이후부터, 본 발명은 상세하게 설명될 것이다.
본 발명의 미생물은,
(1) 포화 농도의 L-글루타민산 및 탄소원을 함유하는 액체 배지중 특정 pH에서 탄소원을 대사할 수 있고;
(2) 상기 pH의 액체 배지에서 포화 농도에 상응하는 양을 초과하는 양으로 L-글루타민산을 축적시키는 능력을 갖는 미생물이다.
용어 "포화 농도"는 액체 배지가 L-글루타민산으로 포화되는 경우 액체 배지내에 용해된 L-글루타민산의 농도를 의미한다.
이후부터, 포화 농도의 L-글루타민산 및 탄소원을 함유하는 액체 배지중 특정 pH에서 탄소원을 대사할 수 있는 미생물을 스크리닝하는 방법이 기술된다. 미생물을 함유하는 샘플을 포화 농도의 L-글루타민산 및 탄소원을 함유하는 특정 pH의 액체 배지에 접종하고 탄소원을 대사할 수 있는 균주를 선별한다. 특정 pH는 특별히 제한되지는 않지만 보통 약 5.0 이하, 바람직하게는 약 4.5 이하, 보다 바람직하게는 약 4.3 이하이다. 본 발명의 미생물을 사용하여 L-글루타민산을 침전시키면서 발효에 의해 L-글루타민산을 생산한다. pH가 너무 높으면 미생물은 침전시키기에 충분한 L-글루타민산을 생산하기가 어려워진다. 따라서, pH는 바람직하게 상기 언급된 범위내에 있다.
L-글루타민산을 함유하는 수용액의 pH가 낮아진 경우, L-글루타민산의 용해도가 γ-카복실 그룹의 pKa(4.25, 25℃) 값 근처에서 상당히 저하된다. 용해도는 등전점(pH 3.2)에서 가장 낮아지게 되고 포화 농도에 상응하는 양을 초과하는 L-글루타민산이 침전한다. 이것은 배지 조성에 좌우되고 통상적으로 L-글루타민산은 약 30℃에서, pH 3.2에서 10 내지 20g/L, pH 4.0에서 30 내지 40g/L 및 pH 4.7에서 50 내지 60g/L의 양으로 용해된다. 통상적으로, pH는 3.0 미만으로 될 필요는 없는데 이것은 pH가 특정 수치이하로 낮아지는 경우 L-글루타민산의 침전효과가 정체기에 이르기 때문이다. 그러나 pH는 3.0 미만일 수 있다.
추가로, 미생물이 탄소원을 대사할 수 있다는 표현은 증식할 수 있거나, 증식할 수는 없지만 탄소원을 소비할 수 있다는 것을 의미하고, 즉 이것은 사카라이드 또는 유기산과 같은 탄소원을 분해할 수 있다는 것을 나타낸다. 특히, 포화 농도의 L-글루타민산을 함유하는 액체 배지 중에서 예를 들어, 2 내지 4일동안 적당한 온도, 예를 들어, 28℃, 37℃ 또는 50℃에서 pH 5.0 내지 4.0, 바람직하게 pH 4.5 내지 4.0, 보다 바람직하게 pH 4.3 내지 4.0, 보다 더욱 바람직하게 pH 4.0에서 배양할 때 미생물이 증식하는 경우에는 상기 미생물은 배지내 탄소원을 대사할 수 있다. 추가로, 포화 농도의 L-글루타민산을 함유하는 액체 배지 중에서 예를 들어, 2 내지 4일동안 적당한 온도, 예를 들어, 28℃, 37℃ 또는 50℃에서 pH 5.0 내지 4.0, 바람직하게 pH 4.5 내지 4.0, 보다 바람직하게 pH 4.3 내지 4.0에서, 더욱 바람직하게 pH 4.0에서 배양될 때 미생물이 증식하지 않더라도, 배지의 탄소원을 소비하는 미생물은 배지내 탄소원을 대사할 수 있는 것이다.
탄소원을 대사할 수 있는 미생물은 액체 배지에서 증식할 수 있는 미생물을 포함한다.
미생물이 성장할 수 있다는 표현은 증식할 수 있거나 증식할수 없는 경우에도 L-글루타민산을 생산할 수 있다는 것을 의미한다. 특히 L-글루타민산을 함유하는 액체 배지 중에서 예를 들어, 특히, 예를 들어, 2 내지 4일동안 적당한 온도, 예를 들어, 28℃, 37℃ 또는 50℃에서 pH 5.0 내지 4.0, 바람직하게 pH 4.5 내지 4.0, 보다 바람직하게 pH 4.3 내지 4.0, 보다 더욱 바람직하게 pH 4.0에서 배양할 때 미생물이 증식하는 경우에는 상기 미생물은 당해 배지 내에서 성장할 수 있다. 추가로, 포화 농도의 L-글루타민산을 함유하는 액체 배지 중에서 예를 들어, 2 내지 4일동안 적당한 온도, 예를 들어, 28℃, 37℃ 또는 50℃에서 pH 5.0 내지 4.0, 바람직하게 pH 4.5 내지 4.0, 보다 바람직하게 pH 4.3 내지 4.0, 보다 더욱 바람직하게 pH 4.0에서 배양될 때 미생물이 증식하지 않더라도, 배지에서 L-글루타민산의 양을 증가시키는 미생물은 배지 내에서 성장할 수 있는 것이다.
상기 기술된 선별은 동일한 조건하에서 또는 pH 또는 L-글루타민산의 농도를 변화시키면서 2회이상 반복할 수 있다. 처음에는 포화 농도보다 낮은 농도의 L-글루타민산을 함유하는 배지에서 선별할 수 있고 이후부터 포화 농도의 L-글루타민산을 포함하는 배지에서 연속적으로 선별할 수 있다. 추가로 보다 우수한 증식 속도와 같은 선호되는 성질을 갖는 균주를 선별할 수 있다.
상기 기술된 성질 외에도 본 발명의 미생물은 액체 배지에서 L-글루타민산의 포화 농도에 상응하는 양을 초과하는 양으로 L-글루타민산을 축적시키는 능력을 갖는다. 상기 언급된 액체 배지의 pH는 바람직하게 상기 언급된 성질(1)을 갖는 미생물을 스크리닝하는데 사용되는 배지의 pH와 동일하거나 이와 유사하다. 통상적으로, 미생물은 pH가 보다 저하됨에 따라 고농도의 L-글루타민산에 민감해진다.
따라서, pH는 L-글루타민산에 대한 내성의 관점에서 pH는 낮지 않은것이 바람직하지만 이를 침전시키면서 L-글루타민산을 생산하는 관점에서는 낮은 pH가 바람직하다. 이들 조건을 만족시키기 위해 pH는 3 내지 5의 범위, 바람직하게 4 내지 5, 보다 바람직하게는 4.0 내지 4.7, 여전히 보다 바람직하게는 4.0 내지 4.5, 특히 바람직하게는 4.0 내지 4.3의 범위에 있을 수 있다.
본 발명의 미생물 또는 이를 위한 증식 매체로서, 예를 들어, 엔테로박터, 클렙시엘라, 세라티아, 판토에아, 에르위니아, 에스케리치아, 코리네박테리움, 알리사이클로바실러스(Alicyclobacillus), 바실러스 및 사카로마이세스 속에 속하는 미생물이 언급될 수 있다. 이들 중에서, 엔테로박터 속에 속하는 미생물이 바람직하다. 이후부터, 본 발명의 미생물은 엔테로박터 속에 속하는 미생물을 위주로 설명될 것이지만 본 발명은 또 다른 속에 속하는 미생물에 적용될 수 있고 엔테로박터 속에 제한되지 않는다.
엔테로박터에 속하는 미생물로서, 특히 엔테로박터 애글로메란스, 바람직하게 엔테로박터 애글로메란스 AJ13355 균주가 언급될 수 있다. 낮은 pH에서 L-글루타민산 및 탄소원을 함유하는 배지에서 증식할 수 있는 균주로서, 상기 균주를 일본 시주오카 이와타시의 토양으로부터 분리한다.
