JPWO2020175637A1 - モータ駆動装置及び空気調和機 - Google Patents

モータ駆動装置及び空気調和機 Download PDF

Info

Publication number
JPWO2020175637A1
JPWO2020175637A1 JP2021502377A JP2021502377A JPWO2020175637A1 JP WO2020175637 A1 JPWO2020175637 A1 JP WO2020175637A1 JP 2021502377 A JP2021502377 A JP 2021502377A JP 2021502377 A JP2021502377 A JP 2021502377A JP WO2020175637 A1 JPWO2020175637 A1 JP WO2020175637A1
Authority
JP
Japan
Prior art keywords
motor
control
motors
current
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021502377A
Other languages
English (en)
Other versions
JP7069398B2 (ja
Inventor
裕一 清水
裕一 清水
和徳 畠山
和徳 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020175637A1 publication Critical patent/JPWO2020175637A1/ja
Application granted granted Critical
Publication of JP7069398B2 publication Critical patent/JP7069398B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/50Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing electrical values representing the speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/36Protection against faults, e.g. against overheating, step-out; Indicating faults
    • H02P8/38Protection against faults, e.g. against overheating, step-out; Indicating faults the fault being step-out

Abstract

モータ(41,42)を1台のインバータ(4)で駆動するモータ駆動装置は、モータ(41,42)のうちの少なくとも1台のモータの運転周波数がインバータ出力周波数と不一致となる、又は少なくとも1台のモータの運転周波数が他の1台のモータの運転周波数と不一致となる脱調を検出し、少なくとも1台のモータが脱調している場合に、インバータ(4)の通電状態を切替えてモータ(41,42)を停止させる脱調制御部(30)を備える。

