KR100846378B1 - 화상 형성 장치 및 형성 화상 보정 방법 - Google Patents

화상 형성 장치 및 형성 화상 보정 방법 Download PDF

Info

Publication number
KR100846378B1
KR100846378B1 KR1020060104523A KR20060104523A KR100846378B1 KR 100846378 B1 KR100846378 B1 KR 100846378B1 KR 1020060104523 A KR1020060104523 A KR 1020060104523A KR 20060104523 A KR20060104523 A KR 20060104523A KR 100846378 B1 KR100846378 B1 KR 100846378B1
Authority
KR
South Korea
Prior art keywords
image
scanning direction
light beam
correction
deviation
Prior art date
Application number
KR1020060104523A
Other languages
English (en)
Other versions
KR20070055331A (ko
Inventor
요시키 마츠자키
료 안도
고조 다가와
츠토무 우다카
겐지 고이즈미
도시키 마츠이
도시오 히사무라
야스히로 아라이
가즈히로 하마
히로시 오노
히데키 가시무라
고헤이 시오야
Original Assignee
후지제롯쿠스 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후지제롯쿠스 가부시끼가이샤 filed Critical 후지제롯쿠스 가부시끼가이샤
Publication of KR20070055331A publication Critical patent/KR20070055331A/ko
Application granted granted Critical
Publication of KR100846378B1 publication Critical patent/KR100846378B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0178Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image
    • G03G15/0194Structure of complete machines using more than one reusable electrographic recording member, e.g. one for every monocolour image primary transfer to the final recording medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • G03G15/0435Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure by introducing an optical element in the optical path, e.g. a filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0151Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
    • G03G2215/0158Colour registration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Abstract

본 발명은 회전 다면경 및 보정 부재를 구비하는 화상 형성 장치를 제공한다. 상기 보정 부재는, 상기 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향되어 피(被)조사체 위에서 소정 방향으로 주사되는 광빔의 변조에 사용되는 화상 데이터를, 상기 회전 다면경의 각 반사면마다 미리 측정된, 상기 반사 편향된 광빔에 의해 상기 피조사체 위에 형성되는 화상 영역의 상기 소정 방향에 따른 어긋남 양에 따라, 동일한 반사면에 의해 반사 편향되는 광빔의 변조에 사용되는 단위 데이터마다 보정함으로써, 상기 화상 영역의 상기 소정 방향에 따른 어긋남을 보정한다.
Figure R1020060104523
회전 다면경, 보정 부재, 피조사체, 폴리곤 미러

