KR100519406B1 - 고분자 화합물, 레지스트 재료 및 패턴 형성 방법 - Google Patents

고분자 화합물, 레지스트 재료 및 패턴 형성 방법 Download PDF

Info

Publication number
KR100519406B1
KR100519406B1 KR10-2000-0071838A KR20000071838A KR100519406B1 KR 100519406 B1 KR100519406 B1 KR 100519406B1 KR 20000071838 A KR20000071838 A KR 20000071838A KR 100519406 B1 KR100519406 B1 KR 100519406B1
Authority
KR
South Korea
Prior art keywords
group
polymer
formula
acid
carbon atoms
Prior art date
Application number
KR10-2000-0071838A
Other languages
English (en)
Other versions
KR20010062004A (ko
Inventor
준 하따께야마
다께시 긴쇼
무쯔오 나까시마
고지 하세가와
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20010062004A publication Critical patent/KR20010062004A/ko
Application granted granted Critical
Publication of KR100519406B1 publication Critical patent/KR100519406B1/ko

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 하기 화학식 1 또는 2로 표시되는 환상의 규소 함유기를 포함하는 것을 특징으로 하는 고분자 화합물에 관한 것이다.
본 발명의 레지스트 재료는 고에너지선에 감응하고, 300 nm 이하의 파장에서의 감도, 해상성, 산소 플라즈마 에칭 내성이 우수하다. 따라서, 본 발명의 고분자 화합물 및 레지스트 재료는 이러한 특성에 의해 특히 우수한 2층 레지스트용 재료가 될 수 있으며, 미세할 뿐 아니라 기판에 대하여 수직인 패턴을 용이하게 형성할 수 있어, 초 LSI 제조용의 미세 패턴 형성 재료로서 바람직하다.
식 중,
R1, R2, R3, R6, R7, R10, R11 , R12 및 R13은 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기이고,
R4, R5, R8 및 R9는 수소 원자, 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기, 탄소수 1 내지 20의 불소화된 알킬기, 또는 탄소수 6 내지 20의 아릴기이며,
p, q, r 및 s는 0 내지 10의 정수이고,
1≤p+q+s≤20이다.