AJ13355의 생리학적 특성은 다음과 같다:
(1) 그람 염색: 음성
(2) 산소에 대한 행태: 통성(facultative) 혐기성
(3) 카탈라제: 양성
(4) 옥시다제: 음성
(5) 질산-환원 활성: 음성
(6) 보게스-프로스카우어 시험(Voges-Proskauer test): 양성
(7) 메틸 레드 시험: 음성
(8) 우레아제: 음성
(9) 인돌 생산; 양성
(10) 운동성: 운동
(11) TSI 배지에서의 H2S 생산: 약한 활성
(12) β-갈락토시다제: 양성
(13) 사카라이드-동화 성질:
아라비노스: 양성
슈크로스: 양성
락토스: 양성
크실로스: 양성
소르비톨: 양성
이노시톨: 양성
트레할로스: 양성
말토스: 양성
글루코스: 양성
아도니톨: 음성
라피노스: 양성
살리신: 음성
멜리비오스: 양성
(14) 글리세롤-동화 성질: 양성
(15) 유기산-동화 성질:
시트르산: 양성
타르타르산: 음성
글루콘산: 양성
아세트산: 양성
말론산: 음성
(16) 아르기닌 데하이드라타제: 음성
(17) 오르니틴 데카복실라제: 음성
(18) 라이신 데카복실라제: 음성
(19) 페닐알라닌 데아미나제: 음성
(20) 색소 형성: 황색
(21) 젤라틴 액화 능력: 양성
(22) 증식 pH: pH 4.0에서 증식 가능, pH 4.5 내지 7에서 우수한 증식
(23) 증식 온도: 25℃에서 우수한 증식, 30℃에서 우수한 증식, 37℃에서 우수한 증식, 42℃에서 증식 가능, 45℃에서 증식 불가능.
이들 세균학적 성질을 토대로, AJ13355는 엔테로박터 애글로메란스인 것으로 판명되었다.
엔테로박터 애글로메란스 AJ13355는 1998년 2월 19일자로 국제 통상부 장관 산하 통상산업성 공업기술원 생명공학공업기술연구소[우편번호: 305-8566, 주소: Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan]에 기탁되었고 수탁번호 FERM P-16644를 부여받았다. 이후 1999년 1월 11일자로 부다페스트 조약하에 국제기탁물로 이관되어 수탁번호 FERM BP-6614를 부여받았다.
본 발명의 미생물은 본래에 L-글루타민산-생산 능력을 갖는 미생물이거나 돌연변이 처리 및 재조합 DNA 기술 등을 사용하여 개량시킴에 의해 L-글루타민산-생산 능력이 부여되거나 증진된 미생물일 수 있다.
L-글루타민산-생산 능력은 예를 들어, L-글루타민산의 생합성을 위한 반응을 촉매하는 효소의 활성을 증가시킴에 의해 부여되거나 증진될 수 있다. L-글루타민산-생산 능력은 또한 L-글루타민산의 생합성 경로로부터 분기되어 L-글루타민산 이외의 화합물을 생산하는 반응을 촉매하는 효소의 활성을 저하시키거나 이의 활성이 결핍되게함으로써 증진될 수 있다.
L-글루타민산의 생합성을 위한 반응을 촉매하는 효소로서, 글루타메이트 데하이드로게나제(이후부터, 또한 "GDH"로서 언급됨), 글루타민 신테타제, 글루타메이트 신타제, 이소시트레이트 데하이드로게나제, 아코니테이트 하이드라타제, 시트레이트 신타제(이후부터, 또한 "CS"로서 언급됨), 포스포에놀피루베이트 카복실라제(이후부터, 또한 "PEPC"로서 언급됨), 피루베이트 데하이드로게나제, 피루베이트 키나제, 에놀라제, 포스포글리세로뮤타제, 포스포글리세레이트 키나제, 글리세르알데하이드-3-포스페이트 데하이드로게나제, 트리오스포스페이트 이소머라제, 프럭토스 비스포스페이트 알도라제, 포스포프럭토키나제 및 글루코스 포스페이트 이소머라제 등이 언급될 수 있다. 이들 효소중에서 2개 또는 3개의 CS, PEPC 및 GDH가 바람직하다. 추가로 모든 3개의 효소 CS, PEPC 및 GDH의 활성은 본 발명의 미생물에서 증진되는 것이 바람직하다. 특히, 브레비박테리움 락토퍼멘툼(Brevibacterium lactofermentum)의 CS가 바람직한데 그 이유는 α-케토글루타르산, L-글루타민산 및 NADH에 의해 억제되지 않기 때문이다.
CS, PEPC 또는 GDH의 활성을 증진시키기 위해, 예를 들어, CS, PEPC 또는 GDH를 암호화하는 유전자가 적당한 플라스미드상에 클로닝될 수 있고 숙주 미생물은 수득된 플라스미드로 형질전환될 수 있다. 형질전환된 균주 세포에서 CS, PEPC 또는 GDH를 암호화하는 유전자(이후부터, 각각 "gltA 유전자", "ppc 유전자" 및 "gdhA 유전자"로서 약칭됨)의 복사체 수가 증가하여 CS, PEPC 또는 GDH의 활성을 증가시킨다.
클로닝된 gltA 유전자, ppc 유전자 및 gdhA 유전자는 상기 언급된 출발 모균주로 단독으로 또는 임의로 2개 또는 3개 종류와 배합된 상태로 도입된다. 2개 또는 3개 종류의 유전자가 도입되는 경우, 2개 또는 3개 종류의 유전자는 한 종류의 플라스미드로 클로닝되어 숙주로 도입되거나 공존할 수 있는 2개 또는 3개 종류의 플라스미드에 별도로 클로닝되어 숙주로 도입된다.
동일한 종류이지만 상이한 미생물로부터 유래된 효소를 암호화하는 2종 이상의 유전자는 동일한 숙주로 도입될 수 있다.
상기 기술된 플라스미드는 예를 들어, 엔테로박터 속 등에 속하는 미생물의 세포에서 자발적으로 복제할 수 있는 한 특별히 제한되지 않지만 예를 들어 pUC19, pUC18, pBR322, pHSG299, pHSG298, pHSG399, pHSG398, RSF1010, pMW119, pMW118, pMW219, pMW218, pACYC177, pACTC184 등이 언급될 수 있다. 이들 뿐만 아니라 파아지 DNA의 벡터가 또한 사용될 수 있다.
형질전환은 예를 들어 문헌[참조: D.M. Morrison(Methods in Enzymology 68, 326(1979)]에 기술된 방법, 수용성 세균 세포를 염화칼슘으로 처리하여 DNA 침투성을 증가시키는 방법[문헌참조: Mandel M. and Higa A., J. Mol. Biol., 53, 159(1970)], 전기천공[문헌참조: Miller J.H., "A Short Course in Bacterial Genetics", Cold Spring Harbor Laboratory Press, U.S.A. 19920] 등에 의해 수행될 수 있다.
CS, PEPC 또는 GDH의 활성은 또한 gltA 유전자, ppc 유전자 또는 gdhA 유전자가 숙주인 상기 언급된 출발 모균주의 염색체 DNA상에 다중 복사체로 존재하게 함으로써 증진될 수 있다. 엔테로박터 속 등에 속하는 미생물의 염색체 DNA 상에 gltA 유전자, ppc 유전자 또는 gdhA 유전자의 다중 복사체를 도입하기 위해, 염색체 DNA상에 존재하는 다중 복사체의 서열, 예를 들어, 전위가능 요소의 말단에 존재하는 반복 DNA 및 역위된 반복체(inverted repeat)가 사용될 수 있다.
또한, 유전자의 다중 복사체는 gltA 유전자, ppc 유전자 또는 gdhA 유전자를 포함하는 트랜스포존(transposon)의 전이를 사용함으로써 염색체 DNA상으로 도입될 수 있다. 결과로서, 형질전환된 숙주 세포내 gltA 유전자, ppc 유전자 또는 gdhA 유전자의 복사체 수는 증가되고 이어서 CS, PEPC 또는 GDH의 활성은 증진된다.