Description

화상 형성 장치 및 형성 화상 보정 방법{IMAGE FORMING DEVICE AND METHOD OF CORRECTING IMAGE TO BE FORMED}
도 1은 본 실시예에 따른 컬러 화상 형성 장치의 개략 구성도.
도 2는 주사 노광부의 개략 구성을 나타낸 사시도.
도 3의 (a) 내지 (c)는 각 주사 라인에서의 주사 방향에 따른 화상 영역의 주기적인 어긋남(jitter)을 나타낸 평면도.
도 3의 (d)는 면발광 레이저 어레이(VCSEL)로부터 사출(射出)되는 다수개의 광빔의 조사(照射) 위치의 일례를 나타낸 평면도.
도 4는 제어부의 기능 블록도.
도 5는 보정값 설정 처리의 내용을 나타낸 플로차트.
도 6의 (a)는 검출 유닛과 레지스터 어긋남 검출용 패턴의 위치 관계의 일례를 나타낸 이미지 도면.
도 6의 (b)는 특정 반사면에 의해 형성한 패턴의 일례를 나타낸 이미지 도면.
도 6의 (c)는 각 반사면에 의해 형성된 각 패턴의 위치 어긋남의 일례를 나타낸 이미지 도면.
도 7의 (a) 내지 (c)는 화소의 추가/삭제에 의한 주(主)주사 방향에 따른 화 상 영역의 길이 변화를 나타낸 이미지 도면.
도 8은 각 색재(色材) 색마다 실행되는 화상 보정 처리의 내용을 나타낸 플로차트.
도 9는 본 발명에 따른 보정을 미(未)실행 화상에서의 각 주사 라인에서의 화상 영역 어긋남의 일례를 나타낸 이미지 도면.
도 10은 도 9에 나타낸 화상에 대하여 본 발명에 따른 보정을 실행한 경우의 각 주사 라인에서의 화상 영역의 일례를 나타낸 이미지 도면.
도 11의 (a) 내지 (c)는 본 발명을 적용하여 화상 영역의 SOS측 단부(端部) 위치를 보정하는 형태를 설명하기 위한 이미지 도면.
도면의 주요 부분에 대한 부호의 설명
10 : 컬러 화상 형성 장치 12 : 원고 판독 장치
13 : CCD 센서 14 : 플래턴(platen) 유리
16 : 원고 18 : 화상 형성 장치
20, 22, 24, 26 : 화상 형성부 28 : 패턴 검출부
30 : 중간 전사 벨트 32, 34, 36, 38 : 구동 롤러
50 : 용지 80 : 제어부
82: 화상 축적부 84 : 조작부
84A : 디스플레이 84B : 키보드
본 발명은 화상 형성 장치 및 형성 화상 보정 방법에 관한 것으로서, 특히 화상 데이터를 사용하여 변조시킨 광빔을 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향시켜 피조사체 위에서 주사시킴으로써, 피조사체 위에 화상을 형성하는 화상 형성 장치, 및 상기 화상 형성 장치에 적용 가능한 형성 화상 보정 방법에 관한 것이다.
종래로부터 형성해야 할 화상에 따라 변조시킨 광빔을 폴리곤 미러(polygon mirror)에 의해 반사 편향시켜, 상담지체(像擔持體) 위에서 주사(주주사)시킴으로써 정전 잠상(潛像)을 형성하고, 형성한 정전 잠상을 현상함으로써 얻어진 토너상을 기록 재료에 전사함으로써 기록 재료 위에 화상을 형성하는 화상 형성 장치가 알려져 있다. 또한, 광학 주사 장치 및 상담지체를 포함하는 화상 형성부를 복수 구비하고, 각각의 화상 형성부가 서로 다른 상담지체 위에 각색의 토너상을 각각 독립적으로 형성하며, 각색의 토너상을 중첩시켜 동일한 기록 재료에 전사함으로써, 기록 재료 위에 컬러 화상을 형성하는 구성의 컬러 화상 형성 장치도 알려져 있다.
그런데, 폴리곤 미러에 의해 광빔을 반사 편향시켜 주사시킬 경우, 폴리곤 미러의 각 반사면의 공차(公差) 내에서의 편차나 폴리곤 미러의 회전속도 변동, 더 나아가서는, 이것에 폴리곤 미러 전후에 배치된 광학계의 수차(收差) 등도 가해짐으로써, 각 주사 라인마다 주사 방향에 따른 화상 영역의 어긋남(지터라고 함)이 생긴다. 이 주사 라인마다의 화상 영역의 어긋남(지터)은, 주사 개시 측에서는 어 긋남 양이 작고 주사 종료측에서 어긋남 양이 커지는 주주사 방향의 배율 변동으로서 나타나고, 그 주기는 폴리곤 미러의 1회전이다. 그리고, 상기 화상 영역의 어긋남(지터)은, 단색(單色) 화상에서는 주사 종료측 단부에 근접함에 따라 커지는 화상의 요동(주사 종료측에서의 화상 단부의 위치 편차), 컬러 화상에서는 각색 화상의 주주사 배율 변동에 의한 색 어긋남이나 색 불균일로서 시인(視認)된다.
상기와 관련하여 일본국 공개특허평4-373253호 공보에는, 단일 감광체 드럼에 각색의 화상을 차례로 형성하는 동시에, 형성한 각색의 화상을 중간 전사체 위에서 차례로 중첩시키는 다중(multiple) 방식의 화상 형성 장치에 있어서, 감광체의 회전 구동과 폴리곤 미러의 회전 구동을 동기(同期)시키고, 2색째 이후의 화상의 각 라인이 폴리곤 미러의 각 반사면 중 1색째 화상이 대응하는 라인의 묘화(描畵) 시와 동일한 반사면을 사용하여 묘화되도록 제어함으로써, 지터에 의한 색 어긋남이나 색 불균일의 발생을 억제하는 기술이 개시되어 있다.
또한, 일본국 공개특허2002-200784호 공보에는, 기준 클록을 미세하게 지연시켜 복수의 지연 클록을 생성하고, 복수의 지연 클록의 선택을 변경함으로써 클록의 주기를 약간 증가 또는 감소시켜, 소정 시간 내에 발생하는 도트 클록의 펄스 수를 소정 수로 한 신호를 생성하는 동시에, 도트 클록을 분주(分周)시킨 후에 체배(遞倍)함으로써, 도트 클록의 주기를 증가 또는 감소시키는 포인트에서의 클록 주기 변동을 저감시켜 색 불균일 등을 보정하는 기술이 개시되어 있다.
또한, 일본국 특허공보평6-57040호 공보에는, 복수의 레이저 광학 주사계를 구비한 화상 형성 장치에 있어서, 각 레이저 광학 주사계에 각각 독립적으로 설치 된 비디오 클록 발생기에 포함되어 있는 분주기(分周器)의 분주비를 변경함으로써 비디오 클록 주파수를 변화시키고, 각 레이저 광학 주사계의 주사폭 편차를 보정하는 기술이 개시되어 있다.
일본국 공개특허평4-373253호 공보에 기재된 기술은, 2색째 이후의 화상 각각의 라인의 화상 영역을 1색째 화상 각각의 라인의 화상 영역과 일치시키는 것이며, 각 라인마다의 화상 영역의 어긋남은 보정되지 않는다. 따라서, 일본국 공개특허평4-373253호 공보에 기재된 기술을 적용하여 컬러 화상을 형성한 경우, 형성한 컬러 화상에 색 어긋남이 생기는 것은 억제할 수 있지만, 주사 종료측에서 화상의 요동(화상 단부의 위치 편차)이 생겨, 이것이 화질 저하로서 시인된다는 문제가 있다.
또한, 일본국 공개특허2002-200784호 공보 및 일본국 특허공보평6-57040호 공보에 기재된 기술은, 비디오 클록의 2배 이상의 주파수의 클록 신호를 이용하여 비디오 클록의 주파수 변조를 행함으로써, 각색마다의 주주사 방향 배율의 변동을 보정하고 있지만, 비디오 클록의 주파수는 화상 형성 장치에서의 형성 화상의 고해상도화·화상 형성 속도의 고속화에 따라 대폭으로 고주파수화되고 있으며, 고주파수화된 비디오 클록의 다시 2배 이상의 주파수의 클록 신호를 이용하여 비디오 클록의 주파수 변조를 행하고자 하면, 구성의 대폭적인 복잡화에 의해 대폭적인 비용 상승을 초래하는 동시에, 높은 분해능으로 배율 변동을 보정하는 것도 매우 곤란하다. 또한, 폴리곤 미러의 1회전을 1주기로 하여 어긋남 양이 차례로 변화되는 화상 영역의 어긋남을 보정하기 위해서는, 비디오 클록의 주파수가 각 주사 라인마다 변화되도록 제어할 필요가 있지만, 이러한 제어는 응답성 면에서 생각하여도 비현실적이다.
본 발명은 상기 문제점을 감안하여 안출된 것으로서, 화상 데이터를 사용하여 변조시킨 광빔을 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향시켜 피조사체 위에서 주사시킴으로써, 피조사체 위에 화상을 형성하는 화상 형성 장치, 및 상기 화상 형성 장치에 적용 가능한 형성 화상 보정 방법을 제공하는 것을 목적으로 한다.
본 발명의 제 1 형태는, 회전 다면경과, 상기 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향되어 피(被)조사체 위에서 소정 방향으로 주사(走査)되는 광빔의 변조(變調)에 사용되는 화상 데이터를, 상기 회전 다면경의 각 반사면마다 미리 측정된, 상기 반사 편향된 광빔에 의해 상기 피조사체 위에 형성되는 화상 영역의 상기 소정 방향에 따른 어긋남 양에 따라, 동일한 반사면에 의해 반사 편향되는 광빔의 변조에 사용되는 단위 데이터마다 보정함으로써, 상기 화상 영역의 상기 소정 방향에 따른 어긋남을 보정하는 보정 부재를 구비하는 것을 특징으로 한다.
이하, 도면을 참조하여 본 발명의 실시예의 일례를 상세하게 설명한다. 도 1에는 본 실시예에 따른 컬러 화상 형성 장치(10)가 도시되어 있다. 컬러 화상 형성 장치(10)는 플래턴(platen) 유리(14) 위의 소정 위치에 탑재 배치된 원고(16)를 노광 주사하여 CCD 센서(13)에 의해 원고(16)의 화상을 R, G, B 각색 성분으로 분해하여 판독하여 R, G, B의 화상 신호를 출력하는 원고 판독 장치(12)와, 원고 판독 장치(12)가 원고(16)의 화상을 판독함으로써 얻어진 화상 신호에 의거하여 용지(50) 위에 컬러 화상을 형성하는 화상 형성 장치(18)를 구비하고 있다. 또한, 컬러 화상 형성 장치(10)는 본 발명에 따른 화상 형성 장치에 대응하고 있다.
화상 형성 장치(18)는 CCD 센서(13)에 의한 판독에 의해 얻어진 R, G, B의 화상 신호를 Y, M, C, K의 각 색재 색마다의 다치(多値)의 화상 데이터(각각의 화소의 Y, M, C, K 각 색재 색마다의 농도를 각각 복수 비트(예를 들어 8비트)의 다치 데이터로 나타내는 화상 데이터)로 변환하여 축적하는 화상 축적부(82)와, CPU, ROM, 워크 메모리로서 사용되는 RAM, EEPROM이나 플래시 메모리 등으로 이루어지는 불휘발성 기억 부재를 포함하여 구성되고, 컬러 화상 형성 장치(10)에서의 처리 전반(全般)을 제어하는 제어부(80)를 구비하고 있다. 불휘발성 기억 부재에는 후술하는 보정값 설정 처리를 행하기 위한 보정값 설정 프로그램 및 화상 보정 처리를 행하기 위한 화상 보정 프로그램이 미리 기억되어 있다. 또한, 컬러 화상 형성 장치(10)의 상면(上面)에는 메시지 등을 표시하는 디스플레이(84A)와, 오퍼레이터가 각종 명령 등을 입력하기 위한 키보드(84B)를 포함하여 구성된 조작부(84)가 설치되어 있으며, 조작부(84)는 제어부(80)와 접속되어 있다.
