KR100576857B1 - GaN 반도체 발광소자 및 그 제조방법 - Google Patents

GaN 반도체 발광소자 및 그 제조방법 Download PDF

Info

Publication number
KR100576857B1
KR100576857B1 KR1020030095988A KR20030095988A KR100576857B1 KR 100576857 B1 KR100576857 B1 KR 100576857B1 KR 1020030095988 A KR1020030095988 A KR 1020030095988A KR 20030095988 A KR20030095988 A KR 20030095988A KR 100576857 B1 KR100576857 B1 KR 100576857B1
Authority
KR
South Korea
Prior art keywords
layer
gan
forming
light emitting
emitting device
Prior art date
Application number
KR1020030095988A
Other languages
English (en)
Other versions
KR20050064527A (ko
Inventor
이재훈
이정희
김제원
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020030095988A priority Critical patent/KR100576857B1/ko
Priority to US10/843,594 priority patent/US20050139818A1/en
Priority to JP2004143690A priority patent/JP2005191519A/ja
Publication of KR20050064527A publication Critical patent/KR20050064527A/ko
Application granted granted Critical
Publication of KR100576857B1 publication Critical patent/KR100576857B1/ko
Priority to US11/443,376 priority patent/US7674643B2/en
Priority to JP2010021196A priority patent/JP2010098336A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Abstract

본 발명은 GaN 성장시 Al을 도핑함으로써 Ga 공공과 같은 결함을 감소시키고 동시에 전위 등과 같은 격자부정합에 의한 결함을 감소시켜 전기적 특성 및 광학적 특성을 향상시킬 수 있는 고품질 GaN 반도체 발광소자 및 그 제조방법에 관한 것이다. 본 발명은, GaN 반도체 물질을 성장시키기 위한 기판과, 상기 기판 상에 형성되며, Al이 도핑된 n형 GaN 클래드층과, 상기 n형 GaN 클래드층 상에 형성되며 양자우물구조를 갖는 활성층 및 상기 활성층 상에 형성되는 p형 GaN 클래드층을 포함하는 플립칩용 GaN 반도체 발광소자를 제공한다. 본 발명에 따르면, 발광소자의 전기적, 광학적 특성을 향상시킬 수 있으며, 저렴하게 양질의 결정성장을 보장할 수 있는 우수한 효과가 있다.
GaN, Al 도핑, 전위, 결정성장, 격자부정합, 공공(vacancy), LEO, 펜디오-에피택시