복사체 수가 증가된 gltA 유전자, ppc 유전자 또는 gdhA 유전자의 공급원인 미생물로서, CS, PEPC 또는 GDH의 활성을 갖는한 어떠한 미생물도 사용될 수 있다. 특히, 원핵 세균, 예를 들어, 엔테로박터, 클렙시엘라, 에르위니아, 판토에아, 세라티아, 에스케리치아, 코리네박테리움, 브레비박테리움 및 바실러스 속에 속하는 미생물이 바람직하다. 특정 예로서, 에스케리치아 콜리, 브레비박테리움 락토퍼멘툼 등이 언급될 수 있다. gltA 유전자, ppc 유전자 및 gdhA 유전자는 상기 언급된 미생물의 염색체 DNA로부터 수득될 수 있다.
gltA 유전자, ppc 유전자 및 gdhA 유전자는 영양 요구성을 보완하는 DNA 단편을 상기 언급된 미생물의 염색체 DNA로부터 분리하기 위해 CS, PEPC 또는 GDH의 활성이 결핍된 돌연변이 균주를 사용하여 수득될 수 있다. 에스케리치아 및 코리네박테리움 세균에 있어서 이들 유전자의 뉴클레오타이드 서열이 이미 밝혀졌기 때문에[문헌참조: Biochemistry, 22, pp. 5243-5249(1983; J. Biochem., 95, pp. 909-916(1984); Gene, 27, pp. 193-199(1984); Microbiology, 140, pp. 1817-1828(1994); Mol. Gen, Genet., 218, pp. 330-339(1989); Molecular Microbiology, 6, pp. 317-326(1992)], 이들은 또한 각각의 뉴클레오타이드 서열을 토대로 합성된 프라이머 및 주형으로서 염색체 DNA를 사용하는 PCR 반응에 의해 수득될 수 있다.
CS, PEPC 또는 GDH의 활성은 또한 상기 언급된 유전자의 증폭 뿐만 아니라 gltA 유전자, ppc 유전자 또는 gdhA 유전자의 발현을 증가시킴으로써 증진될 수 있다. 예를 들어, gltA 유전자, ppc 유전자 또는 gdhA 유전자의 프로모터를 또 다른 강한 프로모터로 대체함으로써 발현이 증진될 수 있다. 예를 들어, lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지의 PR 프로모터 및 PL 프로모터 등이 강한 프로모터로서 공지되어 있다. 프로모터가 대체된 gltA 유전자, ppc 유전자 및 gdhA 유전자를 플라스미드상에 클로닝하고 숙주 미생물에 도입시키거나, 또는 반복성 DNA, 역위된 반복체, 트랜스포존 등을 사용하여 숙주 미생물의 염색체 DNA상으로 도입시킨다.
CS, PEPC 또는 GDH의 활성은 염색체상의 gltA 유전자, ppc 유전자 또는 gdhA 유전자의 프로모터를 강한 프로모터로 대체하거나[문헌참조: WO 87/03006 및 일본 특허원 공개공보 제61-268183호], 각각의 유전자의 암호 서열의 상부에 강한 프로모터를 삽입시킴으로써[문헌참조: Gene, 29, pp. 231-241(1984)] 증진될 수 있다. 특히 상동성 재조합은 프로모터가 강한 프로모터 또는 이의 일부로 대체된 gltA 유전자, ppc 유전자 또는 gdhA 유전자 및 염색체상의 상응하는 유전자를 포함하는 DNA간에 수행될 수 있다.
L-글루타민산의 생합성 경로로부터 분기되어 L-글루타민산 이외의 화합물을 생산하는 반응을 촉매하는 효소의 예는 α-케토글루타레이트 데하이드로게나제(이후부터, 또한 "αKGDH), 이소시트레이트 리아제, 포스페이트 아세틸트랜스퍼라제, 아세테이트 키나제, 아세토하이드록산 신타제, 아세토락테이트 신타제, 포르메이트 아세틸트랜스퍼라제, 락테이트 데하이드로게나제, 글루타메이트 카복실라제 및 1-피롤린 데하이드로게나제 등을 포함한다. 이들 효소중에서 αKGDH가 바람직하다.
엔테로박터 속 등에 속하는 미생물내 상기 언급된 효소의 활성을 감소시키거나 결핍시키기 위해, 효소의 세포내 활성을 감소시키거나 결핍시키는 돌연변이가 통상적인 돌연변이 유발 또는 유전공학 방법에 의해 상기 언급된 효소의 유전자에 도입될 수 있다.
돌연변이 유발 방법의 예는 예를 들어, X-선 또는 자외선으로 조사시키는 방법, N-메틸-N'-니트로-N-니트로소구아니딘 등과 같은 돌연변이 유발제로 처리시키는 방법을 포함한다. 돌연변이가 유전자로 도입된 부위는 효소 단백질을 암호화하는 암호 영역 또는 프로모터와 같은 발현을 조절하는 영역에 있을 수 있다.
유전공학 방법의 예는 예를 들어, 유전자 재조합, 형질도입 및 세포 융합 등을 포함한다. 예를 들어, 약제 내성 유전자는 클로닝된 유전자에 삽입되어 이의 기능을 상실한 유전자(결함 유전자)를 형성한다. 이어서, 상기 결함 유전자는 숙주 미생물의 세포에 도입되고 염색체상의 표적 유전자는 상동성 재조합을 사용하여 상기 언급된 결함 유전자로 대체된다(유전자 파괴).
표적 효소의 세포내 활성의 감소 또는 결핍 및 활성이 감소하는 정도는 후보 균주로부터 수득된 이의 세포 추출물 또는 정제된 분획의 효소 활성을 측정하고 야생형 균주의 활성과 비교함으로써 결정될 수 있다. 예를 들어, αKGDH 활성은 문헌[참조: Reed L.J. and Mukherjee B.B., Methods in Enzymology, 13, pp. 55- 61(1969)]의 방법에 의해 측정될 수 있다.
표적 효소에 따라, 표적 돌연변이 균주는 돌연변이 균주의 표현형을 토대로 선별될 수 있다. 예를 들어, αKGDH 활성이 결핍되거나 αKGDH 활성이 감소된 돌연변이 균주는 호기적 조건하에서 유일한 탄소원으로서 글루코스를 포함하는 최소 배지 또는 유일한 탄소원으로서 아세트산 또는 L-글루타민산을 포함하는 최소 배지에서 증식할 수 없거나 현저히 감소된 증식 속도를 나타낸다. 그러나, 동일한 조건하에서 숙신산 또는 라이신, 메티오닌 및 디아미노피멜산을, 글루코스를 포함하는 최소배지에 첨가함으로써 동일한 조건하에서 정상적인 증식이 가능하게 된다. 이들 현상을 지표로서 사용함으로써 αKGDH 활성이 감소되거나 이의 활성이 결핍된 돌연변이 균주가 선별될 수 있다.
상동성 재조합을 사용함에 의해 브레비박테리움 락토퍼멘툼의 αKGDH 유전자 결핍 균주를 제조하는 방법은 문헌[참조: WO 95/34672]에 기술되어 있다. 유사한 방법이 또 다른 미생물에 적용될 수 있다.
추가로, 유전자의 클로닝 및 DNA의 절단 및 연결, 형질전환 등과 같은 기술은 문헌[참조: Molecular Cloning, 2nd Edition, Cold Spring Harbor Press, 1989]에 상세하게 기술되어 있다.
상기 기술된 바와 같이 수득된 αKGDH 활성이 감소되거나 αKGDH 활성이 결핍된 돌연변이 균주의 특정 예로서, 엔테로박터 애글로메란스 AJ13356이 언급될 수 있다. 엔테로박터 애글로메란스 AJ13356은 산업 통상부 장관 산하의 통상산업성 공업기술원 생명공학공업기술연구소[우편번호: 305-8566, 주소: 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan]에 1998년 2월 19일자로 기탁되었고 수탁번호 FERM P-16645를 부여받았다. 이어서 1999년 1월 11일자로 부다페스트 조약하에 국제기탁물로 이관되었고 수탁번호 FERM BP-6615를 부여받았다. αKGDH-E1 서브유니트 유전자(sucA)를 파괴한 결과로서 엔테로박터 애글로메란스 AJ13356은 αKGDH 활성이 결핍되어 있다.
