KR100799782B1 - 파장 가변 반도체 레이저 소자 및 그 제조 방법과 그를 이용하는 가스 검지 장치 - Google Patents

파장 가변 반도체 레이저 소자 및 그 제조 방법과 그를 이용하는 가스 검지 장치 Download PDF

Info

Publication number
KR100799782B1
KR100799782B1 KR1020067024014A KR20067024014A KR100799782B1 KR 100799782 B1 KR100799782 B1 KR 100799782B1 KR 1020067024014 A KR1020067024014 A KR 1020067024014A KR 20067024014 A KR20067024014 A KR 20067024014A KR 100799782 B1 KR100799782 B1 KR 100799782B1
Authority
KR
South Korea
Prior art keywords
semiconductor laser
heating
wavelength
tunable semiconductor
laser device
Prior art date
Application number
KR1020067024014A
Other languages
English (en)
Other versions
KR20070015201A (ko
Inventor
히로시 모리
Original Assignee
안리츠 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안리츠 코포레이션 filed Critical 안리츠 코포레이션
Publication of KR20070015201A publication Critical patent/KR20070015201A/ko
Application granted granted Critical
Publication of KR100799782B1 publication Critical patent/KR100799782B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1203Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers over only a part of the length of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Abstract

파장 가변 반도체 레이저 소자는 반도체 기판의 윗쪽에 형성되는 활성층을 포함하고, 당해 활성층에서 생성된 광을 도파하는 광도파로 내에 형성되며 또한, 해당 활성층에서 생성된 광 중에서 소정의 파장을 갖는 광을 선택하는 회절 격자를 적어도 일부에 구비하고 있는 파장 제어 영역과, 클래드 층과, 상기 클래드 층의 윗쪽에 형성된 절연층을 가짐과 동시에, 상기 반도체 기판의 하방 및 상기 클래드 층의 윗쪽에 형성된 제 1 및 제 2 구동용 전극과, 상기 절연층의 윗쪽에 형성되고, 상기 파장 제어 영역의 적어도 일부를 가열하기 위한 가열부와, 상기 가열부에 구비되어 있는 제 1 및 제 2 가열용 단자와, 상기 제 1 및 제 2 구동용 전극 사이를 전원을 통해서 직렬로 접속하는 제 1 및 제 2 접속 선로를 갖고 있다. 상기 파장 가변 반도체 레이저 소자는 상기 가열부를 사이에 두고 실질적으로 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급하는 전류를 가변함으로써, 상기 광도파로로부터 외부로 도출된 광의 파장을 제어할 수 있다.