Description

本発明は、複数台のモータを1台のインバータで駆動するモータ駆動装置、及びモータ駆動装置を備えた空気調和機に関する。
モータ駆動装置によって駆動されるモータが、例えば永久磁石同期モータである場合、永久磁石同期モータの駆動には、回転子の位置情報が必要である。このため、一般に、永久磁石同期モータの駆動には、回転子位置取得のための位置センサが用いられる。しかしながら、位置センサの使用により、システムの大型化、高コスト化、耐環境性の低下といった問題が生じ得る。このため、永久磁石同期モータの駆動には、位置センサを用いずに永久磁石同期モータを駆動するセンサレス制御の適用が求められる。センサレス制御には、種々の方式が存在するが、モータの回転子に組み込まれる永久磁石の磁束による回転時の誘起電圧を利用する方式が広く知られている。
センサレス制御において、モータに対して過大な負荷がかかるなどの要因により、モータ回転子の位置推定値と実際の回転子位置との間の誤差が大きくなって、モータが脱調してしまうことがある。モータが脱調した場合には、モータを一旦停止させてから再度起動させる必要がある。このため、モータ駆動装置には、モータが脱調したかどうかを検出する手段を備えることが一般的である。
また、複数台のモータを1台のインバータで駆動する場合、各モータに対して脱調検出を行う必要がある。下記特許文献1には、複数台のモータを1台のインバータで駆動する場合において、各モータの合成電流に基づいて脱調を検出し、脱調状態であればインバータからの出力電圧を遮断後に再起動する技術が開示されている。
特開2010−022184号公報
1台のインバータで、例えば2台のモータを駆動する場合において、1台のモータが脱調した場合、当該モータの速度は低下する。モータの速度が低下すると、モータの誘起電圧も低下する。特許文献1の手法では、何れかのモータが脱調した場合、インバータからの出力電圧を遮断する制御を行う。しかしながら、インバータからの出力電圧を遮断しても、各モータ間は電気的に接続されている状態であるため、各モータの誘起電圧差に応じて複数台のモータ間に過大な電流が流れるおそれがある。
本発明は、上記に鑑みてなされたものであって、複数台のモータを1台のインバータで駆動する構成において、各モータの誘起電圧差に応じて複数台のモータ間に流れ得る過大な電流を抑制することができるモータ駆動装置を得ることを目的とする。
上述した課題を解決し、目的を達成するため、本発明に係るモータ駆動装置は、複数台のモータを駆動する1台のインバータを備える。また、モータ駆動装置は、少なくとも1台のモータの運転周波数がインバータ出力周波数と不一致となる、又は少なくとも1台のモータの運転周波数が他の1台のモータの運転周波数と不一致となる脱調を検出し、少なくとも1台のモータが脱調している場合に、インバータの通電状態を切替えて複数台のモータを停止させる脱調制御部を備える。
本発明に係るモータ駆動装置によれば、複数台のモータを1台のインバータで駆動する構成において、各モータの誘起電圧差に応じて複数台のモータ間に流れ得る過大な電流を抑制することができるという効果を奏する。
実施の形態1に係るモータ駆動装置及びその周辺回路の構成例を示す図 図1の制御装置の機能を実現するハードウェア構成の一例を示すブロック図 図1の制御装置の機能を実現するハードウェア構成の他の例を示すブロック図 図1の制御装置に構築される制御系の構成例を示すブロック図 図4に示すパルス幅変調(Pulse Width Modulation:以下「PWM」と表記)信号生成部の動作の説明に供する図 図1に示す各モータのうちで第二のモータが脱調したときの各モータの挙動例を示す図 実施の形態1における脱調検出部の動作の説明に供するフローチャート 実施の形態1における第二のモータ制御部の動作の説明に供するフローチャート 実施の形態1における脱調時制御を実施した場合の各モータの挙動例を示す図 実施の形態2における制御装置に構築される制御系の構成例を示すブロック図 実施の形態2におけるモータ電流判定部の動作の説明に供するフローチャート 実施の形態2におけるモータ速度判定部の動作の説明に供するフローチャート 実施の形態2における制御装置に構築される制御系の第一の変形例を示すブロック図 実施の形態2における制御装置に構築される制御系の第二の変形例を示すブロック図 実施の形態3における制御装置に構築される制御系の構成例を示すブロック図 実施の形態4における制御装置に構築される制御系の構成例を示すブロック図 実施の形態4における脱調検出部及び第二のモータ制御部の動作の説明に供するフローチャート 実施の形態5に係るモータ駆動装置の空気調和機への適用例を示す図
以下に添付図面を参照し、本発明の実施の形態に係るモータ駆動装置及び空気調和機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。また、以下では、電気的な接続と機械的な接続を区別せず、単に「接続」と称して説明する。
実施の形態1.
図1は、実施の形態1に係るモータ駆動装置及びその周辺回路の構成例を示す図である。実施の形態1に係るモータ駆動装置は、複数台のモータを1台のインバータで駆動するモータ駆動装置である。図1における2台のモータ41,42は、複数台のモータの例示である。
実施の形態1に係るモータ駆動装置は、図1に示すように、6つのスイッチング素子4aにより構成されるインバータ4と、インバータ4に直流電圧を供給するための直流電源として動作する平滑部3と、を備える。平滑部3の一例は、コンデンサである。インバータ4は平滑部3の出力側に並列接続される。インバータ4において、6つのスイッチング素子4aはブリッジ接続され、インバータ4の主回路を構成する。
スイッチング素子4aの一例は、図示の絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)であるが、他のスイッチング素子を用いてもよい。スイッチング素子4aの他の例は、金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)である。平滑部3の入力側には、整流器2が並列接続される。整流器2は、ブリッジ接続される4つのダイオードを有する。整流器2には、交流電源1からの交流電力が供給される。交流電源1からの交流電力は、整流器2で整流された後に平滑部3によって平滑され、平滑された直流電力がインバータ4に供給される。
なお、図1では交流電源1及び整流器2は単相で記載しているが、三相でもよい。また、平滑部3のコンデンサとしては、静電容量の大きなアルミ電解コンデンサを使用することが一般的であるが、長寿命であるフィルムコンデンサを用いてもよい。また、静電容量の小さなコンデンサを用いてもよい。静電容量の小さなコンデンサを用いれば、交流電源1に流れる電流の高調波電流を抑制することができる。更に、交流電源1と平滑部3との間の電気配線に、高調波電流の抑制、又は力率改善の目的で、リアクトルを挿入してもよい。
インバータ4は、上アームのスイッチング素子と、下アームのスイッチング素子とが、この順で直列に接続されてなるレグを3相分、即ち3個備える。3個のレグは、U相レグ、V相レグ及びW相レグを構成する。U相レグ、V相レグ及びW相レグは、直流電力が供給される直流母線であるP線とN線との間に並列に接続される。
上アームのスイッチング素子と下アームのスイッチング素子との接続端からは電力線7が引き出されている。電力線7は、分岐点8によって二手に分かれ、第一のモータであるモータ41及び第二のモータであるモータ42のそれぞれに接続されている。モータ41,42の例は、三相の永久磁石同期モータである。
平滑部3によって平滑された直流電力はインバータ4に供給された後、インバータ4によって任意の三相交流電力に変換される。変換された三相交流電力は、モータ41とモータ42とに供給される。
なお、図1は、インバータ4における各レグがスイッチング素子のみを有する構成であるが、この構成に限定されない。スイッチング素子のスイッチング動作によって生ずるサージ電圧を抑制する目的で、スイッチング素子の両端に還流ダイオードを逆並列に接続した構成としてもよい。また、スイッチング素子がMOSFETの場合、MOSFETの寄生ダイオードを還流ダイオードとして使用してもよい。更に、スイッチング素子がMOSFETの場合、還流のタイミングでMOSFETをオン状態とすることにより、スイッチング素子のみで還流の機能を実現することができる。また、スイッチング素子を構成する材料は、ケイ素(Si)だけでなく、ワイドバンドギャップ半導体である炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドなどを用いてもよい。スイッチング素子をワイドバンドギャップ半導体系の材料で形成すれば、低損失化及び高速スイッチング化を図ることができる。
次に、インバータ4の制御に必要なセンサ類について説明する。図1において、電流検出部51は、モータ41に流れる三相のモータ電流を検出する電流センサであり、電流検出部52は、モータ42に流れる三相のモータ電流を検出する電流センサである。また、入力電圧検出部6は、直流母線であるP線とN線との間の電圧である直流母線電圧Vdcを検出する母線電圧センサである。
制御装置10は、電流検出部51によって検出されたモータ電流iu_m,iv_m,iw_m、電流検出部52によって検出されたモータ電流iu_sl,iv_sl,iw_sl、及び入力電圧検出部6によって検出された直流母線電圧Vdcに基づいてモータ制御演算を行い、インバータ4の各スイッチング素子への駆動信号を生成する。
なお、電流検出部51,52の一例はカレントトランスであるが、これに限定されない。カレントトランスを用いずに、抵抗の両端電圧からモータ電流を検出する手法を採用してもよい。また、電流検出部51,52のうちの何れか一方は、インバータ4の下アームのスイッチング素子と、3つの下アームのスイッチング素子の接続点との間に電流検出用の抵抗を設ける構成、或いは、3つの下アームのスイッチング素子の接続点と、コンデンサが接続される負側の直流母線であるN線との接続点との間に電流検出用の抵抗を設ける構成を採用してもよい。
また、図1では、2台のモータを有する構成を示しているが、3台以上のモータを有していてもよい。なお、3台以上のモータのそれぞれには、モータ電流を検出する電流センサが設けられることは言うまでもない。
また、図1では、インバータの数を1台としているが、複数台のインバータを備えていてもよい。複数台のインバータのそれぞれは、直流母線であるP線とN線とを共通母線とし、共通母線であるP線とN線との間に接続される構成となる。
図2は、図1の制御装置10の機能を実現するハードウェア構成の一例を示すブロック図である。また、図3は、図1の制御装置10の機能を実現するハードウェア構成の他の例を示すブロック図である。
下述する制御装置10によるモータ制御の機能を実現する場合には、図2に示すように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。
プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリを例示することができる。
具体的に、メモリ302には、制御装置10におけるモータ制御の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、下述するモータ制御を実行することができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。