본 발명에 사용되는 미생물의 예인 엔테로박터 애글로메란스가 사카라이드를 포함하는 배지에서 배양되는 경우, 점성 물질은 세포외로 분비되어 작동 효율성을 감소시킨다. 따라서, 점성 물질을 분비하는 상기 성질을 갖는 엔테로박터 애글로메란스를 사용하는 경우 야생형 균주와 비교하여 점성 물질을 덜 분비하는 돌연변이 균주를 사용하는 것이 바람직하다. 돌연변이 유발 방법의 예는 예를 들어, X 선 또는 자외선으로 조사시키는 방법, N-메틸-N'-니트로-N-니트로소구아니딘 등과 같은 돌연변이 유발제로 처리하는 방법을 포함한다. 점성 물질의 분비가 감소된 돌연변이 균주는 사카라이드를 포함하는 배지, 예를 들어, 5g/L의 글루코스를 포함하는 LB 배지 플레이트에 돌연변이된 세균 세포를 접종하고 이들을 약 45도 정도로 기울여 배양하고 액체가 흘러 내려가지 않는 콜로니를 선별하여 선별될 수 있다.
본 발명에서, L-글루타민산-생산능의 부여 또는 증진 및 상기 기술된 바와같이 점성물질을 덜 분비하는 돌연변이와 같은 다른 선호되는 성질의 부여는 임의의 순서대로 수행될 수 있다.
L-글루타민산이 침전되는 pH로 pH가 조정된 액체 배지에서 본 발명의 미생물을 배양함에 의해 L-글루타민산이 생산될 수 있고 이것은 배지내에 침전되면서 축적된다. L-글루타민산은 또한 중성 pH에서 배양을 개시하고 나서, L-글루타민산이 침전되는 pH에서 배양을 종료함으로써 침전될 수 있다.
L-글루타민산이 침전되는 pH는 미생물이 L-글루타민산을 생산하고 축적하는 경우 L-글루타민산이 침전되는 pH를 의미한다.
상기 언급된 배지로서, 탄소원, 질소원, 광물염 및 미량의 유기 영양분(예: 요구되는 아미노산 및 비타민)을 함유하는 통상적인 영양 배지가 L-글루타민산이 침전되는 pH로 pH가 조정되는 한 사용될 수 있다. 합성 배지 또는 천연 배지중 하나가 사용될 수 있다. 배지에서 사용되는 탄소원 및 질소원은 이들이 배양된 균주에 의해 이용될 수 있는 한 임의의 하나 일 수 있다.
탄소원으로서, 글루코스, 글리세롤, 프럭토스, 슈크로스, 말토스, 만노스, 갈락토스, 전분 가수분해물 및 당밀과 같은 사카라이드가 사용된다. 추가로, 아세트산 및 시트르산과 같은 유기산이 단독으로 또는 또 다른 탄소원과 배합되어 사용될 수 있다.
질소원으로서, 암모니아, 황산암모늄, 탄산암모늄, 염화암모늄, 인산암모늄 및 아세트산 암모늄, 질산염 등이 사용된다.
미량 유기 영양분으로서, 아미노산, 비타민, 지방산, 핵산, 이들 물질을 포함하는 물질, 예를 들어, 펩톤, 카사미노산, 효모 추출물 및 콩 단백질 분해 산물이 사용된다. 대사 작용 또는 증식을 위해 아미노산 등을 요구하는 영양 요구성 돌연변이 균주를 사용하는 경우 요구되는 영양분이 보충되어야만 한다.
광물염으로서, 인산염, 마그네슘염, 칼슘염, 철염, 망간염 등이 사용된다.
배양 방법에 대해, 통상적으로 발효 온도를 20 내지 42℃로 조절하고 pH를 3 내지 5, 바람직하게는 4 내지 5, 보다 바람직하게는 4 내지 4.7, 특히 바람직하게는 4 내지 4.5가 되도록 조정하면서 통기적 배양을 수행한다. 이어서, 배양한지 약 10 시간 내지 4일후에, 상당한 양의 L-글루타민산이 배양물에 축적된다. 포화 농도에 상응하는 양을 초과하는 양으로 축적된 L-글루타민산은 배지내에서 침전된다.
배양을 종결한 후에, 배양물 내에 침전된 L-글루타민산은 원심분리 또는 여과에 의해 수거될 수 있다. 배지에 용해된 L-글루타민산은 공지된 방법에 따라 수거될 수 있다. 예를 들어, 배양액을 농축시켜 결정화함으로써 L-글루타민산을 분리하거나 이온 교환 크로마토그래피로 분리할 수 있다. 배양액내에 침전된 L-글루타민산은 이것이 결정화된후에 배지에서 용해된 L-글루타민산과 함께 분리될 수 있다.
본 발명의 방법에 따라, 포화 농도에 상응하는 양을 초과하는 L-글루타민산을 침전시키고 배지에 용해된 L-글루타민산의 농도를 일정한 수준으로 유지한다. 따라서, 고농도의 L-글루타민산이 미생물에 미치는 영향이 감소될 수 있다. 따라서, 추가의 개선된 L-글루타민산 생산능을 갖는 미생물을 개량하는 것이 가능하게된다. 추가로, L-글루타민산이 결정으로 침전되기 때문에, L-글루타민산의 축적에 의한 배양액의 산성화가 억제되고 따라서 배양의 pH를 유지하기 위해 사용되는 알칼리 양이 상당히 감소될 수 있다.
실시예
이후부터, 본 발명은 하기 실시예를 참조하여 보다 구체적으로 설명될 것이다.
<1> 산성 환경에서 L-글루타민산 내성을 갖는 미생물의 스크리닝
산성 환경에서, L-글루타민산 내성을 갖는 미생물의 스크리닝은 하기와 같이 수행하였다. 토양, 과일, 식물체, 강물을 포함한 천연으로부터 수득된 약 500개의 1g 양의 샘플 각각을 멸균수 5ml에 현탁시키고 이중 200μL를 HCl로 pH를 pH 4.0으로 조정된 20mL의 고체 배지상에 코팅시켰다. 배지의 조성은 하기와 같다: 3g/L의 글루코스, 1g/L의 (NH4)2SO4, 0.2g/L의 MgSO4ㆍ7H2O, 0.5g/L의 KH2PO4, 0.2g/L의 NaCl, 0.1g/L의 CaCl2ㆍ7H2O, 0.01g/L의 FeSO4ㆍ7H2O, 0.01g/L의 MnSO4ㆍ4H2O, 0.72mg/L의 ZnSO4ㆍ2H2O, 0.64mg/L의 CuSO4ㆍ5H2O, 0.72mg/L의 CoCl2ㆍ6H2O, 0.4mg/L의 붕소산, 1.2mg/L의 Na2MoO4ㆍ2H2O, 50㎍/L의 비오틴, 50㎍/L의 칼슘 판토테네이트, 50㎍/L의 폴산, 50㎍/L의 이노시톨, 50㎍/L의 니아신, 50㎍/L의 p-아미노벤조산, 50㎍/L의 피리독신 염화수소, 50㎍/L의 리보플라빈, 50㎍/L의 티아민 염화수소, 50mg/L의 사이클로헥시미드, 20g/L의 한천.
상기 샘플이 도말된 배지를 2 내지 4일동안 28℃, 37℃ 또는 50℃에서 배양하고 각각 하나의 콜로니를 형성하는 378개의 균주를 수득하였다.