Description

파장 가변 반도체 레이저 소자 및 그 제조 방법과 그를 이용하는 가스 검지 장치{TUNABLE SEMICONDUCTOR LASER DEVICE, MANUFACTURING METHOD THEREFOR, AND GAS DETECTOR USING THEREWITH}
본 발명은 파장 가변 반도체 레이저 소자 및 그 제조 방법 및 이를 이용하는 가스 검지 장치에 관한 것이고 특히, 간이한 구성으로 레이저 광의 출력과 파장을 제어할 수 있는 파장 가변 반도체 레이저 소자 및 그 제조 방법 및 이를 이용하는 가스 검지 장치에 관한 것이다.
종래, 가스 고유의 흡수 선파장을 이용하여 검지 대상이 되는 가스(예컨대, 메탄 가스나 알콜 가스류 등)의 흡수 선파장에 맞춘 레이저 광을 검지 공간으로 출사하고, 그 출사한 레이저 광의 감쇠 상태를 측정하는 파장 가변 반도체 레이저 흡수분광(Tunable Diode Laser Absorption Spectroscopy:TDLAS)법에 의해 검지 대상이 되는 가스의 유무나 농도를 검지하는 가스 검지 장치가 알려져 있다.
그리고, 이러한 종류의 가스 검지 장치에 이용되는 반도체 레이저 소자로서는 예컨대, 하기 특허 문헌 1에 개시된 분포 귀환형(Distributed Feedback:DFB) 레 이저나 하기 특허 문헌 2에 개시된 분포 브래그 반사기(Distributed Bragg Renector:DBR) 레이저 등의 파장 가변 반도체 레이저가 알려져 있다.
특허 문헌 1에 개시되는 DFB 레이저는, 도 9에 도시하는 바와 같이 활성층(51) 및 InP 층(52) 등이 n형 InP 기판(53)의 일면측의 윗쪽에 형성되어 있는 동시에, n형 InP 기판(53)의 반대면 측에는 n 전극(54)이 형성되어 있다.
또한, 활성층(51) 상부에는 창문을 갖는 SiO2 절연막(55), 구동 전류 주입용으로서 Au를 주체로 하는 p 전극(56)이 형성되어 있다.
또한, p 전극(56)의 오른쪽 영역에는, 저항막(58)용 전극(59a, 59b)이 섬 형상으로 형성되어 있다.
또한, 활성층(51) 상부에는, SiO2 절연막(57:Pt)으로 이루어지는 저항막(58)이 형성되어 있다.
이 경우, 저항막(58)의 양단은, 먼저 형성한 전극(59a, 59b)에 접하도록 형성되어 있다.
특허 문헌 2에 개시된 DBR 레이저는 도 10(a), (b)에 도시하는 바와 같이 광도파로(62)와, 광도파로(62)의 적어도 일 부분을 가열하기 위해서 절연막(67)을 거쳐서 형성된 가열부(63)를 갖는 반도체광 소자(64)와, 이 반도체광 소자(64)를 얹어 두며 광도파로(62)의 일부분에 대해서는 직접 접촉하고, 광도파로(62)의 다른 부분에 대해서는 공간부(66)를 개재시켜 접촉된 히트 싱크(65)로 구성되어 있다.
또한, 광도파로(62)의 활성 영역(61) 이외의 영역(80)에는, 주기적으로 기 판(70)을 에칭해서 코러게이션(corrugation) 형상의 회절 격자(69)가 형성된다.
이 DBR 레이저에서는, 활성 영역(61) 이외의 영역 중, 회절 격자(69)를 형성한 부분을 DBR 영역(C), 나머지 부분을 위상 제어 영역(B)라고 부르고 있다.
도 10(b)에 도시된 바와 같이 활성 영역(61)의 주변부에는, 비발광 영역(80)이 되는 InGaAsP 가이드층과, InP 클래드 층(71)이 형성되어 있다.
또한, 활성 영역(61)의 상면에는 InP 클래드 층(71)을 사이에 두고 Au, Ge 등의 증착에 의해 n형 전극(68)이 형성되어 있다.
또한, 기판(70)의 저면에는, Au, Zn 등의 증착에 의해 p측 전극(도시 생략)이 형성되어 있다.
또한, 상술한 특허 문헌 1에 개시된 DFB 레이저와는 다른 구성의 DFB 레이저로서는 예컨대, 특허 문헌 3에 개시된 부분 회절 격자형 반도체 레이저(PC-LD)나 특허 문헌 4에 개시되는 2개의 회절 격자를 갖는 분포 귀환형 반도체 레이저 등이 있다.
특허 문헌 1 : 일본국 특허 공개 평성 제 4-72783 호 공보
특허 문헌 2 : 일본국 특허 공개 평성 제 9-74250 호 공보
특허 문헌 3 : 일본국 특허 공개 평성 제 6-310806 호 공보
특허 문헌 4 : 일본 특허 공개 2004-31827호 공보
따라서, 상술한 바와 같은 파장 가변 반도체 레이저를 가스 검지 장치의 광원으로서 이용해서 상기 TDLAS 법에 의해서 검지 공간 내의 검지 대상 가스를 검지하는 경우에는, 반도체 레이저에 변조를 취해서 출사광의 파장을 검지 대상 가스 고유의 흡수 선파장으로 로크하여, 이 파장 로크한 레이저 광을 검지 공간을 향하게 출사하여, 이 레이저 광의 출사에 따른 검지 공간부터의 반사광을 수광하도록 되어 있다.
여기서, 반도체 레이저는 출사광의 파장이 광도파로의 굴절율에 의해서 결정되고 또한, 광도파로의 굴절율이 온도 또는 캐리어 밀도(주입 전류)에 의해서 결정되는 특성을 갖고 있다.
그리고, 온도를 변화시킨 경우에는, 검지 대상 가스 고유의 흡수 선파장으로 로크하도록 레이저 광을 변조했을 때는 응답 속도가 느린 데 대해서, 굴절율의 변화폭이 커져서, 파장 가변 폭을 크게 취할 수 있다고 하는 특징이 있다.
이에 대하여, 캐리어 밀도를 변화시킨 경우에는 검지 대상 가스 고유의 흡수 선파장으로 로크하도록 레이저 광을 변조했을 때는 응답 속도가 빠른 반면, 어느 정도의 캐리어 밀도에서 포화되어 버리기 때문에 굴절율의 변화폭이 작고, 파장 가변 폭을 너무 크게 취할 수 없다는 특징이 있다.
그리고, 상기한 바와 같은 특징을 갖는 반도체 레이저에 변조를 취해서 출사광의 파장을 검지 대상 가스 고유의 흡수 선파장으로 로크하는 경우, 검지 대상 가스의 종류에 따라서 흡수 선파장과 그 흡수 선파장을 중심으로 하는 파장폭이 다르기 때문에, 검지 대상 가스의 종류에 따라 충분한 파장 가변폭을 얻을 수 있도록, 레이저 광의 파장을 가변해야 한다.
그런데, 이러한 종류의 TDLAS 법에 의한 가스 검지에서는, 약 10KHz 정도의 변조 주파수를 가지면, 대상으로 삼은 모든 검지 대상 가스에 충분히 대응할 수 있으므로, 응답 속도의 속도보다도 굴절률 변화의 크기에 우선하여, 온도를 변화시키기만 해도 충분히 추종할 수 있다는 것이 판명되었다.
그런데, 특허 문헌 5에는 운반이 편리하고 손쉽게 가스의 유무나 농도를 검지할 수 있도록 소형화를 도모한 휴대식 가스 농도 측정 장치가 개시되어 있다.
특허 문헌 5 : 일본 특허 공개 2005-106521호 공보
그렇지만, 이러한 종류의 휴대식 가스 검지 장치에서는, 개체 내에서의 구성부품의 설치 공간이 제한되는 것에 더해서, 배터리 구동을 위해 소비 전력을 억제할 필요가 있어서, 개체 내에 전원을 하나 밖에 마련할 수 없다.
따라서, 이러한 종류의 휴대식 가스 검지 장치에 사용되는 반도체 레이저에서는, 단일 전원에 의해서 레이저 출력과 파장의 가변을 실행할 수 있고, 또한 충분한 파장 가변폭을 획득할 수 있는 반도체 레이저 소자가 요구된다.
그러나, 상술한 특허 문헌 1이나 특허 문헌 2에 개시된 종래의 반도체 레이저 소자에서는, 레이저 출력과 파장을 독립해서 각각 제어할 수 있는 반면, 가열용 전원과, 레이저 구동용 전원이 각각 다른 구성으로 되어 있기 때문에, 구성이 복잡화될 뿐만 아니라, 상술한 휴대식 가스 검지 장치와 같이 케이싱 내에 전원을 하나밖에 마련할 수 없는 경우에는 적용할 수 없다는 문제가 있다.
본 발명의 목적은 이상과 같은 종래 기술의 문제를 해결하기 위해서, 간이한 구성으로 TDLAS 법에 의한 가스 검지시에 충분한 파장 가변 폭으로 파장을 레이저 출력과 함께 하나의 채널의 전류로 제어할 수 있어서, 레이저 출력과 파장을 단일 전원으로 변화시켜서 가열용 전원과 레이저 구동용 전원의 공통화를 도모하고, 실장시에 설치 공간을 작게 할 수 있는 파장 가변 반도체 레이저 소자 및 그 제조 방법 및 이를 이용하는 가스 검지 장치를 제공하는 것이다.
상기 목적을 달성하기 위해서, 본 발명의 제 1 형태에 의하면,
반도체 기판(10)과,
상기 반도체 기판의 윗쪽에 형성되어 광을 생성하는 활성층(12)과,
상기 활성층을 포함하여 형성되고, 상기 활성층으로 생성되는 광을 도파하는 광도파로 내에 형성되며 또한, 상기 활성층에서 생성된 광 중에서 소정의 파장을 갖는 광을 선택하는 회절 격자(14)를 적어도 일부에 구비하고 있는 파장 제어 영역(D)과,
상기 광도파로의 윗쪽에 형성된 클래드 층(13)과,
상기 클래드 층의 윗쪽에 형성된 절연막(19)과,
상기 반도체 기판의 아래쪽에 형성된 제 1 구동용 전극(17)과,
상기 클래드 층의 윗쪽에 형성되는 제 2 구동용 전극(18)과,
상기 절연막의 윗쪽에 형성되어, 상기 파장 제어 영역의 적어도 일부를 가열하기 위한 가열부(20)와,
상기 가열부(20)에 구비되어 있는 제 1 가열용 단자(20a) 및 제 2 가열용 단자(20b)와,
상기 제 2 구동용 전극과 상기 제 1 가열용 단자 사이를 접속하는 제 1 접속 선로(21)와,
상기 제 1 구동용 전극과 상기 제 2 가열용 단자 사이를 전원을 거쳐서 접속하는 제 2 접속 선로(22)를 구비하되,
상기 가열부를 거쳐서 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급되는 전류를 가변함으로써, 상기 광도파로로부터 외부로 도출되는 광의 파장을 제어할 수 있는 것을 특징으로 하는 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 2 형태에 의하면,
상기 파장 제어 영역은 상기 회절 격자로 이루어지는 분포 브래그 반사기 영역(C)과, 해당 분포 브래그 반사기 영역에 인접한 위상 조정 영역(D)으로 이루어지며,
상기 가열부는 상기 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되는 것을 특징으로 하는 제 1 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 3 형태에 의하면,
상기 가열부는, 또한 상기 분포 브래그 반사기 영역 전역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 2 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 4 형태에 의하면, 상기 파장 제어 영역은, 하나의 상기 회절 격자로 이루어지며,
상기 가열부는 상기 하나의 회절 격자 전역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 1 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 5 형태에 의하면,
상기 하나의 회절 격자는, 상기 광도파로의 전체에 걸쳐서 형성되어 있는 것을 특징으로 하는 제 4 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 6 형태에 의하면,
상기 하나의 회절 격자는 상기 광도파로의 일부에 형성되어 있는 것을 특징으로 하는 제 4 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 7 형태에 의하면,
상기 파장 제어 영역은 상기 광도파로의 복수의 개소에 형성되어 있는 복수의 회절 격자(14a, 14b)로 이루어지며,
상기 가열부는 상기 복수의 회절 격자의 각 회절 격자에서 선택된 각 파장이 서로 같이 되도록, 상기 복수의 회절 격자를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 1 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 8 형태에 의하면,
상기 가열부는 각각 상기 복수의 회절 격자를 개별적으로 가열하는 복수의 가열부(20A, 20B)로 이루여지며, 상기 복수의 가열부는 직렬로 접속되어 있는 것을 특징으로 하는 제 7 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 9 형태에 의하면,