また、図2に示すプロセッサ300及びメモリ302は、図3のように処理回路305に置き換えてもよい。処理回路305は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field−Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路305に入力する情報、及び処理回路305から出力する情報は、インタフェース304を介して行うことができる。
次に、本発明の要点の一つである、制御装置10にて実行されるモータ制御に関して、図1、図4及び図5を参照して説明する。図4は、図1の制御装置10に構築される制御系の構成例を示すブロック図である。図5は、図4に示すPWM信号生成部20の動作の説明に供する図である。
制御装置10は、座標変換部(図4では「uvw/dq」と表記)11,12と、第一のモータ速度推定部13と、第二のモータ速度推定部14と、積分器15,16と、第一のモータ制御部17と、脈動補償制御部18と、座標変換部(図4では「dq/uvw」と表記)19と、PWM信号生成部20と、脱調制御部30とを備える。脱調制御部30は、脱調検出部22と、第二のモータ制御部24とを備える。第一のモータ制御部17は、電流指令値演算部17aを備え、脱調検出部22は、電流方向判定部221を備え、第二のモータ制御部24は、電流制御器241を備える。
脱調検出部22は、複数台のモータの例示であるモータ41,42のうちの少なくとも1台が脱調したか否かを検出する。ここで、「少なくとも1台が脱調した」とは、以下の(1)〜(3)の事象のうちの少なくとも一つが生起した場合を想定する。
(1)インバータ出力周波数とモータ41の運転周波数とが不一致
(2)インバータ出力周波数とモータ42の運転周波数とが不一致
(3)モータ41の運転周波数とモータ42の運転周波数とが不一致
モータが3台以上の場合は、少なくとも1台のモータの運転周波数がインバータ出力周波数と不一致であるとき、又は少なくとも1台のモータの運転周波数が他の1台のモータの運転周波数と不一致であるときが、上記で言う「少なくとも1台が脱調した」に相当する。
上記で言う「インバータ出力周波数」は、インバータ4がモータ41,42に印加する電圧の周波数である。インバータ出力周波数は、後述するモータ速度指令値ω と等価である。モータ速度指令値は、「回転速度指令値」もしくは「回転速度指令」と言い替えてもよい。また、上記で言う「運転周波数」は、モータ回転周波数と等価である。なお、比較対象が不一致であるか否かの検出は、比較対象の各周波数の差分情報又は比較対象同士の比の情報に基づいて行うこともできるが、本実施の形態においては、これらとは異なる手法を用いる。詳細は後述する。
第二のモータ制御部24は、少なくとも1台のモータが脱調した場合、インバータ4の通電状態を切替えてモータを停止させる制御を実施する。通電状態の切替えについて、実施の形態1では、PWM信号生成部20に入力する電圧指令値を切り替えて制御する手法を一例として説明する。
次に、制御装置10を構成する各部の動作について説明する。まず、座標変換部11には、電流検出部51が検出した静止三相座標系の電流値であるモータ電流iu_m,iv_m,iw_mが入力される。座標変換部11は、後述するモータ位相推定値θm_eを用いて、モータ電流iu_m,iv_m,iw_mをモータdq軸電流id_m,iq_mに変換する。ここで、モータdq軸電流id_m,iq_mは、モータ41における回転二相座標系の電流値である。座標変換部11によって変換されたモータdq軸電流id_m,iq_mは、第一のモータ速度推定部13及び第一のモータ制御部17に入力される。
また、座標変換部12には、電流検出部52が検出した静止三相座標系の電流値であるモータ電流iu_sl,iv_sl,iw_slが入力される。座標変換部12は、モータ電流iu_sl,iv_sl,iw_slをモータdq軸電流id_sl,iq_slに変換する。ここで、モータdq軸電流id_sl,iq_slは、モータ42における回転二相座標系の電流値である。座標変換部12によって変換されたモータdq軸電流id_sl,iq_slは、第二のモータ速度推定部14及び脈動補償制御部18に入力される。
第一のモータ速度推定部13は、モータdq軸電流id_m,iq_mに基づいて、モータ速度推定値ωm_eを推定する。積分器15は、モータ速度推定値ωm_eを積分することでモータ位相推定値θm_eを算出する。算出されたモータ位相推定値θm_eは、電流値の座標変換、電圧指令値の座標変換、及び後述する脈動補償制御のために座標変換部11、脈動補償制御部18及び座標変換部19に入力される。
また、第二のモータ速度推定部14は、モータdq軸電流id_sl,iq_slに基づいて、モータ速度推定値ωsl_eを推定する。積分器16は、モータ速度推定値ωsl_eを積分することでモータ位相推定値θsl_eを算出する。算出されたモータ位相推定値θsl_eは、電流値の座標変換、及び後述する脈動補償制御のために座標変換部12及び脈動補償制御部18に入力される。
なお、モータ速度推定値及びモータ位相推定値の算出手法については公知であり、ここでの詳細な説明は割愛する。各推定値の算出手法の詳細は、例えば特許第4672236号公報に記載されており、当該記載内容を参照されたい。当該記載内容は、本明細書に取り込まれて本明細書の一部を構成する。また、各推定値の算出手法は、当該公報の記載内容に限定されるものでもなく、モータ速度及びモータ位相の推定値が得られる手法であればどのような手法を用いてもよい。また、演算で使用する情報は、モータ速度及びモータ位相の推定値が得られるものであれば、どのようなものでもよく、ここで示した情報を省いてもよいし、当該情報以外の情報を用いてもよい。
脈動補償制御部18を有さない場合、第一のモータ制御部17は、モータdq軸電流id_m,iq_m及びモータ速度推定値ωm_eに基づいて、dq軸電圧指令値v ,v を算出する。そして、座標変換部19は、モータ位相推定値θm_eと、dq軸電圧指令値v ,v とに基づいて得られる電圧位相θに基づいて、モータ41における回転二相座標系におけるdq軸電圧指令値v ,v を、静止三相座標系における電圧指令値v ,v ,v に変換する。電圧位相θは、電圧指令値の回転二相座標系における位相角である。図5の上段部には、モータ位相推定値θm_eと、位相制御による位相差θと、電圧位相θとの関係が示されている。図5の上段部に示されるように、電圧位相θと、モータ位相推定値θm_eと、位相差θとの間には、θ=θm_e−θの関係がある。
PWM信号生成部20は、電圧指令値v ,v ,v 及び直流母線電圧Vdcに基づいて、インバータ4のスイッチング素子をPWM制御するためのPWM信号を生成する。図5の下段部には、PWM信号の例が示されている。UPは、インバータ4のU相の上アームのスイッチング素子を制御するためのPWM信号であり、UNは、インバータ4のU相の下アームのスイッチング素子を制御するためのPWM信号である。以下同様に、VP,VNは、それぞれV相の上アームのスイッチング素子及びV相の下アームのスイッチング素子を制御するためのPWM信号であり、WP,WNは、それぞれW相の上アームのスイッチング素子及びW相の下アームのスイッチング素子を制御するためのPWM信号である。これらのPWM信号は、図5の中段部に示されるように、三相の電圧指令値v ,v ,v と、キャリアとの大小関係に基づいて生成することができる。
ここで、上記の制御内容、即ち脈動補償制御部18を有さない場合の制御内容だけでは、モータ42は、モータ41を基準として算出された電圧指令値に連れられて駆動されるだけである。従って、モータ41はマスタモータとして動作し、モータ42はスレーブモータとして動作することになる。このとき、モータ41のモータdq軸電流id_m,iq_mと、モータ42のモータdq軸電流id_sl,iq_slとの間には、インバータ4による制御状態によって、軸誤差と呼ばれる位相差が生じることがある。軸誤差を知ることで、モータ位相推定値θm_eとモータ位相推定値θsl_eとの間の位相の遅れ又は進みを把握することができる。
ここで、モータ41のモータdq軸電流id_m,iq_mと、モータ42のモータdq軸電流id_sl,iq_slとの間に軸誤差が生じている制御状態では、特に、モータ速度の低速領域において、スレーブモータであるモータ42のモータ電流が脈動することがある。電流脈動が発生すると、モータ42が脱調し、過大電流による発熱によってモータ42での損失が増加し、或いは、過大電流による回路遮断によって、モータ42だけでなくモータ41も停止せざるを得ない状況となるおそれがある。この電流脈動を解消もしくは抑制するため、脈動補償制御部18が設けられている。
脈動補償制御部18は、モータ41におけるモータ位相推定値θm_eと、モータ42におけるモータ位相推定値θsl_eと、モータ42のモータq軸電流iq_slに基づいて、脈動補償電流指令値isl を生成する。モータ41のモータ位相推定値θm_e及びモータ42のモータ位相推定値θsl_eの情報を利用することにより、上述した軸誤差を知ることができる。そして、この軸誤差の情報に基づいて、モータ42のトルク電流に相当するモータq軸電流iq_slの脈動を抑制する脈動補償電流指令値isl が生成される。
脈動補償制御部18によって生成された脈動補償電流指令値isl は、第一のモータ制御部17に付与される。第一のモータ制御部17において、電流指令値演算部17aは、モータ41へのモータ速度指令値ω と、モータ41のモータ速度推定値ωm_eとの偏差を比例積分制御などで制御することで、モータ41へのq軸電流指令値iq_m を演算する。また、電流指令値演算部17aは、脈動補償電流指令値isl に基づいてd軸電流指令値id_m を演算する。モータ41への励磁電流成分であるd軸電流指令値id_m については、値を変化させることで電流位相を制御することができる。このため、d軸電流指令値id_m を可変することで生成した電圧指令値v ,v ,v を用いることで、モータ41を強め磁束又は弱め磁束で駆動させることができる。その特性を利用し、脈動補償電流指令値isl をd軸電流指令値id_m に反映させることで、電流脈動を抑制することができる。
第一のモータ制御部17において、dq軸電圧指令値v ,v は、モータdq軸電流id_m,iq_mと、dq軸電流指令値id_m ,iq_m との偏差を比例積分制御することにより演算することができる。なお、同様の機能を実現できるものであれば、どのような手法を用いてもよい。以上の動作により、スレーブモータであるモータ42に生じ得る電流脈動の抑制を図りつつ、モータ41及びモータ42を1台のインバータ4で駆動することができる。
次に、実施の形態1に係るモータ駆動装置の要部の動作について説明する。ここでは、まず、モータが脱調したときのモータの挙動について説明する。図6は、図1に示す各モータのうちで第二のモータであるモータ42が脱調したときの各モータの挙動例を示す図である。図6において、横軸は時間であり、上段部の波形の縦軸はモータ速度、下段部の波形の縦軸は電流を表している。また、上段部の各波形において、太実線はモータ41の速度、太破線はモータ42の速度をそれぞれ示している。また、下段部の各波形において、太実線はモータ41のU相電流、太破線はモータ42のU相電流、一点鎖線はインバータ4から出力されるU相電流をそれぞれ示している。