이어서, 상기 기술된 바와 같이 수득된 균주 각각을 포화 농도의 L-글루타민산을 함유하는 액체 배지 3mL을 포함하는 길이 16.5cm 및 직경 14mm의 시험 튜브에 접종하고 28℃, 37℃ 또는 50℃에서 진탕시키면서 24시간 내지 3일 동안 배양하였다. 이어서, 증식된 균주를 선별하였다. 상기 언급된 배지의 조성은 다음과 같다: 40g/L의 글루코스, 20g/L의 (NH4)2SO4, 0.5g/L의 MgSO4ㆍ7H2O, 2g/L의 KH2PO4, 0.5g/L의 NaCl, 0.25g/L의 CaCl2ㆍ7H2O, 0.02g/L의 FeSO4ㆍ7H2O, 0.02g/L의 MnSO4ㆍ4H2O, 0.72mg/L의 ZnSO4ㆍ2H2O, 0.64mg/L의 CuSO4ㆍ5H2O, 0.72mg/L의 CoCl2ㆍ6H2O, 0.4mg/L의 붕소산, 1.2mg/L의 Na2MoO4ㆍ2H2O, 2g/L의 효모 추출물.
이어서, 산성 환경에서 L-글루타민산 내성을 갖는, 78개의 미생물 균주를 성공적으로 수득하였다.
<2> L-글루타민산 내성을 갖는 미생물로부터 산성환경에서 보다 우수한 증식 속도를 갖는 균주의 선별
상기 기술된 바와 같이 수득된 산성 환경에서 L-글루타민산 내성을 갖는 다양한 미생물을 20g/L의 글루타민산 및 2g/L의 글루코스를 M9 배지[문헌참조: Sambrook, J., Fritsh, E.F. and Maniatis, T., "Molecular Cloning", Cold Spring Harbor Laboratory Press, 1989]에 첨가함에 의해 수득된 배지(HCl로 pH 4.0으로 조정됨) 3ml을 포함하는, 길이 16.5cm 및 직경 14mm의 시험관에 접종하고 우수한 증식 속도를 갖는 균주를 선별하는 시간 동안에 배지의 탁도를 측정하였다. 결과로서, 우수한 증식을 나타내는 균주로서, AJ13355를 지역[Ivata-shi, Shizuoka, Japan]의 토양으로부터 수득하였다. 상기 균주는 상기 기술된 이의 세균학적 성질을 토대로 엔테로박터 애글로메란스로서 판명되었다.
<3> 엔테로박터 애글로메란스 AJ13355 균주로부터 점성 물질이 덜 분비되는 균주의 획득
엔테로박터 애글로메란스 AJ13355 균주는 사카라이드를 포함하는 배지에서 배양되는 경우 점성 물질을 분비하기 때문에 작동 효율이 적합하지 못하다. 따라서, 점성 물질이 덜 분비되는 균주를 자외선 방법으로 수득하였다[문헌참조: Miller, J.H. et al., "A Short Course in Bacterial Genetics; Laboratory Manual", p.150, Cold Spring Harbor Laboratory Press, 1992].
엔테로박터 애글로메란스 AJ13355 균주를 60-W 자외선 램프로부터 60cm 이격된 위치에서 2분동안 지외선으로 조사시키고 돌연변이가 확립되도록 밤새 LB 배지에서 배양하였다. 돌연변이된 균주를 희석하고 5g/L의 글루코스 및 20g/L의 한천을 포함하는 LB 배지에 접종하여 플레이트당 약 100개의 콜로니가 출현하도록 하고 이들을 약 45도 기울어진 플레이트에서 30℃에서 배양하여 점성 물질이 아래로 흘러내려가지 않는 20개의 콜로니를 선별하였다.
5g/L의 글루코스 및 20g/L의 한천을 포함하는 LB 배지에서 5회 계대배양한 후에 어떠한 복귀 돌연변이체가 출현하지 않는다는 조건, 및 LB 배지, 5g/L의 글루코스를 포함하는 LB 배지 및 20g/L의 L-글루타민산 및 2g/L의 글루코스가 첨가되고 이의 pH가 HCl에 의해 4.5로 조정된 M9 배지(문헌참조: Sambrook, J. et al., Molecular Cloning, 2nd Edition, Cold Spring Harbor Press, 1989)에서 모균주와 동등한 증식이 관찰되는 조건을 충족시키는 균주로서, SC17 균주가 상기 선택된 균주로부터 선별된다.
<4> 엔테로박터 애글로메란스 SC17 균주로부터 글루타민산-생산 세균의 작제
(1) 엔테로박터 애글로메란스 SC17 균주로부터 αKGDH 결핍 균주의 작제
αKGDH가 결핍되어 있고 L-글루타민산 생합성 시스템이 증가된 균주를 엔테로박터 애글로메란스 SC17 균주로부터 작제하였다.
(i) 엔테로박터 애글로메란스 AJ13355 균주의 αKGDH 유전자(이후부터, "sucAB"로서 언급됨)의 클로닝
엔테로박터 애글로메란스 AJ13355 균주의 염색체 DNA 로부터 α-KGDH-E1 서브유니트 유전자(이후부터 "sucA"로서 언급됨) 결핍 균주의 아세트산-비동화 성질을 보충하는 DNA 단편을 선별함으로써 엔테로박터 애글로메란스 AJ13355 균주의 sucAB 유전자를 클로닝시켰다.
염색체 DNA가 에스케리치아 콜리로부터 추출되는 경우에 통상적으로 사용되는 방법[문헌참조: Text for Bioengineering Experiments, Edited by the Society for Bioscience and Bioengineering, Japan, pp. 97-98, Baifukan, 1992]에 의해 엔테로박터 애글로메란스 AJ13355 균주의 염색체 DNA를 분리하였다. 벡터로서 사용된 pTWV228(앰피실린에 내성)은 제조회사[Takara Shuzo Co., Ltd]로부터 시판된다.
EcoT221로 분해된 AJ13355 균주의 염색체 DNA 및 PstI로 분해된 pTWV228을 T4 리가제를 사용하여 연결시키고 sucA 결핍 에스케리치아 콜리 JRG465 균주[문헌참조: Herbert, J. et al., Mol. Gen. Genetics, 105, 182(1969)]를 형질전환시키는데 사용하였다. 아세테이트 최소 배지에서 증식하는 균주를 상기 수득된 형질전환체 균주로부터 선별하고 플라스미드를 이로부터 추출하고 이를 pTWVEK101로서 명명한다. pTWVEK101를 함유하는 에스케리치아 콜리 JRG465 균주는 숙신산 또는 L-라이신 및 L-메티오닌에 대한 영양 요구성 뿐만 아니라 아세트산-동화 성질을 회복한다. 이것은 pTWVEK101이 엔테로박터 애글로메란스의 sucA 유전자를 함유하고 있다는 것을 제안한다.
도 1은 pTWVEK101내에 엔테로박터 애글로메란스로부터 유래된 DNA 단편의 제한지도를 나타낸다. 도 1에서 도시된 부위의 결정된 뉴클레오타이드 서열은 서열 1로서 나타낸다. 상기 서열에서, 2개의 완전한 길이의 ORF인 것으로 간주된 뉴클레오타이드 서열과 ORF의 일부 서열인 것으로 간주된 2개의 뉴클레오타이드 서열이 밝혀졌다. 서열 2 내지 5는 이들 ORF 또는 5' 말단에서부터 순서대로 배열된 일부 서열에 의해 암호화될 수 있는 아미노산 서열을 나타낸다. 이들에 대한 상동성 연구의 결과로서, 결정된 뉴클레오타이드 서열의 일부가 숙시네이트 데하이드로게나제 철-황 단백질 유전자(sdhB)의 3'-말단 부분 서열, 완전한 길이의 sucA 및 α-KGDH-E2 서브유니트 유전자(sucB), 및 숙시닐 CoA 신테타제 β 서브유니트 유전자(sucC)의 5'-말단 부분 서열을 함유하는 것으로 밝혀졌다. 에스케리치아 콜리로부터 유래된 아미노산 서열과 이들 뉴클레오타이드 서열로부터 추론된 아미노산 서열의 비교 결과[문헌참조: Eur. J. Biochem., 141, pp.351-359(1984); Eur.J.Biochem., 141, pp. 361-374(1984); Biochemistry, 24, pp. 6245-6252(1985)]는 도 2 내지 5에 나타낸다. 따라서, 아미노산 서열 각각은 매우 높은 상동성을 보여준다. 추가로, sdhB-sucA-sucB-sucC의 클러스터는 에스케리치아 콜리에서와 같이 엔테로박터 애글로메란스의 염색체를 구성하는 것으로 밝혀졌다[문헌참조: Eur. J. Biochem., 141, pp. 351-359(1984); Eur.J.Biochem., 141, pp. 361-374(1984); Biochemistry, 24, pp. 6245-6252(1985)].
