-09-07 시마무라 기로 노광장치, 그 조정방법, 및 상기 노광장치를 이용한디바이스 제조방법
JP2001313250A (ja) 2000-02-25 2001-11-09 Nikon Corp 露光装置、その調整方法、及び前記露光装置を用いるデバイス製造方法
TW503467B (en) * 2000-03-17 2002-09-21 Nikon Corp Camera and the manufacturing method thereof, exposure device using the same, measurement device, alignment device and aberration measurement device
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
US20020041377A1 (en) 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
JP2002090114A (ja) * 2000-07-10 2002-03-27 Mitsutoyo Corp 光スポット位置センサ及び変位測定装置
US7561270B2 (en) * 2000-08-24 2009-07-14 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
EP1182509B1 (en) * 2000-08-24 2009-04-08 ASML Netherlands B.V. Lithographic apparatus, calibration method thereof and device manufacturing method
US7289212B2 (en) * 2000-08-24 2007-10-30 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufacturing thereby
TW527526B (en) * 2000-08-24 2003-04-11 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6686545B2 (en) 2000-10-04 2004-02-03 Mettler-Toledo Gmbh Balance with a weighing compartment
AU2002218489A1 (en) 2000-11-29 2002-06-11 Nikon Corporation Image processing method, image processing device, detection method, detection device, exposure method and exposure system
JP3762307B2 (ja) * 2001-02-15 2006-04-05 キヤノン株式会社 レーザ干渉干渉計システムを含む露光装置
JP4714403B2 (ja) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
JP2003249443A (ja) 2001-12-21 2003-09-05 Nikon Corp ステージ装置、ステージ位置管理方法、露光方法及び露光装置、並びにデバイス製造方法
JP3890233B2 (ja) 2002-01-07 2007-03-07 キヤノン株式会社 位置決めステージ装置、露光装置及び半導体デバイスの製造方法
CN100345252C (zh) 2002-01-29 2007-10-24 株式会社尼康 成像状态调节系统、曝光方法和曝光装置以及程序和信息存储介质
JP3966211B2 (ja) 2002-05-08 2007-08-29 株式会社ニコン 露光方法、露光装置及びデバイス製造方法
JP4168665B2 (ja) 2002-05-22 2008-10-22 株式会社ニコン 露光方法及び露光装置、デバイス製造方法
JP4258828B2 (ja) * 2002-06-06 2009-04-30 株式会社安川電機 ウエハプリアライメント装置および方法
JP2004014876A (ja) * 2002-06-07 2004-01-15 Nikon Corp 調整方法、空間像計測方法及び像面計測方法、並びに露光装置
US7362508B2 (en) 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
JP2004101362A (ja) 2002-09-10 2004-04-02 Canon Inc ステージ位置計測および位置決め装置
US6893629B2 (en) 2002-10-30 2005-05-17 Isp Investments Inc. Delivery system for a tooth whitener
EP1420300B1 (en) 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG2010050110A (en) 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN101470360B (zh) * 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
KR20110086130A (ko) 2002-12-10 2011-07-27 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
EP1573730B1 (en) 2002-12-13 2009-02-25 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
TWI242692B (en) * 2002-12-16 2005-11-01 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
KR101562447B1 (ko) * 2003-02-26 2015-10-21 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
US6950188B2 (en) 2003-04-23 2005-09-27 International Business Machines Corporation Wafer alignment system using parallel imaging detection
WO2004107011A1 (ja) 2003-05-06 2004-12-09 Nikon Corporation 投影光学系、露光装置及び露光方法
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7025498B2 (en) * 2003-05-30 2006-04-11 Asml Holding N.V. System and method of measuring thermal expansion
EP2216685B1 (en) * 2003-06-19 2012-06-27 Nikon Corporation Exposure apparatus and device manufacturing method
JP3870182B2 (ja) 2003-09-09 2007-01-17 キヤノン株式会社 露光装置及びデバイス製造方法
JP4444920B2 (ja) 2003-09-19 2010-03-31 株式会社ニコン 露光装置及びデバイス製造方法
JP4513299B2 (ja) 2003-10-02 2010-07-28 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
JP2005114406A (ja) 2003-10-03 2005-04-28 Sendai Nikon:Kk 光学式エンコーダ