図6において、時刻t0から時刻t1の間では、モータ41,42に対し、適切な制御が実施されている。このため、モータ41,42における、各モータ速度、各モータ電流の振幅、及び各モータ電流の周波数は、共に安定している。一方、図6において、モータ42は、時刻t1において脱調し、モータ速度は低下している。ここで、モータ42のモータ速度が低下すると、モータ42の誘起電圧は低下する。モータ電流は、インバータ4の出力電圧とモータ誘起電圧との差分に比例するため、脱調したモータ42の電流振幅は大きくなる。また、脱調したモータ42では、モータ速度及びモータ誘起電圧の位相の変化が起こるので、モータ42におけるモータ電流の方向が変化する。このため、脱調したモータ42におけるモータ電流の方向の変化を検出すれば、モータ42の脱調を検出することが可能となる。この機能を担うのが、上述した、脱調検出部22の電流方向判定部221である。
次に、実施の形態1における脱調検出部22の動作について説明する。図7は、実施の形態1における脱調検出部22の動作の説明に供するフローチャートである。図7における各ステップの処理は、電流方向判定部221によって実施される。また、図7において、モータ電流の判定は、各モータごと、三相の各相電流のそれぞれに対して実施する。図7のフローチャートの処理を実施するため、脱調検出部22には、電流検出部51によって検出されたモータ電流iu_m,iv_m,iw_mのそれぞれと、電流検出部52によって検出されたモータ電流iu_sl,iv_sl,iw_slのそれぞれとが入力される。なお、判定の際、少なくとも一つの相のモータ電流に対して“Yes”と判定された場合には、“Yes”の側の処理に移行する。また、全てのモータの全ての相のモータ電流に対して“No”と判定された場合には、“No”の側の処理に移行する。なお、以下では、説明の簡単化のために一つの相のモータ電流についての説明とする。
ステップS101では、モータ電流の前々回値と前回値とが比較され、前々回値が前回値よりも小さければ(ステップS101,Yes)、ステップS102に移行する。ステップS102では、モータ電流の前回値と今回値とが比較され、前回値が今回値以下であれば(ステップS102,No)、ステップS103に移行する。ステップS103では、電流方向に変化がないと判定され、経過時間がカウントアップされて、ステップS101に戻る。
また、ステップS101において、モータ電流の前々回値が前回値以上であれば(ステップS101,No)、ステップS104に移行する。ステップS104では、モータ電流の前回値と今回値とが比較され、前回値が今回値以上であれば(ステップS104,No)、ステップS105に移行する。ステップS105では、電流方向に変化がないと判定され、経過時間がカウントアップされて、ステップS101に戻る。
次に、ステップS102において、モータ電流の前回値が今回値よりも大きければ(ステップS102,Yes)、ステップS106に移行する。また、ステップS104において、モータ電流の前回値が今回値よりも小さければ(ステップS104,Yes)、ステップS106に移行する。
以上のステップS101,S102,S104の処理は、1つのモータ電流において、減少方向から増加方向への変化と、増加方向から減少方向への変化の両方があったか否かを判定する処理である。そして、両方向に変化があった場合に、電流方向に変化があったと判定される。
ステップS106では、電流方向に変化があると判定される。また、ステップS106では、経過時間に基づいて、電流方向に変化があると判定されたモータ電流の周波数f_dirが算出される。更に、ステップS106では、経過時間のカウントがクリアされる。
ステップS107では、モータ電流の周波数f_dirと、予め設定された閾値f_iとが比較される。なお、閾値f_iとの大小関係を判定する際には、誤判定を防止するため、或いは判定のばたつきを防止するため、閾値f_iにマージンを持たせることが好ましい。また、ノイズ等による誤判定を抑止するため、電流検出部51,52の各検出値をローパスフィルタなどによってフィルタ処理してもよい。
ステップS107において、モータ電流の周波数f_dirが、閾値(f_i+マージン)よりも大きければ(ステップS107,Yes)、ステップS108に移行する。
また、ステップS107において、モータ電流の周波数f_dirが閾値(f_i+マージン)以下であれば(ステップS107,No)、ステップS109に移行する。そして、ステップS109において、モータ電流の周波数f_dirが閾値(f_i−マージン)よりも小さければ(ステップS109,Yes)、ステップS108に移行し、モータ電流の周波数f_dirが閾値(f_i−マージン)以上であれば(ステップS109,No)、ステップS110に移行する。
ステップS108では、後述する脱調ありの処理を実施して、図7のフローチャートの処理を終了する。なお、図4に示すように、脱調の有無の判定結果Sout1は、PWM信号生成部20に入力される。また、ステップS110では、脱調なしと判定され、図7のフローチャートの処理を終了する。
上記のステップS106の処理について補足する。モータが正常に動作している場合、モータ電流は正弦波であるため、電流方向の変化は、正弦波の山と谷とで起こる。このため、モータの正常動作時は、電流方向の変化の周波数は、モータ電流周波数の2倍で変化する。また、図6の下段部の波形に示されるように、正常動作時の電流方向の変化の周期は、一般的に、脱調時の電流方向の変化の周期よりも大きい。従って、モータ電流周波数の2倍の周波数を閾値f_iに設定し、且つ、算出したモータ電流の周波数f_dirを閾値f_iと比較することで、脱調の有無を判定することができる。
なお、脱調したモータの挙動によっては、電流方向の変化の周波数がモータ電流周波数の2倍の周波数を下回ることも想定される。このため、図7のフローチャートでは、ステップS109の処理を追加している。
また、上記のステップS101の判定処理では、モータ電流の前々回値と前回値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータ電流の前々回値と前回値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、上記のステップS102の判定処理では、モータ電流の前回値と今回値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータ電流の前回値と今回値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、上記のステップS104の判定処理では、モータ電流の前回値と今回値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータ電流の前回値と今回値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、上記のステップS107の判定処理では、モータ電流の周波数f_dirが閾値(f_i+マージン)に等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータ電流の周波数f_dirと閾値(f_i+マージン)とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、上記のステップS109の判定処理では、モータ電流の周波数f_dirが閾値(f_i−マージン)に等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータ電流の周波数f_dirと閾値(f_i+マージン)とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
次に、実施の形態1における第二のモータ制御部24の動作について、図8及び図9を参照して説明する。図8は、実施の形態1における第二のモータ制御部24の動作の説明に供するフローチャートである。図8に示すフローチャートの処理は、図7のステップS108の処理の詳細を示すものである。また、図9は、実施の形態1における脱調時制御を実施した場合の各モータの挙動例を示す図である。なお、図8では、U相電流を対象とする電流制御について記載しているが、V相電流及びW相電流に対しても同様に実施される。
図8のフローチャートの処理を実施するため、第二のモータ制御部24には、電流検出部51によって検出されたモータ電流iu_m,iv_m,iw_mのそれぞれと、電流検出部52によって検出されたモータ電流iu_sl,iv_sl,iw_slのそれぞれとが入力される。
図8において、ステップS201では、モータ41,42の各U相電流の絶対値が算出される。ステップS202では、モータ41のU相電流の絶対値と、モータ42のU相電流の絶対値とが比較される。モータ41のU相電流の絶対値がモータ42のU相電流の絶対値よりも大きければ(ステップS202,Yes)、ステップS203に移行する。一方、モータ41のU相電流の絶対値がモータ42のU相電流の絶対値以下であれば(ステップS202,No)、ステップS204に移行する。
ステップS203では、電流の絶対値が大きいモータ41のU相電流に対して電流制御が実施される。また、ステップS204では、電流の絶対値が大きいモータ42のU相電流に対して電流制御が実施される。ここでの電流制御は、一般的なPI制御で実施することができる。
脱調が発生すると、脱調したモータにおいて、モータ電流のピーク値が増大する。モータが例えば永久磁石同期モータである場合、ピーク値の大きなモータ電流が流れると、モータの永久磁石を減磁させてしまうおそれがある。このため、脱調時には、モータ電流のピーク値を抑制しながら、モータを停止させることが好ましい制御となる。
また、図8のフローチャートでは、モータが2台の場合について記載しているが、モータの台数が3台以上の場合には各モータの中で最も電流の絶対値が大きいものに対して電流制御を実施すればよい。これにより、複数のモータにおいて、電流が大きい状態のモータに対して優先的に電流制御を行うことができ、簡易な処理で、モータ電流のピーク値を抑制することができる。
なお、上記のステップS202の判定処理では、モータ41のU相電流の絶対値と、モータ42のU相電流の絶対値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータ41のU相電流の絶対値と、モータ42のU相電流の絶対値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
脱調時の電流制御の一例は、モータ電流に高調波成分を重畳することである。
図8のステップS203では、電流制御器241によって、モータ41のU相電流に高調波成分が重畳されるようにU相電圧指令値v が生成される。このとき、図4において、PWM信号生成部20は、脱調検出部22から出力される判定結果Sout1が脱調ありを示す信号の場合、第二のモータ制御部24から出力されるU相電圧指令値v に基づいて、PWM信号を生成する。即ち、判定結果Sout1が脱調ありを示す信号の場合、座標変換部19から出力される電圧指令値v ,v ,v に代えて、第二のモータ制御部24から出力される電圧指令値v ,v ,v を用いてPWM信号が生成される。
なお、図8のフローチャートにおいて、ステップS202の判定結果が、UVWの各相において異なる場合でも、ステップS202及びステップS203の処理が個別に実施される。例えば、U相電流に関してはモータ41の方が大きく、V相電流及びW相電流に関してはモータ42の方が大きい場合、それぞれの大きい方の電流に対して、ここで言う高調波成分の重畳制御が実施される。
なお、モータ電流への高調波成分の重畳は、電流制御器241に付与する電流指令値に高調波成分を重畳すればよいが、他の手法を用いてもよい。