(ii) 엔테로박터 애글로메란스 SC17 균주로부터 유래된 αKGDH 결핍 균주의 획득
상기 기술된 바와 같이 엔테로박터 애글로메란스의 sucAB 유전자를 사용하여 상동성 재조합을 수행함으로써 αKGDH 결핍된 엔테로박터 애글로메란스의 균주를 수득하였다.
sucA를 포함하는 단편을 절단하기 위해 pTWVEK101를 sphI로 분해시킨후 단편을 클리노우 단편으로 평활 말단화[문헌참조: Takara Shuzo Co., Ltd.]시키고 T4 DNA 리가제를 사용하여 EcoRI로 분해되고 클레노우 단편으로 평활 말단화된 pBR322과 연결하였다[문헌참조: Takara Shuzo Co., Ltd]. 수득된 플라스미드의 sucA의 중앙에 실질적으로 위치하는 제한 효소 BglII 인식 부위에서 상기 효소를 사용함에 의해 분해하고 클레노우 단편으로 평활 말단화하며 이어서 T4 DNA 리가제를 사용하여 다시 연결하였다. 프레임이동(frameshift) 돌연변이가 상기 방법을 통해 새로이 작제된 플라스미드 sucA로 도입되기 때문에 sucA 유전자가 기능을 나타내지 않는 것으로 여겨진다.
상기 기술된 바와 같이 작제된 플라스미드를 제한 효소 ApaLI로 분해하고 아가로스 겔 전기영동하여 프레임이동 돌연변이가 도입된 sucA 및 pBR322로부터 유래된 테트라사이클린 내성 유전자를 함유하는 DNA 단편을 회수하였다. 회수된 DNA 단편을 다시 T4 DNA 리가제를 사용하여 연결하고 αKGDH 유전자를 파괴시키기 위한 플라스미드를 작제하였다.
상기 기술된 바와 같이 수득된 αKGDH를 파괴시키기 위한 플라스미드를 사용하여 전기천공에 의해 엔테로박터 애글로메란스 SC17 균주를 형질전환[문헌참조: Miller, J.H., "A Short Course in Bacterial Genetics; Handbook", p. 279, Cold Spring Harbor Laboratory Press, U.S.A., 1992]시키고 플라스미드의 상동성 재조합에 의해 염색체상의 sucA가 돌연변이 유형의 하나로 대체된 균주를 지표로서 테트라사이클린 내성을 사용하여 수득하였다. 수득된 균주는 SC17sucA 균주로 명명되었다.
SC17sucA 균주가 αKGDH 활성이 결핍되어 있다는 것을 확인하기 위해, 효소 활성을, 대수증식기까지 LB 배지에서 배양된 균주의 세포를 사용하여 문헌[참조: Reed et al.(Reed, L.J. and Mukherjee, B.B,, Methods in Enzymology, 13, pp 55-61, (1969)]에 기술된 방법에 따라 측정하였다. 결과로서, 0.073의 αKGDH 활성(△ABS/분/mg 단백질)이 SC17 균주로부터 검출되는 반면에 어떠한 αKGDH 활성이 SC17sucA 균주로부터 검출되지 않고 따라서 제안된 바와 같이 sucA가 결핍되어 있다는 것을 확인하였다.
(2) 엔테로박터 애글로메란스 SC17sucA 균주의 L-글루타민산 생합성 시스템의 증진
이어서, 에스케리치아로부터 유래된 시트레이트 신타제 유전자, 포스포에놀피루베이트 카복실라제 유전자 및 글루타메이트 데하이드로게나제 유전자를 SC17sucA 균주에 도입하였다.
(i) 에스케리치아 콜리로부터 유래된 gltA 유전자, ppc 유전자 및 gdhA 유전자를 갖는 플라스미드의 작제
gltA 유전자, ppc 유전자 및 gdhA 유전자를 갖는 플라스미드를 제조하는 방법은 도 6 및 도 7을 참조로하여 설명될 것이다.
에스케리치아 콜리로부터 유래된 gdhA 유전자를 갖는 플라스미드인 pBRGDH[문헌참조: 일본 특허원 제7-203980호]를 HindIII 및 SphI로 분해하고 양 말단을 T4 DNA 폴리머라제 처리하여 평활 말단화하고 이어서 gdhA 유전자를 갖는 DNA 단편을 정제하고 회수하였다. 별도로, 에스케리치아 콜리로부터 유래된 gltA 유전자 및 ppc 유전자를 갖는 플라스미드인 pMWCP(WO 97/08294)를 XbaI로 분해한 다음에, 양 말단을 T4 DNA 폴리머라제를 사용하여 평활 말단화시켰다. 이것을 gdhA 유전자를 갖는 상기 정제된 DNA 단편과 혼합하고 T4 리가제로 연결하여, gdhA 유전자를 추가로 포함하는 pMWCP(도 6)에 상응하는 플라스미드 pMWCPG를 수득하였다.
동시에, 광범위 숙주 스펙트럼 플라스미드 RSF1010의 복제 오리진을 갖는 플라스미드 pVIC40(문헌참조: 일본 특허원 공개 공보 제8-047397호)를 NotI로 분해하고 T4 DNA 폴리머라제로 처리하고 PstI로 분해하였다. pBR322를 EcoT14I로 분해하고 T4 DNA 단편으로 처리하고 PstI로 분해하였다. 2개의 산물을 혼합하고 T4 리가제를 사용하여 연결시켜 RSF1010의 복제 오리진 및 테트라사이클린 내성 유전자를 갖는 플라스미드 RSF-Tet(도 7)를 수득하였다.
이어서, pMWCPG를 EcoRI 및 PstI로 분해하고 gltA 유전자, ppc 유전자 및 gdhA 유전자를 갖는 DNA 단편을 정제하고 회수하였다. RSF-Tet를 유사하게 EcoRI 및 PstI로 분해하고 RSF1010의 복제 오리진을 갖는 DNA 단편을 정제하고 회수하였다. 2개의 산물을 혼합하고 T4 리가제를 사용하여 연결시켜 gltA 유전자, ppc 유전자 및 gdhA 유전자를 함유하는 RSF-Tet에 상응하는 플라스미드 RSFCPG를 수득하였다(도 8). 에스케리치아 콜리로부터 유래된 gltA 유전자, ppc 유전자 및 gdhA 유전자 결핍 균주의 영양 요구성을 보충하고 각각의 효소 활성을 측정함으로써 수득된 플라스미드 RSFCPG가 gltA 유전자, ppc 유전자 및 gdhA 유전자를 발현한다는 것을 확인하였다.
(ii) 브레비박테리움 락토퍼멘툼으로부터 유래된 gltA 유전자를 갖는 플라스미드의 작제
브레비박테리움 락토퍼멘툼으로부터 유래된 gltA 유전자를 갖는 플라스미드를 하기와 같이 작제하였다. 코리네박테리움 글루타미컴 gltA 유전자[참조: Microbilogy, 140, pp. 1817-1828(1994)]의 뉴클레오타이드 서열을 기준으로 작제된, 서열 6 및 7에 의해 나타낸 뉴클레오타이드 서열을 갖는 프라이머 DNA 및 주형으로서 브레비박테리움 락토퍼멘툼 ATCC13869의 염색체 DNA를 사용하여 PCR을 수행하고 약 3kb의 gltA 유전자 단편을 수득하였다. 상기 단편을 SmaI로 분해된 플라스미드 pHSG399[제조회사(Takara Shuzo Co., Ltd.)로부터 시판]에 삽입하여 플라스미드 pHSGCB(도 9)를 수득하였다. 이어서, pHSGCB를 HindIII로 분해하고 약 3kb의 절단된 gltA 유전자 단편을 HindIII로 분해된 플라스미드 pSTV29[제조회사(Takara Shuzo Co., Ltd)에서 시판]에 삽입하여 플라스미드 pSTVCB(도 9)를 수득하였다. 엔테로박터 애글로메란스 AJ13355 균주내에서 효소 활성을 측정함으로써 수득된 플라스미드 pSTVCB가 gltA 유전자를 발현시킨다는 것을 확인하였다.