Description

고분자 화합물, 레지스트 재료 및 패턴 형성 방법 {Polymer, Resist Composition and Patterning Process}
본 발명은 반도체 소자 등의 제조 공정에서의 미세 가공에 사용되는 화학 증폭 포지형 레지스트 재료의 베이스 수지로서 바람직한 고분자 실리콘 화합물, 및 원자외선, KrF 엑시머 레이저광 (248 nm), ArF 엑시머 레이저광 (193 nm), 전자선, X 선 등의 고에너지선을 노광 광원으로서 사용할 경우에 바람직한 화학 증폭 포지형 레지스트 재료 및 패턴 형성 방법에 관한 것이다.
최근, LSI의 고집적화와 고속도화에 따라 패턴 룰의 미세화가 요구되고 있는 가운데, 현재 범용 기술로서 사용되고 있는 광노광에서는 광원 파장에 유래하는 본질적인 해상도 한계에 근접하고 있다. g 선 (436 nm) 또는 i 선 (365 nm)을 광원으로 하는 광노광에서는 대략 0.5 ㎛의 패턴 룰이 한계가 되며, 이것을 이용하여 제작한 LSI의 집적도는 16 M비트 DRAM 상당까지 된다. 그러나, LSI의 시작(試作)은 이미 이 단계까지 왔으며, 한층 더 미세화 기술의 개발이 급선무되고 있다.
패턴의 미세화를 도모하는 수단 중의 하나로 레지스트 패턴의 형성시 사용하는 노광광을 단파장화하는 방법이 있는데, 256 M비트 (가공 치수가 0.25 ㎛ 이하) DRAM (다이나믹·랜덤·액세스·메모리)의 양산 공정에는 노광 광원으로서 i 선 (365 nm) 대신에 단파장의 KrF 엑시머 레이저광 (248 nm)의 이용이 현재 적극적으로 검토되고 있다. 그러나, 더욱 미세한 가공 기술 (가공 치수가 0.2 ㎛ 이하)을 필요로 하는 집적도 1 G 이상의 DRAM 제조에는 보다 단파장의 광원이 필요하며, 특히 ArF 엑시머 레이저광 (193 nm)을 이용하는 포토리소그래피가 최근 검토되고 있다.
IBM의 이또 (Ito), G. C. Willson 등이 폴리히드록시스티렌의 수산기를 tert-부톡시카르보닐옥시기 (t-Boc기)로 보호한 PBOCST라는 수지에 오늄염 산발생제를 첨가한 화학 증폭 포지형 레지스트 재료를 제안한 이래, 여러가지 고감도, 고해상도의 레지스트 재료가 개발되고 있다. 그러나, 이들 화학 증폭 포지형 레지스트 재료는 모두 고감도, 고해상도의 것이기는 하지만, 미세하고 높은 종횡비의 패턴을 형성하는 것은 이들로부터 얻어지는 패턴의 기계적 강도를 감안하면 곤란하였다.
또한, 상기한 바와 같은 폴리히드록시스티렌을 베이스 수지로서 사용하고, 원자외선, 전자선 및 X 선에 대하여 감도를 갖는 화학 증폭 포지형 레지스트 재료는 예전부터 많이 제안되고 있다. 그러나, 단차 기판상에 높은 종횡비의 패턴을 형성하기 위해서는 2층 레지스트법이 우수한 것에 반해, 상기 레지스트 재료는 모두 단층 레지스트법에 의한 것으로, 아직 기판 단차의 문제, 기판에서의 광반사의 문제, 및 높은 종횡비의 패턴 형성이 곤란하다는 문제가 있어 실용화하기 어려운 것이 현실이었다.
한편, 종래부터 단차 기판상에 높은 종횡비의 패턴을 형성하기 위해서는 2층 레지스트법이 유리하고, 또한 2층 레지스트막을 일반적인 알칼리 현상액으로 현상하기 위해서는 히드록시기나 카르복실기 등의 친수기를 갖는 고분자 실리콘 화합물이 필요하다는 것이 알려져 있다.
최근, 실리콘계 화학 증폭 포지형 레지스트 재료로서 안정한 알칼리 가용성 실리콘 중합체인 폴리히드록시벤질실세스키옥산의 페놀성 수산기 중 일부를 t-Boc기로 보호한 것을 베이스 수지로서 사용하고, 이것과 산발생제를 조합한 실리콘계 화학 증폭 포지형 레지스트 재료가 제안되었다 (일본 특허 공개 평(平) 7-118651호 공보, SPIE vol, 1925 (1993), 377 등). 또한, 규소 함유 아크릴 단량체를 사용한 실리콘 함유 중합체도 제안되어 있다 (일본 특허 공개 평(平) 9-110938호 공보).
그러나, 아크릴 팬던트형의 규소 함유 중합체의 결점으로는 산소 플라즈마에서의 드라이 에칭 내성이 실세스키옥산계 중합체와 비교할 때 약하다는 점을 들 수 있다. 그 이유로서 규소 함유율이 낮은 것을 들 수 있다.
따라서, 트리실란 또는 테트라실란 팬던트형이고, 규소 함유율을 높이고, 또한 규소 함유 치환기에 산 이탈성을 갖게 한 단량체를 포함하는 중합체가 제안되어 있다 (SPIE vol. 3678 p. 214, p. 241, p.562). 그러나, ArF의 파장에 있어서는, 디실란 이상의 실란 화합물은 강한 흡수를 갖기 때문에 도입율이 많으면 투과율이 저하된다는 결점이 있었다. 또한, 산불안정기 규소를 함유시키는 시도도 상기 이외에 이루어졌지만 (SPIE vol. 3678 p. 420), 산 이탈 성능이 낮기 때문에 환경 안정성이 낮고, T-톱 프로파일이 되기 쉽다는 등의 결점이 있었다.
본 발명은 상기 사정을 감안하여 이루어진 것으로, 고감도, 고해상도를 가지며, 특히 높은 종횡비의 패턴을 형성하기에 적합한 2층 레지스트법의 재료로서 바람직하게 사용할 수 있을 뿐만 아니라, 내열성이 우수한 패턴을 형성할 수 있는 화학 증폭 포지형 레지스트 재료의 베이스 중합체로서 유용한 신규 고분자 화합물, 및 상기 화합물을 베이스 중합체로서 함유하는 화학 증폭 포지형 레지스트 재료 및 패턴 형성 방법을 제공하는 것을 목적으로 한다.
본 발명자들은 상기 목적을 달성하기 위하여 예의 검토를 행한 결과, 화학식 1 또는 2로 표시되는 규소 함유 치환기를 포함으로써 효과적으로 규소 함유율을 높일 수 있고, ArF 광에서의 투과율 저하를 방지할 수 있는 것을 발견하였다. 이 화학식 1 및 2의 규소 함유 치환기는 화학식 3 내지 8에 표시된 페놀 및 카르복실기의 수산기를 치환함으로써 산 이탈성 치환기로서 기능한다. 이 치환기의 산 이탈성이 매우 좋기 때문에 노광 후의 환경 안정성이 우수하고, 이에 따라 T-톱 프로파일을 방지할 수 있다. 또한, 하나의 환상 탄화수소기 내에 규소를 2개 이상 도입함으로써 드라이 에칭 내성을 높이는 것이 가능하다. 또한, 규소 원자 사이에 탄소 원자를 존재시켜 디실란 결합을 형성시키지 않아도 ArF 광에서의 투과율을 저하시킬 염려가 없다는 특징도 겸비한다.
따라서, 본 발명은 하기 고분자 화합물, 화학 증폭 레지스트 재료, 및 패턴 형성 방법을 제공한다.
청구항 1:
하기 화학식 1 또는 2로 표시되는 환상의 규소 함유기를 포함하는 것을 특징으로 하는 고분자 화합물.
<화학식 1>
<화학식 2>
식 중,
R1, R2, R3, R6, R7, R10, R11 , R12 및 R13은 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기이고,
R4, R5, R8 및 R9는 수소 원자, 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기, 탄소수 1 내지 20의 불소화된 알킬기, 또는 탄소수 6 내지 20의 아릴기이며,
p, q, r 및 s는 0 내지 10의 정수이고,
1≤p+q+s≤20이다.
청구항 2:
제1항에 있어서, 하기 화학식 3 내지 8로 표시되는 반복 단위 중 1종 또는 2종 이상을 포함하는 것을 특징으로 하는 고분자 화합물.
식 중,
R14는 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기를 나타내고,
R15는 수소 원자 또는 탄소수 1 내지 10의 알킬기를 나타내며,
t, u 및 w는 1≤t≤5이며, u=0 또는 1이고, 0≤w≤5이고,
R1 내지 R13, p, q, r 및 s는 상기와 동일한 의미를 나타낸다.
청구항 3:
(A) 제1항 또는 제2항에 기재한 고분자 화합물,
(B) 산발생제, 및
(C) 유기 용매
를 포함하는 화학 증폭 포지형 레지스트 재료.
청구항 4:
(A) 제1항 또는 제2항에 기재한 고분자 화합물,
(B) 산발생제,
(C) 유기 용매, 및
(D) 산불안정기를 갖는 용해 저지제
를 포함하는 화학 증폭 포지형 레지스트 재료.
청구항 5:
제3항 또는 제4항에 있어서, (E) 염기성 화합물을 추가로 포함하는 화학 증폭 포지형 레지스트 재료.
청구항 6:
(1) 제3항, 제4항 또는 제5항에 기재한 레지스트 재료를 피가공 기판상의 유기막상에 도포하고, 베이킹하여 레지스트막을 형성하는 공정,
(2) 상기 레지스트막에 포토마스크를 통하여 방사선을 조사하는 공정,
(3) 필요에 따라 베이킹한 후, 알칼리 수용액으로 현상하여 상기 레지스트막의 조사 부분을 용해시켜 레지스트 패턴을 형성하는 공정, 및
(4) 드러난 유기막 부분을, 산소 플라즈마를 발생시키는 드라이 에칭 장치로 가공하는 공정
을 포함하는 패턴 형성 방법.
이하, 본 발명에 대하여 더욱 상세히 설명한다.
본 발명의 고분자 화합물은 하기 화학식 1 또는 2로 표시되는 규소 함유기를 포함하는 것이다.
<화학식 1>
<화학식 2>
식 중,
R1, R2, R3, R6, R7, R10, R11 , R12 및 R13은 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기이고,
R4, R5, R8 및 R9는 수소 원자, 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기, 탄소수 1 내지 20의 불소화된 알킬기, 또는 탄소수 6 내지 20의 아릴기이며,
p, q, r 및 s는 0 내지 10의 정수이고,
1≤p+q+s≤20이다.
여기에서 직쇄, 분지쇄, 또는 환상 알킬기로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 시클로펜틸기, 헥실기, 시클로헥실기, 옥틸기, 데실기, 도데실기, 스테아릴기 등을 들 수 있고, 그 중에서도 탄소수 1 내지 20, 특히 1 내지 10의 것이 바람직하다. 또한, 불소화된 알킬기로는 이들 알킬기의 수소 원자 중 일부 또는 전부가 불소 원자로 치환된 것을 들 수 있다. 아릴기로는 페닐기, 톨릴기, 크실릴기, 나프틸기 등을 들 수 있고, 그 중에서도 탄소수 6 내지 12, 특히 6 내지 10의 것이 바람직하다.
p, q 및 s는 0 내지 10의 정수이고, 1≤p+q+s≤20을 만족하지만, 바람직하게는 p는 0 내지 8, 특히 0 내지 6이고, q는 0 내지 8, 특히 0 내지 6이며, s는 0 내지 8, 특히 O 내지 6으로서 p+q+s는 1 내지 10, 특히 1 내지 8이다. 또한, r은 0 내지 10의 정수이지만, 바람직하게는 0 내지 8, 특히 0 내지 6이다.
상기 화학식 1 또는 2의 규소 함유기는 예를 들면 하기 화학식 3 내지 8로 표시되는 반복 단위로서 조합될 수 있고, 본 발명의 고분자 화합물은 이들 화학식 3 내지 8로 표시되는 반복 단위 중 1종 또는 2종 이상을 포함하는 것이 바람직하다.
<화학식 3>
<화학식 4>
<화학식 5>
<화학식 6>
<화학식 7>
<화학식 8>
식 중,
R14는 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기를 나타내고,
R15는 수소 원자, 또는 탄소수 1 내지 10의 알킬기를 나타내며,
t, u 및 w는 1≤t≤5이며, u=0 또는 1이고, 0≤w≤5이고,
R1 내지 R13, p, q, r 및 s는 상기와 동일한 의미를 나타낸다.
여기에서, R14의 알킬기로는 상술한 것과 동일한 것을 들 수 있으며, 그 중에서도 수소 원자 또는 탄소수 1 내지 10, 특히 1 내지 8의 것을 들 수 있다. R15의 알킬기도 상술한 것과 동일한 것을 들 수 있으며, 그 중에서도 수소 원자, 또는 탄소수 1 내지 8, 특히 1 내지 6의 것을 들 수 있다. t는 바람직하게는 0 내지 6이고, w는 바람직하게는 0 내지 6, 특히 0 내지 2이다.
상기 화학식 3 내지 8의 반복 단위로는, 하기의 것을 예시할 수 있다.
본 발명의 고분자 화합물은 상기 화학식 3 내지 8의 단위 이외에, 밀착성을 향상시키기 위한 치환기를 포함하는 단위, 특히 히드록시스티렌, 산무수물, 에스테르 (락톤), 탄산염, 알코올, 아미드, 케톤 등의 친수성 치환기를 포함하는 하기 [I] 군에서 선택되는 1종 또는 2종 이상의 단위를 포함할 수도 있다.
[I] 군
식 중, R14 및 R15는 상기와 동일하다.
여기에서 본 발명의 고분자 화합물에 있어서, 상기 화학식 3 내지 8의 단위는 5 내지 100 몰%, 보다 바람직하게는 10 내지 90 몰%, 더욱 바람직하게는 20 내지 80 몰%를 함유하는 것이 바람직하고, 나머지 부분은 상기 [I] 군의 단위를 포함할 수 있다.
또한, 규소 함유량이 더욱 증가하여 드라이 에칭 내성을 높일 수 있는 단량체를 공중합할 수 있다. 이것은 규소를 포함하는 단량체이며, 예를 들면 하기에 나타낸 것이 예시된다.
본 발명의 고분자 화합물의 중량 평균 분자량은 1,000 내지 1,000,000, 특히 2,000 내지 100,000인 것이 바람직하다.
본 발명의 고분자 화합물을 제조하는 경우, 상기 화학식 3 내지 8의 단위를 제공하는 단량체, 또는 상기 [I] 군의 단위를 제공하는 단량체의 소용량을 사용하여 통상적인 방법에 따라 이들 단량체류와 용매를 혼합하고, 촉매를 첨가하며 경우에 따라서는 가열 또는 냉각하면서 중합 반응을 행한다. 중합 반응은 개시제 (또는 촉매)의 종류, 개시 방법 (광, 열, 방사선, 플라즈마 등), 중합 조건 (온도, 압력, 농도, 용매, 첨가물) 등에 따라서도 지배된다. 본 발명의 고분자 화합물의 중합에 있어서는, AIBN 등의 라디칼에 의해 중합을 개시하는 라디칼 공중합, 알킬리튬 등의 촉매를 이용하는 이온 중합 (음이온 중합) 등이 일반적이다. 이들 중합은 그 통상적인 방법에 따라 행할 수 있다.
또한, 본 발명의 화학식 1 및 2의 규소 함유 치환기는 화학식 1a 및 1b로 표시되는 알코올 화합물을 사용하고, 에스테르화 반응 등의 통상적인 방법에 따라 도입함으로써 화학식 3 내지 8의 단위를 제공하는 단량체를 합성할 수 있다.
또한, 이 화학식 1a 및 1b의 알코올 화합물은, 화학식 2a의 케톤 화합물에 그리냐드 시약 RMgX (X는 할로겐 원자) 또는 유기 리튬 시약 RLi과 같은 유기 금속 시약을 반응시키거나, 또는 화학식 2b의 화합물에 RMgX 및 RLi와 같은 유기 금속 화합물을 반응시킴으로써 얻을 수 있다.
R'는 메틸, 에틸 등의 알킬기이다.
본 발명의 고분자 화합물은 화학 증폭 포지형 레지스트 재료의 베이스 수지로서 바람직하고, 이 경우 본 발명의 화학 증폭 포지형 레지스트 재료는
(A) 베이스 수지로서 상기 고분자 화합물,
(B) 산발생제, 및