図9には、脱調を模擬してモータ42の速度を低下させたときに、電流の絶対値が大きいモータ41のU相電流に高調波成分を重畳したときの挙動が示されている。なお、図9において、横軸は時間であり、上段部の波形の縦軸はモータ速度、下段部の波形の縦軸は電流を表している。また、上段部の各波形において、太実線はモータ41の速度、太破線はモータ42の速度をそれぞれ示している。また、下段部の各波形において、太実線はモータ41のU相電流、太破線はモータ42のU相電流、一点鎖線はインバータ4から出力されるU相電流をそれぞれ示している。
モータ41のU相電流への高調波成分の重畳により、図9に示されるように、モータ41,42の各U相電流のピーク値が約1/2に低減されている。なお、モータの永久磁石の減磁を防止できるレベルまで電流のピーク値が低減できた後は、モータ41,42を慣性モーメントに従って徐々に減速させればよく、最終的にモータ41,42を停止させることができる。
なお、上記では、脱調時の電流制御の一例として、モータ電流に高調波成分を重畳することについて説明したが、この手法に限定されない。例えば、電流制御器241に与える電流指令値を0[A]とする制御、即ちモータ制御で使用する電流指令値をゼロに制御すればよい。この制御によっても、モータ電流のピーク値を抑制することができる。なお、高調波成分を重畳する制御と、電流指令値をゼロにする制御が行われる際、インバータ4の出力電圧が変更される。このため、第一の制御は、脱調制御用の電圧を各モータに印加する制御と言い替えることができる。
また、図4では、第二のモータ制御部24は、静止三相座標系における電圧指令値v ,v ,v を生成してPWM信号生成部20に与える制御器の構成を示したが、この構成に限定されない。図4の構成に代え、回転二相座標系におけるdq軸電圧指令値v ,v を生成して座標変換部19に与える制御器を構築してもよい。その際、回転二相座標系におけるdq軸の電流値を使用してもよいし、dq軸への座標変換時に得られる二相固定座標系におけるαβ軸の電流値を使用してもよい。
以上説明したように、実施の形態1に係るモータ駆動装置は、少なくとも1台のモータの運転周波数がインバータ出力周波数と不一致となる、又は少なくとも1台のモータの運転周波数が他の1台のモータの運転周波数と不一致となる脱調を検出し、少なくとも1台のモータが脱調している場合に、インバータの通電状態を切替えて複数台のモータを停止させる。これにより、複数台のモータを1台のインバータで駆動する構成において、各モータの誘起電圧差に応じて複数台のモータ間に流れ得る過大な電流を抑制することができる。
また、実施の形態1に係るモータ駆動装置によれば、モータ間に流れ得る過大な電流、即ち過大な循環電流を抑制することができるので、モータの脱調時にモータの永久磁石を減磁させてしまうリスクを抑制することができる。
また、実施の形態1に係るモータ駆動装置によれば、例えば後述する空気調和機のファンモータに適用した場合において、慣性モーメントの大きいファンモータを速やかに停止することができる。これにより、再起動までの時間を短縮することができ、空気調和機の性能を改善することができる。
実施の形態2.
図10は、実施の形態2における制御装置に構築される制御系の構成例を示すブロック図である。図10において、実施の形態2における制御系では、図4に示す実施の形態1における制御系の構成において、脱調制御部30が脱調制御部30Aに置き替えられている。脱調制御部30Aでは、脱調検出部22が脱調検出部22Aに置き替えられ、第二のモータ制御部24が第二のモータ制御部24Aに置き替えられている。脱調検出部22Aは、モータ電流判定部222と、モータ速度判定部223とを備えている。なお、その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
第二のモータ制御部24Aの機能は、第二のモータ制御部24の機能とは異なる。第二のモータ制御部24Aの機能の詳細については、後述する。なお、第二のモータ制御部24による制御と、第二のモータ制御部24Aによる制御とを区別するため、前者を「第一の制御」と呼び、後者を「第二の制御」と呼ぶ場合がある。
次に、実施の形態2における要部の動作について説明する。まず、図11は、実施の形態2におけるモータ電流判定部222の動作の説明に供するフローチャートである。図11において、ステップS301,S302の処理は、モータ電流判定部222によって実施され、ステップS303の処理は、PWM信号生成部20及び第二のモータ制御部24Aによって実施される。
図11において、ステップS301では、モータ41,42の各相電流の絶対値が算出される。ステップS302では、各相電流の絶対値と脱調判定のための判定閾値とが比較される。少なくとも一つの相電流の絶対値が判定閾値よりも大きければ(ステップS302,Yes)、脱調ありと判定される(ステップS303)。脱調ありと判定された場合、脱調ありを示す判定結果Sout2がPWM信号生成部20に入力される。ステップS303では、脱調ありの場合の制御が実施される。
具体的に、実施の形態2では、インバータ4の上アームのスイッチング素子、又は下アームのスイッチング素子の何れか1つ以上が導通状態とされるPWM信号が生成される。この制御は、第二のモータ制御部24Aによって生成された電圧指令値v ,v ,v に基づいて実施される。インバータ4の上アームのスイッチング素子、又は下アームのスイッチング素子の何れか1つ以上が導通状態とされると、導通状態とされたスイッチング素子を介して各モータの図示しない巻線間が短絡される。これにより、各モータの誘起電圧に比例した電流がインバータ4へ流れ、各モータの回生エネルギーが消費される。これにより、各モータを慣性モーメントに従って減速させる場合に比べて、より短時間でモータを停止させることができる。
ステップS303の処理を終えると、図11のフローチャートの処理を終了する。また、ステップS302において、全ての相電流の絶対値が判定閾値以下であれば(ステップS302,No)、脱調なしと判定され(ステップS304)、脱調なしを示す判定結果Sout2がPWM信号生成部20に入力される。この場合、第二のモータ制御部24Aによる制御を実施せずに、図11のフローチャートの処理を終了する。
なお、上記のステップS302の判定処理では、相電流の絶対値と判定閾値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、相電流の絶対値と判定閾値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、図12は、実施の形態2におけるモータ速度判定部223の動作の説明に供するフローチャートである。図12において、ステップS401,S403の処理は、モータ速度判定部223によって実施され、ステップS402,S404の処理は、PWM信号生成部20及び第二のモータ制御部24Aによって実施される。
図12のフローチャートの処理を実施するため、モータ速度判定部223には、第一のモータ速度推定部13によって推定されたモータ速度推定値ωm_eと、第二のモータ速度推定部14によって推定されたモータ速度推定値ωsl_eとが入力される。
図12において、ステップS401では、モータ41,42のそれぞれにおいて、モータ速度推定値とモータ速度指令値とが比較される。なお、モータ速度推定値とモータ速度指令値との大小関係を判定する際には、誤判定を防止するため、或いは判定のばたつきを防止するため、モータ速度指令値にマージンを持たせることが好ましい。
ステップS401において、少なくとも一つのモータのモータ速度推定値が「モータ速度指令値+マージン」よりも大きければ(ステップS401,Yes)、脱調ありと判定される(ステップS402)。脱調ありと判定された場合、脱調ありを示す判定結果Sout3がPWM信号生成部20に入力される。ステップS402では、脱調ありの場合の制御が実施される。
また、ステップS401において、全てのモータのモータ速度推定値が「モータ速度指令値+マージン」以下であれば(ステップS401,No)、ステップS403に移行する。ステップS403では、何れかのモータのモータ速度推定値が「モータ速度指令値−マージン」よりも小さければ(ステップS403,Yes)、脱調ありと判定される(ステップS404)。脱調ありと判定された場合、脱調ありを示す判定結果Sout3がPWM信号生成部20に入力される。ステップS404では、脱調ありの場合の制御が実施される。
また、ステップS403において、全てのモータのモータ速度推定値が「モータ速度指令値−マージン」以上であれば(ステップS403,No)、脱調なしと判定され(ステップS405)、脱調なしを示す判定結果Sout3がPWM信号生成部20に入力される。この場合、第二のモータ制御部24Aによる制御を実施せずに、図12のフローチャートの処理を終了する。
一方、脱調ありの場合、上述した第二のモータ制御部24Aによる制御が実施される。具体的な処理内容は前述した通りであり、ここでの説明は省略する。
なお、実施の形態2において、第二のモータ制御部24Aによる制御は、判定結果Sout2,Sout3のうちの少なくとも1つが脱調ありの場合に実施され、判定結果Sout2,Sout3の両方が脱調なしの場合には実施されない。
なお、上記のステップS401の判定処理では、モータのモータ速度推定値と「モータ速度指令値+マージン」とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータのモータ速度推定値と「モータ速度指令値+マージン」とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
また、上記のステップS403の判定処理では、モータのモータ速度推定値と「モータ速度指令値−マージン」とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、モータのモータ速度推定値と「モータ速度指令値−マージン」とが等しい場合を“Yes”又は“No”の何れで判定してもよい。
以上説明したように、実施の形態2に係るモータ駆動装置によれば、モータ電流による脱調の判定結果、及びモータ速度による脱調の判定結果のうちの少なくとも一つが脱調ありの場合に、第二のモータ制御部24Aによる第二の制御を実施する。これにより、各モータの誘起電圧に比例した電流がインバータ4へ流れ、各モータの回生エネルギーが消費される。これにより、各モータを慣性モーメントに従って減速させる場合に比べて、より短時間でモータを停止させることができる。
なお、図10では、脱調検出部22Aの内部に、モータ電流判定部222と、モータ速度判定部223とを構成し、これらの判定部による判定結果Sout2,Sout3を個別にPWM信号生成部20に入力しているが、この構成に限定されない。具体的に、図10の構成に代えて、図13のように構成してもよい。図13は、実施の形態2における制御装置に構築される制御系の第一の変形例を示すブロック図である。
図13において、実施の形態2の第一の変形例に係る制御装置の制御系では、図10に示す制御装置の制御系の構成において、脱調制御部30Aが脱調制御部30Bに置き替えられている。脱調制御部30Bでは、脱調検出部22Aが脱調検出部22Bに置き替えられている。なお、図13では、モータ電流判定部222及びモータ速度判定部223の図示は省略している。また、脱調検出部22Bは論理和回路224を備え、論理和回路224には、図10の例で説明した判定結果Sout2,Sout3が入力される。論理和回路224は、判定結果Sout2,Sout3の論理和を脱調検出部22Bによる判定結果Sout4として、PWM信号生成部20に出力する。PWM信号生成部20は、判定結果Sout4に基づいて、インバータ4の上アームのスイッチング素子又は下アームのスイッチング素子の何れか1つ以上を導通状態にする上述した第二の制御を実施する。