(iii) RSFCPG 및 pSTVCB의 SC17sucA 균주로의 도입
엔테로박터 애글로메란스 SC17sucA 균주를 전기천공에 의해 RSFCPG로 형질전환시켜 테트라사이클린 내성을 갖는 형질전환체 SC17sucA/RSFCPG 균주를 수득하였다. 추가로, SC17sucA/RSFCPG 균주를 전기천공에 의해 pSTVCB로 형질전환시켜 클로람페니콜 내성을 갖는 형질전환체 SC17sucA/RSFCPG + pSTVCB 균주를 수득하였다.
<4> 낮은 pH 환경에서 L-글루타민산에 대해 개선된 내성을 갖는 균주의 획득
낮은 pH 환경에서 고농도의 L-글루타민산에 대해 개선된 내성을 갖는 균주(이후부터 "낮은 pH에서 고농도의 Glu-내성 균주"로서 언급됨)를 엔테로박터 애글로메란스 SC17sucA/RSFCPG + pSTVCB 균주로부터 분리하였다.
SC17sucA/RSFCPG + pSTVCB 균주를 LBG 배지(10g/L의 트립톤, 5g/L의 효모 추출물, 10g/L의 NaCl, 5g/L의 글루코스)에서 30℃에서 밤새 배양하고 식염수로 세척된 세포를 적당히 희석시키고 M9-E 배지(4g/L의 글루코스, 17g/L의 Na2HPO4, 3g/L의 KH2PO4, 0.5g/L의 NaCl, 1g/L의 NH4Cl, 10mM의 MgSO4, 10μM의 CaCl2, 50mg/L의 L-라이신, 50mg/L의 L-메티오닌, 50mg/L의 DL-디아미노피멜산, 25mg/L의 테트라사이클린, 25mg/L의 클로람페니콜, 30g/L의 L-글루타민산, 암모니아 용액을 사용하여 pH 4.5로 조정)플레이트상에 도말하였다. 2일동안 32℃에서 배양한 후에 출현된 콜로니를 낮은 pH에서 고농도의 Glu-내성 균주로서 수득하였다.
수득된 균주를 위해 M9-E 액체 배지의 증식 수준을 측정하고 L-글루타민산-생산능을 5ml의 L-글루타민산 생산 시험 배지(40g/L의 글루코스, 20g/L의 (NH4)2SO4, 0.5g/L의 MgSO4ㆍ7H2O, 2g/L의 KH2PO4, 0.5g/L의 NaCl, 0.25g/L의 CaCl2ㆍ7H2O, 0.02g/L의 FeSO4ㆍ7H2O, 0.02g/L의 MnSO4ㆍ4H2O, 0.72mg/L의 ZnSO4ㆍ2H2O, 0.64mg/L의 CuSO4ㆍ5H2O, 0.72mg/L의 CoCl2ㆍ6H2O, 0.4mg/L의 붕소산, 1.2mg/L의 Na2MoO4ㆍ2H2O, 2g/L의 효모 추출물, 200mg/L의 L-라이신 염화수소, 200mg/L의 L-메티오닌, 200mg/L의 DL-α,ε-디아미노피멜산, 25mg/L의 테트라사이클린 염화수소, 25mg/L의 클로람페니콜)를 포함하는 50ml 용량의 대형 시험관에서 시험하였다. 가장 우수한 증식 수준 및 모균주의 생산능과 동일한 L-글루타민산 생산능을 보여주는 균주인 SC17/RSFCPG+pSTVCB 균주를 엔테로박터 애글로메란스 AJ13601로서 명명한다. AJ13601 균주를 통상부 장관 산하의 통상산업성 공업기술원 생명공학공업기술연구소[우편번호: 305-8566, 주소: Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan]에 1999년 8월 18일자로 기탁하였고 수탁번호 FERM P-17516을 부여받고 2000년 7월 6일자로 부다페스트 조약하에 국제 기탁물로 이관되어 수탁번호 FERM BP-7207을 부여받았다.
<5> L-글루타민산 생산을 위한 엔테로박터 애글로메란스 AJ13601 균주의 배양(1)
엔테로박터 애글로메란스 AJ13601 균주를 40g/L의 글루코스, 20g/L의 (NH4)2SO4, 0.5g/L의 MgSO4ㆍ7H2O, 2g/L의 KH2PO4, 0.2g/L의 NaCl, 0.25g/L의 CaCl2ㆍ7H2O, 0.02g/L의 FeSO4ㆍ7H2O, 0.02g/L의 MnSO4ㆍ4H2O, 0.72mg/L의 ZnSO4ㆍ2H2O, 0.64mg/L의 CuSO4ㆍ5H2O, 0.72mg/L의 CoCl2ㆍ6H2O, 0.4mg/L의 붕소산, 1.2mg/L의 Na2MoO4ㆍ2H2O, 2g/L의 효모 추출물, 200mg/L의 L-라이신 염화수소, 200mg/L의 L-메티오닌, 200mg/L의 DL-α,ε-디아미노피멜산, 25mg/L의 테트라사이클린 염화수소 및 25mg/L의 클로로람페티콜을 함유하는 300ml의 배지를 포함하는 1L 발효조(jar-fermenter)에 접종하고 14시간 동안 pH 6.0에서 34℃에서 배양하였다. 배양 pH를 암모니아 기체를 배지에 도입함으로써 조절하였다.
상기 기술된 배양물을 10분동안 5000rpm에서 원심분리하고 수거된 세포를 40g/L의 글루코스, 5g/L의 (NH4)2SO4, 1.5g/L의 MgSO4ㆍ7H2O, 6g/L의 KH2PO4, 1.5g/L의 NaCl, 0.75g/L의 CaCl2ㆍ7H2O, 0.06g/L의 FeSO4ㆍ7H2O, 0.06g/L의 MnSO4ㆍ4H2O, 2.16mg/L의 ZnSO4ㆍ2H2O, 1.92mg/L의 CuSO4ㆍ5H2O, 2.16mg/L의 CoCl2ㆍ6H2O, 1.2mg/L의 붕소산, 3.6mg/L의 Na2MoO4ㆍ2H2O, 6g/L의 효모 추출물, 600mg/L의 L-라이신 염화수소, 600mg/L의 L-메티오닌, 600mg/L의 DL-α,ε-디아미노피멜산, 25mg/L의 테트라사이클린 염화수소 및 25mg/L의 클로로람페티콜을 함유하는 300ml의 배지를 포함하는 1L 발효조에 접종하고, 34℃ 및 pH 4.5에서 배양하여 L-글루타민산의 생산을 위한 배양을 수행하였다. 배양 pH는 암모니아 기체를 배지에 도입하여 조절하였다. 초기에 첨가된 글루코스가 고갈됨에 따라 600g/L의 글루코스를 연속적으로 첨가하였다.
상기 기술한 바와 같이 50시간 동안 수행된 L-글루타민산 생산을 위한 배양의 결과로서, 상당한 양의 L-글루타민산 결정이 상기 발효조에서 침전하였다. 표 1은 그 시간에 배양액에 용해된 L-글루타민산의 농도를 보여주고 L-글루타민산의 농도를 2M 수산화칼륨중에 결정을 용해시켜 측정하였다. 배양물이 정체된후 기울여 버리면서 배양물로부터 L-글루타민산 결정을 수거하였다.