TWI295408B (en) * 2003-10-22 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method, and measurement system
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7102729B2 (en) * 2004-02-03 2006-09-05 Asml Netherlands B.V. Lithographic apparatus, measurement system, and device manufacturing method
JP4429037B2 (ja) 2004-02-27 2010-03-10 キヤノン株式会社 ステージ装置及びその制御方法
US7215431B2 (en) 2004-03-04 2007-05-08 Therma-Wave, Inc. Systems and methods for immersion metrology
JP2005268608A (ja) * 2004-03-19 2005-09-29 Sumitomo Heavy Ind Ltd ステージ装置
CN1950929B (zh) * 2004-03-25 2011-05-25 株式会社尼康 曝光装置及曝光方法、以及组件制造方法
TW200605191A (en) * 2004-03-30 2006-02-01 Nikon Corp Exposure apparatus, exposure method, device manufacturing method, and surface shape detecting device
JP4322837B2 (ja) 2004-03-31 2009-09-02 富士フイルム株式会社 露光装置の校正方法及び露光方法並びに露光装置
TWI271602B (en) 2004-03-31 2007-01-21 Fujifilm Corp A correcting method and an exposure method of exposure device, and an exposure device
JP2005327993A (ja) * 2004-05-17 2005-11-24 Canon Inc 位置決め装置、露光装置及びデバイス製造方法
WO2005117075A1 (ja) 2004-05-26 2005-12-08 Nikon Corporation 較正方法、予測方法、露光方法、反射率較正方法及び反射率計測方法、露光装置、並びにデバイス製造方法
JP2006005197A (ja) 2004-06-18 2006-01-05 Canon Inc 露光装置
WO2006006562A1 (ja) 2004-07-12 2006-01-19 Nikon Corporation 露光条件の決定方法、露光方法、露光装置、及びデバイス製造方法
US7227613B2 (en) 2004-07-26 2007-06-05 Asml Holding N.V. Lithographic apparatus having double telecentric illumination
US7256871B2 (en) 2004-07-27 2007-08-14 Asml Netherlands B.V. Lithographic apparatus and method for calibrating the same
TW200615716A (en) 2004-08-05 2006-05-16 Nikon Corp Stage device and exposure device
KR101157003B1 (ko) 2004-09-30 2012-06-21 가부시키가이샤 니콘 투영 광학 디바이스 및 노광 장치
US7388663B2 (en) * 2004-10-28 2008-06-17 Asml Netherlands B.V. Optical position assessment apparatus and method
US20060139595A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and method for determining Z position errors/variations and substrate table flatness
US7515281B2 (en) * 2005-04-08 2009-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161659B2 (en) * 2005-04-08 2007-01-09 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7405811B2 (en) * 2005-04-20 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and positioning apparatus
US7349069B2 (en) * 2005-04-20 2008-03-25 Asml Netherlands B.V. Lithographic apparatus and positioning apparatus
JP4410216B2 (ja) 2005-05-24 2010-02-03 エーエスエムエル ネザーランズ ビー.ブイ. 2ステージ・リソグラフィ装置及びデバイス製造方法
US7348574B2 (en) * 2005-09-02 2008-03-25 Asml Netherlands, B.V. Position measurement system and lithographic apparatus
US7362446B2 (en) * 2005-09-15 2008-04-22 Asml Netherlands B.V. Position measurement unit, measurement system and lithographic apparatus comprising such position measurement unit
JP2007093546A (ja) 2005-09-30 2007-04-12 Nikon Corp エンコーダシステム、ステージ装置及び露光装置
US7978339B2 (en) * 2005-10-04 2011-07-12 Asml Netherlands B.V. Lithographic apparatus temperature compensation
TWI550688B (zh) 2006-01-19 2016-09-21 尼康股份有限公司 液浸曝光裝置及液浸曝光方法、以及元件製造方法
KR101495471B1 (ko) 2006-02-21 2015-02-23 가부시키가이샤 니콘 패턴 형성 장치, 마크 검출 장치, 노광 장치, 패턴 형성 방법, 노광 방법 및 디바이스 제조 방법
CN102866591B (zh) 2006-02-21 2015-08-19 株式会社尼康 曝光装置及方法、以及元件制造方法
EP2003680B1 (en) 2006-02-21 2013-05-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US7602489B2 (en) * 2006-02-22 2009-10-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7253875B1 (en) 2006-03-03 2007-08-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7636165B2 (en) * 2006-03-21 2009-12-22 Asml Netherlands B.V. Displacement measurement systems lithographic apparatus and device manufacturing method
US7483120B2 (en) * 2006-05-09 2009-01-27 Asml Netherlands B.V. Displacement measurement system, lithographic apparatus, displacement measurement method and device manufacturing method
US7619207B2 (en) * 2006-11-08 2009-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7903866B2 (en) * 2007-03-29 2011-03-08 Asml Netherlands B.V. Measurement system, lithographic apparatus and method for measuring a position dependent signal of a movable object
US7710540B2 (en) * 2007-04-05 2010-05-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8773635B2 (en) 2008-12-19 2014-07-08 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8599359B2 (en) 2008-12-19 2013-12-03 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and carrier method
JP2012007378A (ja) * 2010-06-24 2012-01-12 Sun Wave Ind Co Ltd 水槽を有した流し台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610715A (en) * 1994-03-30 1997-03-11 Canon Kabushiki Kaisha Displacement detecting system, an expose apparatus, and a device manufacturing method employing a scale whose displacement is detected by a selected detection head
KR20010092288A (ko) * 2000-03-14 2001-10-24 시마무라 테루오 위치맞춤방법, 노광방법, 노광장치 및 디바이스제조방법
KR20020053716A (ko) * 2000-12-27 2002-07-05 시마무라 테루오 형상측정방법, 형상측정장치, 노광방법, 노광장치, 및디바이스 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170097186A (ko) * 2014-12-24 2017-08-25 가부시키가이샤 니콘 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
KR102009098B1 (ko) 2014-12-24 2019-08-08 가부시키가이샤 니콘 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
KR20190093704A (ko) * 2014-12-24 2019-08-09 가부시키가이샤 니콘 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
KR102294481B1 (ko) 2014-12-24 2021-08-27 가부시키가이샤 니콘 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치

Also Published As

Publication number Publication date
JP2013236104A (ja) 2013-11-21
JPWO2007097466A1 (ja) 2009-07-16
KR20130069881A (ko) 2013-06-26
JP5382151B2 (ja) 2014-01-08
HK1244065A1 (zh) 2018-07-27
KR20080100347A (ko) 2008-11-17
JP5177674B2 (ja) 2013-04-03
US10345121B2 (en) 2019-07-09
SG170010A1 (en) 2011-04-29
TWI463277B (zh) 2014-12-01
SG178816A1 (en) 2012-03-29
US10088343B2 (en) 2018-10-02
JP5669032B2 (ja) 2015-02-12
TW200734838A (en) 2007-09-16
EP2003681B1 (en) 2014-11-12
EP3279739A1 (en) 2018-02-07
US9989859B2 (en) 2018-06-05
JP2012094899A (ja) 2012-05-17
US20150198898A1 (en) 2015-07-16
CN101385120A (zh) 2009-03-11
EP2003681A4 (en) 2011-11-23
US10132658B2 (en) 2018-11-20
US20170343391A1 (en) 2017-11-30
US20170350736A1 (en) 2017-12-07
US20160202616A1 (en) 2016-07-14
CN101385120B (zh) 2012-09-05
US20110299052A1 (en) 2011-12-08
US20190041244A1 (en) 2019-02-07
EP2003681A1 (en) 2008-12-17
US20080043212A1 (en) 2008-02-21
US9103700B2 (en) 2015-08-11
EP3267259A1 (en) 2018-01-10
HK1200923A1 (en) 2015-08-14
KR101400570B1 (ko) 2014-05-27
CN102866591A (zh) 2013-01-09
HK1243499A1 (zh) 2018-07-13
CN102866591B (zh) 2015-08-19
US8027021B2 (en) 2011-09-27
US9329060B2 (en) 2016-05-03
WO2007097466A1 (ja) 2007-08-30
EP2813893A1 (en) 2014-12-17
HK1175858A1 (en) 2013-07-12

Similar Documents

Publication Publication Date Title
KR101400571B1 (ko) 측정 장치 및 방법, 처리 장치 및 방법, 패턴 형성 장치 및방법, 노광 장치 및 방법, 그리고 디바이스 제조 방법
KR101495471B1 (ko) 패턴 형성 장치, 마크 검출 장치, 노광 장치, 패턴 형성 방법, 노광 방법 및 디바이스 제조 방법
KR101346581B1 (ko) 패턴 형성 장치 및 패턴 형성 방법, 이동체 구동 시스템 및이동체 구동 방법, 노광 장치 및 노광 방법, 그리고 디바이스 제조 방법
KR101648289B1 (ko) 이동체 구동 시스템 및 이동체 구동 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 디바이스 제조 방법, 그리고 결정 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 6