상기 가열부는 박막 저항으로 이루어지는 것을 특징으로 하는 제 1 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 10 형태에 의하면,
소정 파장을 갖는 레이저 광을 검지 공간으로 출사하여, 해당 레이저 광이 검지 대상 가스에 의해서 감쇠하는 것을 이용한 파장 가변 반도체 레이저 흡수 분광법을 이용하여 가스를 검지하는 가스 검지 장치에 적용되는 것을 특징으로 하는 제 1 형태에 따른 파장 가변 반도체 레이저 소자가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 11 형태에 의하면,
파장 가변 반도체 레이저 소자를 구비하며, 소정 파장을 갖는 레이저 광을 검지 공간으로 출사하여 해당 레이저 광이 검지 대상 가스에 의해서 감쇠하는 것을 이용한 파장 가변 반도체 레이저 흡수 분광법을 이용하여 가스 검지를 하는 가스 검지 장치로서,
상기 파장 가변 반도체 레이저 소자는,
반도체 기판(10)과,
상기 반도체 기판의 윗쪽에 형성되어 광을 생성하는 활성층(12)과,
상기 활성층을 포함하여 형성되고, 상기 활성층으로 생성되는 광을 도파하는 광도파로 내에 형성되며 또한, 상기 활성층에서 생성된 광 중에서 소정의 파장을 갖는 광을 선택하는 회절 격자(14)를 적어도 일부에 구비하고 있는 파장 제어 영역(D)과,
상기 광도파로의 윗쪽에 형성된 클래드 층(13)과,
상기 클래드 층의 윗쪽에 형성된 절연막(19)과,
상기 반도체 기판의 아래쪽에 형성된 제 1 구동용 전극(17)과, 상기 클래드 층의 윗쪽에 형성된 제 2 구동용 전극(18)과,
상기 절연막의 윗쪽에 형성되어서, 상기 파장 제어 영역의 적어도 일부를 가열하기 위한 가열부(20)와,
상기 가열부(20)에 구비되어 있는 제 1 가열용 단자(20a) 및 제 2 가열용 단자(20b)와,
상기 제 2 구동용 전극과 상기 제 1 가열용 단자 사이를 접속하는 제 1 접속 선로(21)와,
상기 제 1 구동용 전극과 상기 제 2 가열용 단자 사이를 전원을 거쳐서 접속하는 제 2 접속 선로(22)를 구비하되,
상기 가열부를 거쳐서 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급되는 전류를 가변함으로써, 상기 광도파로로부터 외부로 도출되는 광의 파장을 제어할 수 있는 것을 특징으로 하는 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 12 형태에 의하면,
상기 파장 제어 영역은 상기 회절 격자로 이루어지는 분포 브래그 반사기 영역(C)과, 해당 분포 브래그 반사기 영역에 인접되는 위상 조정 영역(D)으로 이루어지며
상기 가열부는 상기 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 11 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 13 형태에 의하면,
상기 가열부는, 또한 상기 분포 브래그 반사기 영역 전역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 12 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 14 형태에 의하면, 상기 파장 제어 영역은 하나의 상기 회절 격자로 이루어지고,
상기 가열부는 상기 하나의 회절 격자 전역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 11 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 15 형태에 의하면,
상기 하나의 회절 격자는 상기 광도파로의 전체에 걸쳐서 형성되어 있는 것을 특징으로 하는 제 14 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 16 형태에 의하면,
상기 하나의 회절 격자는, 상기 광도파로의 일부에 형성되어 있는 것을 특징으로 하는 제 14 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 17 형태에 의하면,
상기 파장 제어 영역은 상기 광도파로의 복수의 개소에 형성되어 있는 복수의 회절 격자(14a, 14b)로 이루어지며,
상기 가열부는 상기 복수의 회절 격자의 각 회절 격자에서 선택된 각 파장이 서로 같이 되도록, 상기 복수의 회절 격자를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 11 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 18 형태에 의하면,
상기 가열부는 각각, 상기 복수의 회절 격자를 개별적으로 가열하는 복수의 가열부(20A, 20B)로 이루어지며, 상기 복수의 가열부는 직렬로 접속되어 있는 것을 특징으로 하는 제 17 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 19 형태에 의하면,
상기 가열부는 박막 저항으로 이루어지는 것을 특징으로 하는 제 11 형태에 따른 가스 검지 장치가 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 20 형태에 의하면,
반도체 기판의 윗쪽에 광을 생성하는 활성층(12)과, 상기 활성층에서 생성된 광 중에서 소정의 파장을 갖는 광을 선택하여 반사하는 회절 격자(14)를 적어도 일부에 구비하고 있는 파장 제어 영역(D)을 포함하는 광도파로를 형성하는 단계와,
상기 광도파로의 윗쪽에 클래드 층(13)을 형성하는 단계와,
상기 클래드 층의 윗쪽에 절연막(19)를 형성하는 단계와,
상기 반도체 기판의 아래쪽에 제 1 구동용 전극(17)을 형성하는 단계와,
상기 클래드 층의 윗쪽에 제 2 구동용 전극(18)을 형성하는 단계와,
상기 절연막의 윗쪽에 상기 파장 제어 영역의 적어도 일부를 가열하기 위한 가열부(20)를 형성하는 단계와,
상기 가열부(20)에 제 1 가열용 단자(20a) 및 제 2 가열용 단자(20b)를 형성하는 단계와,
상기 제 2 구동용 전극과 상기 제 1 가열용 단자 사이를 제 1 접속 선로(21)로 접속하는 단계와,
상기 제 1 구동용 전극과 상기 제 2 가열용 단자 사이를 전원을 거쳐서 제 2 접속 선로(22)로 접속하는 단계를 구비하되,
상기 가열부를 거쳐서 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급되는 전류를 가변함으로써, 상기 광도파로로부터 외부로 도출되는 광의 파장을 제어할 수 있는 것을 특징으로 하는 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 21 형태에 의하면,
상기 파장 제어 영역은 상기 회절 격자로 이루어지는 분포 브래그 반사기 영역(C)과, 해당 분포 브래그 반사기 영역에 인접되는 위상 조정 영역(D)으로 이루어지며,
상기 가열부는 상기 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 20 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 22 형태에 의하면,
상기 가열부는, 또한 상기 분포 브래그 반사기 영역 전역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 21 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 23 형태에 의하면, 상기 파장 제어 영역은 하나의 상기 회절 격자로 이루어지고,
상기 가열부는 상기 하나의 회절 격자 전역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 20 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 24 형태에 의하면,
상기 하나의 회절 격자는 상기 광도파로의 전체에 걸쳐서 형성되어 있는 것을 특징으로 하는 제 23 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 25 형태에 의하면,
상기 하나의 회절 격자는 상기 광도파로의 일부에 형성되어 있는 것을 특징으로 하는 제 23 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 26 형태에 의하면,
상기 파장 제어 영역은 상기 광도파로의 복수의 개소에 형성되어 있는 복수의 회절 격자(14a, 14b)로 이루어지고,
상기 가열부는 상기 복수의 회절 격자의 각 회절 격자에서 선택된 각 파장이 서로 같아지게 상기 복수의 회절 격자를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는 제 20 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 27 형태에 의하면,
상기 가열부는 각각, 상기 복수의 회절 격자를 개별적으로 가열하는 복수의 가열부(20A, 20B)로 이루어지고, 상기 복수의 가열부는 직렬로 접속되어 있는 것을 특징으로 하는 제 26 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
또한, 상기 목적을 달성하기 위해서, 본 발명의 제 28 형태에 의하면,
상기 가열부는 박막 저항으로 이루어지는 것을 특징으로 하는 제 20 형태에 따른 파장 가변 반도체 레이저 소자의 제조 방법이 제공된다.
이상과 같은 본 발명에 의하면, 가열부가 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되어 있기 때문에, 해당 부분의 광도파로의 굴절률 변화를 크게 하여 소망하는 파장 가변폭으로 파장을 레이저 출력과 함께 한 채널의 전류로 제어 가능하게 하는 파장 가변 반도체 레이저 소자를 실현할 수 있다.
더욱이, 본 발명에 의하면 TDLAS 법에 의한 가스 검지를 할 때에 단일의 전원을 겸용하여 파장과 레이저 출력을 제어할 수 있으며, 구조도 간이해지므로, 개체 내에 전원을 하나밖에 마련할 수 없는 휴대식 가스 검지 장치에서도, 실장시의 설치 스페이스를 작게 할 수 있는 파장 가변 반도체 레이저 소자를 실현할 수 있다.
또한, 본 발명에 의하면, 활성층을 직접 가열하지 않는 가열부 배치 구성으로 함으로써 반도체 레이저 소자의 장기 수명화를 가능하게 하는 파장 가변 반도체 레이저 소자를 실현할 수 있다.
도 1a는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 1 실시예의 구성을 나타내는 개략 사시도,
도 1b는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 1 실시예의 변형예의 구성을 나타내는 개략 사시도,
도 2a는 본 발명에 관한 파장 가변 반도체 레이저 소자의 주요부의 전기적 구성의 일례를 나타내는 등가 회로도,
도 2b는 본 발명에 관한 파장 가변 반도체 레이저 소자의 주요부의 전기적 구성의 다른 예를 나타내는 등가 회로도,
도 3은 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 2 실시예의 구성을 나타내는 개략 사시도,
도 4는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 3 실시예의 구성을 나타내는 단면도,
도 5는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 4 실시예의 구성을 나타내는 단면도,
도 6은 종래의 파장 가변 반도체 레이저 소자의 출력 특성을 도시하는 도면,
도 7은 본 발명에 관한 파장 가변 반도체 레이저 소자의 출력 특성을 도시하는 도면
도 8a는 본 발명의 제 5 실시예로서 본 발명에 관한 파장 가변 도체 레이저 소자를 적용한 가스 검지 장치의 일례를 나타내는 개략 구성도,
도 8b는 도 8a의 반도체 레이저 모듈(31) 및 레이저 구동 제어부(50)의 개략 구성을 도시하는 도면,
도 8c는 도 8a의 가스 검지 장치 및 가스 검출부(60)의 개략 구성을 도시하는 도면,
도 9는 종래의 DFB 레이저의 구성을 나타내는 개략 사시도,
도 10a는 종래의 DBR 레이저의 구성을 나타내는 개략 사시도,