배양액에 용해된 L-글루타민산의 농도 |
51g/L |
결정으로서 침전된 L-글루타민산의 양 |
67g/L |
결정을 용해시킴에 의해 측정된 L-글루타민산의 농도 |
118g/L |
<6> L-글루타민산 생산을 위한 엔테로박터 애글로메란스 AJ13601 균주의 배양(2)
엔테로박터 애글로메란스 AJ13601 균주가 L-글루타민산이 존재하는 조건하에서도 여전히 L-글루타민산-생산능을 가지고 있음을 확인하기 위해 하기 실험을 수행하였다.
엔테로박터 애글로메란스 AJ13601 균주를 40g/L의 글루코스, 20g/L의 (NH4)2SO4, 0.5g/L의 MgSO4ㆍ7H2O, 2g/L의 KH2PO4, 0.5g/L의 NaCl, 0.25g/L의 CaCl2ㆍ7H2O, 0.02g/L의 FeSO4ㆍ7H2O, 0.02g/L의 MnSO4ㆍ4H2O, 0.72mg/L의 ZnSO4ㆍ2H2O, 0.64mg/L의 CuSO4ㆍ5H2O, 0.72mg/L의 CoCl2ㆍ6H2O, 0.4mg/L의 붕소산, 1.2mg/L의 Ma2MoO4ㆍ2H2O, 2g/L의 효모 추출물, 200mg/L의 L-라이신 염화수소, 200mg/L의 L-메티오닌, 200mg/L의 DL-α,ε-디아미노피멜산, 25mg/L의 테트라사이클린 염화수소 및 25mg/L의 클로로람페티콜을 함유하는 300ml의 배지를 포함하는 1L 발효조(jar-fermenter)에 접종하고 14시간 동안 pH6.0에서 34℃에서 배양하였다. 배양 pH를 배지에 암모니아 가스를 기포로서 주입하여 조절하였다. 상기 기술된 바와 같이 수득된 배양물을 10분동안 5000rpm에서 원심분리하고 이어서 수거된 세포를 L-글루타민산이 결정으로서 존재하는 배지에서 배양하였다. 사용된 배지는 40g/L의 글루코스, 5g/L의 (NH4)2SO4, 1.5g/L의 MgSO4ㆍ7H2O, 6g/L의 KH2PO4, 1.5g/L의 NaCl, 0.75g/L의 CaCl2ㆍ7H2O, 0.06g/L의 FeSO4ㆍ7H2O, 0.06g/L의 MnSO4ㆍ4H2O, 2.16mg/L의 ZnSO4ㆍ2H2O, 1.92mg/L의 CuSO4ㆍ5H2O, 2.16mg/L의 CoCl2ㆍ6H2O, 1.2mg/L의 붕소산, 3.6mg/L의 Na2MoO4ㆍ2H2O, 6g/L의 효모 추출물, 600mg/L의 L-라이신 염화수소, 600mg/L의 L-메티오닌, 600mg/L의 DL-α,ε-디아미노피멜산, 25mg/L의 테트라사이클린 염화수소 및 25mg/L의 클로로람페티콜을 함유하고 L-글루타민산 결정을 40g/L로 첨가하였다. 세포를 상기 배지 300ml을 포함하는 1L 발효조에 접종하고 34℃ 및 pH4.3에서 배양하여 L-글루타민산의 생산을 위한 배양을 수행하였다. 배양 pH를 배지에 암모니아 기체를 도입하여 조절하였다. 초기에 첨가된 글루코스가 고갈됨에 다라 600g/L의 글루코스를 연속적으로 첨가하였다. 상기 배지에서, 단지 39g/L로 첨가된 L-글루타민산을 pH 4.3에서 용해시키고 잔류하는 1g/L은 결정으로서 존재하였다.
상기 기술한 바와 같이 53시간 동안 수행된 L-글루타민산 생산을 위한 배양 결과로서 실질적인 L-글루타민산 결정의 양을 상기 발효조에서 침전하였다. 표 2는 배양액에 용해된 L-글루타민산의 농도를 보여주고 그때에 L-글루타민산의 양은 결정으로서 존재하고 L-글루타민산 농도는 결정을 2M KOH 용액에 용해시킴으로써 측정하였다. 상기 결과는 엔테로박터 애글로메란스 AJ13016 균주가 L-글루타민산 결정이 존재하는 조건하에서도 L-글루타민산을 축적하고 이의 결정을 침전시킨다는 것을 보여준다.
배양액에 용해된 L-글루타민산의 농도 |
39g/L |
결정으로서 침전된 L-글루타민산의 양 |
119g/L |
결정을 용해시킴으로써 측정된 L-아미노산의 농도 |
158g/L |
본배양에 의해 새로이 생사된 L-글루타민산 결정의 양 |
118g/L |
<7> L-글루타민산 생산을 위한 엔테로박터 애글로메란스 AJ13601 균주의 배양(3)
엔테로박터 애글로메란스 AJ13601 균주는 산성 pH에서 증식할 수 있을 뿐만 아니라 중성 pH에서도 증식하였다. 따라서, 하기와 같이 L-글루타민산 결정이 또한 중성 pH에서 배양을 개시하고 배양의 pH가 자발적으로 감소되도록 L-글루타민산을 생산함으로써 침전될 수 있다는 것을 확인하였다.
25mg/L의 테트라사이클린 염화수소 및 25mg/L의 클로람페니콜을 함유하는 LBG 배지(10g/L의 트립톤, 5g/L의 효모 추출물, 10g/L의 NaCl. 5g/L의 글루코스, 15g/L의 한천)상에서 14시간 동안 30℃에서 배양된, 엔테로박터 애글로메란스 AJ13601 균주의 한 플레이트(직경 8.5cm)의 세포를 40g/L의 글루코스, 5g/L의 (NH4)2SO4, 1.5g/L의 MgSO4ㆍ7H2O, 6g/L의 KH2PO4, 1.5g/L의 NaCl, 0.75g/L의 CaCl2ㆍ7H2O, 0.06g/L의 FeSO4ㆍ7H2O, 0.06g/L의 MnSO4ㆍ4H2O, 2.16mg/L의 ZnSO4ㆍ2H2O, 1.92mg/L의 CuSO4ㆍ5H2O, 2.16mg/L의 CoCl2ㆍ6H2O, 1.2mg/L의 붕소산, 3.6mg/L의 Na2MoO4ㆍ2H2O, 6g/L의 효모 추출물, 600mg/L의 L-라이신 염화수소, 600mg/L의 L-메티오닌, 600mg/L의 DL-α,ε-디아미노피멜산, 25mg/L의 테트라사이클린 염화수소 및 25mg/L의 클로로람페티콜을 함유하는 300ml의 배지를 포함하는 1L 발효조에 접종하고 34℃ 및 pH 7.0에서 배양을 개시하였다. 배양 pH는 암모니아 기체를 배지내로 도입함으로써 조절하였다. 초기에 첨가된 글루코스가 고갈됨에 따라서 600g/L의 글루코스를 연속적으로 첨가하였다.
L-글루타민산이 축적됨에 따라 pH가 자발적으로 저하된다. 도입된 암모니아 기체의 양을 조정하여 pH가 배양 개시후 15시간 내지 24시간, 및 배양 개시후 24시간의 기간동안 7.0에서 4.5로 pH가 점진적으로 저하되도록 하였다. pH는 4.5가 된다. 이후에 배양을 12시간 동안 계속하였다.
상기 기술한 바와 같이 36시간 동안 수행된 L-글루타민산을 생산하기 위한 배양의 결과로서, 실질적인 양의 L-글루타민산 결정을 상기 발효조에서 침전시켰다. 표 3은 배양액에 용해된 L-글루타민산의 농도를 보여주고 그때에 L-글루타민산의 양은 결정으로서 존재하고 L-글루타민산의 양은 결정을 2M KOH 용액중에 용해시킴으로써 측정하였다. L 글루타민산 결정을, 배양물이 정체된후에 기울여서 버림으로써 배양물로부터 수거하였다.
배양액에 용해된 L-글루타민산의 농도 |
45g/L |
결정으로서 침전된 L-글루타민산의 양 |
31g/L |
결정을 용해시킴에 의해 측정된 L-글루타민산의 농도 |
76g/L |