また、図10の構成に代えて、図14のように構成してもよい。図14は、実施の形態2における制御装置に構築される制御系の第二の変形例を示すブロック図である。
図14において、実施の形態2の第二の変形例に係る制御装置の制御系では、図13に示す制御装置の制御系の構成において、脱調制御部30Bが脱調制御部30Cに置き替えられている。脱調制御部30Cでは、第二のモータ制御部24Aが第二のモータ制御部24に置き替えられている。第二のモータ制御部24は、図4に示したものと同じである。その他の構成については、図13の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
実施の形態2の第二の変形例に係る制御装置の場合、第二のモータ制御部24は、実施の形態1で説明した通り、モータ電流のピーク値を抑制しながら、モータを停止させる第一の制御を実施する。この第一の制御では、前述の通り、モータ電流に高調波成分を重畳する電流制御を実施してもよいし、電流指令値を例えば0[A]とする電流制御を実施してもよい。
実施の形態3.
図15は、実施の形態3における制御装置に構築される制御系の構成例を示すブロック図である。図15において、実施の形態3における制御系の構成では、図13に示す実施の形態2の第一の変形例の構成において、脱調制御部30Bが脱調制御部30Dに置き替えられている。脱調制御部30Dでは、脱調検出部22Bが脱調検出部22Cに置き替えられ、論理和回路224が論理和回路225に置き替えられている。脱調検出部22Cは、図13に示す脱調検出部22Bの機能に、図4に示す電流方向判定部221の機能を付加したものである。なお、図15では、電流方向判定部221、モータ電流判定部222及びモータ速度判定部223の図示は省略している。なお、その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
論理和回路225には、電流方向判定部221、モータ電流判定部222及びモータ速度判定部223におけるそれぞれの判定結果Sout1,Sout2,Sout3が入力される。論理和回路225は、判定結果Sout1,Sout2,Sout3の論理和を脱調検出部22Cによる判定結果Sout5として、PWM信号生成部20に出力する。PWM信号生成部20は、判定結果Sout5に基づいて、インバータ4の上アームのスイッチング素子又は下アームのスイッチング素子の何れか1つ以上を導通状態にする上述した第二の制御を実施する。
実施の形態3の制御装置の場合、3つの判定条件を備え、少なくとも一つが脱調ありの場合には、脱調時制御を実施する。これにより、脱調の予兆を的確に捉えた脱調時制御を実施できるという効果が得られる。
なお、図15に示す実施の形態3では、少なくとも一つのモータが脱調した場合、第二の制御を実施するように構成されているが、これに限定されない。図14と同様に、少なくとも一つのモータが脱調した場合、第一の制御を実施するように構成されていてもよい。また、第一の制御及び第二の制御の両方の機能を備え、両者を時系列的に切り替えて実施してもよい。即ち、最初に第一の制御を実施し、その後、第一の制御から第二の制御に切り替えて実施してもよい。また、最初に第二の制御を実施し、その後、第二の制御から第一の制御に切り替えて実施してもよい。これにより、脱調発生の初期の段階における各モータ電流のピーク値を低減しつつ、モータの停止時間の短縮を図ることができる。
実施の形態4.
図16は、実施の形態4における制御装置に構築される制御系の構成例を示すブロック図である。図16において、実施の形態4における制御系の構成では、図15に示す実施の形態3における制御装置の構成において、脱調制御部30Dが脱調制御部30Eに置き替えられている。脱調制御部30Eでは、脱調検出部22Cが脱調検出部22Dに置き替えられ、第二のモータ制御部24Aが第二のモータ制御部24Bに置き替えられている。第二のモータ制御部24Bは、第二のモータ制御部24及び第二のモータ制御部24Aの両方の機能を備えたものである。また、図16では、脱調検出部22Dから第二のモータ制御部24Bに判定情報CSが入力されるように構成されている。なお、その他の構成については、実施の形態3の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
次に、実施の形態4における要部の動作について説明する。図17は、実施の形態4における脱調検出部22D及び第二のモータ制御部24Bの動作の説明に供するフローチャートである。図17において、ステップS501,S502,S505の処理は、脱調検出部22Dによって実施され、ステップS503,S504,S506の処理は、PWM信号生成部20及び第二のモータ制御部24Bによって実施される。
図17において、ステップS501では、脱調の有無が判定される。脱調の有無は、電流方向判定部221、モータ電流判定部222及びモータ速度判定部223のうちの何れか、或いは、これらの判定部のうちの少なくとも一つを用いる。脱調が検出されない場合(ステップS501,No)、ステップS501の判定処理を継続する。一方、脱調が検出された場合(ステップS501,Yes)、ステップS502に移行する。
ステップS502では、脱調したモータ台数と、運転していたモータ台数とが同じであるか否かが判定される。脱調したモータ台数と、運転していたモータ台数とが同じである場合(ステップS502,Yes)、ステップS503に移行する。ステップS503では、この状況に適した第二の制御が選択されて実施される。第二の制御は、前述の通り、インバータ4の上アーム又は下アームのスイッチング素子の何れか1素子以上を導通状態にする制御である。なお、脱調の有無は、判定情報CSにより、脱調検出部22Dから第二のモータ制御部24Bへ伝達される。以降の処理も同様である。
また、脱調したモータ台数と、運転していたモータ台数とが異なる場合(ステップS502,No)、ステップS504に移行する。ステップS504では、この状況に適した第一の制御が選択されて実施される。第一の制御は、前述の通り、図4の第二のモータ制御部24に具備される電流制御器241によって実施される電流制御である。
ステップS503,S504の処理後は、ステップS505に移行する。ステップS505では、各モータ電流のピーク値が電流閾値と比較され、各モータ速度推定値が速度閾値と比較され、脱調検出後の経過時間が時間閾値と比較される。また、このステップS505において、各モータ電流のピーク値が電流閾値よりも小さく、又は、各モータ速度推定値が速度閾値よりも小さく、又は、脱調検出後の経過時間が時間閾値よりも大きい場合(ステップS505,Yes)、ステップS506に移行する。即ち、ステップS506に移行する条件は、各モータ電流のピーク値、各モータ速度推定値及び脱調検出後の経過時間のうちの少なくとも一つが、それぞれの閾値による判定条件をクリアしたときである。
一方、各モータ電流のピーク値が電流閾値以上であり、且つ、各モータ速度推定値が速度閾値以上であり、且つ、脱調検出後の経過時間が時間閾値以下である場合(ステップS505,No)、ステップS501に戻り、ステップS501からステップS504の処理を繰り返す。即ち、ステップS501に戻る条件は、各モータ電流のピーク値、各モータ速度推定値及び脱調検出後の経過時間のうちの全てが、それぞれの閾値による判定条件をクリアしていないときである。
ステップS506では、インバータ4のスイッチング素子を全て非導通状態とする制御が実施される。以下、この制御を前述した第一の制御及び第二の制御と区別するため、適宜「第三の制御」と呼ぶ。この第三の制御により、インバータ4から出力される各モータへの出力電圧は遮断される。また、インバータ4と各モータとの間の電気的な接続がなくなるので、各モータの誘起電圧に比例して流れる電流は、各モータ間に循環電流として流れる。この循環電流によって、各モータの回生エネルギーを消費することができ、慣性モーメントに従って停止させる場合に比べて、より短時間で各モータを停止させることができる。
以上説明したように、実施の形態4に係るモータ駆動装置によれば、脱調したモータ台数と、運転していたモータ台数との差異の情報に基づき、その差異の状況に適した制御が選択される。これにより、脱調発生の初期の段階における各モータ電流のピーク値を低減しつつ、モータの停止時間の短縮するための制御を、安全且つ確実に実施することができる。
実施の形態5.
実施の形態5では、実施の形態1から実施の形態4で説明したモータ駆動装置の応用例について説明する。図18は、実施の形態5に係るモータ駆動装置の空気調和機への適用例を示す図である。
図18において、空気調和機100の室外機70には、インバータ4と、複数台のファン41a,42aと、ファン41a,42aを駆動するためのモータ41,42とが搭載されている。空気調和機100において、2台のファン41a,42aを駆動する場合、1台のインバータ4で2台のモータ41,42を運転することで、インバータ4の数を削減できる。これにより、空気調和機100のコストを低減することができる。
なお、実施の形態5では、実施の形態1から実施の形態4に係るモータ駆動装置を空気調和機に適用した場合について説明したが、この例に限定されない。実施の形態1から実施の形態4に係るモータ駆動装置をヒートポンプ給湯機、冷蔵庫、冷凍機といった冷凍サイクル機器に適用してもよい。何れの場合も、それぞれの実施の形態で得られる効果を享受することができる。
また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
例えば、上記の記載において、脱調制御部は、複数台のモータの各相に流れるモータ電流の方向の変化、モータ電流の検出値、又は複数台のモータの速度推定値に基づいてモータの脱調を検出しているが、これに限定されない。脱調制御部は、複数台のモータの各相に流れるモータ電流の方向の変化、モータ電流の検出値、及び複数台のモータの速度推定値のうちから少なくとも2つの判定要素を用いてモータの脱調を検出するようにしてもよい。
また、実施の形態3では、少なくとも一つのモータが脱調した場合、第一の制御及び第二の制御を時系列的に切り替えることについて説明したが、これに限定されない。実施の形態4で説明した第三の制御を加え、第一の制御、第二の制御及び第三の制御を時系列的に切り替えて実施してもよい。
1 交流電源、2 整流器、3 平滑部、4 インバータ、4a スイッチング素子、6 入力電圧検出部、7 電力線、8 分岐点、10 制御装置、11,12,19 座標変換部、13 第一のモータ速度推定部、14 第二のモータ速度推定部、15,16 積分器、17 第一のモータ制御部、17a 電流指令値演算部、18 脈動補償制御部、20 PWM信号生成部、22,22A,22B,22C,22D 脱調検出部、24,24A,24B 第二のモータ制御部、30,30A,30B,30C,30D,30E 脱調制御部、41,42 モータ、41a,42a ファン、51,52 電流検出部、70 室外機、100 空気調和機、221 電流方向判定部、222 モータ電流判定部、223 モータ速度判定部、224,225 論理和回路、241 電流制御器、300 プロセッサ、302 メモリ、304 インタフェース、305 処理回路。