도 10b는 도 10a의 10B-10B 선으로 절단한 단면도.
이하, 도면에 근거하여 본 발명의 몇 개의 실시예를 설명한다.
(제 1 실시예)
우선, 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 1 실시예에 대하여 도 1a를 참조하면서 구체적으로 설명한다.
도 1a는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 1 실시예의 구성을 나타내는 개략 사시도이다.
도 1a에 도시하는 바와 같이 이 제 1 실시예에 의한 파장 가변 반도체 레이저 소자(1A)(1)는, 광도파로가 활성 영역(A), 위상 조정 영역(B) 및 DBR 영역(C)의 3개의 영역으로 구성되는 DBR 레이저이다.
그리고, 도 1a에 도시하는 바와 같이 다층의 반도체층을 제작하기 위한 반도 체 기판으로서의 n-InP 기판(10)의 윗쪽 중앙부에는, 단면이 사다리꼴 형상인 메사(10a)가 길이 방향(광의 출사 방향)을 연장해서 형성되어 있다.
이 메사(10a)의 윗쪽에는 광을 생성하는 활성층(12), p-InP 클래드 층(13)이 순차적으로 적층되어 있다.
또한, 메사(10a)의 양측에는, p-InP 매립층(15) 및 n-InP 매립층(16)이 형성되어 있으므로, 후술하는 한 쌍의 전극 사이에 공급되는 전류 경로의 협착화가 확보되어 있는 동시에, 스트라이프형 광도파로가 형성되어 있다.
그리고, 이렇게 제작된 반도체층의 표리면에는 한 쌍의 전극(17, 18)으로서, Au 등의 금속막으로 이루어지는 n측 전극(제 1 구동용 전극:17)과 p측 전극(제 2 구동용 전극:18)이 각각 형성되어 있다.
또한, 도시되지 않았지만, p-InP 클래드 층(13)과 p측 전극(18) 사이에는 전류 주입을 쉽게 하기 위한 콘택트층이 형성되어 있어도 된다.
이 콘택트층으로서 이용되는 재질은 p-InGaAs나 p-InGaAsP가 바람직하다.
도 1a의 예에서는, n-InP 기판(10)의 이면에 n측 전극(17)이 형성되고, p-InP 클래드 층(13)의 표면의 일부(좌측 앞 부분)에 p측 전극(18)이 형성되어 있다.
반도체 레이저 소자(1A)에는, 광을 생성하는 활성층(12)이 형성되어 있는 활성 영역(A)과, 이 활성 영역(A)과 연속하여 이루어지는 제 1 수동 영역(이하, 위상 조정 영역(B)이라고 한다)과, 이 위상 조정 영역(B)과 연속하여 이루어지며, 한쪽 단부측(우측 부분)에 회절 격자(14)가 형성되어 있는 제 2 수동 영역(이하, 브래그 반사기 영역(DBR 영역(C))이라고 한다)으로 이루어지는 광이 분포되는 광도파로가 형성되어 있다.
또한, 참조 부호(11)는 광도파로의 일부를 형성하는 광 가이드층이다.
또한, p-InP 클래드 층(13)의 표면의 위상 조정 영역(B) 상에는 예컨대, Pt나 Au 등의 박막 저항으로 이루어지는 가열부(20)가 절연막(19)을 거쳐서 형성되어 있다.
이 가열부(20)에는 제 1 가열용 단자(20a) 및 제 2 가열용 단자(20b)가 형성되어 있다.
그리고, 이 가열부(20)는 외부의 단일의 전원(2)에 대하여 한 쌍의 전극(17, 18)과 직렬로 배선 접속되어 있다.
이 경우, 제 2 구동용 전극(p측 전극:18)과 상기 제 1 가열용 단자(20a) 사이가, 본딩 와이어 등에 의한 제 1 접속 선로(21)로 접속되어 있는 동시에, 제 1 구동용 전극(n측 전극:17)과 제 2 가열용 단자(20b) 사이가 외부의 전원(2)을 거쳐서, 본딩 와이어 등에 의한 제 2 접속 선로(22)로 접속되어 있다.
이에 따라, 도 2a에 도시하는 바와 같이 파장 가변 반도체 레이저 소자(1)에 있어서의 한 쌍의 전극(17, 18)과 가열부(20)가 외부의 단일의 전원(2)에 대하여 직렬 접속되어 있는 등가 회로가 구성된다.
그리고, 가열부(20) 및 한 쌍의 전극(17, 18) 사이 양쪽에는 외부의 단일 전원(2)으로부터의 한 채널의 전류가 구동 전원으로서 동시에 공급된다.
즉, 도 1a에 도시하는 바와 같이 이 제 1 실시예의 파장 가변 반도체 레이저 소자(1)에 있어서, 파장 제어 영역(D)은, 해당 파장 제어 영역(D)의 일부에 구비되 어 있는 회절 격자(14)로 이루어지는 분포 브래그 반사기(Distributed Bragg Reflector:DBR) 영역(C)과, 해당 DBR 영역(C)에 인접되어 있는 위상 조정 영역(B)으로 이루어진다.
그리고, 가열부(20)는, 파장 제어 영역(D)에 포함되어 있는 위상 조정 영역(B)을 가열할 때, 위상 조정 영역(B)의 적어도 일부를 가열할 수 있도록 구성되어 있다.
이에 따라, 제 1 실시예에 의하면, 가열부(20)에 의해서 위상 조정 영역(B)의 적어도 일부를 가열하여, 해당 부분의 광도파로의 굴절율을 크게 변화시켜, 활성층(12)에서 생성된 광의 파장과 레이저 출력을 소망하는 파장 가변폭으로 한 채널의 전류에 의해 제어 가능하게 하는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
또한, 제 1 실시예에 의하면, 외부의 단일의 전원(2)을 겸용하여 활성층(12)에서 생성되는 광의 파장과 레이저 출력을 제어할 수 있어, 구조도 간이하게 됨으로써, 개체 내에 전원을 하나 밖에 마련할 수 없는 휴대식 가스 검지 장치에 적용하는 경우에도, 그 실장에 있어서의 설치 공간을 가급적 작게 할 수 있는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
또한, 제 1 실시예에 의하면, 가열부(20)가 위상 조정 영역(B) 상에만 형성되어, 광을 생성하는 활성 영역(A)을 가열부(20)로 직접 가열하지 않는 구성으로 이루어지므로, 장기 수명화를 가능하게 하는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
또한, 상술한 제 1 실시예에서는, 가열부(20)를 위상 조정 영역(B) 상에만 형성한 예로 설명했지만, 이에 한정되는 것은 아니다.
예컨대, 도 1b에 도시하는 바와 같이 가열부(20)가 위상 조정 영역(B) 전체 또는 일부에 더해서 DBR 영역(C) 전역을 균일하게 가열하는 것과 같은 구성이여도 된다.
(제 1 실시예의 변형예)
다음으로, 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 1 실시예의 변형예에 대하여 도 1b를 참조하면서 설명한다.
도 1b는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 1 실시예의 변형예의 구성을 나타내는 개략 사시도이다.
또한, 도 1b에서 상술한 도 1a에 도시한 제 1 실시예에 의한 파장 가변 반도체 레이저 소자와 동일하게 구성되는 부분에는, 도 1a에서와 동일한 참조 부호를 부여하며 설명은 생략하는 것으로 한다.
즉, 도 1b에 도시하는 바와 같이 이 제 1 실시예의 변형예에 의한 파장 가변 반도체 레이저 소자(1)에 있어서, 파장 제어 영역(D)은 상술한 제 1 실시예의 경우와 같이, 해당 파장 제어 영역(D)의 일부에 구비되어 있는 회절 격자(14)로 이루어지는 분포 브래그 반사형(Distributed Bragg Reflector:DBR) 영역(C)과, 해당 DBR 영역(C)에 인접되어 있는 위상 조정 영역(B)으로 이루어진다.
그리고, 가열부(20)는 파장 제어 영역(D)에 포함되는 위상 조정 영역(B)과 DBR 영역(C)을 가열할 때, 위상 조정 영역(B)의 적어도 일부를 가열할 수 있도록 구성되어 있는 동시에, DBR 영역(C) 전역을 균일하게 가열할 수 있도록 구성되어 있다.
이에 따라, 제 1 실시예의 변형예에 의하면, 가열부(20)에 의해서 위상 조정 영역(B)의 적어도 일부를 가열하는 동시에, DBR 영역(C) 전역을 균일하게 가열하여, 해당 부분의 광도파로의 굴절율을 상술한 제 1 실시예의 경우보다도 더 크게 변화시켜, 활성층(12)에서 생성된 광의 파장과 레이저 출력을 소망하는 파장 가변폭으로 한 채널의 전류에 의해 제어 가능하게 하는 파장 가변 반도체 레이저 소자(1)가 실현된다.
(제 2 실시예)
다음으로, 본 발명의 파장 가변 반도체 레이저 소자의 제 2 실시예에 대하여 도 3을 참조하면서 구체적으로 설명한다.
도 3은 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 2 실시예의 구성을 나타내는 개략 사시도이다.
도 3에 도시하는 바와 같이 이 제 2 실시예의 파장 가변 반도체 레이저 소자(1B(1))는, 활성층(12)의 하층에 있는 광 가이드층(11) 전역에 걸쳐서 회절 격자(14)가 형성되어 있는 DFB 레이저이다.
도 3에 도시하는 바와 같이 다층의 반도체층을 제작하기 위한 반도체 기판으로서의 n-InP 기판(10)의 윗쪽 중앙부에는, 단면이 사다리꼴 형상인 메사(10a)가 길이 방향(광의 출사 방향)으로 연장해서 형성되어 있다.
그리고, 이 메사(10a) 중에는, 전역에 걸쳐서 회절 격자(14)가 형성되어 있는 광 가이드층(11)과, 광을 생성하는 활성층(12)과, p-InP 클래드 층(13)이 순차적으로 적층되어 있다.
또한, 메사(10a) 양측에는, p-InP 매립층(15) 및 n-InP 매립층(16)이 형성되어 있음으로써, 후술하는 한 쌍의 전극 사이에 공급되는 전류 경로의 협착화가 확보되는 동시에, 스트라이프형 광도파로가 형성된다.
그리고, 이렇게 제작된 반도체층의 표리면에는, 한 쌍의 전극(17, 18)으로서, Au 등의 금속막으로 이루어지는 n측 전극(제 1 구동용 전극:17)과 p측 전극(제 2 구동용 전극:18)이 각각 형성되어 있다.
도 3의 예에서는, n-InP 기판(10)의 이면에 n측 전극(17)이 형성되고, p-InP 클래드 층(13)의 표면의 일부분(활성층(12) 위를 제외한 우측의 거의 절반부)에 p측 전극(18)이 형성되어 있다.
또한, p-InP 클래드 층(13)의 상면에는, 예컨대, Pt나 Au 등의 박막 저항으로 이루어지는 가열부(20)가 파장 제어 영역(D)으로서 광 가이드층(11) 전역에 걸쳐서 형성되어 있는 회절 격자(14) 전역을 덮도록 절연막(19)을 사이에 두고 형성되어 있다.
이 가열부(20)에는 제 1 가열용 단자(20a) 및 제 2 가열용 단자(20b)가 형성되어 있다.
그리고, 이 가열부(20)는 외부의 단일 전원(2)에 대하여, 한 쌍의 전극(17, 18)과 직렬로 배선 접속되어 있다.
이 경우, 제 2 구동용 전극(p측 전극:18)과 상기 제 1 가열용 단자(20a) 사이가 본딩 와이어 등에 의한 제 1 접속 선로(21)로 접속되어 있는 동시에, 제 1 구동용 전극(n측 전극:17)과 제 2 가열용 단자(20b) 사이가 외부 전원(2)을 거쳐서, 본딩 와이어 등에 의한 제 2 접속 선로(22)로 접속되어 있다.
이에 따라, 도 2a에 도시하는 바와 같이 파장 가변 반도체 레이저 소자(1)에 있어서의 한 쌍의 전극(17, 18)과 가열부(20)가 외부의 단일의 전원(2)에 대하여 직렬 접속되어 있는 등가 회로가 구성된다.
그리고, 가열부(20)와 한 쌍의 전극(17, 18) 사이 양쪽에는, 외부의 단일 전원(2)으로부터 한 채널의 전류가 구동 전원으로서 동시에 공급된다.
이에 따라, 제 2 실시예에 의하면 광 가이드층(11) 전역에 걸쳐서 형성되어 있는 회절 격자(14) 전역을 가열부(20)에 의해서 가열하여, 해당 부분의 광도파로의 굴절율을 크게 변화시킴으로써, 활성층(12)에서 생성된 광의 파장과 레이저 출력을 소망하는 파장 가변폭으로 한 채널의 전류에 의해 제어 가능하게 하는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
또한, 제 2 실시예에 의하면, 외부의 단일 전원(2)을 겸용하여 활성 영역(A)에서 생성된 광의 파장과 레이저 출력을 제어할 수 있고, 구조도 간이하게 되어, 케이싱 내에 전원을 하나밖에 마련할 수 없는 휴대식 가스 검지 장치에 적용하는 경우에도, 그 실장시의 설치 공간을 가급적 작게 할 수 있는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