또한, 화상 형성 장치(18)는 구동 롤러(32, 34, 36, 38)에 감긴 무단(無端)의 중간 전사 벨트(30)를 구비하고 있다. 중간 전사 벨트(30)는 토너상을 정전 전사하기 위해 카본에 의해 부피 저항이 조정된 유전체이며, 구동 롤러(32, 34, 36, 38)에 의해 소정 방향(구동 롤러(32, 38) 사이에서는 도 1의 화살표 B방향)으로 주회(周回) 반송된다. 중간 전사 벨트(30)의 상측에는 도 1의 화살표 B방향을 따라 중간 전사 벨트(30) 위에 Y색의 토너상을 형성하는 화상 형성부(20), 중간 전사 벨트(30) 위에 M색의 토너상을 형성하는 화상 형성부(22), 중간 전사 벨트(30) 위에 C색의 토너상을 형성하는 화상 형성부(24), 중간 전사 벨트(30) 위에 K색의 토너상을 형성하는 화상 형성부(26), 및 중간 전사 벨트(30) 위에 형성된 레지스터 어긋남 검출용 패턴을 검출하기 위한 패턴 검출부(28)가 차례로 설치되어 있다. 또한, 패턴 검출부(28)는 발광 소자 및 CCD로 이루어지는 수광 소자를 구비하고, 중간 전사 벨트(30) 위에 형성된 레지스터 어긋남 검출용 패턴을 광학적으로 검출하기 위한 검출 유닛이 중간 전사 벨트(30)의 폭방향(주주사 방향)에 따른 양단부(SOS(Start Of Scan) 위치 및 EOS(End Of Scan) 위치)에 각각 배열 설치되어 구성되어 있다(도 6의 (a)도 참조).
화상 형성부(20)는 대략 원통 형상으로서 축선(軸線)을 중심으로 도 1의 화살표 A방향으로 회전 가능하게 되고, 중간 전사 벨트(30)에 외주면이 접하도록 배치된 감광체(20C)를 구비하고 있으며, 감광체(20C)의 외주(外周)에는 감광체(20C)의 외주면을 소정의 전위로 대전시키는 대전기(20D)가 설치되어 있고, 도 1의 화살표 A방향을 따라 대전기(20D)보다도 하류(下流) 측에는 주사 노광부(20A)가 설치되어 있다.
도 2에 나타낸 바와 같이, 주사 노광부(20A)는, 복수개의 광빔을 사출 가능한 멀티빔 광원으로서, 대략 가우시안(gaussian) 분포의 광빔을 사출하는 발광부가 다수(본 실시예에서는 32개) 형성된 면발광 레이저 어레이(VCSEL)(100)를 구비하고 있다. VCSEL(100)로부터 사출된 광빔은, 후술하는 주사 광학계에 의해 주주사 방향으로 편향된 후에 피주사체로서의 감광체(20C)에 조사(照射)됨으로써, 감광체(20C)의 축선과 평행한 방향(주주사 방향)을 따라 감광체(20C)의 둘레면 위에 주사된다. 주사 노광부(20A)에는 색재색 Y의 인쇄용 화상 데이터(2치의 화상 데이터)가 제어부(80)로부터 공급되고, VCSEL(100)로부터 사출되는 레이저빔은 제어부(80)로부터 공급된 인쇄용 화상 데이터에 따라 각각 변조되고, 또한 감광체(20C)가 회전함으로써 부주사가 실행됨으로써, 감광체(20C) 둘레면 위의 대전된 부분에는 색재색 Y의 화상의 정전 잠상이 형성된다. 또한, VCSEL(100)에 형성된 각 발광부는 각각의 발광부로부터 사출되는 광빔의 부주사 방향에 따른 위치가 중첩되지 않도록 배치되어 있다. 또한, 도 3의 (d)에 나타낸 바와 같이, 각 발광부로부터 사출된 광빔은 감광체(20C) 위에서의 주주사 방향에 따른 광빔의 조사 위치도 어긋나 있지만, 이 어긋남은 화상 형성 시에 각각의 발광부로부터 사출되는 광빔의 변조 개시 타이밍을 상대적으로 변화시킴으로써 보정된다.
VCSEL(100)의 광빔 사출 측에는 VCSEL(100)과의 간격이 콜리메이터(collimator) 렌즈(102)의 초점 거리와 일치하도록 배치된 콜리메이터 렌즈(102), 슬릿(104), 원기둥(cylindrical) 렌즈(106), 미러(108)가 차례로 배치되어 있다. VCSEL(100)로부터 사출된 광빔은 콜리메이터 렌즈(102)에 의해 대략 평행 광속(光束)으로 되고, 슬릿(104)에 의해 정형(整形)된 후에, 원기둥 렌즈(106)에 입사(入射)된다. 원기둥 렌즈(106)는 부주사 방향으로만 파워를 갖고, 입사된 광빔을 후 술하는 폴리곤 미러(110)의 반사면 위에 주주사 방향으로 가늘고 긴 선상(線像)으로서 수속(收束)시켜 미러(108)에 입사시킨다.
미러(108)에 의해 반사된 광빔의 사출 측에는, 동일한 면폭의 반사면(편향면)이 측면부에 복수 형성된 정다각기둥 형상(본 실시예에서는 정팔각 형상)으로 되고, 구동 부재에 의해 중심축 둘레로 등각속도에 의해 회전되는 폴리곤 미러(110)(본 발명에 따른 회전 다면경에 상당)가 배치되어 있고, 하프미러(half-mirror)(108)에 의해 반사된 광빔은 폴리곤 미러(110)에 의해 반사되는 동시에 폴리곤 미러(110)의 회전에 따라 주주사 방향으로 편향·주사된다. 또한, 폴리곤 미러(110)의 상면에는 반사 부재(112)가 점착되어 있고, 폴리곤 미러(110)의 상방(上方)에는 발광 소자 및 수광 소자를 구비한 회전 위치 검출 센서(114)가 설치되어 있다. 회전 위치 검출 센서(114)는, 폴리곤 미러(110)가 특정 회전 각도일 때에 반사 부재(112) 점착 위치의 바로 위로 되는 위치에 배치되고, 또한 제어부(80)에 접속되어 있으며, 폴리곤 미러(110)의 회전에 동기(同期)한 신호(폴리곤 미러(110)가 특정 회전 각도로 될 때마다 소정 기간 레벨이 변화되는 신호)를 제어부(80)에 출력한다. 회전 위치 검출 센서(114) 및 반사 부재(112)는 반사면 검출 부재에 대응하고 있다. 회전 위치 검출 센서(114) 및 반사 부재(112) 대신에, 폴리곤 미러(110)에 부착한 로터리(rotary) 인코더에 의해 반사면을 검출하도록 할 수도 있다.
폴리곤 미러(110)의 광빔 사출 측에는 2매 세트의 렌즈(116A, 116B)로 이루어지는 fθ 렌즈(116)가 배치되어 있다. fθ 렌즈(116)는 폴리곤 미러(110)에 의해 편향·주사된 광빔을 감광체(20C)의 둘레면 위에 광 스폿(spot)으로서 주주사 방향으로 결상(結像)시키는 동시에, 상기 광 스폿를 감광체(20C)의 둘레면 위에서 주주사 방향으로 대략 등속도에 의해 이동시키는 기능을 갖고 있다. fθ 렌즈(116)의 광빔 사출 측에는 제 1 원기둥 미러(118), 평면 미러(120), 제 2 원기둥 미러(122), 윈도(window)(124)가 차례로 배치되어 있다. fθ 렌즈(116)를 투과한 광빔은 제 1 원기둥 미러(118)와 평면 미러(120)에 의해 광로(光路)가 대략 コ자 형상으로 구부러지고, 또한 제 2 원기둥 미러(122)에 의해 반사된 후, 윈도(124)를 투과하여 윈도(124)의 하방(下方)에 배치된 감광체(20C)의 둘레면 위에 조사된다.
제 1 원기둥 미러(118) 및 제 2 원기둥 미러(122)는 부주사 방향으로 파워를 갖고 있으며, 폴리곤 미러(110)의 반사면과 감광체(20C)를 대략 공역(共役) 관계로 함으로써, 폴리곤 미러(110) 반사면의 공차 내에서의 편차에 의해 생기는 감광체(20C) 둘레면 위에서의 부주사 방향에 따른 광빔 조사 위치의 어긋남(면 기울어짐)을 보정하는 기능을 갖고 있다. 또한, 콜리메이터 렌즈(102), 원기둥 렌즈(106), 제 1 원기둥 미러(118), 제 2 원기둥 미러(122)의 부주사 방향의 곡률은 감광체(20C) 위에서의 부주사 방향에 따른 광빔의 간격과, 감광체(20C)로부터 수밀리미터 떨어진 위치에서의 부주사 방향에 따른 광빔의 간격이 동일한, 텔레센트릭(telecentric)한 관계로 되도록 설정되어 있다.
한편, 감광체(20C) 외주면으로의 레이저빔 조사 위치보다도 도 1의 화살표 A방향을 따라 하류 측에는 현상 장치(20B), 전사 장치(20F) 및 클리닝 장치(20E)가 차례로 설치되어 있다. 현상 장치(20B)는 토너 공급부(20G)로부터 Y색의 토너가 공급되고, 주사 노광부(20A)에 의해 형성된 정전 잠상을 Y색의 토너에 의해 현상하 여 Y색의 토너상을 형성시킨다. 또한, 전사 장치(20F)는 중간 전사 벨트(30)를 사이에 두어 감광체(20C)의 외주면과 대향하도록 배치되어 있고, 감광체(20C)의 외주면에 형성된 Y색의 토너상을 중간 전사 벨트(30)의 외주면에 전사한다. 또한, 토너상 전사 후에 감광체(20C)의 외주면에 잔존(殘存)되어 있는 토너는 클리닝 장치(20E)에 의해 제거된다.
또한, 도 1로부터 명확히 알 수 있듯이, 화상 형성부(22, 24, 26)의 구성은 화상 형성부(20)의 구성과 동일하기(다만, 형성하는 토너상의 색재색은 서로 다르기) 때문에 설명을 생략한다. 화상 형성부(20, 22, 24, 26)는 각각이 형성한 각색의 토너상이 중간 전사 벨트(30)의 외주면 위에서 서로 중첩되도록 토너상을 전사시킨다. 이것에 의해, 중간 전사 벨트(30)의 외주면 위에 풀컬러(full-color)의 토너상이 형성된다. 또한, 중간 전사 벨트(30)의 주회로를 따라 화상 형성부(20)보다도 중간 전사 벨트(30)의 주회 방향 상류 측에는, 중간 전사 벨트(30)의 토너 흡착성을 양호하게 하기 위해 중간 전사 벨트(30)의 표면 전위를 소정 전위로 유지하는 흡착(吸着) 롤러(40), 중간 전사 벨트(30)로부터 토너를 제거하는 클리닝 장치(42), 중간 전사 벨트(30) 위의 미리 정해진 기준 위치(예를 들어 광반사율이 높은 실(seal) 등으로 이루어지는 마크가 부착되어 있음)를 검출하는 기준 위치 검출 센서(44)가 차례로 설치되어 있다.
한편, 중간 전사 벨트(30) 배열 설치 위치의 하방(下方)에는, 다수매의 용지(50)를 적층 상태에서 수용하는 트레이(54)가 설치되어 있다. 트레이(54)에 수용되어 있는 용지(50)는 인출 롤러(52)의 회전에 따라 트레이(54)로부터 인출되고, 반송 롤러쌍(55, 56, 58)에 의해 전사 위치(구동 롤러(36) 및 전사 롤러(60)가 배열 설치되어 있는 위치)로 반송된다. 전사 롤러(60)는 중간 전사 벨트(30)를 사이에 두어 구동 롤러(36)와 대향하도록 배치되어 있고, 전사 위치로 반송된 용지(50)는 전사 롤러(60)와 중간 전사 벨트(30) 사이에 삽입됨으로써, 중간 전사 벨트(30)의 외주면 위에 형성된 풀컬러의 토너상이 전사된다. 토너상이 전사된 용지(50)는 반송 롤러쌍(62)에 의해 정착 장치(46)로 반송되고, 정착 장치(46)에 의해 정착 처리가 실행된 후, 용지 트레이(64)로 배출된다.
다음으로, 본 실시예의 작용을 설명한다. 본 실시예에 따른 컬러 화상 형성 장치(10)와 같이, 폴리곤 미러에 의해 광빔을 반사 편향시켜 감광체에 의해 주사시킴으로써 감광체 위에 화상을 형성하는 구성에서는, 폴리곤 미러의 각 반사면의 공차 내에서의 편차나 폴리곤 미러의 회전속도 변동을 주요한 원인으로 하여, 각 반사면에 의해 반사된 광빔의 주사 속도의 미소한 차이(주주사 방향 배율의 변동)가 생기고, 도 3의 (a) 내지 (c)에 나타낸 바와 같이, 폴리곤 미러의 1회전을 주기로 하여 각 주사 라인에서의 주사 방향에 따른 화상 영역의 어긋남(지터)이 생긴다.