Claims (17)

  1. 複数台のモータを駆動する1台のインバータと、
    少なくとも1台の前記モータの運転周波数がインバータ出力周波数と不一致となる、又は少なくとも1台の前記モータの運転周波数が他の1台のモータの運転周波数と不一致となる脱調を検出し、少なくとも1台の前記モータが脱調している場合に、前記インバータの通電状態を切替えて複数台の前記モータを停止させる脱調制御部と、
    を備えるモータ駆動装置。
  2. 前記脱調制御部は、複数台の前記モータの各相に流れるモータ電流の方向の変化、前記モータ電流の検出値、又は複数台の前記モータの速度推定値に基づいて前記モータの脱調を検出する
    請求項1に記載のモータ駆動装置。
  3. 前記脱調制御部は、複数台の前記モータの各相に流れるモータ電流の方向の変化、前記モータ電流の検出値、及び複数台の前記モータの速度推定値のうちから少なくとも2つを用いて前記モータの脱調を検出する
    請求項1に記載のモータ駆動装置。
  4. 少なくとも1台の前記モータが脱調している場合、前記モータに脱調制御用の電圧を印加する第一の制御を実施する
    請求項1から3の何れか1項に記載のモータ駆動装置。
  5. 前記第一の制御では、前記モータの各相に流れるモータ電流に高調波成分が重畳される
    請求項4に記載のモータ駆動装置。
  6. 前記第一の制御では、モータ制御で使用する電流指令値がゼロに制御される
    請求項4に記載のモータ駆動装置。
  7. 少なくとも1台の前記モータが脱調している場合において、脱調した前記モータの台数と運転していた前記モータの台数が異なる場合、前記第一の制御を実施する
    請求項4から6の何れか1項に記載のモータ駆動装置。
  8. 少なくとも1台の前記モータが脱調している場合、前記インバータの上アームのスイッチング素子、又は下アームのスイッチング素子の何れか1つ以上を導通状態とする第二の制御を実施する
    請求項1から3の何れか1項に記載のモータ駆動装置。
  9. 少なくとも1台の前記モータが脱調している場合において、脱調した前記モータの台数と運転していた前記モータの台数が同じである場合、前記第二の制御を実施する
    請求項8に記載のモータ駆動装置。
  10. 少なくとも1台の前記モータが脱調している場合において、前記第一の制御の実施後に前記モータの各相に流れる電流のピーク値が電流閾値よりも小さくなった場合には、前記インバータからの出力電圧を遮断する第三の制御を実施する
    請求項7に記載のモータ駆動装置。
  11. 少なくとも1台の前記モータが脱調している場合において、前記第二の制御の実施後に前記モータの各相に流れる電流のピーク値が電流閾値よりも小さくなった場合には、前記インバータからの出力電圧を遮断する第三の制御を実施する
    請求項9に記載のモータ駆動装置。
  12. 少なくとも1台の前記モータが脱調している場合において、前記第一の制御の実施後に前記モータの速度推定値が速度閾値よりも小さくなった場合には、前記インバータからの出力電圧を遮断する第三の制御を実施する
    請求項7に記載のモータ駆動装置。
  13. 少なくとも1台の前記モータが脱調している場合において、前記第二の制御の実施後に前記モータの速度推定値が速度閾値よりも小さくなった場合には、前記インバータからの出力電圧を遮断する第三の制御を実施する
    請求項9に記載のモータ駆動装置。
  14. 少なくとも1台の前記モータが脱調している場合において、前記第一の制御の実施後に脱調検出後の経過時間が時間閾値よりも長くなった場合には、前記インバータからの出力電圧を遮断する第三の制御を実施する
    請求項7に記載のモータ駆動装置。
  15. 少なくとも1台の前記モータが脱調している場合において、前記第二の制御の実施後に脱調検出後の経過時間が時間閾値よりも長くなった場合には、前記インバータからの出力電圧を遮断する第三の制御を実施する
    請求項9に記載のモータ駆動装置。
  16. 少なくとも1台の前記モータが脱調している場合、前記モータに脱調制御用の電圧を印加する第一の制御、前記インバータの上アームのスイッチング素子又は下アームのスイッチング素子の何れか1つ以上を導通状態とする第二の制御、及び前記インバータからの出力電圧を遮断する第三の制御を時系列的に切り替えて実施する
    請求項1から3の何れか1項に記載のモータ駆動装置。
  17. 請求項1から16の何れか1項に記載のモータ駆動装置を備える空気調和機。
JP2021502377A 2019-02-27 2020-02-27 モータ駆動装置及び空気調和機 Active JP7069398B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/007643 2019-02-27
PCT/JP2019/007643 WO2020174621A1 (ja) 2019-02-27 2019-02-27 モータ駆動装置及び空気調和機
PCT/JP2020/008103 WO2020175637A1 (ja) 2019-02-27 2020-02-27 モータ駆動装置及び空気調和機