(제 3 실시예)
다음으로, 본 발명의 파장 가변 반도체 레이저 소자의 제 3 실시예에 대하여 도 4를 참조하면서 구체적으로 설명한다.
도 4는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 3 실시예의 구성을 나타내는 단면도이다.
도 4에 도시하는 바와 같이 이 제 3 실시예의 파장 가변 반도체 레이저 소자(1C(1))는, 제 2 실시예의 반도체 레이저 소자(1B(1))에서 형성되어 있는 회절 격자(14)가 활성층(12) 위의 전역이 아니라, 출사 방향 단면측에 부분적으로 형성되어 있는 부분 회절 격자형 반도체 레이저(PC-LD)이다.
그리고, 회절 격자(14)의 윗쪽에는 광 가이드층(11)과, 광을 생성하는 활성층(12)과, p-InP 클래드 층(13)이 순차적으로 적층되어 있다.
그 다음, 제 2 실시예와 같이 p-InP 매립층 및 n-InP 매립층(도시 생략)이 통상의 매립 성장에 의해 형성된다.
그리고, 레이저 출사면에 반사 방지막(AR 코트:23)가 형성됨과 동시에, 반대면에 고반사막(HR 코트:24)이 형성된다.
그리고, 제작된 반도체 결정의 표리면에는, 한 쌍의 전극(17, 18)으로서 금속 전극으로 이루어지는 n측 전극(제 1 구동용 전극:17)과 p측 전극(제 2 구동용 전극:18)이 각각 형성되어 있다.
도 4의 예에서는, n-InP 기판(10)의 이면에 n측 전극(17)이 형성되고, p-InP 클래드 층(13)의 표면의 일부(좌측 부분)에 p측 전극(18)이 형성되어 있다.
또한, p-InP 클래드 층(13) 상면에는, 예컨대, Pt나 Au 등의 박막 저항으로 이루어지는 가열부(20)가 절연막(19)을 거쳐서, 출사면측에 부분적으로 형성되어 있는 회절 격자(14) 전역을 피복하도록 형성되어 있다.
이 가열부(20)에는 제 1 가열용 단자(20a) 및 제 2 가열용 단자(20b)가 형성되어 있다.
그리고, 이 가열부(20)는 외부의 단일의 전원(2)에 대하여, 한 쌍의 전극(17, 18)과 직렬로 배선 접속되어 있다.
이 경우, 제 2 구동용 전극(p측 전극:18)과 상기 제 1 가열용 단자(20a) 사이가 본딩 와이어 등에 의한 제 1 접속 선로(21)로 접속되어 있는 동시에, 제 1 구동용 전극(n측 전극:17)과 제 2 가열용 단자(20b) 사이가 외부의 전원(2)을 거쳐서, 본딩 와이어 등에 의한 제 2 접속 선로(22)로 접속되어 있다.
이에 따라, 도 2a에 도시하는 바와 같이 파장 가변 반도체 레이저 소자(1)에 있어서의 한 쌍의 전극(17, 18)과 가열부(20)가 외부의 단일 전원(2)에 대하여 직렬 접속되어 있는 등가 회로가 구성된다.
그리고, 가열부(20)과 한 쌍의 전극(17, 18) 사이의 양쪽에는, 외부의 단일 전원(2)으로부터 한 채널의 전류가 구동 전원으로서 동시에 공급된다.
이에 따라, 제 3 실시예에 의하면, 가이드층(11)의 출사면측에 부분적으로 형성되어 있는 회절 격자(14) 전역을 가열부(20)에 의해서 가열하여, 해당 부분의 가이드층 n의 굴절율을 크게 변화시킴으로써, 활성층(12)에서 생성된 광의 파장과 레이저 출력을 소망하는 파장 가변폭으로 한 채널의 전류에 의해 제어 가능하게 하 는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
또한, 제 3 실시예에 의하면, 외부의 단일의 전원(2)을 겸용하여 활성층(12)에서 생성된 광의 파장과 레이저 출력을 제어할 수 있고, 구조도 간이하게 됨으로써, 개체 내에 전원을 하나밖에 마련할 수 없는 휴대식 가스 검지 장치에 적용하는 경우에도, 그 실장시의 설치 공간을 가급적 작게 할 수 있는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
(제 4 실시예)
다음으로, 본 발명의 파장 가변 반도체 레이저 소자의 제 4 실시예에 대하여 도 5를 참조하면서 구체적으로 설명한다.
도 5는 본 발명에 관한 파장 가변 반도체 레이저 소자의 제 4 실시예의 구성을 나타내는 단면도이다.
도 5에 도시하는 바와 같이 이 제 4 실시예의 파장 가변 반도체 레이저 소자(1D(1))는, 다층의 반도체 층을 제작하기 위한 반도체 기판으로서의 n-InP 기판(10)의 윗쪽에, n-InGaAsP로 이루어지는 제 1 회절 격자 영역(E)과, 위상 시프트 영역(F)과, n-InGaAsP로 이루어지는 제 2 회절 격자 영역(G)이 형성되어 있다.
이 경우, 제 1 및 제 2 회절 격자 영역(E, G)에는 각각, 제 1 및 제 2 회절 격자(14a, 14b)가 형성되어 있다.
또한, 가이드층(11)의 윗쪽에는 각각, 적당한 조성의 InGaAsP로 이루어진 하측 SCH층, MQW층, 상측 SCH 층을 포함하는 광을 생성하는 활성층(12)이 형성되어 있다.
이 활성층(12)의 윗쪽에는 p-InP 클래드 층(13)이 형성되어 있다.
그리고, 제작된 반도체 층의 표리면에는, 한 쌍의 전극(17, 18)으로서, 금속 전극으로 이루어지는 n측 전극(제 1 구동용 전극:17)과 p측 전극(제 2 구동용 전극:18)이 형성되어 있다.
도 5의 예에서는, p-InP 클래드 층(13)의 윗쪽의 소정 위치에 p측 전극(18)이 형성되고, n-InP 기판(10)의 하면에 n측 전극(17)이 형성되어 있다.
또한, 레이저 광이 출사되는 광도파로로서의 가이드층(11)의 각 단면(적어도 한쪽이여도 된다)에는, 반사 방지막(23)이 형성되어 있다.
또한, p-InP 클래드 층의 윗쪽에서, 제 1 및 제 2 회절 격자 영역(E, G)과 대향하는 부위에 각각, 예컨대, Pt나 Au 등의 박막 저항으로 이루어지는 제 1 및 제 2 가열부(20A, 20B)가 절연층(19)을 사이에 두고 제 1 및 제 2 회절 격자(14a), 14b) 각각의 전역을 피복하도록 형성되어 있다.
이들 제 1 및 제 2 가열부(20A, 20B)에는 각각, 제 1 가열용 단자(20a1, 20a2) 및 제 2 가열용 단자(20b1, 20b2)가 형성되어 있다.
이들 제 1 및 제 2 가열부(20A, 20B)는 외부의 단일 전원(2)에 대하여, 한 쌍의 전극(17, 18)과 직렬로 배선 접속되어 있다.
이 경우, 제 2 구동용 전극(p측 전극:18)과 제 1 가열부(20A)의 제 1 가열용 단자(20a1) 사이가 본딩 와이어 등에 의한 제 1 접속 선로(21A)에 접속되는 동시에, 제 1 가열부(20A)의 제 2 가열용 단자(20b1)와 제 2 가열부(20B)의 제 1 가열 용 단자(20a2) 사이가, 본딩 와이어 등에 의한 중계용 접속 선로(21B)에 접속되어 있다.
또한, 제 1 구동용 전극(n측 전극:17)과 제 2 가열부(20B)의 제 2 가열용 단자(20b2) 사이가 외부 전원(2)을 거쳐서 본딩 와이어 등에 의한 제 2 접속 선로(22)에 접속되어 있다.
이에 따라, 도 2b에 도시하는 바와 같이 파장 가변 반도체 레이저 소자(1)에 있어서의 한 쌍의 전극(17, 18)과 제 1 및 제 2 가열부(20A, 20B)가 외부의 단일 전원(2)에 대하여 직렬 접속된 등가 회로가 구성된다.
그리고, 제 1 및 제 2 가열부(20A, 20B) 및 한 쌍의 전극(17, 18) 사이의 양쪽에는, 외부의 단일의 전원(2)으로부터 한 채널의 전류가 구동 전원으로서 동시에 공급된다.
즉, 도 5에 도시하는 바와 같이 이 제 4 실시예의 파장 가변 반도체 레이저 소자(1)에 있어서, 파장 제어 영역(D)은 가이드층(11)에 형성되어 있는 제 1 및 제 2 회절 격자 영역(E, G)으로 이루어진다.
그리고, 제 1 및 제 2 가열부(20A, 20B)가 각각, 파장 제어 영역(D)에 포함되는 제 1 및 제 2 회절 격자 영역(E, G)에 형성되어 있는 제 1 및 제 2 회절 격자(14a, 14b)를 가열할 때, 각 회절 격자에서 선택된 각 파장이 서로 같도록, 제 1 및 제 2 회절 격자(14a, 14b)를 가열할 수 있게 구성되어 있다.
이러한 제 4 실시예에 의하면, 제 1 및 제 2 가열부(20A, 20B)에 의해서, 각각, 파장 제어 영역(D)에 포함되는 제 1 및 제 2 회절 격자 영역(E, G)에 형성되어 있는 제 1 및 제 2 회절 격자(14a, 14b)를 가열하여, 해당 부분의 광도파로의 굴절율을 크게 변화시켜, 활성층(12)에서 생성된 광의 파장과 레이저 출력을 소망하는 파장 가변폭으로 한 채널의 전류에 의해 제어 가능하게 하는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
또한, 제 4 실시예에 의하면, 외부의 단일 전원(2)을 겸용하여 활성층(12)에서 생성된 광의 파장과 레이저 출력을 제어할 수 있고, 구조도 간이하게 됨으로써, 개체 내에 전원을 하나밖에 마련할 수 없는 휴대식 가스 검지 장치에 적용하는 경우에도, 그 실장에 있어서의 설치 공간을 가급적 작게 할 수 있는 파장 가변 반도체 레이저 소자(1)를 실현할 수 있다.
(파장 특성에 대한 설명)
다음으로, 본 발명에 의한 파장 가변 반도체 레이저 소자(1)와 종래의 파장 가변 반도체 레이저 소자의 파장 특성에 대하여 도 6 및 도 7을 참조하면서 구체적으로 설명한다.
도 6은 종래의 파장 가변 반도체 레이저 소자의 출력 특성 및 파장 특성을 도시하는 도면이다.
도 7은 본 발명에 관한 파장 가변 반도체 레이저 소자의 출력 특성 및 파장 특성을 도시하는 도면이다.
또한, 6 및 도 7에 있어서 실선으로 나타내는 특성은 각각 파장 가변 반도체 레이저 소자의 구동 전류[mA]에 대한 출력 특성(Power[mW])이고, 파선으로 나타내 는 특성은 각각 파장 가변 반도체 레이저 소자의 구동 전류[mA]에 대한 파장 특성(파장 시프트량 Δλ[nm])이다.
여기서는, 본 발명의 파장 가변 반도체 레이저 소자(1)로서 본 발명의 제 2 실시예에 의한 파장 가변 반도체 레이저 소자(1B)의 파장 특성과, 종래의 파장 가변 반도체 레이저 소자로서 예컨대, 도 9에 나타낸 가열부가 없는 DFB 레이저의 파장 특성을 예로 들어 설명한다.
통상, 단일 모드 발진하는 파장 가변 반도체 레이저 소자로서는, 한 쌍의 전극 사이에 공급되는 구동 전류가 임계값 전류를 넘을 때에 광을 출사하고, 그 전류치의 2승에 비례하여 출사광의 파장이 커지는 특성을 갖는다.
그리고, 도 6에 도시하는 바와 같이 종래의 가열부가 없는 DFB 레이저의 파장 특성의 경우, 전류치를 증가시켜서 출력을 올려 가면, 도 6에서 파선으로 나타내는 파장 시프트량 Δλ이 완만한 기울기로 변화하고 있는 것을 알 수 있다.
이에 대하여, 도 7에 도시하는 바와 같이 본 발명의 제 2 실시예의 파장 가변 반도체 레이저 소자(1B)의 파장 특성의 경우, 파장 제어 영역(D)으로서 광 가이드층(11) 전역에 걸쳐서 형성되어 있는 회절 격자(14) 전역이 가열부(20)에 의해서 가열되기 때문에, 전류치를 늘려서 출력을 올려 가면, 종래의 가열부가 없는 DFB 레이저와 비교하여, 도 7에 파선으로 나타내는 파장 시프트량 Δλ의 기울기가 급하게 되어, Aλ의 변화량이 커졌다는 것을 알 수 있다.
즉, 이는 종래의 가열부가 없는 파장 가변 반도체 레이저 소자의 굴절율 변화에 비교해서, 본 발명의 제 2 실시예의 파장 가변 반도체 레이저 소자가 광도파 로의 굴절율 변화가 보다 커졌다는 것을 나타내고 있다.
또한, 도 6 및 도 7의 예에서는 종래의 가열부가 없는 DFB 레이저와 본 발명의 제 2 실시예의 파장 가변 반도체 레이저 소자에서 나오는 파장 특성을 비교하고 있다.
그런데, 종래의 가열부가 없는 DFB 레이저의 파장 특성과, 본 발명의 제 1, 제 3, 제 4 실시예에 의한 파장 가변 반도체 레이저 소자(1A, 1C, 1D)에서 나오는 파장 특성의 비교에 있어서도, 상술한 바와 마찬가지의 비교 결과를 얻을 수 있다.