현재, 지터의 주요한 원인인 폴리곤 미러의 회전속도 변동이나 각 반사면의 공차 내에서의 편차는 폴리곤 미러 회전 구동의 고정밀도화나 폴리곤 미러 제조의 고정밀도화 등에 의해 최대한 억제되고 있지만, 예를 들어 SOS측 위치와 EOS측 위치의 간격(주주사 방향에 따른 화상 영역의 길이)이 297㎜인 경우, 주주사 방향에 따른 화상 단부(端部)의 위치 어긋남은 SOS측 위치에서 10㎛ 정도, EOS측 위치에서 20㎛ 정도 생긴다. 그리고, 비용 저감을 목적으로 하여 폴리곤 미러 회전 구동부 의 구성를 간소화하거나 폴리곤 미러의 제조 정밀도를 저하시킨 경우, 주주사 방향에 따른 화상 단부의 위치 어긋남은, SOS측 위치에서는 그만큼 변화되지 않지만(10∼15㎛ 정도), EOS측 위치에서는 40∼60㎛ 정도까지 악화된다.
한편, 본 실시예에 따른 컬러 화상 형성 장치(10)는, 화상 형성부(20, 22, 24, 26)의 각각에 있어서, 주사 노광부(20A)의 VCSEL(100)로부터 사출된 32개의 광빔을 감광체(20C) 위에 동시에 조사함으로써, 1회의 주주사에서 32개의 라인을 일괄적으로 주사 노광한다. 예를 들어 형성 화상의 부주사 방향의 해상도를 2400dpi로 한 경우, 감광체(20C) 위에서의 부주사 방향에 따른 라인의 간격은 10.58㎛(25.4㎜/2400dpi)로 되기 때문에, 폴리곤 미러(110)의 반사면 수가 「8」이면, 상술한 지터의 부주사 방향에 따른 주기는 2.7㎜로 된다. 이 조건에서 지터 보정을 위해 상술한 일본국 공개특허평4-373253호 공보, 일본국 공개특허2002-200784호 공보, 일본국 특허공보평6-57040호 공보의 기술을 적용한 경우에 대해서 검토한다.
일본국 공개특허평4-373253호 공보에 기재된 기술은, 단일 감광체 드럼에 각색의 화상을 차례로 형성하는 동시에, 형성한 각색의 화상을 중간 전사체 위에서 차례로 중첩시키는 다중 방식을 전제로 하고 있으며, 다중 방식의 화상 형성 장치에서 감광체의 회전 구동과 폴리곤 미러의 회전 구동을 동기시키고 있다. 여기서, 다중 방식에서는 중간 전사체에 클리닝 블레이드나 2차 전사 롤러가 접촉 이간(離間)됨으로써 중간 전사체의 이동 속도 변동이 생기고, 색 어긋남 억제를 위해 감광체의 회전속도를 중간 전사체의 이동 속도와 동기시킬 필요가 있기 때문에, 또한 감광체의 회전 구동을 폴리곤 미러의 회전 구동과 동기시키기 위해서는, 위상차를 검출하거나 검출한 위상차를 보정하는 등의 기능을 실현하는 새로운 구성을 추가할 필요가 있어, 장치 구성이 복잡해지고 비용이 상승하게 된다. 또한, 일본국 공개특허평4-373253호 공보에 기재되어 있는 400dpi, 폴리곤 미러의 반사면 수가 8, 광빔의 개수가 1이라는 조건에서는 지터의 부주사 방향에 따른 주기가 0.5㎜로 짧지만, 본 실시예에 따른 컬러 화상 형성 장치(10)와 같이 지터의 부주사 방향에 따른 주기가 2.7㎜로 길어지면, 지터의 1주기 동안의 감광체 및 중간 전사체의 속도 변동도 커지기 때문에, 구성의 복잡화 및 비용 상승을 한층 더 초래하게 된다. 그리고, 상술한 바와 같이, 일본국 공개특허평4-373253호 공보에 기재된 기술은 색 어긋남은 억제할 수 있지만 화상 단부의 위치 편차를 보정할 수 없기 때문에, 이것이 화질 저하로서 시인된다는 문제가 있다.
또한, 일본국 공개특허2002-200784호 공보 및 일본국 특허공보평6-57040호 공보에 기재된 기술에서는, 광빔의 주사 속도 변동이 상쇄되도록 비디오 클록의 2배 이상의 주파수의 클록 신호를 이용하여 비디오 클록의 주파수 변조를 행함으로써, 각색마다의 주주사 방향 배율의 변동을 보정하는 것이지만, 예를 들어 600dpi, 광빔의 개수가 2개 등이라는 조건에서는 비디오 클록의 주파수가 20∼30㎒ 정도로 충족되는 것에 대하여, 본 실시예에 따른 컬러 화상 형성 장치(10)와 같이, 2400dpi, 광빔의 개수가 32개라는 조건에서는 비디오 클록의 주파수는 130∼140㎒ 정도로 대폭으로 고주파수화되기(고해상도화 및 처리 능력 향상의 요구를 충족시키기) 때문에, 고주파수화된 비디오 클록의 다시 2배 이상의 주파수의 클록 신호를 이용하여 비디오 클록의 주파수 변조를 행하고자 하면 대폭적인 비용 상승을 초래 한다는 문제가 있다. 또한, 주주사 방향에 따른 길이가 297㎜인 화상 영역의 위치 및 길이를 10㎛마다 보정하기 위해서는, 비디오 클록의 주파수를 30ppm 정도(=10㎛/297㎜)의 분해능으로 변경할 필요가 있으며, 100㎒ 이상의 고주파 비디오 클록의 주파수에 대하여 상기 분해능으로 상기 제어를 행하는 것은 매우 곤란하다. 그리고, 상술한 바와 같이 일본국 공개특허2002-200784호 공보 및 일본국 특허공보평6-57040호 공보에 기재된 기술은, 각색의 화상 영역의 어긋남 양이 화상을 형성하고 있는 동안 일정하게 추이(推移)되는 것을 전제로 하여 보정을 행하는 기술이며, 단일 화상을 형성하고 있는 도중에서 어긋남 양이 동적(動的)으로 변화되는 화상 영역의 어긋남을 일본국 공개특허2002-200784호 공보, 일본국 특허공보평6-57040호 공보에 기재된 기술에 의해 보정하기 위해서는, 비디오 클록의 주파수가 각 주사 라인마다 변화되도록 제어할 필요가 있지만, 이러한 제어는 응답성 면에서 생각하여도 비현실적이다.
상기에 의거하여, 본 실시예에서는, 각회(各回)의 주주사에서의 광빔의 변조 개시 타이밍을 폴리곤 미러(110)의 각 반사면마다 전환함으로써, SOS 측에서의 각 주사 라인마다의 화상 영역의 단부 위치 편차를 보정하고, 각회의 주주사에서 광빔의 변조에 사용하는 데이터(32개 분의 주주사 라인의 데이터: 본 발명에서의 단위 데이터)에 대하여 화소의 추가 또는 삭제를 행하는 동시에, 추가 또는 삭제하는 화소 수를 폴리곤 미러(110)의 각 반사면마다 전환함으로써, 각 주사 라인마다의 화상 영역의 길이 편차(즉, EOS 측에서의 각 주사 라인마다의 화상 영역의 단부 위치 편차)를 보정하고 있다. 이하, 상세를 설명한다.
도 4에 나타낸 바와 같이, 컬러 화상 형성 장치(10)의 제어부(80)는, 용지(50)에 인쇄해야 할 화상의 데이터로서, LAN 등의 네트워크를 통하여 접속된 호스트 컴퓨터로부터 페이지 기술(記述) 언어로 기술된 데이터를 수신하거나, 또는 원고 판독 장치(12)로부터 비트맵 데이터가 입력되면, 이들 데이터를 화상 데이터 생성부(130)에 의해 Y, M, C, K의 각 색재 색마다의 다치 화상 데이터(각각의 화소의 Y, M, C, K의 각 색재 색마다의 농도를 각각 복수 비트(예를 들어 8비트)로 나타내는 비교적 저(低)해상도(예를 들어 600dpi)의 화상 데이터)로 변환한다. 또한, 상기 다치 화상 데이터는 스크린 처리부(132)에 입력되고, 스크린 처리부(132)는 다치 화상 데이터에 대하여 스크린 처리를 행하여 인쇄용 화상 데이터(다치 화상 데이터에서의 각각의 화소 농도를 복수의 2치 화소에 의해 나타내는 고해상도(예를 들어 2400dpi)의 Y, M, C, K 각 색재 색마다의 2치 화상 데이터)로 변환한다. 이 인쇄용 화상 데이터는 레지스터 보정 처리부(134)에 의한 레지스터 보정 처리(후술)를 거쳐 화상 인쇄 처리부(136)로 공급된다. 그리고, 화상 인쇄 처리부(136)는 공급된 인쇄용 화상 데이터에 따라 각각의 화상 형성부(20, 22, 24, 26)의 주사 노광부(20A)의 VCSEL(100)로부터 사출되는 광빔을 변조시키는 동시에, 각각의 화상 형성부(20, 22, 24, 26)의 작동을 제어함으로써 컬러 화상을 형성시킨다.
여기서, 본 실시예에 따른 제어부(80)에는, SOS 측 및 EOS 측에서의 각 주사 라인마다의 화상 영역의 단부 위치 편차를 보정하기 위해, 레지스터 어긋남 검출 처리부(138), 레지스터 보정값 연산 처리부(140), 상술한 레지스터 보정 처리부(134) 및 보정값을 기억하기 위한 메모리(142)가 각각 설치되어 있다. 또한, 메모 리(142)는 기억 부재에, 레지스터 보정 처리부(134)는 보정 부재에 대응하고 있다. 또한, 레지스터 어긋남 검출 처리부(138)는 패턴 검출부(28)의 각 검출 유닛과 함께 측정 부재에 대응하고 있으며, 레지스터 보정값 연산 처리부(140)는 보정 데이터 설정 부재에 대응하고 있다.
이하에서는, 우선, 레지스터 어긋남 검출 처리부(138) 및 레지스터 보정값 연산 처리부(140)에 상당하는 처리로서, 제어부(80)가 보정값 설정 프로그램을 실행함으로써 실현되는 보정값 설정 처리에 대해서 도 5를 참조하여 설명한다. 또한, 이 보정값 설정 처리는 컬러 화상 형성 장치(10)의 제조 시, 컬러 화상 형성 장치(10)의 설치 시, 및 컬러 화상 형성 장치(10)의 구성 부품 교환 시(예를 들어 감광체(20C)의 교환 시나 주사 노광부(20A)의 교환 시, 폴리곤 미러(110)의 회전 구동에 관계되는 전기 회로 부품의 교환 시 등)에 실행되는 동시에, 상기 타이밍 이외에, 예를 들어 보정값 설정 처리를 전회(前回) 실행하고 나서의 누적 가동 시간이 소정 시간에 도달한 경우에도 실행된다.
보정값 설정 처리에서는, 우선, 스텝 150에서 레지스터 어긋남 검출 대상의 색재색 j를 선택하고, 다음 스텝 152에서는, 색재색 j에 대응하는 화상 형성부의 주사 노광부(20A)에 설치된 폴리곤 미러(110)의 반사면 중 후술하는 레지스터 어긋남 검출용 패턴의 형성이 실행되지 않은 단일 반사면을 레지스터 어긋남 검출 대상으로서 선택한다. 그리고, 스텝 154에서는, 색재색 j에 대응하는 화상 형성부에 의해, 스텝 152에서 선택한 레지스터 어긋남 검출 대상의 반사면에 의해 반사된 광빔에 의해서만 레지스터 어긋남 검출용 패턴을 형성시킨다.
즉, 제어부(80)에는 회전 위치 검출 센서(114)가 접속되어 있고, 이 회전 위치 검출 센서(114)로부터는 폴리곤 미러(110)가 특정 회전 각도로 될 때마다 소정 기간 레벨이 변화되는 검출 신호가 입력되기 때문에, 제어부(80)는 입력된 검출 신호를 상기 신호의 레벨이 변화되는 타이밍을 기준으로 하여 분주시킨 반사면 검지 신호에 의거하여 폴리곤 미러(110)의 회전 각도, 즉, 어느쪽 반사면이 광빔을 반사하고 있는지를 검지한다. 그리고, 스텝 152에서 선택한 레지스터 어긋남 검출 대상의 반사면이 광빔을 반사하는 기간이 도래할 때마다 주사 노광부(20A)의 VCSEL(100)의 모든 발광부를 발광시켜, 화상 영역의 SOS측 단부 및 EOS측 단부에 라인 형상의 패턴을 형성시키는 데이터를 색재색 j에 대응하는 화상 형성부에 출력하는 것을 소정회 반복한다. 이것에 의해, 예로서 도 6의 (b)에 나타낸 바와 같은 스트라이프 형상의 레지스터 어긋남 검출용 패턴이 도 6의 (a)에 나타낸 바와 같이 SOS측 단부 및 EOS측 단부에 각각 형성된다. 또한, 도 6의 (b)에 나타낸 레지스터 어긋남 검출용 패턴은, 폴리곤 미러(110)에 설치된 8개의 반사면 A∼H 중 반사면 C에 의해 형성된 패턴으로서 나타내고 있다.