Publications (2)

Publication Number Publication Date
JPWO2020175637A1 true JPWO2020175637A1 (ja) 2021-09-30
JP7069398B2 JP7069398B2 (ja) 2022-05-17

Family

ID=72239545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021502377A Active JP7069398B2 (ja) 2019-02-27 2020-02-27 モータ駆動装置及び空気調和機

Country Status (4)

Country Link
US (1) US11632071B2 (ja)
JP (1) JP7069398B2 (ja)
CN (1) CN113454902A (ja)
WO (2) WO2020174621A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563501A (en) * 1978-11-06 1980-05-13 Hitachi Ltd Slip detecting device for electric car
JP2001025282A (ja) * 1999-07-05 2001-01-26 Toshiba Corp センサレスブラシレスモータの脱調検出装置
JP2015023621A (ja) * 2013-07-17 2015-02-02 株式会社協和製作所 ブラシレス直流モータ制御装置、ブラシレス直流モータ制御方法およびモータシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139117A (en) 1977-05-11 1978-12-05 Hitachi Ltd Step-out detector system for multi-parallel synchronous motor
JPS62290391A (ja) 1986-06-09 1987-12-17 Hitachi Ltd 誘導電動機の制御装置
JP2005151635A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 電動機の駆動装置、送風装置、冷凍空調装置、電動機の駆動方法
JP2005245058A (ja) 2004-02-24 2005-09-08 Fuji Electric Fa Components & Systems Co Ltd Dcブラシレスモータの並列駆動方法
KR100819753B1 (ko) 2007-07-13 2008-04-08 주식회사 한림포스텍 배터리팩 솔루션을 위한 무접점충전시스템 및 그 제어방법
EP2068436B1 (de) * 2007-12-03 2013-07-17 Roche Diagnostics GmbH Verfahren und Vorrichtung zum Erkennen von Schrittverlusten eines Schrittmotors
KR101049578B1 (ko) * 2008-07-14 2011-07-14 가부시끼가이샤가미무라고오교오 다수의 브러쉬리스 직류모터의 제어방법
JP2010124554A (ja) * 2008-11-18 2010-06-03 Toyo Electric Mfg Co Ltd 誘導機制御装置
CN201332375Y (zh) * 2008-12-16 2009-10-21 中国农业大学 电机同步控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563501A (en) * 1978-11-06 1980-05-13 Hitachi Ltd Slip detecting device for electric car
JP2001025282A (ja) * 1999-07-05 2001-01-26 Toshiba Corp センサレスブラシレスモータの脱調検出装置
JP2015023621A (ja) * 2013-07-17 2015-02-02 株式会社協和製作所 ブラシレス直流モータ制御装置、ブラシレス直流モータ制御方法およびモータシステム

Also Published As

Publication number Publication date
WO2020174621A1 (ja) 2020-09-03
WO2020175637A1 (ja) 2020-09-03
JP7069398B2 (ja) 2022-05-17
US11632071B2 (en) 2023-04-18
US20220077806A1 (en) 2022-03-10
CN113454902A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP6217554B2 (ja) インバータ装置
JP6207953B2 (ja) 電力変換装置及び電力変換方法
JP6954149B2 (ja) 交流電動機の制御装置
JP2016163518A (ja) 回転位置検出装置,モータ制御装置及び回転位置検出方法
US20200136537A1 (en) Motor control apparatus and motor control method
JP6463966B2 (ja) モータ駆動装置およびモータ駆動用モジュール並びに冷凍機器
JP6579195B2 (ja) 電力制御方法、及び、電力制御装置
JP2010088261A (ja) 電動機の電流センサ異常検知装置
JP7069398B2 (ja) モータ駆動装置及び空気調和機
US20230142956A1 (en) Motor controller, motor system and method for controlling motor
US20220103096A1 (en) Load driving apparatus, air conditioner, and method for operating load driving apparatus
JP5923437B2 (ja) 同期電動機駆動システム
CN110537321B (zh) 电机控制装置以及空调机
JP6681266B2 (ja) 電動機の制御装置及びそれを備えた電動車両
JP7109519B2 (ja) 交流回転機の制御装置
JP2014057391A (ja) モータ制御装置及びモータ制御装置の制御方法
JP7191074B2 (ja) 交流回転機の制御装置
JP6511644B2 (ja) モータ駆動装置およびこれを用いた洗濯機または洗濯乾燥機
JP2018137913A (ja) モータ駆動装置およびこれを用いた洗濯機または洗濯乾燥機
JP6480049B2 (ja) モータ制御装置及びモータ制御装置の制御方法
JP6884193B2 (ja) 交流回転機の制御装置
JP6509683B2 (ja) 回転位置検出装置及び回転位置検出方法
JP6500224B2 (ja) モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機
JP2008178232A (ja) モータ駆動用インバータ制御方法
JP2016202592A (ja) モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7069398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150