또한, 본 발명의 제 1 실시예에 의한 파장 가변 반도체 레이저 소자(1A)와 제 2 내지 제 4 실시예에 의한 파장 가변 반도체 레이저 소자(1B, 1C, 1D)의 레이저 출력값을 비교한 경우, 가열부(20) 또는 제 1 및 제 2 가열부(20A, 20B)에 의해 활성층(12)을 직접 가열하는 파장 가변 반도체 레이저 소자(1B, 1C, 1D)의 경우에는, 레이저 출력값이 서서히 포화해 가는 데 대하여, 파장 가변 반도체 레이저 소자(1A)의 경우에는, 가열부(20)에 의해 활성 영역(A:활성층(12))이 직접 가열되지 않기 때문에, 레이저 출력값이 포화되기 어렵다는 결과를 얻을 수 있다(도시 생략).
이는 제 1 실시예의 파장 가변 반도체 레이저 소자(1A)에 의한 DBR 레이저 쪽이, 제 2 내지 제 4 실시예에 의한 파장 가변 반도체 레이저 소자(1B, 1C, 1D)에 비교하여, 온도에 의한 굴절율 변화를 보다 크게 얻을 수 있다는 것을 나타내고 있다.
또한, 상술한 제 1 실시예의 파장 가변 반도체 레이저 소자(1A)는 가열 부(20)를 이용하여 활성 영역(A:활성층(12)) 이외의 영역을 가열하기 때문에, 활성 영역(A:활성층(12))이 가열되는 것에 의한 레이저 광의 출력 저감을 회피할 수 있기 때문에, 파장 가변 반도체 레이저 소자 자체의 수명을 늘릴 수 있다고 하는 효과를 갖고 있다.
(제 5 실시예)
다음으로, 본 발명의 제 5 실시예로서, 상술한 본 발명의 제 1 내지 제 4 실시예에 의한 파장 가변 반도체 레이저 소자(1)를 적용한 가스 검지 장치의 개략 구성에 대하여 도 8a를 참조하면서 설명한다.
도 8a는 본 발명의 제 5 실시예로서 본 발명에 관한 파장 가변 도체 레이저 소자를 적용한 가스 검지 장치의 일례를 나타내는 개략 구성도이다.
도 8a에 도시하는 바와 같이 가스를 검지하는 가스 검지 장치(30)에 있어서는, 반도체 레이저 모듈(31)을 구성하는 원통형 케이스(32) 내측에 기판(33)이 설치된다.
그리고, 이 기판(33) 상에 설치되는 베이스대(34)의 표면에는, 펠티에 소자로 이루어지는 온도 제어 소자(35)가 부착되어 있다.
또한, 온도 제어 소자(35) 상에 설치된 부착대(36) 상에는, 상술한 본 발명의 제 1 내지 제 4 실시예 중 어느 한 실시예의 파장 가변 반도체 레이저 소자(1)가 탑재되어 있다.
이 경우, 파장 가변 반도체 레이저 소자(1)는, 원통형 케이스(32)의 중심축 상에 따라 레이저 광을 외부로 사출하는 것이 가능해지도록 배치되어 있다.
그리고, 파장 가변 반도체 레이저 소자(1)는, 검지 대상 가스의 농도를 측정하기 위한 레이저 광을 검지 대상으로 향해서 출사할 때에, 상세한 것은 후술하는 도 8b의 레이저 구동 제어부(50)의 온도 안정화 PID 회로(55)를 거쳐서 펠티에 소자로 이루어지는 온도 제어 소자(35)로 온도 제어됨으로써, 검지 대상 가스에 맞는 레이저 파장으로 제어된다.
또한, 도 8a에 도시한 구성의 가스 검지 장치(30)의 경우, 파장 가변 반도체 레이저 소자(1)로부터의 레이저 광은 피 검지 가스측과 참조 가스측 쌍방으로 사출되도록 되어 있다.
또한 부착대(36) 상에서 파장 가변 반도체 레이저 소자(1) 양측에는, 피 검지 가스측 및 참조 가스측으로 출사되는 각 레이저 광을 집광하여 평행 빔으로 하기 위한 집광 렌즈(37, 38)가 레이저 광축 상에 위치하여 설치된다.
이에 따라, 파장 가변 반도체 레이저 소자(1)로부터 피 검지 가스측으로의 광은, 집광 렌즈(37) 및 반도체 레이저 모듈(31)을 보호하는 보호 유리(39)를 거쳐서 외부로 출력됨으로써 검지 공간 내로 출사된다.
또한, 파장 가변 반도체 레이저 소자(1)로부터 참조 가스측으로의 광은 집광 렌즈(38)에서 평행 빔이 되며, 또한 참조 가스 셀(40)을 거쳐서 수광기(41)에서 수광되게 되어 있다.
여기서, 참조 가스 셀(40)은 참조 가스로서 검지 대상 가스를 봉입한 셀이며, 해당 참조 가스 셀(40)을 거쳐서 수광기(41)에 의해 수광된 참조 가스측으로의 광 빔의 수광 출력에 근거하여, 상세한 것은 후술하는 도 8b의 레이저 구동 제어부(50)의 파장 안정 제어 회로(54)에 의해, 파장 가변 반도체 레이저 소자(1)로부터 출사되는 레이저 광의 파장을 검지 대상 가스의 흡수 선파장에 맞추기 위한 것이다.
또한, 수광기(41)는 검지 공간으로 출사된 레이저 광이 반사하여 돌아오는 레이저 광을 수광하고, 이 수광한 레이저 광을 전기 신호(전류)로 변환하여 해당 전기 신호(전류)를. 상세한 것은 후술하는 도 8c의 가스 검출부(60)에 공급한다.
그리고, 가스 검출부(60)는, 후술하는 바와 같이, 수광기(41)에 의해 변환된 전기 신호로부터 기본파 레벨 및 2배파 레벨을 검출하여, 2배파 레벨이 기본파 레벨로 나누어지고, 그 값에 근거하여 검지 대상 가스의 유무나 농도를 측정한다.
또한, 도 8a 내지 도 8c 및 그 설명에 있어서, 이 제 5 실시예에 적용되는 본 발명의 제 1 내지 제 4 실시예에 의한 파장 가변 반도체 레이저 소자(1)가, 상술한 바와 같이, 한 쌍의 전극(17, 18)과 가열부(20)(20A, 20B)에 대해 외부의 단일 전원(2)에 직렬 접속되며, 한 쌍의 전극(17, 18)과 가열부(20)(20A, 20B)에 대하여 외부의 단일 전원(2)으로부터 동시에 구동 전류가 공급되는 구성에 대해서는 그 도시 및 그 작용 설명을 생략했다.
도 8b는 반도체 레이저 모듈(31) 및 레이저 구동 제어부(50)의 개략 구성을 도시하는 도면이다.
레이저 구동 제어부(50)는 전류 전압 변환기(51)와, 기본파 신호 증폭기(52)와, 신호 미분 검출기(53)와, 파장 안정화 제어 회로(54)와, 온도 안정화 PID 회 로(55)와, 레이저 구동 회로(56)로 구성되어 있다.
전류 전압 변환기(51)는 수광기(41)로부터의 전기 신호를 전압으로 변환한다. 기본파 신호 증폭기(52)는, 전류 전압 변환기(51)로 변환된 전압을 증폭한다. 신호 미분 검출기(53)는, 기본파 신호 증폭기(52)로 증폭된 전압 파형을 미분하여 참조 가스의 흡수 중심 파장 λ0으로부터의 편차 신호를 생성한다.
파장 안정화 제어 회로(54)는 파장 가변형 반도체 레이저(1)의 발광 파장 λ을 참조 가스의 흡수 중심 파장 λ0으로 안정화시키는 제어를 행한다.
즉, 파장 안정화 제어 회로(54)는 신호 미분 검출기(53)로부터의 편차 신호를 파장 가변형 반도체 레이저(1)의 온도로 변환하여 온도 안정화 PID 회로(55)에 출력하는 동시에, 그 편차 신호에 근거하여 제어 신호를 레이저 구동 회로(40)에 대하여 출력한다.
온도 안정화 PID 회로(55)는 펠티에 소자로 이루어진 온도 제어 소자(35)를 제어한다. 즉, 온도 안정화 PID 회로(55)는 파장 안정화 제어 회로(54)로부터의 온도 신호에 따라서 파장 가변형 반도체 레이저(1)가 소망하는 파장으로 발진하는 온도로 되도록 PID 제어를 하여, 파장 가변형 반도체 레이저(1)의 온도를 소정 온도로 안정되게 유지한다.
레이저 구동 회로(56)는 파장 가변형 반도체 레이저(1)의 발진 파장이 참조 가스(피측정 가스)의 흡수 특성의 흡수 중심 파장에 대응하는 값인 중심 전류치(바이어스 전류치)를 중심으로 하여, 소정의 진폭, 변조 주파수를 갖는 변조 신호(b) 를 반도체 레이저 모듈(31)에 조립된 파장 가변형 반도체 레이저(1)에 인가한다.
그 결과, 반도체 레이저 모듈(31)로부터, 그 파장이 흡수 중심 파장을 중심으로 소정의 진폭, 주파수로 변화되는 레이저 광(a)이 출력된다.
또한, 레이저 구동 회로(56)는 파장 안정화 제어 회로(54)로부터의 온도 신호에 따라서 중심 전류치(바이어스 전류치)를 반도체 레이저 모듈(31)로부터 출력되는 레이저 광(a)에서의 상술한 파장 특성을 얻을 수 있도록 제어한다.
이와 같이, 제 5 실시예에 관한 가스 검지 장치에서는 피측정 가스와 동일한 가스를 봉입한 참조 가스 셀(40)에 파장 가변형 반도체 레이저(1)로부터 출사되는 레이저 광을 투과시켜, 이 레이저 광의 중심 파장이 참조 가스(피측정 가스)의 흡수 특성의 흡수 중심 파장에 일치하도록, 파장 가변형 반도체 레이저(1)의 온도와 파장 가변형 반도체 레이저(1)에 전압을 가하는 변조 신호(b)의 중심 전류치(바이어스 전류치)가 자동적으로 제어된다.
도 8c는, 도 8a의 가스 검지 장치 및 가스 검출부(60)의 개략 구성을 도시하는 도면이다. 도 8c에서 반도체 레이저 모듈(31)로부터 출력된 흡수 중심 파장을 중심으로 파장 변조된 레이저 광(a)은 피측정 가스를 투과하는 과정에서 흡수 특성에 따라 흡수된 후, 수광기(41)에서 수광되어 전기(전류) 신호(c)로 변환되어 가스 검출부(60)로 입력된다.
또한, 도 8c에서는, 설명의 상황상, 수광기(41)를 반도체 레이저 모듈(31)로부터 독립해서 도시하고 있다.
또한, 도 8c의 레이저 구동 제어부(50)의 상세한 구성 및 그 작용에 대해서 는 도 8b를 참조하여 앞에 설명되어 있다.
가스 검출부(60)는 전류 전압 변환기(61)와, 기본파 신호 검출기(62)와, 2배파 신호 검출기(63)와, 나눗셈기(64)로 구성되어 있다.
전류 전압 변환기(61)는 입력한 전류의 전기(전류) 신호(c)를 전압의 전기 신호(c)로 변환하여 기본파 신호 검출기(62) 및 2배파 신호 검출기(63)로 송출한다.
기본파 신호 검출기(62)는 입력한 전기 신호(c)에 포함되어 있는 변조 주파수의 신호 성분인 기본파 신호(d1)를 추출하여 나눗셈기(64)로 송출한다.
2배파 신호 검출기(63)는 입력한 전기 신호(c)에 포함되는 변조 주파수의 2배의 주파수의 신호 성분인 2배파 신호(d2)를 추출하여 나눗셈기(64)로 송출한다.
나눗셈기(64)는 2배파 신호(d2)의 진폭(D2)과 기본파 신호(d1)의 진폭(D 1)의 비(D2/D1)를 산출하고, 이 산출한 비(D2/D1)를 이 가스 농도에 대응하는 검출값 D(=D2/D1)으로서 출력한다.
이상 상술한 바와 같이, 본 발명에 의한 파장 가변 반도체 레이저 소자(1)는 한 쌍의 전극(17, 18)과 가열부(20)(20A, 20B)가 외부의 단일 전원(2)에 직렬 접속되고, 한 쌍의 전극(17, 18)과 가열부(20)(20A, 20B)에 대하여 외부의 단일 전원(2)으로부터 동시에 구동 전류가 공급되는 구성으로 되어 있다.
이에 따라, 본 발명에 의한 파장 가변 반도체 레이저 소자(1)를 적용하여 TDLAS 법에 의한 가스 검지를 할 때, 굴절율 변화를 크게 하여 소망하는 파장 가변폭으로 파장을 레이저 출력과 동시에 한 채널의 전류로 제어할 수 있다.
또한, 레이저 출력과 파장을 제어할 때, 단일 전원을 겸용하기 때문에 전원도 하나만으로 해결할 수 있다.
그 결과, 본 발명에 의한 파장 가변 반도체 레이저 소자(1)의 구조도 간이하게 되고, 소비 전력도 작은 케이싱 내의 부품 설치 공간이나 전원 용량이 제한되는 휴대식 가스 검지 장치(30)에도 내장하여 사용할 수 있다.
또한, 제 1 실시예에 의한 파장 가변 반도체 레이저 소자를 채용하면, 가열부(20)가 활성 영역(A:활성층(12))을 직접 가열하지 않는 구성이기 때문에, 소자 자신의 장기 수명화를 도모할 수 있다.
그런데, 상술한 제 3 또는 제 4 실시예에 의한 파장 가변 반도체 레이저 소자(1C, 1D)는, 반사 방지막(21)에 끼워진 영역 내의 한쪽 단부 또는 양단에 회절 격자(14)가 설치된다.
그런데, 본 발명은 이러한 구성에 한정되는 것이 아니라, 광도파로 중 적어도 하나의 회절 격자 영역을 갖는 파장 가변 반도체 레이저 소자에도 본 발명의 구성(한 쌍의 전극과 가열부를 단일 전원에 대하여 직렬 접속하는 구성)을 채용할 수 있다.
즉, 본 발명의 파장 가변 반도체 레이저 소자(1)는 바람직하게는 모드 호핑하지 않는 영역 상에 가열부(20)(20A, 20B)를 배치하고, 한 쌍의 전극(17, 18)과 가열부(20)(20A, 20B)를 외부의 단일 전원에 대하여 직렬 접속하는 구성으로 하면 된다.
이상, 본 발명에 의한 최선의 실시예에 대하여 설명했지만, 이 최선의 실시예에 의한 기술 및 도면에 의해 본 발명이 한정되는 것은 아니다.
즉, 이 최선의 실시예에 근거하여 당업자 등에 의해 이루어지는 다른 실시예, 실시예 및 운용 기술 등은 전부 본 발명의 범주에 포함되는 것은 물론이다.