(C) 유기 용매
를 함유하고, 더욱 바람직하게는
(D) 산불안정기를 갖는 용해 저지제, 및
(E) 염기성 화합물을 추가로 포함하는 것이 바람직하다.
여기에서, 본 발명에서 사용되는 (C) 성분의 유기 용매로는 산발생제, 베이스 수지 (본 발명의 고분자 화합물), 용해 저지제 등을 용해시킬 수 있는 유기 용매라면 어떠한 것이든 좋다. 이러한 유기 용매로는 예를 들면, 시클로헥사논, 메틸-2-n-아밀케톤 등의 케톤류, 3-메톡시부탄올, 3-메틸-3-메톡시부탄올, 1-메톡시-2-프로판올, 1-에톡시-2-프로판올 등의 알코올류, 프로필렌글리콜 모노메틸에테르, 에틸렌글리콜 모노메틸에테르, 프로필렌글리콜 모노에틸에테르, 에틸렌글리콜 모노에틸에테르, 프로필렌글리콜 디메틸에테르, 디에틸렌글리콜 디메틸에테르 등의 에테르류, 프로필렌글리콜 모노메틸에테르아세테이트, 프로필렌글리콜 모노에틸에테르아세테이트, 락트산 에틸, 피루브산 에틸, 아세트산 부틸, 3-메톡시프로피온산 메틸, 3-에톡시프로피온산 에틸, 아세트산 tert-부틸, 프로피온산 tert-부틸, 프로필렌글리콜-모노-tert-부틸에테르아세테이트 등의 에스테르류를 들 수 있고, 이들 중 1종을 단독으로, 또는 2종 이상을 혼합하여 사용할 수 있지만, 이들로 한정되는 것은 아니다. 본 발명에서는 이들 유기 용매 중에서도 레지스트 성분 중의 산발생제의 용해성이 가장 우수한 디에틸렌글리콜 디메틸에테르, 1-에톡시-2-프로판올, 락트산 에틸 외에 안전한 용매인 프로필렌글리콜 모노메틸에테르아세테이트 및 이들의 혼합 용매가 바람직하게 사용된다.
또한, 유기 용매의 사용량은 베이스 수지 100 중량부에 대하여 200 내지 5,000 중량부, 특히 400 내지 3,000 중량부이다.
(B) 성분의 산발생제로는 하기 화학식 9의 오늄염, 화학식 10의 디아조메탄 유도체, 화학식 11의 글리옥심 유도체, β-케토술폰 유도체, 디술폰 유도체, 니트로벤질술포네이트 유도체, 술폰산 에스테르 유도체, 이미드-일술포네이트 유도체 등을 들 수 있다.
(R30)bM+K-
식 중,
R30은 탄소수 1 내지 12의 직쇄, 분지쇄 또는 환상 알킬기, 탄소수 6 내지 12의 아릴기 또는 탄소수 7 내지 12의 아랄킬기를 나타내고,
M+는 요오드늄 또는 술포늄을 나타내며,
K-는 비친핵성 대향 이온을 나타내고,
b는 2 또는 3이다.
R30의 알킬기로는 메틸기, 에틸기, 프로필기, 부틸기, 시클로헥실기, 2-옥소시클로헥실기, 노르보르닐기, 아다만틸기 등을 들 수 있다. 아릴기로는 페닐기, p-메톡시페닐기, m-메톡시페닐기, o-메톡시페닐기, 에톡시페닐기, p-tert-부톡시페닐기, m-tert-부톡시페닐기 등의 알콕시페닐기, 2-메틸페닐기, 3-메틸페닐기, 4-메틸페닐기, 에틸페닐기, 4-tert-부틸페닐기, 4-부틸페닐기, 디메틸페닐기 등의 알킬페닐기를 들 수 있다. 아랄킬기로는 벤질기, 페네틸기 등을 들 수 있다. K-의 비친핵성 대향 이온으로는 염화물 이온, 브롬화물 이온 등의 할라이드 이온, 트리플레이트, 1,1,1-트리플루오로에탄술포네이트, 노나플루오로부탄술포네이트 등의 플루오로알킬술포네이트, 토실레이트, 벤젠술포네이트, 4-플루오로벤젠술포네이트, 1,2,3,4,5-펜타플루오로벤젠술포네이트 등의 아릴술포네이트, 메실레이트, 부탄술포네이트 등의 알킬술포네이트를 들 수 있다.
식 중, R31 및 R32는 탄소수 1 내지 12의 직쇄, 분지쇄 또는 환상 알킬기 또는 할로겐화 알킬기, 탄소수 6 내지 12의 아릴기 또는 할로겐화 아릴기, 또는 탄소수 7 내지 12의 아랄킬기를 나타낸다.
R31 및 R32의 알킬기로는 메틸기, 에틸기, 프로필기, 부틸기, 아밀기, 시클로펜틸기, 시클로헥실기, 노르보르닐기, 아다만틸기 등을 들 수 있다. 할로겐화 알킬기로는 트리플루오로메틸기, 1,1,1-트리플루오로에틸기, 1,1,1-트리클로로에틸기, 노나플루오로부틸기 등을 들 수 있다. 아릴기로는 페닐기, p-메톡시페닐기, m-메톡시페닐기, o-메톡시페닐기, 에톡시페닐기, p-tert-부톡시페닐기, m-tert-부톡시페닐기 등의 알콕시페닐기, 2-메틸페닐기, 3-메틸페닐기, 4-메틸페닐기, 에틸페닐기, 4-tert-부틸페닐기, 4-부틸페닐기, 디메틸페닐기 등의 알킬페닐기를 들 수 있다. 할로겐화 아릴기로는 플루오로벤젠기, 클로로벤젠기, 1,2,3,4,5-펜타플루오로벤젠기 등을 들 수 있다. 아랄킬기로는 벤질기, 페네틸기 등을 들 수 있다.
식 중, R33, R34 및 R35는 탄소수 1 내지 12의 직쇄, 분지쇄 또는 환상 알킬기 또는 할로겐화 알킬기, 탄소수 6 내지 12의 아릴기 또는 할로겐화 아릴기, 또는 탄소수 7 내지 12의 아랄킬기를 나타내거나, 또는
R34와 R35는 서로 결합하여 환상 구조를 형성할 수도 있으며, 환상 구조를 형성하는 경우 R34 및 R35는 각각 탄소수 1 내지 6의 직쇄 또는 분지쇄 알킬렌기를 나타낸다.
R33, R34 및 R35의 알킬기, 할로겐화 알킬기, 아릴기, 할로겐화 아릴기, 아랄킬기로는 R31 및 R32에서 설명한 것과 동일한 기를 들 수 있다. 또한, R34 및 R35의 알킬렌기로는 메틸렌기, 에틸렌기, 프로필렌기, 부틸렌기, 헥실렌기 등을 들 수 있다.
구체적으로 예를 들면 트리플루오로메탄술폰산 디페닐요오드늄, 트리플루오로메탄술폰산 (p-tert-부톡시페닐)페닐요오드늄, p-톨루엔술폰산 디페닐요오드늄, p-톨루엔술폰산 (p-tert-부톡시페닐)페닐요오드늄, 트리플루오로메탄술폰산 트리페닐술포늄, 트리플루오로메탄술폰산 (p-tert-부톡시페닐)디페닐술포늄, 트리플루오로메탄술폰산 비스(p-tert-부톡시페닐)페닐술포늄, 트리플루오로메탄술폰산 트리스(p-tert-부톡시페닐)술포늄, p-톨루엔술폰산 트리페닐술포늄, p-톨루엔술폰산 (p-tert-부톡시페닐)디페닐술포늄, p-톨루엔술폰산 비스(p-tert-부톡시페닐)페닐술포늄, p-톨루엔술폰산 트리스(p-tert-부톡시페닐)술포늄, 노나플루오로부탄술폰산 트리페닐술포늄, 부탄술폰산 트리페닐술포늄, 트리플루오로메탄술폰산 트리메틸술포늄, p-톨루엔술폰산 트리메틸술포늄, 트리플루오로메탄술폰산 시클로헥실메틸(2-옥소시클로헥실)술포늄, p-톨루엔술폰산 시클로헥실메틸(2-옥소시클로헥실)술포늄, 트리플루오로메탄술폰산 디메틸페닐술포늄, p-톨루엔술폰산 디메틸페닐술포늄, 트리플루오로메탄술폰산 디시클로헥실페닐술포늄, p-톨루엔술폰산 디시클로헥실페닐술포늄 등의 오늄염, 비스(벤젠술포닐)디아조메탄, 비스(p-톨루엔술포닐)디아조메탄, 비스(크실렌술포닐)디아조메탄, 비스(시클로헥실술포닐)디아조메탄, 비스(시클로펜틸술포닐)디아조메탄, 비스(n-부틸술포닐)디아조메탄, 비스(이소부틸술포닐)디아조메탄, 비스(sec-부틸술포닐)디아조메탄, 비스(n-프로필술포닐)디아조메탄, 비스(이소프로필술포닐)디아조메탄, 비스(tert-부틸술포닐)디아조메탄, 비스 (n-아밀술포닐)디아조메탄, 비스(이소아밀술포닐)디아조메탄, 비스(sec-아밀술포닐)디아조메탄, 비스(tert-아밀술포닐)디아조메탄, 1-시클로헥실술포닐-1-(tert-부틸술포닐)디아조메탄, 1-시클로헥실술포닐-1-(tert-아밀술포닐)디아조메탄, 1-tert-아밀술포닐-1-(tert-부틸술포닐)디아조메탄 등의 디아조메탄 유도체, 비스-o-(p-톨루엔술포닐)-α-디메틸글리옥심, 비스-o-(p-톨루엔술포닐)-α-디페닐글리옥심, 비스-o-(p-톨루엔술포닐)-α-디시클로헥실글리옥심, 비스-o-(p-톨루엔술포닐)-2,3-펜타디온글리옥심, 비스-o-(p-톨루엔술포닐)-2-메틸-3,4-펜탄디온글리옥심, 비스-o-(n-부탄술포닐)-α-디메틸글리옥심, 비스-o-(n-부탄술포닐)-α-디페닐글리옥심, 비스-o-(n-부탄술포닐)-α-디시클로헥실글리옥심, 비스-o-(n-부탄술포닐)-2,3-펜탄디온글리옥심, 비스-o-(n-부탄술포닐)-2-메틸-3,4-펜탄디온글리옥심, 비스-o-(메탄술포닐)- α-디메틸글리옥심, 비스-o-(트리플루오로메탄술포닐)-α-디메틸글리옥심, 비스-o-(1,1,1-트리플루오로에탄술포닐)-α-디메틸글리옥심, 비스-o-(tert-부탄술포닐)- α-디메틸글리옥심, 비스-o-(퍼플루오로옥탄술포닐)-α-디메틸글리옥심, 비스-o-(시클로헥산술포닐)-α-디메틸글리옥심, 비스-o-(벤젠술포닐)-α-디메틸글리옥심, 비스-o-(p-플루오로벤젠술포닐)-α-디메틸글리옥심, 비스-o-(p-tert-부틸벤젠술포닐)-α-디메틸글리옥심, 비스-o-(크실렌술포닐)-α-디메틸글리옥심, 비스-o-(캄퍼술포닐)-α-디메틸글리옥심 등의 글리옥심 유도체, 2-시클로헥실카르보닐-2-(p-톨루엔술포닐)프로판, 2-이소프로필카르보닐-2-(p-톨루엔술포닐)프로판 등의 β-케토술폰 유도체, 디페닐디술폰, 디시클로헥실디술폰 등의 디술폰 유도체, p-톨루엔술폰산 2,6-디니트로벤질, p-톨루엔술폰산 2,4-디니트로벤질 등의 니트로벤질술포네이트 유도체, 1,2,3-트리스(메탄술포닐옥시)벤젠, 1,2,3-트리스(트리플루오로메탄술포닐옥시)벤젠, 1,2,3-트리스(p-톨루엔술포닐옥시)벤젠 등의 술폰산 에스테르 유도체, 프탈이미드-일-트리플레이트, 프탈이미드-일-토실레이트, 5-노르보르넨-2,3-디카르복시이미드-일-트리플레이트, 5-노르보르넨-2,3-디카르복시이미드-일-토실레이트, 5-노르보르넨-2,3-디카르복시이미드-일-n-부틸술포네이트 등의 이미드-일-술포네이트 유도체 등을 들 수 있지만, 트리플루오로메탄술폰산 트리페닐술포늄, 트리플루오로메탄술폰산 (p-tert-부톡시페닐)디페닐술포늄, 트리플루오로메탄술폰산 트리스(p-tert-부톡시페닐)술포늄, p-톨루엔술폰산 트리페닐술포늄, p-톨루엔술폰산 (p-tert-부톡시페닐)디페닐술포늄, p-톨루엔술폰산 트리스(p-tert-부톡시페닐)술포늄 등의 오늄염, 비스(벤젠술포닐)디아조메탄, 비스(p-톨루엔술포닐)디아조메탄, 비스(시클로헥실술포닐)디아조메탄, 비스(n-부틸술포닐)디아조메탄, 비스(이소부틸술포닐)디아조메탄, 비스(sec-부틸술포닐)디아조메탄, 비스(n-프로필술포닐)디아조 메탄, 비스(이소프로필술포닐)디아조메탄, 비스(tert-부틸술포닐)디아조메탄 등의 디아조메탄 유도체, 비스-o-(p-톨루엔술포닐)-α-디메틸글리옥심, 비스-o-(n-부탄술포닐)-α-디메틸글리옥심 등의 글리옥심 유도체가 바람직하게 사용된다. 또한, 상기 산발생제는 1종을 단독으로, 또는 2종 이상을 조합하여 사용할 수 있다. 오늄염은 직사각형성(矩形性) 향상 효과가 우수하고, 디아조메탄 유도체 및 글리옥심 유도체는 정재파 저감 효과가 우수한데, 양자를 조합함으로써 프로파일의 미세 조정을 행하는 것이 가능하다.
산발생제의 배합량은 전체 베이스 수지 100 중량부에 대하여 0.2 내지 15 중량부, 특히 0.5 내지 8 중량부로 하는 것이 바람직한데, 0.2 중량부 미만이면 노광시의 산발생량이 적고 감도 및 해상력이 떨어지는 경우가 있으며, 15 중량부를 넘으면 레지스트의 투과율이 저하되어 해상력이 떨어지는 경우가 있다.
(E) 성분의 염기성 화합물은 산발생제에서 발생하는 산이 레지스트막 중에 확산할 때의 확산 속도를 억제할 수 있는 화합물이 적합하고, 이러한 염기성 화합물의 배합에 의해 레지스트막 중에서의 산의 확산 속도가 억제되어 해상도가 향상되고, 노광 후의 감도 변화를 억제하거나, 기판 및 환경 의존성을 적게 하여 노광 여유도 및 패턴 프로파일 등을 향상시킬 수 있다 (일본 특허 공개 평(平) 5-232706호, 5-249683호, 5-158239호, 5-249662호, 5-257282호, 5-289322호, 5-289340호 공보 등 기재).
이러한 염기성 화합물로는 1급, 2급, 3급의 지방족 아민류, 혼성 아민류, 방향족 아민류, 복소환 아민류, 카르복시기를 갖는 질소 함유 화합물, 술포닐기를 갖는 질소 함유 화합물, 히드록시기를 갖는 질소 함유 화합물, 히드록시페닐기를 갖는 질소 함유 화합물, 알코올성 질소 함유 화합물, 아미드 유도체, 이미드 유도체 등을 들 수 있지만, 특히 지방족 아민이 바람직하게 사용된다.
구체적으로는 1급의 지방족 아민류로서 암모니아, 메틸아민, 에틸아민, n-프로필아민, 이소프로필아민, n-부틸아민, 이소부틸아민, sec-부틸아민, tert-부틸아민, 펜틸아민, tert-아밀아민, 시클로펜틸아민, 헥실아민, 시클로헥실아민, 헵틸아민, 옥틸아민, 노닐아민, 데실아민, 도데실아민, 세틸아민, 메틸렌디아민, 에틸렌디아민, 테트라에틸렌펜타민 등이 예시되고, 2급의 지방족 아민류로서 디메틸아민, 디에틸아민, 디-n-프로필아민, 디이소프로필아민, 디-n-부틸아민, 디이소부틸아민, 디-sec-부틸아민, 디펜틸아민, 디시클로펜틸아민, 디헥실아민, 디시클로헥실아민, 디헵틸아민, 디옥틸아민, 디노닐아민, 디데실아민, 디도데실아민, 디세틸아민, N,N-디메틸메틸렌디아민, N,N-디메틸에틸렌디아민, N,N-디메틸테트라에틸렌펜타민 등이 예시되고, 3급의 지방족 아민류로서 트리메틸아민, 트리에틸아민, 트리-n-프로필아민, 트리이소프로필아민, 트리-n-부틸아민, 트리이소부틸아민, 트리-sec-부틸아민, 트리펜틸아민, 트리시클로펜틸아민, 트리헥실아민, 트리시클로헥실아민, 트리헵틸아민, 트리옥틸아민, 트리노닐아민, 트리데실아민, 트리도데실아민, 트리세틸아민, N,N,N',N'-테트라메틸메틸렌디아민, N,N,N',N'-테트라메틸에틸렌디아민, N,N,N',N'-테트라메틸테트라에틸렌펜타민 등이 예시된다.
또한, 혼성 아민류로는 예를 들면 디메틸에틸아민, 메틸에틸프로필아민, 벤질아민, 페네틸아민, 벤질디메틸아민 등이 예시된다. 방향족 아민류 및 복소환 아민류의 구체예로는 아닐린 유도체 (예를 들면 아닐린, N-메틸아닐린, N-에틸아닐린, N-프로필아닐린, N,N-디메틸아닐린, 2-메틸아닐린, 3-메틸아닐린, 4-메틸아닐린, 에틸아닐린, 프로필아닐린, 트리메틸아닐린, 2-니트로아닐린, 3-니트로아닐린, 4-니트로아닐린, 2,4-디니트로아닐린, 2,6-디니트로아닐린, 3,5-디니트로아닐린, N,N-디메틸톨루이딘 등), 디페닐(p-톨릴)아민, 메틸디페닐아민, 트리페닐아민, 페닐렌디아민, 나프틸아민, 디아미노나프탈렌, 피롤 유도체 (예를 들면 피롤, 2H-피롤, 1-메틸피롤, 2,4-디메틸피롤, 2,5-디메틸피롤, N-메틸피롤 등), 옥사졸 유도체 (예를 들면 옥사졸, 이소옥사졸 등), 티아졸 유도체 (예를 들면 티아졸, 이소티아졸 등), 이미다졸 유도체 (예를 들면 이미다졸, 4-메틸이미다졸, 4-메틸-2-페닐이미다졸 등), 피라졸 유도체, 프라잔 유도체, 피롤린 유도체 (예를 들면 피롤린, 2-메틸-1-피롤린 등), 피롤리딘 유도체 (예를 들면 피롤리딘, N-메틸피롤리딘, 피롤리디논, N-메틸피롤리돈 등), 이미다졸린 유도체, 이미다졸리딘 유도체, 피리딘 유도체 (예를 들면 피리딘, 메틸피리딘, 에틸피리딘, 프로필피리딘, 부틸피리딘, 4-(1-부틸펜틸)피리딘, 디메틸피리딘, 트리메틸피리딘, 트리에틸피리딘, 페닐피리딘, 3-메틸-2-페닐피리딘, 4-tert-부틸피리딘, 디페닐피리딘, 벤질피리딘, 메톡시피리딘, 부톡시피리딘, 디메톡시피리딘, 1-메틸-2-피리돈, 4-피롤리디노피리딘, 1-메틸-4-페닐피리딘, 2-(1-에틸프로필)피리딘, 아미노피리딘, 디메틸아미노피리딘 등), 피리다진 유도체, 피리미딘 유도체, 피라진 유도체, 피라졸린 유도체, 피라졸리딘 유도체, 피페리딘 유도체, 피페라진 유도체, 모르폴린 유도체, 인돌 유도체, 이소인돌 유도체, 1H-인다졸 유도체, 인돌린 유도체, 퀴놀린 유도체 (예를 들면 퀴놀린, 3-퀴놀린카르보니트릴 등), 이소퀴놀린 유도체, 신놀린 유도체, 퀴나졸린 유도체, 퀴녹살린 유도체, 프탈라진 유도체, 푸린 유도체, 프테리딘 유도체, 카르바졸 유도체, 페난트리딘 유도체, 아크리딘 유도체, 페나진 유도체, 1,10-페난트롤린 유도체, 아데닌 유도체, 아데노신 유도체, 구아닌 유도체, 구아노신 유도체, 우라실 유도체, 우리딘 유도체 등이 예시된다.
또한, 카르복시기를 갖는 질소 함유 화합물로는 예를 들면 아미노벤조산, 인돌카르복실산, 아미노산 유도체 (예를 들면 니코틴산, 알라닌, 아르기닌, 아스파라긴산, 글루타민산, 글리신, 히스티딘, 이소로이신, 글리실로이신, 로이신, 메티오닌, 페닐알라닌, 트레오닌, 리진, 3-아미노피라진-2-카르복실산, 메톡시알라닌) 등이 예시되고, 술포닐기를 갖는 질소 함유 화합물로서 3-피리딘술폰산, p-톨루엔술폰산 피리디늄 등이 예시되며, 히드록시기를 갖는 질소 함유 화합물, 히드록시페닐기를 갖는 질소 함유 화합물, 알코올성 질소 함유 화합물로는 2-히드록시피리딘, 아미노크레졸, 2,4-퀴놀린디올, 3-인돌메탄올 수화물, 모노에탄올아민, 디에탄올아민, 트리에탄올아민, N-에틸디에탄올아민, N,N-디에틸에탄올아민, 트리이소프로판올아민, 2,2'-이미노디에탄올, 2-아미노에탄올, 3-아미노-1-프로판올, 4-아미노-1-부탄올, 4-(2-히드록시에틸)모르폴린, 2-(2-히드록시에틸)피리딘, 1-(2-히드록시에틸)피페라진, 1-[2-(2-히드록시에톡시)에틸]피페라진, 피페리딘에탄올, 1-(2-히드록시에틸)피롤리딘, 1-(2-히드록시에틸)-2-피롤리디논, 3-피페리디노-1,2-프로판디올, 3-피롤리디노-1,2-프로판디올, 8-히드록시유로리진, 3-퀴누클리딘올, 3-트로판올, 1-메틸-2-피롤리딘에탄올, 1-아지리딘에탄올, N-(2-히드록시에틸)프탈이미드, N-(2-히드록시에틸)이소니코틴아미드 등이 예시된다. 아미드 유도체로는 포름아미드, N-메틸포름아미드, N,N-디메틸포름아미드, 아세트아미드, N-메틸아세트아미드, N,N-디메틸아세트아미드, 프로피온아미드, 벤즈아미드 등이 예시된다. 이미드 유도체로는 프탈이미드, 숙신이미드, 말레이미드 등이 예시된다.
또한, 하기 화학식 12 및 13으로 표시되는 염기성 화합물을 배합할 수도 있다.
식 중,
R41, R42, R43, R47 및 R48은 각각 독립적으로 직쇄, 분지쇄상 또는 환상 탄소수 1 내지 2O의 알킬렌기를 나타내고,
R44, R45, R46, R49 및 R50은 수소 원자, 탄소수 1 내지 20의 알킬기 또는 아미노기를 나타내거나, 또는
R44와 R45, R45와 R46, R44와 R46, R 44와 R45와 R46, R49와 R50은 각각 결합하여 환을 형성할 수도 있고,
S, T 및 U는 각각 0 내지 20의 정수를 나타내되,
단 S, T 및 U=0일 때 R44, R45, R46, R49 및 R50은 수소 원자를 포함하지 않는다.
여기에서 R41, R42, R43, R47 및 R48의 알킬렌기로는 탄소수 1 내지 20, 바람직하게는 1 내지 10, 더욱 바람직하게는 1 내지 8의 것이고, 구체적으로는 메틸렌기, 에틸렌기, n-프로필렌기, 이소프로필렌기, n-부틸렌기, 이소부틸렌기, n-펜틸렌기, 이소펜틸렌기, 헥실렌기, 노닐렌기, 데실렌기, 시클로펜틸렌기, 시클로헥실렌기 등을 들 수 있다.
또한, R44, R45, R46, R49 및 R50의 알킬기로는 탄소수 1 내지 20, 바람직하게는 1 내지 8, 더욱 바람직하게는 1 내지 6의 것으로, 이들은 직쇄, 분지쇄, 환상 중 어느 하나일 수 있다. 구체적으로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, tert-부틸기, n-펜틸기, 이소펜틸기, 헥실기, 노닐기, 데실기, 도데실기, 트리데실기, 시클로펜틸기, 시클로헥실기 등을 들 수 있다.
또한, R44와 R45, R45와 R46, R44와 R46, R44와 R45와 R46, 및 R49와 R50이 환을 형성하는 경우, 그 환의 탄소수는 1 내지 20, 보다 바람직하게는 1 내지 8, 더욱 바람직하게는 1 내지 6이고, 또한 이들 환은 탄소수 1 내지 6, 특히 1 내지 4의 알킬이 분지될 수 있다.
S, T 및 U는 각각 0 내지 20의 정수이고, 보다 바람직하게는 1 내지 10, 더욱 바람직하게는 1 내지 8의 정수이다.
상기 화학식 12 및 13의 화합물로서 구체적으로 트리스{2-(메톡시메톡시)에틸}아민, 트리스{2-(메톡시에톡시)에틸}아민, 트리스[2-{(2-메톡시에톡시)메톡시}에틸]아민, 트리스{2-(2-메톡시에톡시)에틸}아민, 트리스{2-(1-메톡시에톡시)에틸}아민, 트리스{2-(1-에톡시에톡시)에틸}아민, 트리스{2-(1-에톡시프로폭시)에틸}아민, 트리스[2-{(2-히드록시에톡시)에톡시}에틸]아민, 4,7,13,16,21,24-헥사옥사-1,10-디아자비시클로[8.8.8]헥사코산, 4,7,13,18-테트라옥사-1,10-디아자비시클로 [8.5.5]에이코산, 1,4,10,13-테트라옥사-7,16-디아자비시클로옥타데칸, 1-아자-12-크라운-4, 1-아자-15-크라운-5, 1-아자-18-크라운-6 등을 들 수 있다. 특히 3급 아민, 아닐린 유도체, 피롤리딘 유도체, 피리딘 유도체, 퀴놀린 유도체, 아미노산 유도체, 히드록시기를 갖는 질소 함유 화합물, 히드록시페닐기를 갖는 질소 함유 화합물, 알코올성 질소 함유 화합물, 아미드 유도체, 이미드 유도체, 트리스{2-(메톡시메톡시)에틸}아민, 트리스{2-(2-메톡시에톡시)에틸}아민, 트리스[2-{(2-메톡시에톡시)메틸}에틸]아민, 1-아자-15-크라운-5 등이 바람직하다.
또한, 상기 염기성 화합물은 1종을 단독으로, 또는 2종 이상을 조합하여 사용할 수 있고, 그 배합량은 전체 베이스 수지 100 중량부에 대하여 0.01 내지 2 중량부, 특히 0.01 내지 1 중량부가 바람직하다. 배합량이 0.01 중량부보다 적으면 배합 효과가 없고, 2 중량부를 넘으면 감도가 지나치게 저하되는 경우가 있다.
이어서, (D) 성분의 용해 저지제로는 산의 작용에 의해 알칼리 현상액에 대한 용해성이 변화하는, 분자량 3,000 이하의 화합물, 특히 2,500 이하의 저분자량의 페놀 또는 카르복실산 유도체 중의 일부 또는 전부를 산에 불안정한 치환기로 치환된 화합물을 들 수 있다.
분자량 2,500 이하의 페놀 또는 카르복실산 유도체로는 비스페놀 A, 비스페놀 H, 비스페놀 S, 4,4-비스(4'-히드록시페닐)발레르산, 트리스(4-히드록시페닐) 메탄, 1,1,1-트리스(4'-히드록시페닐)에탄, 1,1,2-트리스(4'-히드록시페닐)에탄, 페놀프탈레인, 티몰프탈레인 등을 들 수 있고, 산에 불안정한 치환기로는 상기와 동일한 것을 들 수 있다.
바람직하게 사용되는 용해 저지제의 예로는 비스(4-(2'-테트라히드로피라닐옥시)페닐)메탄, 비스(4-(2'-테트라히드로푸라닐옥시)페닐)메탄, 비스(4-tert-부톡시페닐)메탄, 비스(4-tert-부톡시카르보닐옥시페닐)메탄, 비스(4-tert-부톡시카르보닐메틸옥시페닐)메탄, 비스(4-(1'-에톡시에톡시)페닐)메탄, 비스(4-(1'-에톡시프로필옥시)페닐)메탄, 2,2-비스(4'-(2''-테트라히드로피라닐옥시))프로판, 2,2-비스(4'-(2''-테트라히드로푸라닐옥시)페닐)프로판, 2,2-비스(4'-tert-부톡시페닐)프로판, 2,2-비스(4'-tert-부톡시카르보닐옥시페닐)프로판, 2,2-비스(4-tert-부톡시카르보닐메틸옥시페닐)프로판, 2,2-비스(4'-(1''-에톡시에톡시)페닐)프로판, 2,2-비스(4'-(1''-에톡시프로필옥시)페닐)프로판, 4,4-비스(4'-(2''-테트라히드로피라닐옥시)페닐)발레르산 tert-부틸, 4,4-비스(4'-(2''-테트라히드로푸라닐옥시)페닐)발레르산 tert-부틸, 4,4-비스(4'-tert-부톡시페닐)발레르산 tert-부틸, 4,4-비스 (4-tert-부톡시카르보닐옥시페닐)발레르산 tert-부틸, 4,4-비스(4'-tert-부톡시카르보닐메틸옥시페닐)발레르산 tert-부틸, 4,4-비스(4'-(1''-에톡시에톡시)페닐)발레르산 tert-부틸, 4,4-비스(4'-(1''-에톡시프로필옥시)페닐)발레르산 tert-부틸, 트리스(4-(2'-테트라히드로피라닐옥시)페닐)메탄, 트리스(4-(2'-테트라히드로푸라닐옥시)페닐)메탄, 트리스(4-tert-부톡시페닐)메탄, 트리스(4-tert-부톡시카르보닐옥시페닐)메탄, 트리스(4-tert-부톡시카르보닐옥시메틸페닐)메탄, 트리스(4-(1'-에톡시에톡시)페닐)메탄, 트리스(4-(1'-에톡시프로필옥시)페닐)메탄, 1,1,2-트리스 (4'-(2''-테트라히드로피라닐옥시)페닐)에탄, 1,1,2-트리스(4'-(2''-테트라히드로푸라닐옥시)페닐)에탄, 1,1,2-트리스(4'-tert-부톡시페닐)에탄, 1,1,2-트리스(4'-tert-부톡시카르보닐옥시페닐)에탄, 1,1,2-트리스(4'-tert-부톡시카르보닐메틸옥시페닐)에탄, 1,1,2-트리스(4'-(1'-에톡시에톡시)페닐)에탄, 1,1,2-트리스(4'-(1'-에톡시프로필옥시)페닐)에탄 등을 들 수 있다.
본 발명의 레지스트 재료 중의 용해 저지제 [(D) 성분]의 첨가량으로는 레지스트 재료 중의 고형분 100 중량부에 대하여 20 중량부 이하, 바람직하게는 15 중량부 이하이다. 20 중량부보다 많으면, 단량체 성분이 증가하기 때문에 레지스트 재료의 내열성이 저하된다.
본 발명의 레지스트 재료에는 상기 성분 이외에 임의 성분으로서 도포성을 향상시키기 위해서 관용되고 있는 계면 활성제를 첨가할 수 있다. 또한, 임의 성분의 첨가량은 본 발명의 효과를 저해하지 않는 범위에서 통상량으로 할 수 있다.
여기에서 계면 활성제로는 비이온성의 것이 바람직하며, 퍼플루오로알킬폴리옥시에틸렌에탄올, 플루오로화알킬에스테르, 퍼플루오로알킬아민옥시드, 불소 함유 오르가노실록산계 화합물 등을 들 수 있다. 예를 들면 플로라이드 "FC-430", "FC-431" (모두 스미또모 쓰리엠(주) 제조), 서프론 "S-141", "S-145", "S-381", "S-383" (모두 아사히 가라스(주) 제조), 유니다인 "DS-401", "DS-403", "DS-451" (모두 다이킨 고교(주) 제조), 메가팩 "F-8151", "F-171", "F-172", "F-173", "F-177" (모두 다이닛본 잉크 고교(주) 제조), "X-70-092", "X-70-093" (모두 신에쯔 가가꾸 고교(주) 제조) 등을 들 수 있다. 바람직하게는 플로라이드 "FC-430" (스미또모 쓰리엠(주) 제조), "X-70-093" (신에쯔 가가꾸 고교(주) 제조)를 들 수 있다.
본 발명의 레지스트 재료를 사용하여 패턴을 형성하기 위해서는, 공지된 리소그래피 기술을 채용하여 행할 수 있고, 예를 들면 실리콘 웨이퍼 등의 기판상에 0.1 내지 10.0 ㎛ 정도의 두께로 형성된 노볼락 등의 유기막상에 스핀 코팅 등의 방법으로 막 두께가 O.01 내지 1.O ㎛가 되도록 도포하고, 이것을 핫 플레이트상에서 60 내지 200 ℃로 10초 내지 10분간, 바람직하게는 80 내지 150 ℃로 30초 내지 5분간 예비 베이킹한다. 이어서, 목적하는 패턴을 형성하기 위한 마스크를 상기한 레지스트막상에 덮고, 파장 300 nm 이하의 원자외선, 엑시머 레이저, X 선 등의 고에너지선 또는 전자선을 노광량 1 내지 20O mJ/cm2 정도, 바람직하게는 1O 내지 1OO mJ/cm2 정도가 되도록 조사한 후, 핫 플레이트상에서 60 내지 150℃로 10초 내지 5분간, 바람직하게는 80 내지 130 ℃로 30초 내지 3분간, 후 노출 베이킹 (PEB)한다. 또한, 0.1 내지 5 %, 바람직하게는 2 내지 3 %의 테트라메틸암모늄히드록시드 (TMAH) 등의 알칼리 수용액의 현상액을 사용하여 10초 내지 3분간, 바람직하게는 30초 내지 2분간 침지 (dip)법, 퍼들 (puddle)법, 스프레이 (spray)법 등의 통상적인 방법에 따라 현상함으로써 기판상에 목적하는 패턴이 형성된다. 또한, 본 발명 재료는 특히 고에너지선 중에서도 254 내지 120 nm의 원자외선 또는 엑시머 레이저, 특히 193 nm의 ArF, 157 nm의 F2, 146 nm의 Kr2, 134 nm의 KrAr, 126 nm의 Ar2 등의 엑시머 레이저, X 선 및 전자선에 의한 미세 패턴화에 최적이다. 또한, 상기 범위를 상한 및 하한에서 벗어나는 경우에는 목적하는 패턴을 얻지 못하는 경우가 있다.
이어서, 드러난 상기 유기막 부분을 산소 플라즈마를 발생시키는 드라이 에칭 장치에 의해 통상적인 방법에 따라 가공할 수 있다.
<실시예>
이하, 합성예 및 실시예를 들어 본 발명을 구체적으로 설명하지만, 본 발명은 하기 예로 제한되는 것은 아니다.
[단량체 합성예 1] 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실
1.0 M 메틸마그네슘클로라이드의 테트라히드로푸란 용액에 빙냉하에서 4,4-디메틸-4-실라시클로헥사논 (이것의 합성은 일본 특허 공개 평(平) 7-309878호 공보에 기재됨) 14.2 g을 적하하였다. 2시간 교반한 후, 염화암모늄 수용액을 첨가하여 가수분해하였다. 통상의 추출·세정·농축의 후처리 조작 후, 승화에 의해 정제하여 1,4,4-트리메틸-4-실라시클로헥사놀 14.2 g (수율 90 %)을 얻었다.
IR νmax: 3346, 2920, 1248, 1100, 892 cm-1.
1H-NMR(270MHz, CDCl3)δ: 0.00(3H, s), 0.02(3H, s), 0.47-0.58(2H, m), 0.67-0.79(2H, m), 1.17(3H, s), 1.30(1H, s), 1.61-1.82(4H, m)ppm.
이것과 트리에틸아민 15 g을 염화메틸렌 100 ml에 용해시킨 용액에 빙냉하에서 메타크릴산 클로라이드 10.5 g를 첨가한 후, 실온에서 12시간 교반하여 에스테르화하였다. 반응 혼합물에 물을 첨가하고, 통상의 추출·세정·농축의 후처리 조작 후 감압 증류하여 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실 15.3 g (수율 75 %)을 얻었다.
비점: 65 ℃/0.8 torr
IR νmax: 2926, 1714, 1294, 1248, 1162, 840 ㎝-1.
1H-NMR(270MHz, CDCl3)δ: 0.00(3H, s), 0.03(3H, s), 0.50-0.74(4H, m), 1.48(3H, s), 1.51-1.64(2H, m), 1.92(3H, s), 2.42-2.52(2H, m), 5.48(1H, t), 6.04(1H, s)ppm.
동일한 반응에 의해, 또는 통상적인 방법에 따라 이하의 중합성 단량체 화합물을 얻었다.
[단량체 합성예 2] 아크릴산 1,4,4-트리메틸-4-실라시클로헥실
[단량체 합성예 3] 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실
[단량체 합성예 4] p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌
[단량체 합성예 5] p-비닐페녹시아세트산 1,4,4-트리메틸-4-실라시클로헥실
[단량체 합성예 6] 메타크릴산 1-에틸-4,4-디메틸-4-실라시클로헥실
[단량체 합성예 7] 2-노르보르넨-5-카르복실산 1-에틸-4,4-디메틸-4-실라시클로헥실
[단량체 합성예 8] 메타크릴산 1-이소프로필-4,4-디메틸-4-실라시클로헥실
[단량체 합성예 9] 2-노르보르넨-5-카르복실산 1-이소프로필-4,4-디메틸-4-실라시클로헥실
[단량체 합성예 10] 테트라시클로도데센카르복실산 1-이소프로필-4,4-디메틸 -4-실라시클로헥실
[단량체 합성예 11] 메타크릴산 1-에틸-3,3-디메틸-3-실라시클로헥실
[단량체 합성예 12] 아크릴산 1-에틸-3,3-디메틸-3-실라시클로헥실
[단량체 합성예 13] p-(1-에틸-3,3-디메틸-3-실라시클로헥실옥시)스티렌
[단량체 합성예 14] p-비닐페녹시아세트산 1,3,3-트리메틸-3-실라시클로헥실
[단량체 합성예 15] 2-노르보르넨-5-카르복실산 1-에틸-3,3-디메틸-3-실라시클로헥실
[단량체 합성예 16] 2-노르보르넨-5-카르복실산 1,3,3-트리에틸-3-실라시클로헥실
[단량체 합성예 17] 메타크릴산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실
[단량체 합성예 18] 아크릴산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실
[단량체 합성예 19] 2-노르보르넨-5-카르복실산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실
[단량체 합성예 20] 메타크릴산 1-에틸-3,3,4,5,5-펜타메틸-3,5-디실라시클로헥실
[단량체 합성예 21] 아크릴산 1-에틸-3,3,4,4,5,5-헥사메틸-3,5-디실라시클로헥실
[단량체 합성예 22] 2-노르보르넨-5-카르복실산 1-에틸-3,3,4,4,5,5-헥사메틸-3,5-디실라시클로헥실
[단량체 합성예 23] 메타크릴산 1-에틸-3,3-디메틸-3-실라시클로펜틸
[단량체 합성예 24] 아크릴산 1-에틸-3,3-디메틸-3-실라시클로펜틸
[단량체 합성예 25] p-(1-에틸-3,3-디메틸-3-실라시클로펜틸옥시)스티렌
[단량체 합성예 26] p-(1-에틸-3,3-디메틸-3-실라시클로펜틸옥시)-α-메틸스티렌
[단량체 합성예 27] 메타크릴산 4,4-디메틸-4-실라시클로헥실디메틸카르비닐
[단량체 합성예 28] p-(3,3-디메틸-3-실라시클로헥실디메틸카르비닐옥시)스티렌
[단량체 합성예 29] 2-노르보르넨-5-카르복실산 2,2,6,6-테트라메틸-2,6-디실라시클로헥실디에틸카르비닐
[단량체 합성예 30] 테트라시클로도데센카르복실산 3,3-디메틸-3-실라시클로부틸디메틸카르비닐
[중합체 합성예 1] 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
2 L의 플라스크에서 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실 70 g과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 35 g을 톨루엔 560 ml에 용해시키고, 충분히 계 중의 산소를 제거한 후 개시제 AIBN을 5.5 g 넣고, 60 ℃까지 승온하여 24시간 중합 반응을 행하였다.
얻어진 중합체를 정제하기 위하여 반응 혼합물을 헥산/에테르 (3:2) 혼합 용매 중에 넣고, 얻어진 중합체를 침전·분리했더니 97 g의 백색 중합체 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실-메타크릴산 5-옥소-4-옥사트리시클로 [4.2.1.03,7]노난-2-일 공중합체 (7:3)를 얻을 수 있었다.
이와 같이 하여 얻어진 백색 중합체 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실-메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)는 광산란법을 통해 중량 평균 분자량이 9,800 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.60인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 2] 아크릴산 1,4,4-트리메틸-4-실라시클로헥실과 아크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 아크릴산 1,4,4-트리메틸-4-실라시클로헥실로 대체하여 동일한 방법으로 합성하였다. 광산란법을 통해 중량 평균 분자량이 12,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.60인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 3] 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
2 L의 플라스크에서 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실 70 g과 무수 말레산 30 g을 톨루엔 560 ml에 용해시키고, 충분히 계 중의 산소를 제거한 후 개시제 AIBN을 5.5 g 넣고, 60 ℃까지 승온하여 24시간 중합 반응을 행하였다. 이하 동일한 방법으로 폴리 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실-폴리 무수 말레산 공중합체 (5:5)를 얻을 수 있었다. 광산란법을 통해 중량 평균 분자량이 7,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.50인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 4] p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌과 히드록시스티렌 공중합체 (3:7)의 합성
2 L의 플라스크에서 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌 30 g과 아세톡시스티렌 45 g을 톨루엔 560 ml에 용해시키고, 충분히 계 중의 산소를 제거한 후 개시제 AIBN를 5.5 g 넣고, 60 ℃까지 승온하여 24시간 중합 반응을 행하였다. 이하 동일한 방법으로 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌-폴리히드록시스티렌의 공중합체 (3:7)를 얻을 수 있었다. 이 중합체를 3 L의 플라스크에 옮겨 메탄올 500 g, 아세톤 400 g에 용해시킨 후, 트리에틸아민 97 g, 증류수 50 g을 첨가하고, 60 ℃까지 승온하여 20시간 가수분해 반응을 행하였다.
반응액을 농축한 후, 아세트산 150 g을 용해시킨 증류수 20 L 중에 넣어 중합체를 침전시켰다. 얻어진 중합체를 아세톤에 용해시키고, 증류수 20 L 중에 넣어 중합체를 침전시키는 조작을 두 번 반복한 후, 중합체를 분리하고 건조시켰다. 광산란법을 통해 중량 평균 분자량이 13,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.70인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 5] p-비닐페녹시아세트산 1,4,4-트리메틸-4-실라시클로헥실히드록시스티렌 공중합체 (3:7)의 합성
중합체 합성예 4의 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌을 p-비닐페녹시아세트산 1,4,4-트리메틸-4-실라시클로헥실히드록시스티렌으로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.70인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 6] 메타크릴산 1-에틸-4,4-디메틸-4-실라시클로헥실과 메타크릴산 5-옥소-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 1-에틸-4,4-디메틸-4-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 12,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.50인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 7] 2-노르보르넨-5-카르복실산 1-에틸-4,4-디메틸-4-실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 1-에틸-4,4-디메틸-4-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 8,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.60인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 8] 메타크릴산 1-이소프로필-4,4-디메틸-4-실라시클로헥실과 메타크릴산 5-옥소-옥사트리시클로[4.2.1.O3,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 1-이소프로필-4,4-디메틸-4-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 14,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.65인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 9] 2-노르보르넨-5-카르복실산 1-이소프로필-4,4-디메틸-4-실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 1-이소프로필-4,4-디메틸-4-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 7,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.70인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 10] 테트라시클로도데센카르복실산 1-이소프로필-4,4-디메틸 -4-실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 테트라시클로도데센카르복실산 1-이소프로필-4,4-디메틸-4-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 4,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.90인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 11] 메타크릴산 1-에틸-3,3-디메틸-3-실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 1-에틸-3,3-디메틸-3-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 11,200 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.65인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 12] 아크릴산 1-에틸-3,3-디메틸-3-실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 아크릴산 1-에틸-3,3-디메틸-3-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.75인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 13] p-(1-에틸-3,3-디메틸-3-실라시클로헥실옥시)스티렌과 히드록시스티렌 공중합체 (3:7)의 합성
중합체 합성예 4의 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌을 p-(1-에틸-3,3-디메틸-3-실라시클로헥실옥시)스티렌으로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 11,500 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.65의 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 14] p-비닐페녹시아세트산 1,3,3-트리메틸-3-실라시클로헥실과 히드록시스티렌 공중합체 (3:7)의 합성
중합체 합성예 4의 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌을 p-비닐페녹시아세트산 1,3,3-트리메틸-3-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,200 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.68인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 15] 2-노르보르넨-5-카르복실산 1-에틸-3,3-디메틸-3-실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 1-에틸-3,3-디메틸-3-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 7,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.70인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 16] 2-노르보르넨-5-카르복실산 1,3,3-트리에틸-3-실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 1,3,3-트리에틸-3-실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 8,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.80인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 17] 메타크릴산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.77인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 18] 아크릴산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 아크릴산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 12,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.60인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 19] 2-노르보르넨-5-카르복실산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 1-에틸-3,3,5,5-테트라메틸-3,5-디실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 8,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.80인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 20] 메타크릴산 1-에틸-3,3,4,5,5-펜타메틸-3,5-디실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-디실라시클로헥실을 메타크릴산 1-에틸-3,3,4,5,5-펜타메틸-3,5-디실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.58인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 21] 아크릴산 1-에틸-3,3,4,4,5,5-헥사메틸-3,5-디실라시클로헥실과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 아크릴산 1-에틸-3,3,4,4,5,5-헥사메틸-3,5-디실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 11,200 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.78인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 22] 2-노르보르넨-5-카르복실산 1-에틸-3,3,4,4,5,5-헥사메틸-3,5-디실라시클로헥실과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 1-에틸-3,3,4,4,5,5-헥사메틸-3,5-디실라시클로헥실로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 7,500 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.88인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 23] 메타크릴산 1-에틸-3,3-디메틸-3-실라시클로펜틸과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 1-에틸-3,3-디메틸-3-실라시클로펜틸로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 12,00O g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.72인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 24] 아크릴산 1-에틸-3,3-디메틸-3-실라시클로펜틸과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 아크릴산 1-에틸-3,3-디메틸-3-실라시클로펜틸로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,200 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.85인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 25] p-(1-에틸-3,3-디메틸-3-실라시클로펜틸옥시)스티렌과 히드록시스티렌 공중합체 (3:7)의 합성
중합체 합성예 4의 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌을 p-(1-에틸-3,3-디메틸-3-실라시클로펜틸옥시)스티렌으로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 11,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (Mw/Mn)가 1.56인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 26] p-(1-에틸-3,3-디메틸-3-실라시클로펜틸옥시)-α-메틸스티렌과 히드록시스티렌 공중합체 (3:7)의 합성
중합체 합성예 4의 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌을 p-(1-에틸-3,3-디메틸-3-실라시클로펜틸옥시)-α-메틸스티렌으로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 11,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.50인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 27] 메타크릴산 4,4-디메틸-4-실라시클로헥실디메틸카르비닐과 메타크릴산 5-옥소-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 4,4-디메틸-4-실라시클로헥실디메틸카르비닐로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,200 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.85인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 28] p-(3,3-디메틸-3-실라시클로헥실디메틸카르비닐옥시)스티렌과 히드록시스티렌 공중합체 (3:7)의 합성
중합체 합성예 4의 p-(1,4,4-트리메틸-4-실라시클로헥실옥시)스티렌을 p-(3,3-디메틸-3-실라시클로헥실디메틸카르비닐옥시)스티렌으로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 10,800 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.66인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 3:7로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 29] 2-노르보르넨-5-카르복실산 2,2,6,6-테트라메틸-2,6-디실라시클로헥실디에틸카르비닐과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 2-노르보르넨-5-카르복실산 2,2,6,6-테트라메틸-2,6-디실라시클로헥실디에틸카르비닐로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 7,700 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.78인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성예 30] 테트라시클로도데센카르복실산 3,3-디메틸-3-실라시클로부틸디메틸카르비닐과 무수 말레산 공중합체 (5:5)의 합성
중합체 합성예 3의 2-노르보르넨-5-카르복실산 1,4,4-트리메틸-4-실라시클로헥실을 테트라시클로도데센카르복실산 3,3-디메틸-3-실라시클로부틸디메틸카르비닐로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 3,200 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.92인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 5:5로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성 비교예 1] 메타크릴산 트리스(트리메틸실릴)실릴에틸과 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (7:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 트리스(트리메틸실릴)실릴에틸로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 11,OOO g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.65인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 7:3으로 포함되어 있는 것을 확인할 수 있었다.
[중합체 합성 비교예 2] 메타크릴산 3-[트리스(트리메틸실릴옥시)실릴]프로필과 메타크릴산 t-부틸에스테르와 메타크릴산 5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 공중합체 (2:5:3)의 합성
중합체 합성예 1의 메타크릴산 1,4,4-트리메틸-4-실라시클로헥실을 메타크릴산 3-[트리스(트리메틸실릴옥시)실릴]프로필과 메타크릴산 t-부틸에스테르로 대체하여 동일한 방법으로 합성을 행하였다. 광산란법을 통해 중량 평균 분자량이 13,000 g/mol이고, GPC 용출 곡선으로부터 분산도 (=Mw/Mn)가 1.78인 중합체라는 것을 확인할 수 있었다. 또한, 1H-NMR을 측정함으로써 중합체 중에 거의 2:5:3으로 포함되어 있는 것을 확인할 수 있었다.
[실시예, 비교예]
상기 합성예에서 얻어진 실리콘 중합체 1 g를 FC-430 (스미또모 쓰리엠(주) 제조) 0.01 중량부를 포함하는 프로필렌글리콜 모노메틸에테르아세테이트 (PGMEA) 10 중량부에 용해시키고, 0.1 ㎛의 테플론제 필터로 여과하여 중합체 용액을 제조하였다.
중합체 용액을 석영 기판상에 도포하고, 100 ℃에서 60초 베이킹한 후, 0.2 ㎛의 막 두께로 하고, 분광 광도계를 사용하여 파장 193 nm와 248 nm에서의 투과율을 측정하였다. 결과를 표 1에 나타내었다.
이어서, 하층 재료로서 m/p 비=6/4이고, Mw 10,000의 크레졸 노볼락 수지 10 중량부를 프로필렌글리콜 모노메틸에테르아세테이트 (PGMEA) 60 중량부에 용해시킨 노볼락 수지 용액을 준비하였다. 노볼락 수지를 Si 웨이퍼상에 스핀 코팅하고, 300 ℃에서 5분간 가열하고 경화시켜 0.5 ㎛의 두께로 제조하였다. 그 위에 DUV-30 (블루와 사이언스사 제조)를 스핀 코팅하고, 100 ℃/30초, 200 ℃/60초로 베이킹하여 중간막을 제작하였다.
한편, 중합체 합성예에서 얻어진 실리콘 중합체, PAG 1 및 2로 표시되는 산발생제, 염기성 화합물, DRI 1로 표시되는 용해 저지제를 FC-430 (스미또모 쓰리엠(주) 제조) 0.01 중량%를 포함하는 프로필렌글리콜 모노메틸에테르아세테이트 (PGMEA) 용매 중에 용해시키고, 0.1 ㎛의 테플론제 필터로 여과시킴으로써 레지스트액을 각각 제조하였다.
이 레지스트액을 상기 중간막상에 스핀 코팅하고, 핫 플레이트를 사용하여 100 ℃에서 90초간 베이킹하여 0.2 ㎛의 두께로 제조하였다. 이것을 KrF 엑시머 레이저 스테퍼 (니콘사 제조, NA 0.60, 2/3 원형 조명)를 사용하여 노광하고, 100 ℃에서 90초간 베이킹 (PEB)하고, 2.38 중량%의 테트라메틸암모늄히드록시드 (TMAH) 수용액으로 현상을 60초간 행했더니, 포지형의 패턴을 얻을 수 있었다.
0.20 ㎛ L/S 패턴의 라인과 스페이스의 비가 1:1이 되는 노광량을 구하여 레지스트의 감도로 하였다. 이 때 해상 가능한 가장 작은 선폭을 해상도로 하였다. 결과를 표 2에 나타내었다.
그 후, 평행 평판형 스퍼터링 에칭 장치에서 산소 가스를 에칭 가스로 하여 에칭을 행하였다. 하층 레지스트막의 에칭 속도가 150 nm/분인데 비해, 본 발명의 레지스트막은 15 nm/분 이하였다. 5분의 에칭에 의해 본 발명의 레지스트로 덮여 있지 않은 부분의 하층 레지스트막은 완전히 소실되고, 0.5 ㎛ 두께의 2층 레지스트 패턴을 형성할 수 있었다. 이 에칭 조건을 하기에 나타내었다.
가스 유량: 50 sccm
가스압: 1.3 Pa
rf 파워: 50 W
dc 바이어스: 450 V
표 2의 결과로부터, 본 발명의 규소 함유 치환기를 포함하는 중합체는 스티렌 치환체를 제외한 (메트)아크릴산, 노르보르넨카르복실산 등의 치환체에 있어서는 ArF 파장까지의 높은 투명성과, 현상액이 튀지 않으며, 높은 해상력을 얻을 수 있었다.
본 발명의 레지스트 재료는 고에너지선에 감응하고, 300 nm 이하의 파장에서의 감도, 해상성 및 산소 플라즈마 에칭 내성이 우수하다. 따라서, 본 발명의 고분자 화합물 및 레지스트 재료는 이러한 특성에 의해 특히 우수한 2층 레지스트용 재료가 될 수 있으며, 미세할 뿐 아니라 기판에 대하여 수직인 패턴을 용이하게 형성할 수 있어, 초 LSI 제조용의 미세 패턴 형성 재료로서 바람직하다.

Claims (6)

  1. 하기 화학식 1 또는 2로 표시되는 환상의 규소 함유기를 포함하는 것을 특징으로 하는 고분자 화합물.
    <화학식 1>
    <화학식 2>
    식 중,
    R1, R2, R3, R6, R7, R10, R11 , R12 및 R13은 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기이고,
    R4, R5, R8 및 R9는 수소 원자, 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기, 탄소수 1 내지 20의 불소화된 알킬기, 또는 탄소수 6 내지 20의 아릴기이며,
    p, q, r 및 s는 0 내지 10의 정수이고,
    1≤p+q+s≤20이다.
  2. 제1항에 있어서, 하기 화학식 3 내지 8로 표시되는 반복 단위 중 1종 또는 2종 이상을 포함하는 것을 특징으로 하는 고분자 화합물.
    <화학식 3>
    <화학식 4>
    <화학식 5>
    <화학식 6>
    <화학식 7>
    <화학식 8>
    식 중,
    R14는 수소 원자, 또는 탄소수 1 내지 20의 직쇄, 분지쇄 또는 환상 알킬기를 나타내고,
    R15는 수소 원자, 또는 탄소수 1 내지 10의 알킬기를 나타내며,
    t, u 및 w는 1≤t≤5이며, u=0 또는 1이고, 0≤w≤5이고,
    R1 내지 R13, p, q, r 및 s는 제1항에 정의된 바와 같다.
  3. (A) 제1항 또는 제2항에 기재한 고분자 화합물,
    (B) 산발생제, 및
    (C) 유기 용매
    를 포함하는 화학 증폭 포지형 레지스트 재료.
  4. (A) 제1항 또는 제2항에 기재한 고분자 화합물,
    (B) 산발생제,
    (C) 유기 용매, 및
    (D) 산불안정기를 갖는 용해 저지제
    를 포함하는 화학 증폭 포지형 레지스트 재료.
  5. 제3항에 있어서, (E) 염기성 화합물을 추가로 포함하는 화학 증폭 포지형 레지스트 재료.
  6. (1) 제3항에 기재한 레지스트 재료를 피가공 기판상의 유기막상에 도포하고, 베이킹하여 레지스트막을 형성하는 공정,
    (2) 상기 레지스트막에 포토마스크를 통하여 방사선을 조사하는 공정,
    (3) 필요에 따라 베이킹한 후, 알칼리 수용액으로 현상하여 상기 레지스트막의 조사 부분을 용해시켜 레지스트 패턴을 형성하는 공정, 및
    (4) 드러난 유기막 부분을, 산소 플라즈마를 발생시키는 드라이 에칭 장치로 가공하는 공정
    을 포함하는 패턴 형성 방법.
KR10-2000-0071838A 1999-12-01 2000-11-30 고분자 화합물, 레지스트 재료 및 패턴 형성 방법 KR100519406B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34238099A JP3965547B2 (ja) 1999-12-01 1999-12-01 高分子化合物、レジスト材料及びパターン形成方法
JP99-342380 1999-12-01

Publications (2)

Publication Number Publication Date
KR20010062004A KR20010062004A (ko) 2001-07-07
KR100519406B1 true KR100519406B1 (ko) 2005-10-07

Family

ID=18353286

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0071838A KR100519406B1 (ko) 1999-12-01 2000-11-30 고분자 화합물, 레지스트 재료 및 패턴 형성 방법

Country Status (4)

Country Link
US (1) US6492089B2 (ko)
JP (1) JP3965547B2 (ko)
KR (1) KR100519406B1 (ko)
TW (1) TW554246B (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3965547B2 (ja) * 1999-12-01 2007-08-29 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
KR100389912B1 (ko) * 1999-12-08 2003-07-04 삼성전자주식회사 지환식 감광성 폴리머 및 이를 포함하는 레지스트 조성물
US6444408B1 (en) * 2000-02-28 2002-09-03 International Business Machines Corporation High silicon content monomers and polymers suitable for 193 nm bilayer resists
KR20020047490A (ko) * 2000-12-13 2002-06-22 윤종용 실리콘을 함유하는 감광성 폴리머 및 이를 포함하는레지스트 조성물
US7192681B2 (en) * 2001-07-05 2007-03-20 Fuji Photo Film Co., Ltd. Positive photosensitive composition
US7232638B2 (en) 2002-05-02 2007-06-19 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
JP4055654B2 (ja) * 2002-07-02 2008-03-05 信越化学工業株式会社 珪素含有高分子化合物、レジスト材料及びパターン形成方法
JP3912512B2 (ja) 2002-07-02 2007-05-09 信越化学工業株式会社 珪素含有高分子化合物、レジスト材料及びパターン形成方法
US6919161B2 (en) 2002-07-02 2005-07-19 Shin-Etsu Chemical Co., Ltd. Silicon-containing polymer, resist composition and patterning process
US7135269B2 (en) 2003-01-30 2006-11-14 Shin-Etsu Chemical Co., Ltd. Polymer, resist composition and patterning process
JP4225806B2 (ja) * 2003-03-04 2009-02-18 富士フイルム株式会社 ポジ型レジスト組成物
JP4114064B2 (ja) 2003-05-27 2008-07-09 信越化学工業株式会社 珪素含有高分子化合物、レジスト材料及びパターン形成方法
KR101020164B1 (ko) 2003-07-17 2011-03-08 허니웰 인터내셔날 인코포레이티드 진보된 마이크로전자적 응용을 위한 평탄화 막, 및 이를제조하기 위한 장치 및 방법
KR100789247B1 (ko) * 2005-01-05 2008-01-02 주식회사 엘지화학 광반응성 중합체 및 이의 제조 방법
US7659050B2 (en) * 2005-06-07 2010-02-09 International Business Machines Corporation High resolution silicon-containing resist
JP5802369B2 (ja) * 2010-07-29 2015-10-28 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、並びに、それを用いたレジスト膜及びパターン形成方法
JP5712963B2 (ja) * 2012-04-26 2015-05-07 信越化学工業株式会社 高分子化合物、ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5927275B2 (ja) * 2014-11-26 2016-06-01 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、及びレジスト膜
US9547743B2 (en) * 2015-02-25 2017-01-17 Kabushiki Kaisha Toshiba Manufacturing method for a semiconductor device, pattern generating method and nontransitory computer readable medium storing a pattern generating program
JP7052612B2 (ja) * 2018-03-27 2022-04-12 三菱ケミカル株式会社 (メタ)アクリル酸エステルおよびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960042219A (ko) * 1995-05-31 1996-12-21 가네꼬 히사시 Si 함유 고분자 화합물 및 감광성 수지 조성물
KR970049025A (ko) * 1995-12-29 1997-07-29 김광호 이층 레지스트용 베이스 수지 및 그 제조방법
KR19990084499A (ko) * 1998-05-07 1999-12-06 윤종용 실리콘을 함유하는 폴리머 및 이를 포함하는 화학증폭형 레지스트 조성물
KR20000002037A (ko) * 1998-06-16 2000-01-15 윤종용 실리콘을 함유하는 감광성 폴리머 및 이를 포함하는 레지스트조성물
KR20010011604A (ko) * 1999-07-29 2001-02-15 윤종용 실리콘을 포함하는 포토레지스트 조성물

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194277A4 (en) * 1984-08-17 1987-02-03 Mc Carry John D CONTACT GLASS AND ALCOYLESILANE POLYMER.
JPS62266537A (ja) * 1986-05-14 1987-11-19 Fuji Photo Film Co Ltd マイクロカプセル及びそれを使用した感光性記録材料
JP2737225B2 (ja) * 1989-03-27 1998-04-08 松下電器産業株式会社 微細パターン形成材料およびパターン形成方法
US5100762A (en) * 1989-07-10 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Radiation-sensitive polymer and radiation-sensitive composition containing the same
JPH07102216A (ja) * 1993-10-05 1995-04-18 Shin Etsu Chem Co Ltd プライマー
JPH07118651A (ja) 1993-10-20 1995-05-09 Nippon Steel Corp コークス炉の窯口集塵装置及び集塵方法
US5886119A (en) 1995-08-08 1999-03-23 Olin Microelectronic Chemicals, Inc. Terpolymers containing organosilicon side chains
JP3965547B2 (ja) * 1999-12-01 2007-08-29 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
KR100520188B1 (ko) * 2000-02-18 2005-10-10 주식회사 하이닉스반도체 부분적으로 가교화된 2층 포토레지스트용 중합체
JP2001235865A (ja) * 2000-02-23 2001-08-31 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP3838329B2 (ja) * 2000-09-27 2006-10-25 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960042219A (ko) * 1995-05-31 1996-12-21 가네꼬 히사시 Si 함유 고분자 화합물 및 감광성 수지 조성물
KR970049025A (ko) * 1995-12-29 1997-07-29 김광호 이층 레지스트용 베이스 수지 및 그 제조방법
KR19990084499A (ko) * 1998-05-07 1999-12-06 윤종용 실리콘을 함유하는 폴리머 및 이를 포함하는 화학증폭형 레지스트 조성물
KR20000002037A (ko) * 1998-06-16 2000-01-15 윤종용 실리콘을 함유하는 감광성 폴리머 및 이를 포함하는 레지스트조성물
KR20010011604A (ko) * 1999-07-29 2001-02-15 윤종용 실리콘을 포함하는 포토레지스트 조성물

Also Published As

Publication number Publication date
JP3965547B2 (ja) 2007-08-29
JP2001158808A (ja) 2001-06-12
TW554246B (en) 2003-09-21
KR20010062004A (ko) 2001-07-07
US20010003772A1 (en) 2001-06-14
US6492089B2 (en) 2002-12-10

Similar Documents

Publication Publication Date Title
JP3829913B2 (ja) レジスト材料
KR100519406B1 (ko) 고분자 화합물, 레지스트 재료 및 패턴 형성 방법
KR100626259B1 (ko) 고분자 화합물, 레지스트 재료 및 패턴 형성 방법
US20020042017A1 (en) Chemically amplified positive resist composition
JP3956088B2 (ja) 化学増幅ポジ型レジスト材料
KR20010110169A (ko) 고분자 화합물, 레지스트 재료 및 패턴 형성 방법
KR100571453B1 (ko) 고분자 화합물, 화학 증폭 레지스트 재료 및 패턴 형성 방법
US6902772B2 (en) Silicon-containing polymer, resist composition and patterning process
KR100461033B1 (ko) 신규고분자실리콘화합물,화학증폭포지형레지스트재료및패턴형성방법
JP3804756B2 (ja) 高分子化合物、化学増幅レジスト材料及びパターン形成方法
KR100549160B1 (ko) 고분자 화합물, 화학 증폭 레지스트 재료 및 패턴 형성 방법
JP3981803B2 (ja) 高分子化合物、レジスト材料及びパターン形成方法
JP3956078B2 (ja) レジスト組成物用ベースポリマー並びにレジスト材料及びパターン形成方法
JP3915870B2 (ja) 高分子化合物、化学増幅レジスト材料及びパターン形成方法
KR100538500B1 (ko) 고분자 화합물, 레지스트 재료 및 패턴 형성 방법
JP3736606B2 (ja) 高分子化合物、レジスト材料及びパターン形成方法
JP3839218B2 (ja) 珪素含有化合物、レジスト組成物およびパターン形成方法
KR20020020651A (ko) 레지스트 조성물 및 패턴 형성방법
KR20010050179A (ko) 고분자 화합물, 화학 증폭 레지스트 재료 및 패턴 형성 방법
JP3712048B2 (ja) レジスト材料
JP3687735B2 (ja) 高分子化合物、化学増幅レジスト材料及びパターン形成方法
JP3874061B2 (ja) 高分子化合物、レジスト材料及びパターン形成方法
JP3874080B2 (ja) 高分子化合物、レジスト材料及びパターン形成方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120907

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150827

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160831

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170830

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190919

Year of fee payment: 15