다음 스텝 156에서는, 상술한 레지스터 어긋남 검출용 패턴의 형성을 폴리곤 미러(110)의 모든 반사면에 대하여 행하였는지의 여부를 판정한다. 판정이 부정(否定)된 경우는 스텝 152로 되돌아가, 스텝 156의 판정이 긍정될 때까지 스텝 152 내지 스텝 156을 반복한다. 이것에 의해, 색재색 j에 대응하는 화상 형성부의 감광체(20C) 둘레면 위에는 폴리곤 미러(110)의 서로 다른 반사면에 의해 반사 편향된 광빔에 의해 형성된 복수의 레지스터 어긋남 검출용 패턴이 각각 형성되고, 이 들 레지스터 어긋남 검출용 패턴이 중간 전사 벨트(30)에 각각 전사된다.
스텝 156의 판정이 긍정되면 스텝 158로 이행(移行)하고, 도 6의 (c)에도 나타낸 바와 같이, 중간 전사 벨트(30)에 각각 전사된 각 반사면에 대응하는 레지스터 어긋남 검출용 패턴 중 중간 전사 벨트(30)의 이동에 따라 레지스터 어긋남 검출용 패턴(특정 반사면의 레지스터 어긋남 검출용 패턴)이 전사된 개소가 패턴 검출부(28)의 검출 유닛의 배열 설치 위치에 도달하면, 검출 유닛의 배열 설치 위치에 도달한 특정 반사면의 레지스터 어긋남 검출용 패턴을 검출 유닛에 의해 판독한다. 각각의 레지스터 어긋남 검출용 패턴은, 폴리곤 미러(110)에 설치된 복수(본 실시예에서는 8개)의 반사면 중 단일 반사면에 의해 반사 편향된 광빔에 의해서만 형성하고 있기 때문에, 그 농도(커버리지)는 12.5%로 비교적 낮아지지만, 스트라이프 형상의 레지스터 어긋남 검출용 패턴에서의 각각의 라인은 32개의 광빔에 의해 형성되고, 각각의 라인 폭은 0.34㎜이기 때문에, 레지스터 어긋남 검출용 패턴의 검출은 충분히 가능하다.
또한, 스텝 160에서는, SOS 위치에 위치하고 있는 검출 유닛에 의한 레지스터 어긋남 검출용 패턴의 판독 결과에 의거하여, SOS 측의 기준 위치에 대한 레지스터 어긋남 검출용 패턴의 위치(즉, SOS 측에서의 화상 영역의 단부 위치)의 어긋남 양을 연산하고, 연산한 어긋남 양에 의거하여, SOS 측에서의 화상 영역의 단부 위치를 SOS 측의 기준 위치와 일치시키기 위한 광빔의 변조 개시 타이밍 보정값을 설정한다. 예를 들어 광빔의 변조 개시 타이밍이 일정 기준 타이밍으로부터 비디오 클록의 펄스 수를 카운트하여, 펄스 수의 카운트 값이 100화소 분에 상당하는 규정값으로 되었을 때에 광빔의 변조를 개시시키는 형태에 있어서, 레지스터 어긋남 검출용 패턴이 SOS 측으로 10㎛(=1화소 분) 어긋나 있음이 검출된 경우에는, 변조 개시 타이밍 보정값으로서, 상기 규정값을 101화소 분에 상당하는 값으로 변경하는 보정값을 설정하면 된다. 이것에 의해, SOS 측에서의 화상 영역의 단부 위치가 EOS 측으로 10㎛ 이동됨으로써 SOS 측의 기준 위치와 일치된다. 그리고, 스텝 160에서는, 설정한 변조 개시 타이밍 보정값을 색재색 j를 식별하는 정보 및 판독을 행한 레지스터 어긋남 검출용 패턴에 대응하는 특정 반사면을 식별하는 정보(예를 들어 반사면 번호 등)와 대응시켜 메모리(142)에 기억시킨다.
또한, 스텝 162에서는, EOS 위치에 위치하고 있는 검출 유닛에 의한 레지스터 어긋남 검출용 패턴의 판독 결과에 의거하여, EOS 측의 기준 위치에 대한 레지스터 어긋남 검출용 패턴의 위치(즉, EOS 측에서의 화상 영역의 단부 위치)의 어긋남 양을 연산한다. 다음으로, 연산한 EOS 측에서의 화상 영역의 단부 위치 어긋남 양과, 스텝 160에서 연산한 SOS 측에서의 화상 영역의 단부 위치 어긋남 양으로부터 화상 영역의 길이의 어긋남 양을 연산하고, 화상 영역의 길이의 어긋남을 보정함으로써 EOS 측에서의 화상 영역의 단부 위치를 EOS 측의 기준 위치와 일치시키기 위한 추가/삭제 화소 수를 설정한다.
도 7의 (a)에 나타낸 원(原)화상 데이터에 대하여 도 7의 (b)에 나타낸 바와 같이 각 주주사 라인에 동일한 수의 화소를 각각 추가한 경우, 각 주주사 라인의 길이(화상 영역의 길이)가 추가 화소 수만큼 길어지고, 이것에 따라 EOS 측에서의 화상 영역의 단부 위치도 EOS 측으로 추가 화소 수만큼 이동한다. 또한, 도 7의 (c)에 나타낸 바와 같이 각 주주사 라인으로부터 동일한 수의 화소를 각각 삭제한 경우는, 각 주주사 라인의 길이(화상 영역의 길이)가 추가 화소 수만큼 짧아지고, 이것에 따라 EOS 측에서의 화상 영역의 단부 위치도 SOS 측으로 추가 화소 수만큼 이동한다. 본 실시예에서는 광빔의 변조에 사용하는 데이터에 대하여 상기와 같이 화소의 추가 또는 삭제를 행함으로써 화상 영역의 길이를 보정하고, EOS 측에서의 화상 영역의 단부 위치를 EOS 측의 기준 위치와 일치시킨다. 이 보정은 각회의 주주사에서의 비디오 클록의 주파수를 변경하는 제어와 비교하여 처리 자체가 매우 간단하고, 또한 보정량의 변경도 추가 또는 삭제하는 화소의 수를 변경하기만 하면 되기 때문에, 각 주주사 라인마다 원하는 배율(화상 영역을 원하는 길이)로 제어할 수 있다.
또한, 상기 보정 처리에서의 보정의 분해능은 1화소 단위이며, 2400dpi에서는 10㎛(정확하게는 10.58㎛)로 된다. 예를 들어 도 7의 (b)에 나타낸 예에서는 EOS 측에서의 화상 영역의 단부 위치가 EOS 측으로 2화소분, 즉, 20㎛ 이동하고, 도 7의 (c)에 나타낸 예에서는 EOS 측에서의 화상 영역의 단부 위치가 SOS 측으로 2화소분(20㎛) 이동하게 된다. 따라서, 추가/삭제 화소 수는 연산한 화상 영역의 길이의 어긋남 양을 화소 간격(예를 들어 10㎛)으로 제산(除算)함으로써 구할 수 있다. 그리고, 스텝 162에서는, 설정한 추가/삭제 화소 수를 색재색 j를 식별하는 정보 및 판독을 행한 레지스터 어긋남 검출용 패턴에 대응하는 특정 반사면을 식별하는 정보(예를 들어 반사면 번호 등)와 대응시켜 메모리(142)에 기억시킨다. 또한, 메모리(142)에 기억시킨 추가/삭제 화소 수는 보정 데이터에 대응하고 있다.
다음 스텝 164에서는, 상술한 레지스터 어긋남 검출용 패턴의 판독, 보정값(변조 개시 타이밍 보정값 및 추가/삭제 화소 수)의 설정·기억을 폴리곤 미러(110)의 모든 반사면에 대하여 행하였는지의 여부를 판정한다. 판정이 부정된 경우는 스텝 158로 되돌아가, 스텝 164의 판정이 긍정될 때까지 스텝 158 내지 스텝 164를 반복한다. 이것에 의해, 색재색 j에 대응하는 화상 형성부의 폴리곤 미러(110)의 모든 반사면에 대해서 보정값의 설정·기억이 각각 실행된다. 스텝 164의 판정이 긍정되면 스텝 166으로 이행하고, 상술한 처리를 Y, M, C, K의 각 색재색에 대해서 각각 행하였는지의 여부를 판정한다. 판정이 부정된 경우는 스텝 150으로 되돌아가, 스텝 166의 판정이 긍정될 때까지 스텝 150 내지 스텝 166을 반복한다. 그리고, 스텝 166의 판정이 긍정되면 보정값 설정 처리를 종료한다.
다음으로, 제어부(80)가 화상 보정 프로그램을 실행함으로써 실현되는 화상 보정 처리에 대해서 도 8을 참조하여 설명한다. 또한, 이 화상 보정 처리는 레지스터 보정 처리부(134)에 대응하는 처리이며, 컬러 화상의 형성 시에, 각 색재색(각각의 화상 형성부)에 대응하는 화상 보정 처리가 병렬로 각각 실행된다.
특정 색재색 j에 대응하는 화상 보정 처리에서는, 스텝 170에서, 특정 색재색 j에 대응하는 화상 형성부의 회전 위치 검출 센서(114)로부터 입력된 검출 신호에 의거하여 생성한 반사면 검지 신호에 의거하여, 상기 화상 형성부에서 다음 주기의 주주사에서 광빔을 반사 편향시키는 반사면을 검지한다. 다음 스텝 172에서는, 특정 색재색 j 및 스텝 170에서 검지한 반사면에 대응하는 변조 개시 타이밍 보정값을 메모리(142)로부터 판독하고, 판독한 변조 개시 타이밍 보정값을 화상 인 쇄 처리부(136)에 통지한다. 도 3의 (d)에 나타낸 바와 같이, VCSEL(100)로부터 사출되는 32개의 광빔은 감광체(20C) 위에서의 주주사 방향에 따른 조사 위치의 어긋남에 따라 변조 개시 타이밍이 상이하지만, 화상 인쇄 처리부(136)는 다음 주기에서의 각각의 광빔의 변조 개시 타이밍을 통지된 변조 개시 타이밍 보정값에 따라 각각 변경(보정)하는 처리를 행한다. 이것에 의해, 다음 주기에 32개의 광빔에 의해 각각 형성되는 주주사 라인 위의 화상 영역의 SOS 측에서의 단부 위치가 SOS 측의 기준 위치와 각각 일치된다.
또한, 다음 스텝 174에서는, 특정 색재색 j 및 스텝 170에서 검지한 반사면에 대응하는 추가/삭제 화소 수를 메모리(142)로부터 판독한다. 그리고, 스텝 176에서는, 다음 주기의 주주사에서 특정 색재색 j에 대응하는 화상 형성부의 VCSEL(100)로부터 사출되는 32개의 광빔의 변조에 사용하는 32개의 주주사 라인의 데이터(본 발명에서의 단위 데이터)에 대하여 스텝 176에서 판독한 추가/삭제 화소 수만큼의 화소를 추가 또는 삭제하는 배율 보정 처리를 행하고, 이 배율 보정 처리를 행한 각 라인의 데이터를 화상 인쇄 처리부(136)에 출력한다. 또한, 화소의 추가 또는 삭제를 행하는 위치는 예를 들어 추가/삭제 화소 수가 1이면 각 라인의 중앙에서 추가 또는 삭제를 행하고, 추가/삭제 화소 수가 복수이면 화소의 추가 또는 삭제 위치가 각 라인 중에 균등하게 위치하도록 설정하는 것이 바람직하다(도 10도 참조). 또한, 추가하는 화소의 화소값으로서는, 추가 위치에 원래 존재하고 있는 화소의 화소값과 동일한 값을 적용하면 된다. 이것에 의해, 다음 주기에서의 32개의 광빔의 변조가 상기 배율 보정 처리를 거친 데이터에 따라 실행되고, 이것에 의 해, 다음 주기에 32개의 광빔에 의해 형성되는 주주사 라인 위의 화상 영역의 길이가 기준 길이와 각각 일치됨으로써, 상기 주주사 라인 위의 화상 영역의 SOS 측에서의 단부 위치가 SOS 측의 기준 위치와 각각 일치된다.
다음 스텝 178에서는, 특정 색재색 j에 대응하는 화상 형성부에서의 화상 형성이 완료되었는지의 여부를 판정한다. 판정이 부정된 경우는 스텝 170으로 되돌아가, 스텝 178의 판정이 긍정될 때까지 스텝 170 내지 스텝 178을 반복한다. 여기서, 스텝 178의 판정이 부정되어 스텝 170으로 되돌아갈 때마다, 스텝 170에서, 다음 주기의 주주사에서 광빔을 반사 편향시키는 반사면으로서 전회(前回)와는 상이한 반사면이 검지되기 때문에, 스텝 172에서 메모리(142)로부터 판독되는 변조 개시 타이밍 보정값 및 스텝 174에서 메모리(142)로부터 판독되는 추가/삭제 화소 수에 대해서도 전회와는 상이한 반사면에 대응하는 데이터가 판독되고, 다음 주기의 주주사에서 광빔을 반사 편향시키는 반사면에 대응하는 보정이 실행된다.
상기 보정에 대해서 도면을 참조하여 더 설명한다. 도 3의 (c)에 나타낸 SOS 측 및 EOS 측에서의 화상 영역의 단부 위치 편차를 도 9에 확대하여 나타낸다. 도 9에 복수 나타낸 편평한 사각형 영역은 1회의 주주사에서 32개의 광빔에 의해 형성되는 화상 영역을 나타내고 있으며, 각각의 화상 영역에 첨부한 부호 A∼H는 폴리곤 미러(110)의 8개의 반사면 중 각 영역이 형성될 때에 32개의 광빔을 반사 편향시킨 반사면을 나타내고 있다. 도 9로부터도 명확히 알 수 있듯이, 폴리곤 미러(110)의 각 반사면의 공차 내에서의 편차나 폴리곤 미러(110)의 회전속도 변동에 의해, 차례로 형성되는 화상 영역은 폴리곤 미러(110)의 1회전을 1주기로 하여 SOS 측 및 EOS 측의 단부 위치가 각각 불규칙하게 분포된다. 또한, 광빔의 변조는 화상 형성 영역 외에 배치되는 기입 개시 기준 위치 센서로부터의 신호를 트리거(trigger)로 하여 일정 시간 경과 후에(비디오 클록의 펄스 수의 카운트 값이 규정값으로 된 시점에서) 개시되기 때문에, 기입 개시 기준 위치 센서의 배치 위치에 가까운 SOS 측의 화상 영역의 단부 위치 변동은 비교적 작은 반면, 상기 센서로부터 이간되어 있는 EOS 측에서는 화상 영역의 단부 위치가 크게 변동된다.
여기서, 반사면 A에 대응하는 화상 영역의 단부 위치를 기준으로 하여, 각 반사면에 대응하는 화상 영역의 단부 위치가 SOS 측에서 ±5㎛, EOS 측에서 ±30㎛ 변동되고 있는 것으로 한다. 즉, 반사면 A에 대응하는 화상 영역의 EOS측 단부 위치에 대하여 반사면 B, D에 대응하는 화상 영역의 EOS측 단부 위치가 EOS 측으로 20㎛, 반사면 C에 대응하는 화상 영역의 EOS측 단부 위치가 EOS 측으로 30㎛, 반사면 F, H에 대응하는 화상 영역의 EOS측 단부 위치가 SOS 측으로 20㎛, 반사면 G에 대응하는 화상 영역의 EOS측 단부 위치가 SOS 측으로 30㎛ 어긋나 있는 것으로 한다. 이 경우, 앞서 설명한 보정값 설정 처리(도 5)에서는, 추가/삭제 화소 수로서, 반사면 B, D에 대해서는 「2화소 삭제」, 반사면 C에 대해서는 「3화소 삭제」, 반사면 F, H에 대해서는 「2화소 추가」, 반사면 G에 대해서는 「3화소 추가」가 설정된다.
이 추가/삭제 화소 수에 따라 화상 보정 처리(도 8)에서 배율 보정 처리(화소의 추가 또는 삭제)를 행한 결과를 도 10에 나타낸다. 도 10에 나타낸 바와 같이, 광빔이 반사면 B, D에서 반사 편향될 때에는 2화소 분의 데이터가 삭제된 데이 터에 따라 광빔의 변조가 실행되고, 광빔이 반사면 C에서 반사 편향될 때에는 3화소 분의 데이터가 삭제된 데이터에 따라 광빔의 변조가 실행되며, 광빔이 반사면 F, H에서 반사 편향될 때에는 2화소 분의 데이터가 추가된 데이터에 따라 광빔의 변조가 실행되고, 광빔이 반사면 G에서 반사 편향될 때에는 3화소 분의 데이터가 추가된 데이터에 따라 광빔의 변조가 실행되는 것이 반복됨으로써 지터가 보정되어, 각 반사면에 대응하는 화상 영역의 EOS측 단부 위치가 기준 위치와 일치하게 된다.
또한, 도 9 및 도 10에 나타낸 예에서는, 각 반사면에 대응하는 화상 영역의 SOS 단부 위치의 어긋남 양이 광빔 변조 개시 타이밍의 보정에서의 보정 분해능(10㎛) 미만이기 때문에, 광빔 변조 개시 타이밍의 보정은 실행되지 않지만, 비디오 클록의 2배 이상의 클록을 사용하여 비디오 클록 위상을 제어하면 화소 간격(=10㎛) 미만의 분해능으로 화상 영역의 SOS 단부 위치의 어긋남을 보정하는 것도 가능하며, 이러한 보정을 적용하면, SOS 단부 위치의 어긋남 양이 화소 간격 미만이었다고 하여도, 도 10에 나타낸 바와 같이 화상 영역의 SOS 단부 위치를 일치시킬 수 있다(고주파 클록을 사용하여 주파수 변조를 행하는 경우와 비교하여, 고주파 클록을 사용한 위상 제어는 용이하고, 또한 구성의 복잡화도 회피할 수 있다).
또한, 상기에서는 본 발명에 따른 보정(화상 데이터를 보정하는 것에 의한 화상 영역의 소정 방향(주주사 방향)에 따른 어긋남 보정)을 화상 영역의 길이 변동(에 따라 변화되는 화상 영역의 EOS측 단부 위치의 변동)에 대한 보정에만 적용한 경우를 설명했지만, 이것에 한정되지 않아, 본 발명에 따른 보정을 화상 영역의 SOS측 단부 위치의 변동에 대한 보정에 적용할 수도 있다. 이하, 화상 데이터를 보정함으로써 화상 영역의 SOS측 단부 위치의 변동을 보정하는 형태를 설명한다.
이 형태에서는, 예로서 도 11의 (a)에 나타낸 바와 같이, 인쇄용 화상 데이터로서, 주주사 방향 화소 수가 용지에 실제로 형성되는 화상에 상당하는 유효 화상 영역의 주주사 방향 화소 수보다도 많은 화상 데이터(원화상 데이터에 상당)가 레지스터 보정 처리부(134)에 입력된다. 일례로서, 용지에 실제로 형성하는 화상의 주주사 방향의 폭이 297㎜, 주주사 방향의 해상도가 2400dpi인 경우, 유효 화상 영역의 주주사 방향 화소 수는 28064화소(=297㎜÷25.4×2400을 만족시키는 최소 짝수)로 되고, 인쇄용 화상 데이터의 주주사 방향 화소 수는 처리의 편의상 2의 거듭제곱인 것이 바람직하기 때문에, 예를 들어 32768화소로 할 수 있다.
레지스터 보정 처리부(134)는, 화상 영역의 SOS측 단부 위치의 보정을 행하지 않을 경우, 입력된 인쇄용 화상 데이터에 대하여 주주사 방향에 따른 소정 위치(예를 들어 중앙)에 유효 화상 영역을 설정하고, 입력된 인쇄용 화상 데이터의 각 화소 중 설정한 유효 화상 영역으로부터 일탈하고 있는 모든 화소(「화상 영역에 상당하는 범위 외」의 화소)를 공백(空白) 화소(Y, M, C, K 각색 농도가 모두 0인 화소)로 치환하는 변환 처리를 행한다. 이것에 의해, 예로서 도 11의 (b)에 나타낸 바와 같이, 인쇄용 화상 데이터의 주주사 방향 양단부에는 공백 화소만으로 이루어지는 공백 영역이 형성된다. 그리고, 변환 처리 후의 인쇄용 화상 데이터에 대하여 추가/삭제 화소 수에 따른 배율 보정 처리(화소의 추가/또는 삭제)를 행한 후에 화상 인쇄 처리부(136)에 출력한다.
또한, 레지스터 보정 처리부(134)는, 앞서 설명한 바와 같이 레지스터 어긋남 검출용 패턴의 형성·판독을 행한 결과, SOS 측의 기준 위치에 대하여 레지스터 어긋남 검출용 패턴의 위치가 어긋나 있었을 경우, 폴리곤 미러(110)의 각 반사면마다 어긋남 방향 및 어긋남 양을 검지하고, 검지한 어긋남 양을 화소 수로 환산(換算)한다. 그리고, 인쇄용 화상 데이터에 대하여, VCSEL(100)로부터 사출되는 32개의 광빔의 변조에 사용하는 32개의 주주사 라인의 데이터(단위 데이터)를 단위로 하여, 인쇄용 화상 데이터 위에서의 유효 화상 영역의 위치가 폴리곤 미러(110)의 대응하는 반사면에 대해서 검지한 어긋남의 방향과 반대 방향으로 상기 환산한 화소 수만큼 시프트하도록 각각의 단위 데이터마다 유효 화상 영역을 설정한 후에 변환 처리를 행한다. 이것에 의해, 예로서 도 11의 (c)에 나타낸 바와 같이, 각각의 단위 데이터마다 SOS 측의 기준 위치에 대한 레지스터 어긋남 검출용 패턴의 위치 어긋남 방향 및 어긋남 양에 따라, SOS 측(및 EOS 측)의 공백 영역의 주주사 방향에 따른 폭(화소 수)이 증감(增減)된다.
이 형태에서는 레지스터 보정 처리부(134)로부터 화상 인쇄 처리부(136)에 변조 개시 타이밍 보정값이 출력되지 않아, 화상 인쇄 처리부(136)는 각회의 주주사에서 일정 타이밍으로 광빔의 변조를 개시시키지만, 광빔의 변조에 사용하는 데이터가 공백 영역 내의 화소의 데이터인 동안은 VCSEL(100)로부터 광빔이 출사되지 않기 때문에, 각회의 주주사에서 VCSEL(100)로부터 광빔의 사출이 개시되는 타이밍이 폴리곤 미러(110)의 각 반사면마다 전환되고, SOS 측에서의 각 주주사 라인마다의 화상 영역의 단부 위치 편차가 보정된다.
또한, 상기에서는 화상 데이터에 대한 단위 데이터마다의 보정과, 보정한 화상 데이터에 의거한 화상 형성(광빔의 변조)을 병렬로 행하는 형태를 설명했지만, 본 발명이 이것에 한정되지는 않아, 화상 데이터에 대한 보정을 완료시킨 후에 화상 형성을 행하도록 하는 것도 가능하다.
또한, 상기에서는 도 5에 나타낸 보정값 설정 처리를 컬러 화상 형성 장치(10)의 제조 시, 컬러 화상 형성 장치(10)의 설치 시, 및 컬러 화상 형성 장치(10)의 구성 부품 교환 시 이외에, 예를 들어 보정값 설정 처리를 전회 실행하고 나서의 누적 가동 시간이 소정 시간에 도달한 경우에 실행하는 예를 설명했지만, 이것에 한정되지 않아, 지터가 변화되는 요인 예를 들어 주사 노광부(20A)의 내부 온도나 화상 형성 장치(10)의 기체(機體) 내부 온도의 변동, 폴리곤 미러(110)의 회전 구동 시간, 컬러 화상 형성 장치(10)가 형성한 화상 수의 누적값(프린트 출력 매수의 누적값) 중 적어도 하나를 고려하여 보정값 설정 처리의 실행 주기(동작 빈도)를 결정하고, 결정한 실행 주기로 실행하도록 할 수도 있다.
또한, 상기에서는 중간 전사 벨트(30) 위에 형성된 레지스터 어긋남 검출용 패턴을 패턴 검출부(28)의 검출 유닛에 의해 검출하여 어긋남 양을 검출하는 형태를 설명했지만, 이것에 한정되지 않아, 레지스터 어긋남 검출용 패턴이나 그것과 유사한 패턴을 용지(50) 위에 형성·출력하고, 온라인 또는 오프라인의 스캐너나, 목시(目視) 등에 의해 어긋남 양을 검출하도록 할 수도 있다. 이렇게 하면, 중간 전사 벨트(30)와 같은 중간 전사체를 갖지 않고, 용지 담지체에 담지(擔持)된 용지에 대하여 감광체 위의 토너상을 차례로 전사하는 화상 형성 장치에도 상기한 기술 을 적용하는 것이 가능해진다.
또한, 상기에서는 SOS 측의 화상 영역 단부의 위치 어긋남과, 화상 영역의 길이 편차(EOS 측에서의 화상 영역의 단부 위치 어긋남)를 각각 보정하는 형태를 설명했지만, 본 발명은 어느 한쪽만을 보정하는 형태도 권리 범위에 포함시키는 것이며, 특히 화상 영역의 길이 편차(EOS 측에서의 화상 영역의 단부 위치 어긋남)만을 검출·보정하는 형태는 용이하게 시인(視認) 가능한 화질 향상 효과가 얻어진다.
상술한 바와 같이 본 발명에 의하면, 화상 데이터를 사용하여 변조시킨 광빔을 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향시켜 피조사체 위에서 주사시킴으로써, 피조사체 위에 화상을 형성하는 화상 형성 장치, 및 상기 화상 형성 장치에 적용 가능한 형성 화상 보정 방법을 제공할 수 있다.

Claims (15)

  1. 회전 다면경과,
    상기 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향(偏向)되어 피(被)조사체 위에서 주사(走査)되는 광빔의 변조(變調)에 사용되는 화상 데이터를, 상기 회전 다면경의 반사면의 각각 마다 미리 측정된, 상기 반사 편향된 광빔에 의해 상기 피조사체 위에 형성되는 화상 영역의 상기 주사 방향에 따른 화상 영역의 단부(端部) 위치의 어긋남 양에 따라, 상기 화상 영역의 상기 주사 방향에 따른 단부 위치가 기준 위치와 일치하도록, 동일한 반사면에 의해 반사 편향되는 광빔의 변조에 사용되는 단위 데이터마다 보정함으로써, 상기 화상 영역의 상기 주사 방향에 따른 어긋남을 보정하는 보정 부재를 구비하는 화상 형성 장치.
  2. 제 1 항에 있어서,
    상기 보정 부재는, 상기 주사 방향에 따른 화소 수가 상기 화상 영역에 상당하는 화소 수보다도 많은 원(原)화상을 나타내는 원화상 데이터에 대하여 상기 화상 영역에 상당하는 범위 외의 화소를 공백(空白) 화소로 치환하는 변환 처리를 행함으로써, 상기 광빔의 변조에 사용하는 화상 데이터를 생성하는 동시에, 상기 변환 처리를 행할 때에, 상기 회전 다면경의 반사면의 각각 마다 미리 측정된 상기 화상 영역의 상기 주사 방향에 따른 화상 영역의 단부 위치의 어긋남 양에 따라, 상기 화상 영역의 상기 주사 방향에 따른 단부 위치가 기준 위치와 일치하도록, 상기 원화상 데이터 위의 상기 화상 영역에 상당하는 범위의 상기 주사 방향에 따른 위치를 보정하는 것을 상기 단위 데이터마다 행함으로써, 상기 화상 영역의 상기 주사 방향에 따른 단부 위치의 어긋남을 보정하는 화상 형성 장치.
  3. 제 1 항에 있어서,
    상기 보정 부재는, 상기 화상 데이터에 대하여, 상기 회전 다면경의 반사면의 각각 마다 미리 측정된 상기 화상 영역의 상기 주사 방향에 따른 길이의 어긋남 양에 따라, 화소의 추가 또는 삭제를 행하여 1라인당의 화소 수를 보정하는 것을 상기 단위 데이터마다 행함으로써, 상기 화상 영역의 상기 주사 방향에 따른 길이의 어긋남을 보정하는 화상 형성 장치.
  4. 제 1 항에 있어서,
    상기 광빔을 반사 편향시키는 반사면을 상기 회전 다면경의 회전 각도를 검지함으로써 검출하는 반사면 검출 부재를 더 구비하고,
    상기 보정 부재는, 상기 반사면 검출 부재에 의한 반사면의 검출 결과로서의 상기 회전 다면경의 회전 각도에 의해, 상기 화상 데이터를 구성하는 각각의 단위 데이터에 의해 변조된 광빔이 어느 쪽의 반사면에 의해 반사 편향되는가를 판단하는 화상 형성 장치.
  5. 제 1 항에 있어서,
    상기 회전 다면경의 반사면의 각각 마다 상기 화상 영역의 상기 주사 방향에 따른 어긋남 양을 측정한 결과에 의거하여 설정된, 상기 화상 영역의 상기 주사 방향에 따른 어긋남을 보정하기 위한 상기 반사면의 각각 마다의 보정 데이터를 기억하는 메모리를 더 구비하고,
    상기 보정 부재는, 상기 메모리에 기억되어 있는 상기 반사면의 각각 마다의 보정 데이터에 의거하여 상기 화상 데이터의 보정을 상기 단위 데이터마다 행하는 화상 형성 장치.
  6. 제 5 항에 있어서,
    상기 회전 다면경의 반사면에 의해 반사 편향된 광빔에 의해 상기 피조사체 위에 형성되는 화상 영역의 상기 주사 방향에 따른 어긋남 양을 상기 회전 다면경의 반사면의 각각 마다 측정하는 측정 부재를 더 구비하고,
    상기 측정 부재에 의해 상기 반사면의 각각 마다 측정된 상기 화상 영역의 상기 주사 방향에 따른 어긋남 양에 의거하여, 상기 화상 영역의 상기 주사 방향에 따른 어긋남을 보정하기 위한 보정 데이터를 상기 반사면의 각각 마다 설정하고, 설정한 상기 반사면의 각각 마다의 보정 데이터를 상기 메모리에 기억시키는 보정 데이터 설정 부재를 구비하는 화상 형성 장치.
  7. 제 6 항에 있어서,
    상기 측정 부재에 의한 상기 화상 영역의 상기 주사 방향에 따른 어긋남 양의 측정 및 상기 보정 데이터 설정 부재에 의한 상기 보정 데이터의 설정을 상기 화상 형성 장치의 제조 시, 설치 시, 구성 부품의 교환 시 중 적어도 하나의 타이밍에서 실행시키는 제 1 컨트롤러를 더 구비하는 화상 형성 장치.
  8. 제 6 항에 있어서,
    상기 화상 형성 장치의 기내(機內) 온도, 상기 회전 다면경의 회전 시간 및 상기 화상 형성 장치에 의한 형성 화상 수의 누적값 중 적어도 하나를 검지하는 검지 부재를 더 구비하고,
    상기 측정 부재에 의한 상기 화상 영역의 상기 주사 방향에 따른 어긋남 양의 측정 및 상기 보정 데이터 설정 부재에 의한 상기 보정 데이터의 설정을 상기 검지 부재에 의해 검지된 상기 화상 형성 장치의 기내 온도, 상기 회전 다면경의 회전 시간 및 상기 화상 형성 장치에 의한 형성 화상 수의 누적값 중 적어도 하나에 따른 주기에 의해 정기적으로 실행시키는 제 2 컨트롤러를 구비하는 화상 형성 장치.
  9. 복수의 반사면을 갖는 회전 다면체를 구비하는 광주사 장치와,
    상기 회전 다면체의 반사면에 의해 반사 편향된 광빔에 의해, 주사되는 피주사체와,
    상기 광빔의 주사에 의해 상기 피주사체 위에 형성되는 화상 영역의 상기 주사 방향에서의 어긋남 양을 상기 회전 다면체의 반사면의 각각에 대해서 측정하는 측정 부재와,
    상기 회전 다면체의 반사면의 각각에 대해서 측정된 화상 영역의 어긋남 양에 따라, 상기 화상 영역의 상기 주사 방향에 따른 단부 위치가 기준 위치와 일치하도록, 상기 회전 다면체의 반사면의 각각에 대응하는 상기 광빔의 변조에 사용되는 화상 데이터를 보정하는 보정 부재를 구비하는 화상 형성 장치.
  10. 제 9 항에 있어서,
    상기 보정 부재는, 상기 광빔의 변조에 사용되는 단위 데이터마다 상기 화상 데이터를 보정하는 화상 형성 장치.
  11. 제 9 항에 있어서,
    상기 보정 부재는, 고주파 클록을 사용한 위상(位相) 제어에 의해 상기 화상 데이터를 보정하는 화상 형성 장치.
  12. 회전 다면경에 설치된 복수의 반사면 중 어느 하나의 반사면에 의해 반사 편향되어 피조사체 위에서 주사 방향으로 주사되는 광빔의 변조에 사용되는 화상 데이터를, 상기 회전 다면경의 반사면의 각각 마다 미리 측정된, 상기 반사 편향된 광빔에 의해 상기 피조사체 위에 형성되는 화상 영역의 상기 주사 방향에 따른 어긋남 양에 따라, 동일한 반사면에 의해 반사 편향되는 광빔의 변조에 사용되는 단위 데이터마다 보정함으로써, 상기 화상 영역의 상기 주사 방향에 따른 어긋남을 보정하는 형성 화상 보정 방법.
  13. 광주사 장치의 회전 다면체의 복수의 반사면에 의해 반사 편향된 광빔에 의해 피주사체 위에 형성된 화상 영역의 주사 방향에서의 어긋남 양을 상기 회전 다면체의 반사면의 각각에 대해서 측정하고,
    측정된 어긋남 양에 따라, 상기 회전 다면체의 반사면의 각각에 대응하는 상기 광빔의 변조에 사용되는 화상 데이터를 보정하는 화상 보정 방법.
  14. 제 13 항에 있어서,
    상기 광빔의 변조에 사용되는 화상 데이터는 변조에 사용되는 단위 데이터마다 보정되는 화상 보정 방법.
  15. 제 13 항에 있어서,
    상기 광빔의 변조에 사용되는 화상 데이터는 고주파 클록을 사용한 위상 제어에 의해 보정되는 화상 보정 방법.
KR1020060104523A 2005-11-24 2006-10-26 화상 형성 장치 및 형성 화상 보정 방법 KR100846378B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005339305A JP2007144667A (ja) 2005-11-24 2005-11-24 画像形成装置及び形成画像補正方法
JPJP-P-2005-00339305 2005-11-24

Publications (2)

Publication Number Publication Date
KR20070055331A KR20070055331A (ko) 2007-05-30
KR100846378B1 true KR100846378B1 (ko) 2008-07-15

Family

ID=38053052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060104523A KR100846378B1 (ko) 2005-11-24 2006-10-26 화상 형성 장치 및 형성 화상 보정 방법

Country Status (4)

Country Link
US (1) US20070115339A1 (ko)
JP (1) JP2007144667A (ko)
KR (1) KR100846378B1 (ko)
CN (1) CN100511002C (ko)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845456B2 (ja) * 2005-09-02 2011-12-28 キヤノン株式会社 光走査装置および画像形成装置
US7894109B2 (en) 2006-08-01 2011-02-22 Xerox Corporation System and method for characterizing spatial variance of color separation misregistration
US8270049B2 (en) 2006-08-01 2012-09-18 Xerox Corporation System and method for high resolution characterization of spatial variance of color separation misregistration
US8274717B2 (en) * 2006-08-01 2012-09-25 Xerox Corporation System and method for characterizing color separation misregistration
US7826095B2 (en) * 2007-01-16 2010-11-02 Xerox Corporation System and method for estimating color separation misregistration utilizing frequency-shifted halftone patterns that form a moiré pattern
US7630672B2 (en) * 2007-05-21 2009-12-08 Xerox Corporation System and method for determining and correcting color separation registration errors in a multi-color printing system
US8228559B2 (en) * 2007-05-21 2012-07-24 Xerox Corporation System and method for characterizing color separation misregistration utilizing a broadband multi-channel scanning module
US7889404B2 (en) * 2007-05-31 2011-02-15 Ricoh Company, Ltd. Image reading device, image forming apparatus, and reading-unit install method
JP5181753B2 (ja) 2008-03-18 2013-04-10 株式会社リコー カラー画像形成装置、位置ずれ補正方法、位置ずれ補正プログラム、及び記録媒体
JP5341585B2 (ja) * 2009-03-19 2013-11-13 キヤノン株式会社 画像形成装置およびその制御方法
US9678334B1 (en) * 2009-12-22 2017-06-13 Marvell International Ltd. Oscillating mirror line based image transformation
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
JP2011186344A (ja) * 2010-03-11 2011-09-22 Konica Minolta Business Technologies Inc 画像形成装置及び濃度ムラ補正方法
JP5839838B2 (ja) * 2010-08-10 2016-01-06 キヤノン株式会社 画像形成装置
JP5803093B2 (ja) * 2010-12-02 2015-11-04 セイコーエプソン株式会社 印刷装置およびその制御方法
US9199481B2 (en) 2011-08-11 2015-12-01 Kyocera Document Solutions Inc. Image forming apparatus configured to perform exposure control and exposure method
JP5947529B2 (ja) 2011-12-05 2016-07-06 キヤノン株式会社 画像形成装置
JP6390251B2 (ja) * 2014-08-05 2018-09-19 富士ゼロックス株式会社 画像読取装置、画像形成装置、及びプログラム
JP6396881B2 (ja) * 2015-12-08 2018-09-26 日本特殊陶業株式会社 微粒子測定システム
CN110506220B (zh) 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10969475B2 (en) 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
JP6900679B2 (ja) * 2017-01-12 2021-07-07 株式会社リコー 画像形成装置および補正方法
JP6878901B2 (ja) * 2017-01-18 2021-06-02 コニカミノルタ株式会社 画像形成装置及び画像形成制御プログラム
JP7100486B2 (ja) 2017-07-26 2022-07-13 キヤノン株式会社 画像形成装置
CN111542765A (zh) 2017-10-19 2020-08-14 图达通爱尔兰有限公司 具有大动态范围的lidar
WO2019139895A1 (en) 2018-01-09 2019-07-18 Innovusion Ireland Limited Lidar detection systems and methods that use multi-plane mirrors
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
WO2019165130A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar detection systems and methods with high repetition rate to observe far objects
WO2019164961A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar systems with fiber optic coupling
CN112292608A (zh) 2018-02-23 2021-01-29 图达通爱尔兰有限公司 用于lidar系统的二维操纵系统
WO2019165095A1 (en) 2018-02-23 2019-08-29 Innovusion Ireland Limited Distributed lidar systems
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
US11567182B2 (en) 2018-03-09 2023-01-31 Innovusion, Inc. LiDAR safety systems and methods
WO2019199775A1 (en) 2018-04-09 2019-10-17 Innovusion Ireland Limited Lidar systems and methods for exercising precise control of a fiber laser
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
CN113167866A (zh) 2018-11-14 2021-07-23 图达通爱尔兰有限公司 使用多面镜的lidar系统和方法
WO2020146493A1 (en) 2019-01-10 2020-07-16 Innovusion Ireland Limited Lidar systems and methods with beam steering and wide angle signal detection
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11789128B2 (en) 2021-03-01 2023-10-17 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
EP4305450A1 (en) 2021-04-22 2024-01-17 Innovusion, Inc. A compact lidar design with high resolution and ultra-wide field of view
EP4314885A1 (en) 2021-05-12 2024-02-07 Innovusion, Inc. Systems and apparatuses for mitigating lidar noise, vibration, and harshness
EP4314884A1 (en) 2021-05-21 2024-02-07 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside lidar scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
JP2023048679A (ja) * 2021-09-28 2023-04-07 京セラドキュメントソリューションズ株式会社 画像形成装置
JP2023048671A (ja) * 2021-09-28 2023-04-07 京セラドキュメントソリューションズ株式会社 画像形成装置
JP2023048675A (ja) * 2021-09-28 2023-04-07 京セラドキュメントソリューションズ株式会社 画像形成装置
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04373253A (ja) * 1991-06-21 1992-12-25 Ricoh Co Ltd カラー画像形成装置
JPH0894948A (ja) * 1994-09-27 1996-04-12 Fuji Xerox Co Ltd 記録装置
JPH11188915A (ja) 1997-12-26 1999-07-13 Fuji Xerox Co Ltd 画像形成方法
JP2000330050A (ja) 1999-03-12 2000-11-30 Canon Inc マルチビーム走査光学装置及びカラー画像形成装置
JP2002137450A (ja) 2000-11-07 2002-05-14 Ricoh Co Ltd 画像形成装置
JP2002200784A (ja) 2000-12-28 2002-07-16 Konica Corp クロック発生回路および画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811347A (ja) * 1994-07-04 1996-01-16 Fuji Xerox Co Ltd 画素クロック発生装置
JP3606029B2 (ja) * 1998-01-13 2005-01-05 富士ゼロックス株式会社 画像形成装置
US7050080B2 (en) * 2000-06-05 2006-05-23 Ricoh Company, Ltd. Image forming apparatus for controlling image writing by adjusting image clock
EP1286533B1 (en) * 2001-03-14 2011-09-14 Ricoh Company, Ltd. Light-emission modulation having effective scheme of creating gray scale on image
US6933957B2 (en) * 2002-09-24 2005-08-23 Ricoh Company, Ltd. Pixel clock generation apparatus, pixel clock generation method, and image forming apparatus capable of correcting main scan dot position shift with a high degree of accuracy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04373253A (ja) * 1991-06-21 1992-12-25 Ricoh Co Ltd カラー画像形成装置
JPH0894948A (ja) * 1994-09-27 1996-04-12 Fuji Xerox Co Ltd 記録装置
JPH11188915A (ja) 1997-12-26 1999-07-13 Fuji Xerox Co Ltd 画像形成方法
JP2000330050A (ja) 1999-03-12 2000-11-30 Canon Inc マルチビーム走査光学装置及びカラー画像形成装置
JP2002137450A (ja) 2000-11-07 2002-05-14 Ricoh Co Ltd 画像形成装置
JP2002200784A (ja) 2000-12-28 2002-07-16 Konica Corp クロック発生回路および画像形成装置

Also Published As

Publication number Publication date
CN100511002C (zh) 2009-07-08
KR20070055331A (ko) 2007-05-30
US20070115339A1 (en) 2007-05-24
JP2007144667A (ja) 2007-06-14
CN1971438A (zh) 2007-05-30

Similar Documents

Publication Publication Date Title
KR100846378B1 (ko) 화상 형성 장치 및 형성 화상 보정 방법
US8072478B2 (en) Optical scanning device, image forming apparatus, and write method
US9266351B2 (en) Optical scanning device and image forming apparatus
US20060092264A1 (en) Image forming apparatus and image forming method
US7382390B2 (en) Image forming apparatus and control method thereof having main scan length correcting feature
US8314975B2 (en) Optical scanning device and image forming apparatus
JP6214705B2 (ja) 画像形成装置
JP4569332B2 (ja) 画像形成装置およびその制御方法
JP5903894B2 (ja) 光走査装置及び画像形成装置
US6281922B1 (en) Image forming apparatus
EP2040129B1 (en) Method and apparatus for forming image, and computer program product
JP5515893B2 (ja) 光書き込み装置、画像形成装置及び光書き込み装置の制御方法
JP5439851B2 (ja) 画像形成装置の評価チャート、画像形成装置、画像形成方法、及びプログラム
US6788320B2 (en) Image formation apparatus and registration method
JP4470668B2 (ja) 光走査装置及び画像形成装置
JPH1155472A (ja) 多色画像形成装置
JP2002029085A (ja) 画像形成装置
JP2012225960A (ja) 光走査装置及び画像形成装置
JP4396177B2 (ja) 画像形成装置
JP2006297630A (ja) 画像形成装置及び画像の歪み補正方法
KR100513706B1 (ko) 레이저 스캐닝 유닛의 제어장치 및 제어방법
JP4860968B2 (ja) 画像形成方法、画像形成装置、マルチビーム画像形成装置、多色画像形成装置
JP2018083363A (ja) 画像形成装置
JP2017203938A (ja) 画像形成装置
JPH09281419A (ja) 画像形成装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140626

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 12