Claims (28)

  1. 반도체 기판과,
    상기 반도체 기판의 윗쪽에 형성되어 광을 생성하는 활성층과,
    상기 활성층을 포함해 형성되어 상기 활성층에서 생성되는 광을 도파하는 광도파로 내에 형성되며 또한, 상기 활성층에서 생성되는 광 중에서 소정의 파장을 갖는 광을 선택하는 회절 격자를 적어도 일부에 구비하고 있는 파장 제어 영역과,
    상기 광도파로의 윗쪽에 형성되는 클래드 층과,
    상기 클래드 층의 윗쪽에 형성되는 절연막과,
    상기 반도체 기판의 아래쪽에 형성되는 제 1 구동용 전극과,
    상기 클래드 층의 윗쪽에 형성되는 제 2 구동용 전극과,
    상기 절연막의 윗쪽에 형성되어 상기 파장 제어 영역의 적어도 일부를 가열하기 위한 가열부와,
    상기 가열부에 구비되어 있는 제 1 가열용 단자 및 제 2 가열용 단자와,
    상기 제 2 구동용 전극과 상기 제 1 가열용 단자의 사이를 접속하는 제 1 접속 선로와,
    상기 제 1 구동용 전극과 상기 제 2 가열용 단자의 사이를 전원을 통해서 접속하는 제 2 접속 선로를 구비하며,
    상기 가열부를 통해서 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급되는 전류를 가변함으로써, 상기 광도파로로부터 외 부로 도출된 광의 파장을 제어할 수 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  2. 제 1 항에 있어서,
    상기 파장 제어 영역은 상기 회절 격자로 이루어지는 분포 브래그 반사기 영역과, 그 분포 브래그 반사기 영역에 인접하는 위상 조정 영역으로 이루어지며,
    상기 가열부는 상기 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  3. 제 2 항에 있어서,
    상기 가열부는 또한 상기 분포 브래그 반사기 영역 전 영역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  4. 제 1 항에 있어서,
    상기 파장 제어 영역은 하나의 상기 회절 격자로 이루어지고,
    상기 가열부는 상기 하나의 회절 격자 전 영역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  5. 제 4 항에 있어서,
    상기 하나의 회절 격자는 상기 광도파로 전체에 걸쳐서 형성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  6. 제 4 항에 있어서,
    상기 하나의 회절 격자는 상기 광도파로의 일부에 형성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  7. 제 1 항에 있어서,
    상기 파장 제어 영역은 상기 광도파로의 복수의 개소에 형성되어 있는 복수의 회절 격자로 이루어지고,
    상기 가열부는 상기 복수의 회절 격자의 각 회절 격자에 의해 선택된 각 파장이 서로 같아지도록, 상기 복수의 회절 격자를 가열할 수 있게 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  8. 제 7 항에 있어서,
    상기 가열부는 각각, 상기 복수의 회절 격자를 개별적으로 가열하는 복수의 가열부로 이루어지고, 상기 복수의 가열부는 직렬로 접속되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  9. 제 1 항에 있어서,
    상기 가열부는 박막 저항으로 이루어지는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  10. 제 1 항에 있어서,
    소정 파장을 갖는 레이저 광을 검지 공간으로 출사하고, 상기 레이저 광이 검지 대상 가스에 의해 감쇠하는 것을 이용하는 파장 가변 반도체 레이저 흡수 분광법을 이용하여 가스를 검지하는 가스 검지 장치에 적용되는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자.
  11. 파장 가변 반도체 레이저 소자를 구비하고, 소정 파장을 갖는 레이저 광을 검지 공간으로 출사하며, 상기 레이저 광이 검지 대상 가스에 의해 감쇠하는 것을 이용한 파장 가변 반도체 레이저 흡수 분광법을 이용하여 가스를 검지하는 가스 검지 장치로서,
    상기 파장 가변 반도체 레이저 소자는,
    반도체 기판과,
    상기 반도체 기판의 윗쪽에 형성되어 광을 생성하는 활성층과,
    상기 활성층을 포함해 형성되어, 상기 활성층에서 생성되는 광을 도파하는 광도파로 내에 형성되며 또한, 상기 활성층에서 생성되는 광 중에서 소정의 파장을 갖는 광을 선택하는 회절 격자를 적어도 일부에 구비하고 있는 파장 제어 영역과,
    상기 광도파로의 윗쪽에 형성되는 클래드 층과,
    상기 클래드 층의 윗쪽에 형성되는 절연막과,
    상기 반도체 기판의 아래쪽에 형성되는 제 1 구동용 전극과,
    상기 클래드 층의 윗쪽에 형성되는 제 2 구동용 전극과,
    상기 절연막의 윗쪽에 형성되어 상기 파장 제어 영역의 적어도 일부를 가열 하기 위한 가열부와,
    상기 가열부에 구비되어 있는 제 1 가열용 단자 및 제 2 가열용 단자와,
    상기 제 2 구동용 전극과 상기 제 1 가열용 단자의 사이를 접속하는 제 1 접속 선로와,
    상기 제 1 구동용 전극과 상기 제 2 가열용 단자의 사이를 전원을 통해서 접속하는 제 2 접속 선로를 구비하며,
    상기 가열부를 거쳐서 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급되는 전류를 가변함으로써, 상기 광도파로로부터 외부로 도출되는 광의 파장을 제어할 수 있는 것을 특징으로 하는
    가스 검지 장치.
  12. 제 11 항에 있어서,
    상기 파장 제어 영역은 상기 회절 격자로 이루어지는 분포 브래그 반사기 영역과, 그 분포 브래그 반사기 영역에 인접되는 위상 조정 영역으로 이루어지고,
    상기 가열부는 상기 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    가스 검지 장치.
  13. 제 12 항에 있어서,
    상기 가열부는 또한 상기 분포 브래그 반사기 영역의 전 영역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    가스 검지 장치.
  14. 제 11 항에 있어서,
    상기 파장 제어 영역은 하나의 상기 회절 격자로 이루어지고,
    상기 가열부는 상기 하나의 회절 격자 전 영역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    가스 검지 장치.
  15. 제 14 항에 있어서,
    상기 하나의 회절 격자는 상기 광도파로 전체에 걸쳐서 형성되어 있는 것을 특징으로 하는
    가스 검지 장치.
  16. 제 14 항에 있어서,
    상기 하나의 회절 격자는 상기 광도파로의 일부에 형성되어 있는 것을 특징으로 하는
    가스 검지 장치.
  17. 제 11 항에 있어서,
    상기 파장 제어 영역은 상기 광도파로의 복수의 개소에 형성되어 있는 복수의 회절 격자로 이루어지고,
    상기 가열부는 상기 복수의 회절 격자의 각 회절 격자에 의해 선택된 각 파장이 서로 같아지도록 상기 복수의 회절 격자를 가열할 수 있게 구성되어 있는 것을 특징으로 하는
    가스 검지 장치.
  18. 제 17 항에 있어서,
    상기 가열부는 각각, 상기 복수의 회절 격자를 개별적으로 가열하는 복수의 가열부로 이루어지고,
    상기 복수의 가열부는 직렬로 접속되어 있는 것을 특징으로 하는
    가스 검지 장치.
  19. 제 11 항에 있어서,
    상기 가열부는 박막 저항으로 이루어지는 것을 특징으로 하는
    가스 검지 장치.
  20. 파장 가변 반도체 레이저 소자의 제조 방법에 있어서,
    반도체 기판의 윗쪽에 광을 생성하는 활성층과, 상기 활성층에서 생성되는 광 중에서 소정의 파장을 갖는 광을 선택하여 반사하는 회절 격자를 적어도 일부에 구비하고 있는 파장 제어 영역을 포함하는 광도파로를 형성하는 단계와,
    상기 광도파로의 윗쪽에 클래드 층을 형성하는 단계와,
    상기 클래드 층의 윗쪽에 절연막을 형성하는 단계와,
    상기 반도체 기판의 아래쪽에 제 1 구동용 전극을 형성하는 단계와,
    상기 클래드 층의 윗쪽에 제 2 구동용 전극을 형성하는 단계와,
    상기 절연막의 윗쪽에 상기 파장 제어 영역의 적어도 일부를 가열하기 위한 가열부를 형성하는 단계와,
    상기 가열부에 제 1 가열용 단자 및 제 2 가열용 단자를 형성하는 단계와,
    상기 제 2 구동용 전극과 상기 제 1 가열용 단자의 사이를 제 1 접속 선로로 접속하는 단계와,
    상기 제 1 구동용 전극과 상기 제 2 가열용 단자의 사이를 전원을 통해서 제 2 접속 선로로 접속하는 단계
    를 구비하며,
    상기 가열부를 거쳐서 직렬로 접속되어 있는 상기 제 1 및 제 2 접속 선로에 대하여 상기 전원으로부터 공급되는 전류를 가변함으로써, 상기 광도파로로부터 외부로 도출되는 광의 파장을 제어할 수 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  21. 제 20 항에 있어서,
    상기 파장 제어 영역은 상기 회절 격자로 이루어지는 분포 브래그 반사기 영역과, 이 분포 브래그 반사기 영역에 인접하는 위상 조정 영역으로 이루어지고,
    상기 가열부는 상기 위상 조정 영역의 적어도 일부를 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  22. 제 21 항에 있어서,
    상기 가열부는 또한 상기 분포 브래그 반사기 영역의 전 영역을 균일하게 가 열할 수 있도록 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법
  23. 제 20 항에 있어서,
    상기 파장 제어 영역은 하나의 상기 회절 격자로 이루어지고,
    상기 가열부는 상기 하나의 회절 격자 전 영역을 균일하게 가열할 수 있도록 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  24. 제 23 항에 있어서,
    상기 하나의 회절 격자는 상기 광도파로 전체에 걸쳐서 형성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  25. 제 23 항에 있어서,
    상기 하나의 회절 격자는 상기 광도파로의 일부에 형성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  26. 제 20 항에 있어서,
    상기 파장 제어 영역은 상기 광도파로의 복수의 개소에 형성되어 있는 복수의 회절 격자로 이루어지고,
    상기 가열부는 상기 복수의 회절 격자의 각 회절 격자에 의해 선택되는 각 파장이 서로 같아지도록, 상기 복수의 회절 격자를 가열할 수 있게 구성되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  27. 제 26 항에 있어서,
    상기 가열부는 각각, 상기 복수의 회절 격자를 개별적으로 가열하는 복수의 가열부로 이루어지고, 상기 복수의 가열부는 직렬로 접속되어 있는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
  28. 제 20 항에 있어서,
    상기 가열부는 박막 저항으로 이루어지는 것을 특징으로 하는
    파장 가변 반도체 레이저 소자의 제조 방법.
KR1020067024014A 2005-03-17 2006-03-17 파장 가변 반도체 레이저 소자 및 그 제조 방법과 그를 이용하는 가스 검지 장치 KR100799782B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005077373A JP4231854B2 (ja) 2005-03-17 2005-03-17 半導体レーザ素子及びガス検知装置
JPJP-P-2005-00077373 2005-03-17