Description

GaN 반도체 발광소자 및 그 제조방법{GALLIUM NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME}
도 1은 종래의 LEO법에 의한 GaN층 성장 방법을 도시한 공정단면도이다.
도 2는 종래의 LEO법에 의해 성장된 GaN층에서 전위의 발생을 도시한 상태도이다.
도 3은 본 발명의 일실시형태에 따른 GaN 반도체 발광소자의 사시도이다.
도 4는 본 발명의 일실시형태에 따른 GaN 반도체 발광소자의 제조방법을 도시한 공정사시도이다.
도 5는 도 5는 종래의 Si 도핑된 n형 GaN 클래드층과 본 발명에 따른 Al이 함께 도핑된 n형 GaN 클래드층의 PL 특성을 나타낸 그래프이다.
도 6은 도 6은 언도프 GaN층과 본 발명에 따른 Al이 도핑된 GaN층의 PL 특성을 나타낸 그래프이다.
*도면의 주요부분에 대한 부호의 설명*
30, 40 : 기판 31, 41 : n형 GaN 클래드층
32, 42 : 활성층 33, 43 : p형 GaN 클래드층
341, 441 : 버퍼층 342, 442 : GaN 중간층
343, 443 : Al이 도핑된 GaN층
본 발명은 질화갈륨(GaN) 반도체 발광소자에 관한 것으로, 특히 단결정 AlN으로 이루어진 버퍼층을 사용하고 GaN 성장시 Al을 도핑함으로써 Ga 공공(vacancy)과 같은 결함을 감소시키고 동시에 전위(dislocation) 등과 같은 격자부정합에 의한 결함을 감소시켜 전기적 특성 및 광학적 특성을 향상시킬 수 있는 고품질 GaN 반도체 발광소자 및 그 제조방법에 관한 것이다.
근래에 새로운 영상정보를 전달매체로 부각되고 있는 LED(발광소자) 전광판은 초기에는 단순 문자나 숫자정보로 시작하여 현재는 각종 CF 영상물, 그래픽, 비디오 화면 등 동화상을 제공하는 수준까지 이르게 되었다. 색상도 기존 단색의 조잡한 화면 구현에서 적색과 황록색 LED등으로 제한된 범위의 색상 구현을 했었고, 최근에는 질화물 반도체를 이용한 고휘도 청색 LED가 등장함에 따라 적색, 황록색, 청색을 이용한 총천연색 표시가 비로소 가능하게 되었다. 그러나 황록색 LED가 적색 LED, 청색 LED보다 휘도가 낮고 발광 파장이 565nm 정도로 빛의 삼원색에서 필요한 파장의 녹색이 아니기 때문에 자연스러운 총천연색 표현은 불가능하였으나, 이후, 자연스러운 총천연색 표시에 적합한 파장 525nm 고휘도 순수 녹색 질화물 반 도체 LED를 생산함으로써 해결되었다.
이와 같은 질화물 반도체는 AlxInyGa(1-x-y)N 조성식(여기서, 0≤x≤1, 0≤y≤1, 0≤x+y≤1임)을 갖는 질화물 반도체 물질을 사용하고 있으며, 특히 질화갈륨(GaN)을 이용한 반도체 발광소자에 대한 연구가 현재 활발하게 진행되고 있다. 통상 질화물 반도체 발광소자에는, GaN 등과 같은 질화물 반도체 물질과 결정구조가 동일하면서 격자정합을 이루는 상업적인 기판이 존재하지 않기 때문에, 절연성 기판인 사파이어 기판이 사용된다. 이 때, 사파이어 기판과, 사파이어 기판 상에 성장되는 GaN층 간에는 격자 상수 및 열팽창 계수의 차이가 발생하게 되어 결정 결함이 발생하기 때문에 이를 방지하기 위해 종래에는 저온 성장되는 GaN 버퍼층을 상기 사파이어 기판 상에 형성하고, 상기 버퍼층 상에 GaN층을 고온 성장시킨다. 이는 사파이어 기판과 GaN층 사이의 격자 상수의 차이를 줄이기 위한 것이다.
그러나, 저온에서 성장시킨 GaN 버퍼층은 많은 양의 결정성 결함을 가지며, 결정질이라기 보다는 비정질에 더 가까운 특성을 지닌다. 따라서 저온 성장 버퍼층 위에 GaN층을 바로 고온 성장시키게 되면 많은 양의 결정성 결함이 고온 성장 GaN층으로 전파되어 전위(dislocation)이라고 하는 결함이 발생된다.
종래에는 이러한 전위 없는(dislocation free) GaN층을 성장시키기 위해 LEO(Lateral Epitaxial Overgrowth)법(ELOG(Epitaxial Of Lateral Overgrowth)법이 라고도 함) 또는 펜디오-에피택시(pendeo-epitaxy)법을 사용하였다. 상기 두가지 방법은 모두 GaN층을 측면방향으로 성장시켜 사파이어 기판과 GaN층 계면에서 형성된 결함이 상층부로 이동하는 것을 억제하는 방법이다. 상기 LEO법은 사파이어 기판 위 또는 1차 성장시킨 GaN 에피층의 상면에 유전체 마스크를 형성한 후 마스크가 형성되지 않은 부분에서 GaN을 재성장시켜 마스크 상면에서는 GaN을 측방향으로 성장되도록 하는 방법이다. 또한, 상기 펜디오-에피택시법은 LEO법과 유사하게 사파이어 기판 상에 GaN 에피층을 1차 성장시키고, 1차 성장시킨 GaN 에피층의 상면에 마스크를 형성한 후 일부 영역을 에칭하여 그루브(groove)를 성장시켜 상기 그루브 상부에 다시 GaN 에피층을 재성장 시키는 방법이다.
도 1은 이러한 종래의 LEO법을 이용한 GaN층의 성장 방법을 도시하고 있다. 상기 LEO법은 먼저, 도 1a와 같이, 사파이어 기판(10) 상면에 GaN 에피층(11)을 1차 성장시킨 후, 이어 도 1b와 같이, 1차 성장 에피층(11)의 상면에 실리콘 산화막 또는 실리콘 질화막 등으로 소정 패턴을 갖는 마스크(12)를 형성한다. 이어, 도 1c와 같이 마스크(12)가 형성되지 않은 부분에서 다시 GaN을 재성장시킨다. 이 때, 상기 마스크(12)의 상부에서는 도 1c에 화살표로 표시된 것과 같이 측방향으로 GaN(13)가 성장된다. GaN의 측방향 성장이 완료되면, 도 1d와 같이 GaN층(13)의 성장이 완료된다. 상기 펜디오 에피택시법은 상기와 같은 LEO법에서 마스크를 형성한 후 마스크가 형성되지 않은 GaN 에피층을 제거하는 에칭공정을 추가한 것이다.
상기 LEO법 또는 펜디오 에피택시법에 의해 형성된 GaN층은 일반적으로 전파되는 전위가 감소하는 것으로 알려져 있다. 도 2에 도시된 것과 같이 1차 성장 에피층(11)이 노출된 부분에서는 아래에 존재하는 전위(B)가, 이후 재성장되는 GaN층(13)까지 전파되지만, 마스크(12)로 덮인 부분에서는 측면 성장에 의해 성장이 이루어지기 때문에 아래에서 전파되는 전위가 없어 결함이 감소하게 된다.
그러나 이러한 방법으로 GaN을 성장시키는 경우에 마스크로 덮이지 않은 부위의 전위(A)가 위로 그대로 전파되는 문제점과, 측방향으로 재성장되는 GaN층(13)이 서로 만나는 유착면에서 고밀도의 전위(B)가 발생하는 문제가 존재한다. 또한 마스크(12) 물질과 재성장된 GaN층(13) 사이에 형성되는 응력에 의해 결함이 발생하는 문제가 있다. 이러한 전위 등의 결함에 의해 질화물 반도체 소자의 전기적, 광학적 특성이 저하되고 수율이 떨어지는 문제점이 발생한다.
또한, 상기 종래의 LEO법 또는 펜디오 에피택시법은 마스크를 제작하는 공정이 사용되므로 제조경비가 증가하고, GaN 에피층을 1차 성장시킨 후 패턴 작업과 재 성장공정을 추가하게 되므로 제조 공정이 복잡한 부가적인 문제점이 있다.
이와 같이 종래에는, 격자부정합에 의한 결함을 감소시키기 위해 LEO법 또는 펜디오 에피택시법 등을 사용한다고 할지라도 전위와 같은 결함을 현저하게 감소시킬 수 없으며 공정의 추가로 인해 공정이 복잡해지고 제조비용이 상승하는 문제가 있다. 따라서, 당 기술분야에서는 사파이어 기판과 GaN 등의 질화물 반도체 물질간의 격자부정합에 의해 발생하는 전위와 같은 결함을 방지하고 이를 통해 전기적, 광학적 특성이 우수한 새로운 질화갈륨(GaN) 반도체 발광소자 및 그 제조방법이 요구되고 있는 실정이다.
본 발명은 상술한 종래 기술의 문제를 해결하기 위한 것으로서, 그 목적은 n형 GaN층 성장시, 소량의 Al을 함께 도핑함으로써, Ga 공공(vacancy)과 같은 결함을 감소시키고, 동시에 격자부정합에 의해 발생하는 전위를 감소시켜 광학적, 전기적 특성이 향상된 질화갈륨(GaN) 반도체 발광소자 및 그 제조방법을 제공하는데 있다.
상기 기술적 과제를 달성하기 위해 본 발명은,
GaN 반도체 물질을 성장시키기 위한 기판과, 상기 기판 상에 형성되며, Al이 도핑된 n형 GaN 클래드층과, 상기 n형 GaN 클래드층 상에 형성되며 양자우물구조를 갖는 활성층 및 상기 활성층 상에 형성되는 p형 GaN 클래드층을 포함하는 GaN 반도체 발광소자를 제공한다.
상기 본 발명에 따른 GaN 반도체 발광소자에서, 상기 n형 GaN 클래드층은 Al의 함유량이 0.01% 내지 1%로 Al 도핑된 것이 바람직하다.
본 발명의 일실시형태에서, 상기 기판과 상기 n형 GaN 클래드층 사이에 형성 되는 버퍼층을 더 포함할 수 있으며, 상기 버퍼층은 상기 기판 상에 형성되는 Al 씨드층 및 상기 Al 씨드층 상에 형성되는 AlN층을 포함하는 것이 바람직하다. 상기 AlN층은 단결정 AlN층이며, 그 두께는 10㎚ 내지 50㎚인 것이 바람직하다.
본 발명의 일실시형태는, 상기 버퍼층과 n형 GaN 클래드층 사이에 형성되는 GaN 중간층을 더 포함할 수 있으며, 상기 GaN 중간층의 두께는 100㎚ 내지 1㎛인 것이 바람직하다.
본 발명의 일실시형태는, 상기 GaN 중간층과 상기 n형 GaN 클래드층 사이에 형성되는 Al이 도핑된 GaN층을 더 포함할 수 있으며, 상기 Al이 도핑된 GaN층은 Al 함유량이 0.01% 내지 1%로 Al 도핑된 것이 바람직하며, 그 두께는 1㎛ 내지 4㎛인 것이 바람직하다.
또한, 본 발명은 상기 GaN 반도체 발광소자를 제조하는 방법을 제공한다. 상기 방법은, GaN 반도체 물질을 성장시키기 위한 기판을 마련하는 단계와, 상기 기판 상에 Al이 도핑된 n형 GaN 클래드층을 형성하는 단계와, 상기 n형 GaN 클래드층 상에 양자우물구조를 갖는 활성층을 형성하는 단계 및 상기 활성층 상에 p형 GaN 클래드층을 형성하는 단계를 포함한다.
상기 본 발명에 따른 GaN 반도체 발광소자의 제조방법에서, 상기 n형 GaN 클래드층을 형성하는 단계는, Al의 함유량이 0.01% 내지 1%로 Al 도핑된 n형 GaN 클래드층을 형성하는 단계인 것이 바람직하다.
본 발명의 일실시형태에서, 상기 n형 GaN 클래드층을 형성하는 단계 이전에, 상기 기판 상에 버퍼층을 형성하는 단계를 더 포함할 수 있으며, 상기 버퍼층을 형성하는 단계는, 상기 기판 상에 Al 씨드층을 형성하는 단계 및 상기 Al 씨드층 상에 AlN층을 형성하는 단계를 포함하는 것이 바람직하다. 특히, 상기 AlN층을 형성하는 단계는, MOCVD법을 이용하여 1000℃ 내지 1100℃의 고온에서 단결정 AlN층을 형성하며, 그 두께는 10㎚ 내지 50㎚로 AlN층을 형성하는 단계인 것이 바람직하다.
본 발명의 일실시형태는, 상기 n형 GaN 클래드층을 형성하는 단계 이전에, 상기 버퍼층 상에 GaN 중간층을 형성하는 단계를 더 포함할 수 있으며, 상기 GaN 중간층을 형성하는 단계는, 100㎚ 내지 1㎛의 두께로 GaN 중간층을 형성하는 단계인 것이 바람직하다.
본 발명의 일실시형태는, 상기 n형 GaN 클래드층을 형성하는 단계 이전에, 상기 GaN 중간층 상에 Al이 도핑된 GaN층을 형성하는 단계를 더 포함할 수 있으며, 상기 Al이 도핑된 GaN층을 형성하는 단계는 Al 함유량이 0.01% 내지 1%로 Al 도핑된 GaN층을, 1㎛ 내지 4㎛의 두께로 형성하는 단계인 것이 바람직하다.
본 발명에 따른 GaN 반도체 발광소자는, 상기 활성층과 p형 GaN 클래드층의 일부를 제거하여 상기 n형 GaN 클래드층의 일부 영역을 노출시키는 단계와, 상기 p형 GaN 클래드층 상에 p 메탈층을 형성하는 단계 및 상기 p 메탈층 상에 p측 본딩전극 및 상기 노출된 n형 GaN 클래드층의 일부 영역에 n측 전극을 형성하는 단계를 더 포함할 수 있다.
이하, 첨부된 도면을 참조하여, 본 발명의 일실시형태에 따른 GaN 반도체 발광소자 및 그 제조방법을 보다 상세하게 설명하기로 한다.
도 3은 본 발명의 일실시형태에 따른 GaN 반도체 발광소자의 사시도이다. 도 3을 참조하면, 본 발명에 따른 GaN 반도체 발광소자는, GaN 반도체 물질을 성장시키기 위한 기판(30)과, 상기 기판(30) 상에 형성되는 버퍼층(341)과, 상기 버퍼층(341) 상에 형성되는 GaN 중간층(342)과, 상기 GaN 중간층(342) 상에 형성되는 Al이 도핑된 GaN층(343)과, 상기 Al이 도핑된 GaN층(343)상에 형성되는 Al이 도핑된 n형 GaN 클래드층(32)과, 상기 n형 GaN 클래드층(32) 상에 형성되며 양자우물구조를 갖는 활성층(32) 및 상기 활성층 상에 형성되는 p형 GaN 클래드층(33)을 포함하여 구성된다.
상기 기판(30)은, 사파이어 기판이나 SiC 기판을 사용하며, 특히 사파이어 기판이 대표적으로 사용된다. 이는 상기 기판(30) 위에 성장되는 질화물 반도체 물질의 결정과, 결정구조가 동일하면서 격자정합을 이루는 상업적인 기판이 존재하지 않기 때문이다.
상기 n형 GaN 클래드층(31)은 Si를 불순물로 사용하여 n 도핑된 GaN 반도체 물질로 이루어지며, 본 발명에서는 Al이 함께 도핑되는 것을 특징으로 한다. n형 GaN 클래드층(31)은, GaN 반도체 물질을 MOCVD(Metal Organic Chemical Vapor Deposition)법과 같은 공지의 증착공정을 사용하여 기판 상에 성장시킴으로써 형성된다. 상기 사파이어 기판(30) 상에 GaN 반도체 물질을 성장시키는 경우, 격자부정합에 의한 스트레스(stress) 및 열팽창계수의 차이로 양질의 결정성장을 기대하기 어렵기 때문에 버퍼층(buffer layer)(341)을 먼저 기판 상에 형성할 수도 있다.
본 발명의 일실시형태에서 상기 버퍼층(341)은 저온성장되는 비결정질의 GaN층 또는 AlN층이 사용될 수 있다. 또한, 상기 버퍼층(341)은, 상기 기판 상에 형성되는 Al 씨드층 및 상기 Al 씨드층 상에 형성되는 AlN층을 포함하여 구성될 수도 있다. 상기 Al 씨드층은, 공지의 MOCVD 공정을 이용하여 1100℃ 이상의 온도에서 암모니아(NH3) 소스없이 트리메틸알루미늄(trimethylaluminum : TMAl) 소스를 수분간 흘려서 수십 Å의 두께로 상기 사파이어 기판 상에 증착된다. 상기 Al 씨드층은 그 상면에 형성되는 AlN층의 핵성장을 가속화하기 위한 것이다.
상기 AlN층은 단결정 상태로 상기 Al 씨드층의 상면에 형성된다. 상기 AlN층은 사파이어 기판(30)과 그 상면에 형성되는 GaN층들과의 격자부정합에 의한 스트레스 및 열팽창계수의 차이를 줄이기 위한 버퍼층의 역할을 한다. 상기 AlN층 역시 공지의 MOCVD 공정을 이용하여 1100℃ 이상의 온도에서 NH3 소스와 TMAl 소스를 함께 흘려서 단결정 AlN층으로 형성된다. 상기 AlN층의 두께는 10㎚ 내지 50㎚로 형성되는 것이 바람직하다.
종래에는, 버퍼층의 재료로 저온성장 GaN층 또는 AlN을 주로 사용하였다. 종 래의 저온성장 GaN 버퍼층은 많은 양의 결정성 결함을 가지며, 결정질이라기 보다는 비정질에 더 가까운 특성을 지닌다. 따라서, 사파이어 기판과 기판과의 격자부정합 및 이후 성장되는 GaN 반도체층과의 격자부정합이 크다. 그러나, 본 발명의 일실시형태에서 고온 성장되는 AlN층은 단결정 상태로 형성되어, 종래의 저온성장 GaN층보다 사파이어 기판과의 격자부정합이 작으며, 동시에 이후 성장되는 GaN층들과의 격자부정합도 작은 장점이 있다. 따라서, 상기 버퍼층(341)은 상기 기판 상에 형성되는 Al 씨드층 및 상기 Al 씨드층 상에 형성되는 AlN층으로 구성되는 것이 보다 바람직하다.
상기 GaN 중간층(342)은 상기 버퍼층(341), 보다 정확하게는 AlN층 상에 형성된다. 상기 GaN 중간층(342) 또한 일종의 버퍼층의 역할을 하는 것으로, 상기 AlN층과의 격자상수 차를 보완하기 위해 형성된다. 상기 GaN 중간층(342) 역시, 공지의 MOCVD 공정을 이용하여 형성될 수 있다. 상기 GaN 중간층(342)은, MOCVD 공정을 이용하여 1050℃의 온도에서 암모니아(NH3) 소스와 트리메틸갈륨(trimethygallium : TMGa) 소스를 수분간 흘려서 상기 AlN층 상에 증착된다. 이 때, 상기 GaN 중간층(342)은, Ⅴ/Ⅲ 비를 13400이 되도록 TMGa 소스의 양을 줄여 매우 느린 속도로 성장되며 그 두께는 100㎚ 내지 1㎛로 형성되는 것이 바람직하다.
상기 Al이 도핑된 GaN층(343)은 상기 GaN 중간층(342) 상에 형성된다. 종래에는 n형 GaN 클래드층이 형성되기 이전에 도핑되지 않은 언도프 GaN층을 형성하여 격자부정합에 의한 결함을 방지하였다. 그러나, 종래의 언도프 GaN층은 Ga 공공(vacancy)이라는 포인트 디펙트(point defect)가 발생하여 발광소자의 특성을 저하시켰다. 특히, 언도프 GaN층에 발생하는 Ga 공공은 격자부정합의 완화시키기 위한 언도프 GaN층 효과를 감소시키고, 전위(dislocation)에 의한 결함을 줄일 수 없는 문제점이 있다. 상기 Ga 공공은 GaN층의 성장시, Ga와 N이 동일한 양으로 결합하여 성장되지 못하고, Ga의 양이 부족하여 발생한다. 이러한 Ga 공공은 GaN 내의 결정성을 저하시키며 이로 인해 그 위에 형성되는 활성층(32)의 결정성을 저하시켜 빛을 발산하는 대신 격자에 열로 발생하는 결함준위가 생성되어 전자를 포획함으로 광자(photon)의 생성을 저감시킨다. 이로 인해, 발광소자의 휘도특성이 불량해지는 문제가 발생한다.
본 발명에서는 상기와 같은 문제를 해결하기 위해, 소량의 Al을 GaN층 성장시 도핑한다. Al은 Ga와 같은 Ⅲ족 원소로, Ga 공공을 Al로 매워 전자가 포획되는 것을 방지한다. 이를 통해, 전자의 수가 감소되는 것을 방지하여 발광소자의 휘도가 개선될 수 있다.
상기 Al이 도핑된 GaN층(343)은, MOCVD 공정을 이용하여 1020℃ 내지 1030℃의 온도에서 Ⅴ/Ⅲ 비를 2400이 되도록 TMGa 소스와 암모니아 소스를 흘리고, 동시에 Al 도핑을 위해 TMAl 소스를 흘려 Al의 함유량이 0.01% 내지 1%가 되도록 도핑된 상태로 형성되는 것이 바람직하다. Al의 함유량이 1%이상이 되면 AlGaN 화합물이 생성되므로 1% 미만으로 Al이 도핑되어야 한다. 또한 상기 Al이 도핑된 GaN층(343)의 두께는 1㎛ 내지 4㎛인 것이 바람직하다.
상기 n형 GaN 클래드층(31)은, 상기 Al이 도핑된 GaN층(343) 상에, Si과 Al를 함께 불순물로 사용하여 n 도핑된 GaN 반도체 물질로 이루어진다. 이 때, Al을 함께 도핑하는 것은, 상기 Al이 도핑된 GaN층(343)을 형성할 때와 마찬가지로 Ga 공공이 전자를 포획하는 것을 방지하기 위한 것이다. Al 도핑에 의하면, Ga 공공에 의한 결함을 방지할 수 있을 뿐만 아니라 전위에 의한 결함을 동시에 감소시킬 수 있는 장점이 있다. 상기 n형 GaN 클래드층(31) 역시 공지의 MOCVD 공정을 통해 1020℃ 내지 1030℃의 온도에서 Si와 함께 Al이 0.01% 내지 1%로 도핑되도록 GaN층을 증착시켜 형성될 수 있다.
상기 활성층(32)은, 상기 n형 GaN 클래드층(31) 상에 양자우물구조의 GaN 또는 InGaN으로 이루어 질 수 있다. 상기 활성층(32) 또한 MOCVD 공정과 같은 공지의 증착공정을 통해 형성될 수 있다. 상기 활성층(32)은 상기 n형 GaN 클래드층(31) 상의 일부영역을 노출시키도록 형성될 수 있다. 이는 노출된 n형 GaN 클래드층(31) 상의 일부영역에 n측 전극을 형성하기 위해서이다.
상기 p형 GaN 클래드층(33)은, 상기 활성층(32) 상에 형성된다. p형 GaN 클래드층(33)은 MOCVD 공정과 같은 공지의 증착공정을 통해 Mg가 도핑된 GaN층으로 형성될 수 있다.
상기 p형 GaN 클래드층(33) 상에는 전류주입효과를 향상시키고, 오믹접촉을 형성하기 위한 p 메탈층(미도시)이 형성될 수 있다. p 메탈층의 재료는 Ni/Au 또는 ITO 등이 사용될 수 있으며, 이는 공지기술이다. 상기 p 메탈층의 상면에는 와이어 본딩을 위한 p측 본딩패드(미도시)가 형성될 수 있으며, 상기 노출된 GaN 클래드층(32)의 일부영역에는 n측 전극(미도시)이 형성될 수 있다.
도 4는 본 발명의 일실시형태에 따른 GaN 반도체 발광소자의 제조방법을 도시한 공정사시도이다.
먼저, 도 4a와 같이, 기판(40) 상에 버퍼층(441)을 형성한다. 상기 버퍼층(441)은 저온성장 GaN층 또는 AlN층이 사용될 수 있다. 상기 설명한 바와 같이, 본 발명의 일실시형태에서는 상기 기판 상에 형성되는 Al 씨드층 및 상기 Al 씨드층 상에 형성되는 AlN층을 포함하여 구성되는 것이 보다 바람직하다. 따라서, 상기 기판(40) 상에, 공지의 MOCVD 공정을 이용하여 1100℃ 이상의 온도에서 암모니아(NH3) 소스없이 트리메틸알루미늄(trimethylaluminum : TMAl) 소스를 수분간 흘려서 수십 Å의 두께로 Al 씨드층을 형성한 후, 상기 Al 씨드층 상에 MOCVD 공정을 이용하여 1100℃ 이상의 온도에서 NH3 소스와 TMAl 소스를 함께 흘려서 단결정 AlN층을 형성함으로써 버퍼층(441)의 성장이 이루어진다.
이어, 도 4b와 같이, 상기 버퍼층(441) 상에 GaN 중간층(342)을 형성한다. 보다 정확하게는 상기 AlN층 상에 상기 GaN 중간층(442)이 형성된다. 상기 GaN 중 간층(442)은, MOCVD 공정을 이용하여 1050℃의 온도에서 암모니아 소스와 TMGa 소스를 수분간 흘려서 상기 AlN층 상에 증착될 수 있다. 이 때, 상기 GaN 중간층(442)은, Ⅴ/Ⅲ 비를 13400이 되도록 TMGa 소스의 양을 줄여 매우 느린 속도로 성장되며 그 두께는 100㎚ 내지 1㎛로 형성되는 것이 바람직하다.
이어, 도 4c와 같이, 상기 GaN 중간층(442) 상에 Al이 도핑된 GaN층(443)을 형성한다. 상기 Al이 도핑된 GaN(443)층은 GaN층에 발생하는 Ga 공공이라는 포인트 디펙트(point defect)를 도핑된 Al을 이용하여 채우기 위해 Al 도핑된다. Al 도핑을 통해, 전자를 포획하는 Ga 공공을 Al이 매움으로써 결정성의 향상을 가져와 Al 도핑된 GaN(443)층의 위에 형성되는 활성층의 결정성을 향상시켜 발광소자의 휘도 특성을 개선할 수 있다. 상기 Al이 도핑된 GaN층(443)은, MOCVD 공정을 이용하여 1020℃ 내지 1030℃의 온도에서 Ⅴ/Ⅲ 비를 2400이 되도록 TMGa 소스와 암모니아 소스를 흘리고, 동시에 Al 도핑을 위해 TMAl 소스를 흘려 Al의 함유량이 0.01% 내지 1%가 되도록 도핑된 상태로 형성될 수 있다. 상기 Al이 도핑된 GaN층(443)은 1㎛ 내지 4㎛의 두께로 형성되는 것이 바람직하다.
이어, 도 4d와 같이, 상기 Al이 도핑된 GaN층(443) 상에 n형 GaN 클래드층(41)이 형성된다. 상기 n형 GaN 클래드층(41)은 Si과 Al를 함께 불순물로 사용하여 n 도핑된 GaN 반도체 물질을 성장시킴으로써 형성된다. 상기 n형 GaN 클래드층(41) 역시 공지의 MOCVD 공정을 통해 1020℃ 내지 1030℃의 온도에서 Si를 도핑함과 동시에 Al이 0.01% 내지 1%로 도핑되도록 GaN층을 증착시켜 형성될 수 있다. 이 때, Al을 함께 도핑하는 것은, 상기 Al이 도핑된 GaN층(443)을 형성할 때와 마찬가지로 Ga 공공이 전자를 포획하는 것을 방지하기 위한 것이다. Al 도핑에 의하면, Ga 공공에 의한 결함을 방지할 수 있을 뿐만 아니라 전위에 의한 결함을 동시에 감소시킬 수 있다
이어, 도 4e와 같이, 상기 n형 GaN 클래드층(41) 상에 활성층(42) 및 p형 GaN 클래드층(43)을 순차적으로 형성한다. 상기 활성층(32)은, 상기 n형 GaN 클래드층(31) 상에 양자우물구조의 GaN 또는 InGaN으로 형성될 수 있으며, 상기 p형 GaN 클래드층(43)은 Mg가 도핑된 GaN층으로 형성될 수 있다. 상기 활성층(32) 및 p형 GaN 클래드층(43) 또한 MOCVD 공정과 같은 공지의 증착공정을 통해 형성될 수 있다.
이어, 도 4f와 같이, 상기 활성층(32)과 p형 GaN 클래드층(33)의 일부를 제거하여 상기 n형 GaN 클래드층(31)의 일부 영역을 노출시킨다. 최종적으로는, 상기 p형 GaN 클래드층(33) 상에 전류주입효율을 개선하고 오믹접촉을 형성하기 위해 Ni/Au 또는 ITO 등으로 이루어진 p 메탈층(미도시)을 형성하고, 상기 p 메탈층 상에 와이어 본딩을 위한 p측 본딩전극(미도시)을 형성하며, 상기 노출된 n형 GaN 클래드층의 일부 영역에 n측 전극(미도시)을 형성한다.
도 5 내지 도 8은 본 발명에 따른 GaN 반도체 발광소자의 결정성 향상 효과를 제시하기 위한 자료이다.
삭제
도 5는 종래의 Si 도핑된 n형 GaN 클래드층과 본 발명에 따른 Al이 함께 도핑된 n형 GaN 클래드층의 PL(Photo Luminescence) 특성을 나타낸 그래프이며, 도 6은 언도프 GaN층과 본 발명에 따른 Al이 도핑된 GaN층의 PL 특성을 나타낸 그래프이다. 도 5 및 도 6과 같이 본 발명에 따른 Al이 함께 도핑된 n형 GaN 클래드층 및 Al이 도핑된 GaN층이, Al이 도핑되지 않은 경우 비해 현저하게 높은 빛의 강도를 나타내었다. 이는 Al이 n형 GaN 클래드층 또는 GaN층의 성장시에 도핑됨으로써, 공공(vacancy)과 같은 재결합 준위를 감소시켜 광특성의 향상을 가져온 것이다. 특히 도 6과 같이 Al 도핑량을 증가시킬수록 광특성은 더욱 향상되었다. 다만, 피크치가 나타나는 파장의 위치가 조금씩 감소되었다. 그러나, Al 도핑량이 1% 미만인 경우에는 파장의 천이는 무시할 수 있을 정도로 판단된다.
도 7은 온도 변화에 따른 언도프 GaN층과 Al 도핑된 GaN층의 전자이동도(electron mobility)를 측정한 그래프이다. 일반적으로 높은 온도(도 7 에서 300K(상온))에서의 전자이동도는 불순물의 영향을 주로 받고, 낮은 온도(도 7에서 약 77K)에서는 격자의 영향을 주로 받는다. 도 7을 참조하면, 전체적으로 Al이 도핑된 경우 전자이동도가 현저하게 향상되었음을 알 수 있다. 이는 GaN 성장시 전자를 포획하는 Ga 공공을 도핑된 Al이 매워 이동할 수 있는 전자의 수를 증가시켰기 때문이다. 특히, Al이 도핑되지 않은 경우, 낮은 온도(77K)에서 전자이동도는 상온에서의 전자이동도에 비해 급격히 감소하였다. 이에 비해, Al이 0.45% 또는 0.3% 도핑된 경우에는, 낮은 온도(77K)에서 전자이동도는 상온에서의 전자이동도에 비해 증가됨을 볼 수 있다. 이와 같이, Al이 도핑된 경우 격자의 영향을 주로 받는 낮은 온도(77K)에서 전자이동도가 우수한 것은 전위와 같은 격자 결함이 크게 감소하였기 때문이다.
도 8은 HR-XRD(high resolution x-ray diffraction)를 이용하여 측정한 역격자공간의 지도(reciprocal space maps)이다. 도 8a는 언도프 GaN층 역격자공간의 지도이며, 도 8b는 Al 도핑된 GaN층의 역격자 공간의 지도이다. 도 8a에 나타난 바와 같이 언도프 GaN층은 결함의 의해 압축변형(compressive strain)을 받아 비대칭적인 모습을 보이는 있다. 그러나, 본 발명에 따른 Al 도핑된 GaN층의 역격자 공간의 지도는, 도 8b와 같이 도 8a에 비해 대칭적인 모습을 보인다. 이는 Al의 도핑으로 인해 발생하는 현상으로, Al의 도핑을 통해 전위가 현저히 감소함에 기인한 것이다. 즉, 본 발명에서는, Al 도핑을 통해 격자불일치에 의한 결함인 전위가 현저하게 감소하여 결정성을 현저하게 향상할 수 있다.
이상에서 설명된 본 발명은, 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
상술한 바와 같이, 본 발명에 따르면, n형 GaN 클래드층 및 상기 n형 GaN층의 결정성 향상을 위해 형성되는 GaN층을 형성할 때 소량의 Al을 함께 도핑함으로써, Ga 공공과 같은 포인트 디펙트가 전자를 포획하는 것을 방지하여 전자의 이동도를 향상시킬 수 있는 효과가 있으며, 전자의 이동도 향상을 통해 발광소자의 전기적, 광학적 특성을 향상시킬 수 있는 효과가 있다. 또한, 전위와 같은 격자불일치로 인한 결함을 감소시켜 GaN층 및 n형 GaN 클래드층의 결정성을 향상시킬 수 있는 효과가 있다. 나아가, LEO법 또는 펜디오-에피택시법과 같은 고비용이 소요되는 공정을 채택하지 않고서도 저렴하게 양질의 결정성장을 보장할 수 있는 우수한 효과가 있다.

Claims (24)

  1. GaN 반도체 물질을 성장시키기 위한 기판;
    상기 기판 상에 형성되며, 0.01% 내지 1%의 함유량으로 Al이 도핑된 n형 GaN 클래드층;
    상기 n형 GaN 클래드층 상에 형성되며 양자우물구조를 갖는 활성층; 및
    상기 활성층 상에 형성되는 p형 GaN 클래드층을 포함하는 GaN 반도체 발광소자.
  2. 삭제
  3. 제1항에 있어서,
    상기 기판과 상기 n형 GaN 클래드층 사이에 형성되는 버퍼층을 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자.
  4. 제3항에 있어서, 상기 버퍼층은,
    상기 기판 상에 형성되는 Al 씨드층; 및
    상기 Al 씨드층 상에 형성되는 단결정 AlN층을 포함하는 것을 특징으로 하는 GaN 반도체 발광소자.
  5. 제4항에 있어서,
    상기 단결정 AlN층의 두께는 10㎚ 내지 50㎚인 것을 특징으로 하는 GaN 반도체 발광소자.
  6. 제3항에 있어서, 상기 버퍼층은,
    비결정질의 AlN층 또는 비결정질의 GaN층인 것을 특징으로 하는 GaN 반도체 발광소자.
  7. 제3항에 있어서,
    상기 버퍼층과 n형 GaN 클래드층 사이에 형성되는 GaN 중간층을 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자.
  8. 제7항에 있어서,
    상기 GaN 중간층의 두께는 100㎚ 내지 1㎛인 것을 특징으로 하는 GaN 반도체 발광소자.
  9. 제7항에 있어서,
    상기 GaN 중간층과 상기 n형 GaN 클래드층 사이에 형성되는 Al이 도핑된 GaN층을 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자.
  10. 제9항에 있어서,
    상기 Al이 도핑된 GaN층은 Al 함유량이 0.01% 내지 1%로 Al 도핑된 것을 특징으로 하는 GaN 반도체 발광소자.
  11. 제9항 또는 제10항에 있어서,
    상기 Al이 도핑된 GaN층의 두께는 1㎛ 내지 4㎛인 것을 특징으로 하는 GaN 반도체 발광소자.
  12. GaN 반도체 물질을 성장시키기 위한 기판을 마련하는 단계;
    상기 기판 상에 0.01% 내지 1%의 함유량으로 Al이 도핑된 n형 GaN 클래드층을 형성하는 단계;
    상기 n형 GaN 클래드층 상에 양자우물구조를 갖는 활성층을 형성하는 단계; 및
    상기 활성층 상에 p형 GaN 클래드층을 형성하는 단계를 포함하는 GaN 반도체 발광소자의 제조방법.
  13. 삭제
  14. 제12항에 있어서,
    상기 n형 GaN 클래드층을 형성하는 단계 이전에, 상기 기판 상에 버퍼층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  15. 제14항에 있어서, 상기 버퍼층을 형성하는 단계는,
    상기 기판 상에 Al 씨드층을 형성하는 단계 및
    상기 Al 씨드층 상에 단결정 AlN층을 형성하는 단계를 포함하는 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  16. 제15항에 있어서,
    상기 단결정 AlN층을 형성하는 단계는, MOCVD법을 이용하여 1000℃ 내지 1100℃의 고온에서 단결정 AlN층을 형성하는 단계인 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  17. 제15항 또는 제16항에 있어서,
    상기 단결정 AlN층을 형성하는 단계는, 10㎚ 내지 50㎚의 두께로 단결정 AlN층을 형성하는 단계인 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  18. 제14항에 있어서, 상기 버퍼층을 형성하는 단계는,
    상기 기판 상에 비결정질 AlN층을 형성하는 단계 또는 상기 기판 상에 비결정질 GaN층을 형성하는 단계인 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  19. 제14항에 있어서,
    상기 n형 GaN 클래드층을 형성하는 단계 이전에, 상기 버퍼층 상에 GaN 중간층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  20. 제19항에 있어서,
    상기 GaN 중간층을 형성하는 단계는, 100㎚ 내지 1㎛의 두께로 GaN 중간층을 형성하는 단계인 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  21. 제19항에 있어서,
    상기 n형 GaN 클래드층을 형성하는 단계 이전에, 상기 GaN 중간층 상에 Al이 도핑된 GaN층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  22. 제21항에 있어서,
    상기 Al이 도핑된 GaN층을 형성하는 단계는 Al 함유량이 0.01% 내지 1%로 Al 도핑된 GaN층을 형성하는 단계인 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  23. 제21항 또는 제22항에 있어서,
    상기 Al이 도핑된 GaN층을 형성하는 단계는, 1㎛ 내지 4㎛의 두께로 GaN층을 형성하는 단계인 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
  24. 제12항에 있어서,
    상기 활성층과 p형 GaN 클래드층의 일부를 제거하여 상기 n형 GaN 클래드층의 일부 영역을 노출시키는 단계;
    상기 p형 GaN 클래드층 상에 p 메탈층을 형성하는 단계; 및
    상기 p 메탈층 상에 p측 본딩전극 및 상기 노출된 n형 GaN 클래드층의 일부 영역에 n측 전극을 형성하는 단계를 더 포함하는 것을 특징으로 하는 GaN 반도체 발광소자의 제조방법.
KR1020030095988A 2003-12-24 2003-12-24 GaN 반도체 발광소자 및 그 제조방법 KR100576857B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020030095988A KR100576857B1 (ko) 2003-12-24 2003-12-24 GaN 반도체 발광소자 및 그 제조방법
US10/843,594 US20050139818A1 (en) 2003-12-24 2004-05-12 Gallium nitride semiconductor light emitting device and method of manufacturing the same
JP2004143690A JP2005191519A (ja) 2003-12-24 2004-05-13 GaN半導体発光素子及びその製造方法
US11/443,376 US7674643B2 (en) 2003-12-24 2006-05-31 Gallium nitride semiconductor light emitting device and method of manufacturing the same
JP2010021196A JP2010098336A (ja) 2003-12-24 2010-02-02 GaN半導体発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095988A KR100576857B1 (ko) 2003-12-24 2003-12-24 GaN 반도체 발광소자 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20050064527A KR20050064527A (ko) 2005-06-29
KR100576857B1 true KR100576857B1 (ko) 2006-05-10

Family

ID=34698424

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030095988A KR100576857B1 (ko) 2003-12-24 2003-12-24 GaN 반도체 발광소자 및 그 제조방법

Country Status (3)

Country Link
US (2) US20050139818A1 (ko)
JP (2) JP2005191519A (ko)
KR (1) KR100576857B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045949B1 (ko) 2010-08-24 2011-07-01 (주)세미머티리얼즈 질화물 반도체 발광소자 및 이의 제조 방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504180B1 (ko) * 2003-01-29 2005-07-28 엘지전자 주식회사 질화물 화합물 반도체의 결정성장 방법
KR101034055B1 (ko) 2003-07-18 2011-05-12 엘지이노텍 주식회사 발광 다이오드 및 그 제조방법
KR100506739B1 (ko) * 2003-12-23 2005-08-08 삼성전기주식회사 알루미늄(Al)을 함유한 질화물 반도체 결정 성장방법
KR100611491B1 (ko) * 2004-08-26 2006-08-10 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100616621B1 (ko) * 2004-09-24 2006-08-28 삼성전기주식회사 질화물계 반도체 장치 및 그 제조 방법
JP4939014B2 (ja) * 2005-08-30 2012-05-23 国立大学法人徳島大学 Iii族窒化物半導体発光素子およびiii族窒化物半導体発光素子の製造方法
RU2326993C2 (ru) * 2006-07-25 2008-06-20 Самсунг Электро-Меканикс Ко., Лтд. Способ выращивания монокристалла нитрида на кремниевой пластине, нитридный полупроводниковый светоизлучающий диод, изготовленный с его использованием, и способ такого изготовления
KR100838755B1 (ko) * 2006-11-08 2008-06-17 삼성전기주식회사 질화갈륨계 반도체 발광소자의 제조방법
TWI416762B (zh) 2010-08-23 2013-11-21 Univ Nat Sun Yat Sen 同質異相量子井
NL2008322A (en) 2011-04-13 2012-10-16 Asml Holding Nv Double euv illumination uniformity correction system and method.
KR20130078280A (ko) 2011-12-30 2013-07-10 삼성전자주식회사 질화물계 반도체 소자 및 그 제조 방법
US9396933B2 (en) * 2012-04-26 2016-07-19 Applied Materials, Inc. PVD buffer layers for LED fabrication
KR101464854B1 (ko) 2013-01-14 2014-11-25 주식회사 엘지실트론 반도체 기판
CN104993026B (zh) * 2015-05-19 2017-10-20 西安交通大学 一种单芯片颜色可调的GaN基LED结构的制备方法
KR102651789B1 (ko) * 2018-11-06 2024-03-27 삼성디스플레이 주식회사 발광 소자 구조물 및 이의 제조방법
CN115458650B (zh) * 2022-11-10 2023-03-24 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482781B2 (ja) 1996-09-11 2004-01-06 昭和電工株式会社 窒化物化合物半導体層の形成方法
JP3454037B2 (ja) 1996-09-27 2003-10-06 日立電線株式会社 GaN系素子用基板及びその製造方法及びGaN系素子
JP3700283B2 (ja) 1996-10-02 2005-09-28 昭和電工株式会社 窒化物化合物半導体素子
KR100491482B1 (ko) 1997-01-09 2005-05-27 니치아 카가쿠 고교 가부시키가이샤 질화물반도체소자
JPH11135889A (ja) 1997-10-30 1999-05-21 Kyocera Corp 結晶成長用基板及びそれを用いた発光装置
KR100611352B1 (ko) * 1998-03-12 2006-09-27 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자
JP2000049092A (ja) 1998-05-29 2000-02-18 Matsushita Electron Corp 窒化物半導体の結晶成長方法および窒化物半導体装置並びにその製造方法
US6218207B1 (en) 1998-05-29 2001-04-17 Mitsushita Electronics Corporation Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
US6194742B1 (en) * 1998-06-05 2001-02-27 Lumileds Lighting, U.S., Llc Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
JP4005701B2 (ja) * 1998-06-24 2007-11-14 シャープ株式会社 窒素化合物半導体膜の形成方法および窒素化合物半導体素子
JP4530234B2 (ja) * 1998-10-09 2010-08-25 シャープ株式会社 半導体発光素子
JP3592553B2 (ja) * 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
EP0996173B1 (en) 1998-10-23 2015-12-30 Xerox Corporation Semiconductor structures including polycrystalline GaN layers and method of manufacturing
US6288417B1 (en) 1999-01-07 2001-09-11 Xerox Corporation Light-emitting devices including polycrystalline gan layers and method of forming devices
KR20010029852A (ko) * 1999-06-30 2001-04-16 도다 다다히데 Ⅲ족 질화물계 화합물 반도체 소자 및 그 제조방법
JP2001119102A (ja) * 1999-10-15 2001-04-27 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体レーザダイオード
JP2001160627A (ja) 1999-11-30 2001-06-12 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2001196702A (ja) 2000-01-11 2001-07-19 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2001196697A (ja) * 2000-01-13 2001-07-19 Fuji Photo Film Co Ltd 半導体素子用基板およびその製造方法およびその半導体素子用基板を用いた半導体素子
JP4406999B2 (ja) 2000-03-31 2010-02-03 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
US6534332B2 (en) * 2000-04-21 2003-03-18 The Regents Of The University Of California Method of growing GaN films with a low density of structural defects using an interlayer
TW503590B (en) * 2001-04-27 2002-09-21 Highlink Technology Corp Manufacturing method for buffer layer of light emitting semiconductor devices
US20030057438A1 (en) * 2001-09-24 2003-03-27 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing lateral epitaxial overgrowth
US6869820B2 (en) * 2002-01-30 2005-03-22 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
JP4092927B2 (ja) * 2002-02-28 2008-05-28 豊田合成株式会社 Iii族窒化物系化合物半導体、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体基板の製造方法
JP2003303995A (ja) 2002-04-12 2003-10-24 Sony Corp 窒化物半導体素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045949B1 (ko) 2010-08-24 2011-07-01 (주)세미머티리얼즈 질화물 반도체 발광소자 및 이의 제조 방법

Also Published As

Publication number Publication date
JP2005191519A (ja) 2005-07-14
US20050139818A1 (en) 2005-06-30
JP2010098336A (ja) 2010-04-30
KR20050064527A (ko) 2005-06-29
US20060215256A1 (en) 2006-09-28
US7674643B2 (en) 2010-03-09

Similar Documents

Publication Publication Date Title
US7674643B2 (en) Gallium nitride semiconductor light emitting device and method of manufacturing the same
KR100525545B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
US7547910B2 (en) Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
US20080191191A1 (en) Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
US10553749B2 (en) Nitride-based semiconductor light-emitting device
KR100639026B1 (ko) 질화물 반도체 발광소자 및 그 제조 방법
US7955881B2 (en) Method of fabricating quantum well structure
KR101181182B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
JP4530234B2 (ja) 半導体発光素子
JP7447151B2 (ja) パッシベーション層を含む発光ダイオード前駆体
JP4743989B2 (ja) 半導体素子およびその製造方法ならびに半導体基板の製造方法
JP2005260200A (ja) 窒化物系発光装置の三重窒化物系バッファ層及び該層の製造方法
KR100728132B1 (ko) 전류 확산층을 이용한 발광 다이오드
KR101026031B1 (ko) 질화물 반도체 소자 및 그 제조방법
KR101018116B1 (ko) 질화물 반도체 소자 및 그 제조방법
JP4229625B2 (ja) 窒化物半導体層とそれを含む窒化物半導体素子
KR101220042B1 (ko) 질화물 반도체 발광소자 및 그 제조 방법
JP4310254B2 (ja) 窒化物半導体発光素子
JP2004096077A (ja) 化合物半導体発光素子用エピタキシャル基板及びその製造方法並びに発光素子
KR100616631B1 (ko) 질화물계 반도체 발광 소자 및 그 제조 방법
KR100838286B1 (ko) 질화물 반도체 발광소자
SuWon Lee et a1.
KR100838755B1 (ko) 질화갈륨계 반도체 발광소자의 제조방법
KR101210646B1 (ko) 수직형 발광 소자 및 그 제조방법
JP3556593B2 (ja) 化合物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 14