Publications (2)

Publication Number Publication Date
KR20070015201A KR20070015201A (ko) 2007-02-01
KR100799782B1 true KR100799782B1 (ko) 2008-01-31

Family

ID=36991771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067024014A KR100799782B1 (ko) 2005-03-17 2006-03-17 파장 가변 반도체 레이저 소자 및 그 제조 방법과 그를 이용하는 가스 검지 장치

Country Status (6)

Country Link
US (1) US7620078B2 (ko)
EP (1) EP1737089B1 (ko)
JP (1) JP4231854B2 (ko)
KR (1) KR100799782B1 (ko)
CN (1) CN100481659C (ko)
WO (1) WO2006098427A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864824B2 (en) 2008-12-04 2011-01-04 Electronics And Telecommunications Research Institute Multiple distributed feedback laser devices
US8149890B2 (en) 2008-12-04 2012-04-03 Electronics And Telecommunications Research Institute Multiple distributed feedback laser devices

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231854B2 (ja) * 2005-03-17 2009-03-04 アンリツ株式会社 半導体レーザ素子及びガス検知装置
US20100168405A1 (en) 2006-08-11 2010-07-01 Toyo Boseki Kabushiki Kaisha Activator including biosurfactant as active ingredient, mannosyl erythritol lipid, and production method thereof
JP4850757B2 (ja) 2007-03-08 2012-01-11 日本電信電話株式会社 波長可変半導体レーザ素子及びその制御装置、制御方法
DE102007039219B4 (de) * 2007-08-20 2010-04-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Spektral abstimmbares Lasermodul
KR100959170B1 (ko) * 2008-02-26 2010-05-24 한국광기술원 금속 박막 히터가 집적되어 있는 자기 발진 다중 영역 dfb 레이저 다이오드의 제조방법
EP2402996A1 (en) * 2010-06-30 2012-01-04 Alcatel Lucent A device comprising an active component and associated electrodes and a method of manufacturing such device
JP5919682B2 (ja) * 2011-08-26 2016-05-18 富士通株式会社 半導体レーザ装置
DE102012202893B3 (de) * 2012-02-27 2013-01-17 Siemens Aktiengesellschaft Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas und Laserspektrometer
JP6155770B2 (ja) * 2013-03-29 2017-07-05 富士通株式会社 光素子及び光モジュール
USD734187S1 (en) * 2013-06-24 2015-07-14 New Cosmos Electric Co., Ltd. Gas detector
JP6277660B2 (ja) * 2013-10-16 2018-02-14 住友電気工業株式会社 全二重光トランシーバ
EP3075039B1 (en) * 2013-11-30 2021-09-01 Thorlabs Quantum Electronics, Inc. Tunable semiconductor radiation source
US9246307B1 (en) * 2014-10-08 2016-01-26 Futurewei Technologies, Inc. Thermal compensation for burst-mode laser wavelength drift
US9537287B2 (en) 2014-10-08 2017-01-03 Futurewei Technologies, Inc. Thermal compensation for burst-mode laser wavelength drift
CN112838472B (zh) 2015-03-06 2023-12-26 苹果公司 半导体激光器的发射波长和输出功率的独立控制
WO2016176364A1 (en) * 2015-04-30 2016-11-03 Apple Inc. Vernier effect dbr lasers incorporating integrated tuning elements
DE102015119226A1 (de) * 2015-11-09 2017-05-11 Osram Opto Semiconductors Gmbh Halbleiterlaserdiode
KR20180051196A (ko) * 2016-11-08 2018-05-16 삼성전자주식회사 분광기, 생체정보 측정 장치 및 방법
CN107093839B (zh) * 2017-06-14 2024-04-09 西安炬光科技股份有限公司 一种半导体激光器波长稳定系统和实现方法
CN113725725A (zh) 2017-09-28 2021-11-30 苹果公司 使用量子阱混合技术的激光架构
US11552454B1 (en) * 2017-09-28 2023-01-10 Apple Inc. Integrated laser source
CN108336634A (zh) * 2018-04-17 2018-07-27 大连藏龙光电子科技有限公司 应用于下一代pon技术的可调激光器发射端热沉
US11171464B1 (en) 2018-12-14 2021-11-09 Apple Inc. Laser integration techniques
CN111089850B (zh) * 2020-02-17 2021-09-28 北京航空航天大学 一种基于单一组分吸收光谱的多组分浓度的估计方法
KR102426648B1 (ko) 2020-10-20 2022-07-29 한국과학기술연구원 집적형 광음향 가스 센서 및 이의 제조방법
CN113625381B (zh) * 2021-10-08 2022-01-04 中国工程物理研究院流体物理研究所 一种可调面型体布拉格光栅及光谱成像仪
CN114199809B (zh) * 2021-11-23 2024-02-09 南京大学 单片集成红外激光气体检测装置
WO2023248412A1 (ja) * 2022-06-23 2023-12-28 日本電信電話株式会社 波長可変レーザ、波長可変レーザモジュールおよび波長可変レーザの層構造の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196587A (ja) * 1989-12-25 1991-08-28 Mitsubishi Electric Corp 電極分割型半導体レーザ
JPH0936495A (ja) * 1995-07-21 1997-02-07 Nec Corp 光通信等に用いる波長可変半導体レーザ
JP2003318483A (ja) * 2002-02-19 2003-11-07 Mitsubishi Electric Corp 波長可変半導体レーザ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152424B2 (ja) 1990-07-13 2001-04-03 株式会社日立製作所 波長可変半導体レーザ
JP2804838B2 (ja) * 1990-10-11 1998-09-30 国際電信電話株式会社 波長可変半導体レーザ
JP2536390B2 (ja) 1993-04-21 1996-09-18 日本電気株式会社 半導体レ―ザおよびその製造方法
JP3990745B2 (ja) 1995-09-06 2007-10-17 アンリツ株式会社 半導体光モジュール
JP2001142037A (ja) * 1999-11-17 2001-05-25 Oki Electric Ind Co Ltd 電界効果型光変調器および半導体光素子の製造方法
WO2002058197A2 (en) * 2000-10-30 2002-07-25 Santur Corporation Laser thermal tuning
JP3773880B2 (ja) 2002-06-27 2006-05-10 アンリツ株式会社 分布帰還型半導体レーザ
US20040190580A1 (en) * 2003-03-04 2004-09-30 Bardia Pezeshki High-yield high-precision distributed feedback laser based on an array
JP2005106521A (ja) 2003-09-29 2005-04-21 Anritsu Corp 半導体レーザユニット及びガス濃度測定装置
JP4231854B2 (ja) * 2005-03-17 2009-03-04 アンリツ株式会社 半導体レーザ素子及びガス検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196587A (ja) * 1989-12-25 1991-08-28 Mitsubishi Electric Corp 電極分割型半導体レーザ
JPH0936495A (ja) * 1995-07-21 1997-02-07 Nec Corp 光通信等に用いる波長可変半導体レーザ
JP2003318483A (ja) * 2002-02-19 2003-11-07 Mitsubishi Electric Corp 波長可変半導体レーザ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864824B2 (en) 2008-12-04 2011-01-04 Electronics And Telecommunications Research Institute Multiple distributed feedback laser devices
US8149890B2 (en) 2008-12-04 2012-04-03 Electronics And Telecommunications Research Institute Multiple distributed feedback laser devices

Also Published As

Publication number Publication date
CN1957508A (zh) 2007-05-02
EP1737089A1 (en) 2006-12-27
JP2006261424A (ja) 2006-09-28
EP1737089A4 (en) 2011-02-02
EP1737089B1 (en) 2011-12-21
KR20070015201A (ko) 2007-02-01
CN100481659C (zh) 2009-04-22
US7620078B2 (en) 2009-11-17
WO2006098427A1 (ja) 2006-09-21
US20090086206A1 (en) 2009-04-02
JP4231854B2 (ja) 2009-03-04

Similar Documents

Publication Publication Date Title
KR100799782B1 (ko) 파장 가변 반도체 레이저 소자 및 그 제조 방법과 그를 이용하는 가스 검지 장치
US8101957B2 (en) Optical semiconductor device, laser chip and laser module
US6785306B2 (en) Wavelength-tunable stabilizer laser
US6822982B2 (en) Device and method for providing a tunable semiconductor laser
US10965094B2 (en) Wavelength-tunable laser device
US9065251B2 (en) Wavelength monitor, wavelength lockable laser diode and method for locking emission wavelength of laser diode
US20140247844A1 (en) Wavelength tunable semiconductor laser having two difractive grating areas
US11909174B2 (en) Reflection filter device and wavelength-tunable laser device
US8279907B2 (en) Semiconductor laser device and method for controlling semiconductor laser
JP2004047638A (ja) 波長可変半導体レーザの波長制御装置および方法
WO2016152274A1 (ja) 波長可変レーザ素子およびレーザモジュール
JP2019087572A (ja) 波長可変光源、及び光半導体装置
JP2005229011A (ja) 波長可変半導体レーザ及びガス検知装置
US8194710B2 (en) Semiconductor laser with heater
US7362782B2 (en) Optical semiconductor device and controlling method of the same
US7656927B2 (en) Optical semiconductor element and optical semiconductor device
JP6308089B2 (ja) 光半導体装置の制御方法
JP6540097B2 (ja) 波長可変レーザ装置
JP2010212282A (ja) 光増幅装置及び光増幅方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee