JP6500224B2 - モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機 - Google Patents

モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機 Download PDF

Info

Publication number
JP6500224B2
JP6500224B2 JP2015088005A JP2015088005A JP6500224B2 JP 6500224 B2 JP6500224 B2 JP 6500224B2 JP 2015088005 A JP2015088005 A JP 2015088005A JP 2015088005 A JP2015088005 A JP 2015088005A JP 6500224 B2 JP6500224 B2 JP 6500224B2
Authority
JP
Japan
Prior art keywords
motor
current
voltage
value
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015088005A
Other languages
English (en)
Other versions
JP2016208678A (ja
Inventor
新井 康弘
康弘 新井
亀田 晃史
晃史 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015088005A priority Critical patent/JP6500224B2/ja
Publication of JP2016208678A publication Critical patent/JP2016208678A/ja
Application granted granted Critical
Publication of JP6500224B2 publication Critical patent/JP6500224B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Washing Machine And Dryer (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Description

本発明は、インバータ回路によりモータを駆動する洗濯機等に用いられるモータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機に関するものである。
洗濯機等を駆動するためのモータ駆動装置において、異常時などに交流入力電流が過大にならないように、制限する必要がある。従来、インバータ回路の駆動制御をおこなうマイコンは、交流入力電流ラインと絶縁されており、GND電位が異なることが多い(例えば、特許文献1参照)。
特許文献1には、マイコンから絶縁された回路における過電流状態を検知する安価な方法として、電流を検出したいラインに直列に電流検出用の抵抗を挿入し、挿入した抵抗の両端に発生する電圧によって、フォトカプラを駆動する過電流検出装置を備えたモータ駆動装置および洗濯機が開示されている。
特開2008−122226号公報
しかしながら、上記従来のモータ駆動装置の過電流検出装置は、電流検出抵抗、直流電圧源等の回路部品が必要であり、GND電位も異なるため、フォトカプラ等の高価な部品も必要となるほか、検出抵抗部の発熱、検出抵抗部での損失も増加することもあり、より安価なモータ駆動装置を構成できないという課題があった。
本発明は、前記従来の課題を解決するもので、より安価なモータ駆動装置およびこれを用いた洗濯機または洗濯乾燥機を提供することを目的とする。
上記課題を解決するために、本発明の一態様に係るモータ駆動装置は、交流電源と、前記交流電源に接続した整流回路と、前記整流回路の直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動され洗濯兼脱水槽等の負荷を駆動するブラシレスモータと、前記ブラシレスモータのロータ位置を検出するロータ位置検出手段と、前記ブラシレスモータのモータ電流を検出する電流検出手段と、前記インバータ回路を制御する制御手段とを備え、前記制御手段は、前記ブラシレスモータのモータ電流を磁束に対応した電流成分とトルクに対応した電流成分とに分解してそれぞれ所望の値となるように制御するベクトル制御と、前記ロータ位置検出手段によるモータ回転数を所望の指令回転数となるように速度制御とを行うとともに、前記トルクに対応した電流成分を所望の制限値以下に制限する1次電流判定手段を備え、前記1次電流判定手段は、前記モータ回転数に応じて、あらかじめ設定したテーブルにより、前記トルクに対応した電流成分の制限値を切り替えるようにし、前記テーブルによる前記制限値は、前記モータ回転数の2乗に比例する項を有し単調減少する関数によって規定されることを特徴とする。
本発明のモータ駆動装置は、高価な1次電流検出部を用いずとも、所望する任意の範囲に1次側電流を制限でき、入力電流が過大になることを防止できる。また、トルクに対応した電流成分の制限値を、指令回転数に応じて変化させることにより、低回転において必
要以上にトルクに対応した電流成分を制限しないため、低速時でもトルク不足による回転数低下が発生しない。また、従来に比べ高価な部品を要する1次電流検出部を用いないため、低コストなモータ駆動装置を提供することができる。
本発明の実施の形態1のモータ駆動装置の一部ブロック化した回路図 同モータ駆動装置の動作タイムチャート 同モータ駆動装置のIqリミット制御のフローチャート 同モータ駆動装置のモータ駆動サブルーチンのフローチャート 同モータ駆動装置のキャリヤ信号割込サブルーチンのフローチャート 同モータ駆動装置の位置信号割込サブルーチンのフローチャート 同モータ駆動装置のIqリミットテーブルの関数を示す特性図 本発明の実施の形態2のモータ駆動装置の一部ブロック化した回路図 同モータ駆動装置の整流電圧値検出によるテーブル切替制御時のフローチャート 同モータ駆動装置の整流電圧値検出時の低電位状態例を示す図 同モータ駆動装置の整流電圧値検出時の標準電位状態例を示す図 同モータ駆動装置の整流電圧値検出時の高電位状態例を示す図 同モータ駆動装置のIqリミットテーブルの関数を示す特性図
第1の発明は、交流電源と、前記交流電源に接続した整流回路と、前記整流回路の直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動され洗濯兼脱水槽等の負荷を駆動するブラシレスモータと、前記ブラシレスモータのロータ位置を検出するロータ位置検出手段と、前記ブラシレスモータのモータ電流を検出する電流検出手段と、前記インバータ回路を制御する制御手段とを備え、前記制御手段は、前記ブラシレスモータのモータ電流を磁束に対応した電流成分とトルクに対応した電流成分とに分解してそれぞれ所望の値となるように制御するベクトル制御と、前記ロータ位置検出手段によるモータ回転数を所望の指令回転数となるように速度制御とを行うとともに、前記トルクに対応した電流成分を所望の制限値以下に制限する1次電流判定手段を備え、前記1次電流判定手段は、前記モータ回転数に応じて、あらかじめ設定したテーブルにより、前記トルクに対応した電流成分の制限値を切り替えるようにし、前記1次電流判定手段において、前記モータ回転数の2乗に比例する項を有し単調減少する関数によって規定されることを特徴とする。
この構成により、高価な1次電流検出部を用いずとも、必要以上にトルクに対応した電流成分を制限せずに、入力電流が過大になることを防止できる、低コストなモータ駆動装置を提供することができる。
の発明は、第の発明において、前記整流回路の直流電圧を検出する電圧検出手段を備えるとともに前記テーブルを複数備え、前記制御手段は、前記電圧検出手段で検出された電圧を、あらかじめ決められた標準値と比較し、その大小関係によって、前記複数のテーブルを選択的に適用して前記トルクに対応した電流成分の制限値を切り替える構成とする。
この構成により、電源電圧が変動した場合でも、高価な1次電流検出部を用いずとも、必要以上にトルクに対応した電流成分を制限せずに、入力電流が過大になることを防止できる、低コストなモータ駆動装置を提供することができる。
の発明は、第の発明において、前記電圧検出手段で検出された電圧を、あらかじめ決められた標準値と比較し、それよりも高電位と判定された場合、前記テーブルによる前記制限値は、前記モータ回転数の2乗に比例する項を有し単調減少する関数の係数を大きくするように構成する。
この構成により、電源電圧が高く変動した場合でも、高価な1次電流検出部を用いずとも、必要以上にトルクに対応した電流成分を制限せずに、入力電流が過大になることを防止できる、低コストなモータ駆動装置を提供することができる。
の発明は、特に、第の発明において、前記電圧検出手段で検出された電圧を、あらかじめ決められた標準値と比較し、それよりも低電位と判定された場合、前記テーブルによる前記制限値は、前記モータ回転数の2乗に比例する項を有し単調減少する関数の係数を小さくする構成とする。
この構成により、電源電圧が低く変動した場合でも、高価な1次電流検出部を用いずとも、必要以上にトルクに対応した電流成分を制限せずに、入力電流が過大になることを防止できる、低コストなモータ駆動装置を提供することができる。
以下、本発明を実施するための形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1のモータ駆動装置の一部ブロック化した回路図である。図1に示すように、交流電源1は、整流回路2に交流電圧を加え、整流回路2は、整流器20とコンデンサ21により直流電圧に変換し、直流電圧をインバータ回路3に加える。
インバータ回路3は、6個のパワースイッチング半導体と逆並列ダイオードよりなる3相フルブリッジインバータ回路により構成し、通常、絶縁ゲートバイポーラトランジスタ(IGBT)と逆並列ダイオードおよびその駆動回路と保護回路を内蔵したインテリジェントパワーモジュール(以下、IPMという)で構成している。パワースイッチング半導体は、IGBTの他、金属酸化膜半導体電界効果トランジスタ(MOSFET)などで構成しても良い。このインバータ回路3の構成は、よく知られたものと同様であるので、詳しい説明は省略する。
インバータ回路3の出力端子にモータ4を接続し、洗濯機、洗濯乾燥機の撹拌翼(図示せず)、または洗濯兼脱水槽(図示せず)等の負荷を駆動する。モータ4は、ブラシレスモータにより構成し、回転子(ロータ)を構成する永久磁石と固定子との相対位置(回転子位置)をロータ位置検出手段4aにより検出する。ロータ位置検出手段4aは、通常、3個のホールICにより構成し、電気角60度ごとの位置出力基準信号を検出する。
電流検出手段5は、モータ4のモータ電流Iu、Iv、Iwを検出するもので、通常は、シャント抵抗5a、5bを用いる。また、直流電流を含む低周波数から測定可能な直流電流トランスや、交流電流トランスでも検出可能である。また、3相モータの場合、2相の電流(例えばIu、Iv)を求め、キルヒホッフの法則(Iu+Iv+Iw=0)より残りの1相の電流(Iw)を求める方法が一般的である。
なお、ロータ位置検出手段4aは、出力基準信号H1〜H3を元にロータの位置を検出しているが、ホールICを用いず、モータの相電流と3相モータ駆動制御電圧からロータ位置を演算により検出する方法でもよい(図示せず)。
制御手段6は、ロータ位置検出手段4aと電流検出手段5によりインバータ回路3をベクトル制御してモータ4の回転数を制御するものである。
制御手段6は、マイクロコンピュータと、マイクロコンピュータに内蔵したインバータ制御タイマー(PWMタイマー)、高速A/D変換回路、メモリ回路(ROM、RAM)等より構成し、ロータ位置検出手段4aの出力信号より電気角を検知する電気角検知手段60と、電流検出手段5の出力信号と電気角検知手段60の信号より磁束に対応した電流成分Id(d軸電流)とトルクに対応した電流成分(トルク電流)Iq(q軸電流)に分解する3相/2相dq変換手段61と、静止座標系から回転座標系に変換、あるいは逆変換するのに必要な正弦波データ(sin、cosデータ)を格納する記憶手段62と、磁束に対応した電圧成分Vdとトルクに対応した電圧成分Vqを3相モータ駆動制御電圧Vu、Vv、Vwに変換する2相/3相dq逆変換手段63と、3相モータ駆動制御電圧Vu、Vv、Vwに応じてインバータ回路3のIGBTのスイッチングを制御するPWM制御手段64などを備えている。
さらに、行程に応じてモータ4の起動、停止、回転数、および制動等を制御する設定変更手段65と、ロータ位置検出手段4aの出力信号より回転数を検知する回転数検知手段66と、回転数検知手段66によって検知された検知回転数nと設定変更手段65によって設定された設定回転数Nsを参照してトルク電流Iqの電流設定値Iqsを決定するトルク電流制御手段67と、設定変更手段65からのd軸(direct−axis)電流設定値Ids、トルク電流制御手段67からのq軸(quadrature−axis)電流設定値Iqsと、3相/2相dq変換手段61より演算したIdとIqを比較しモータ電流を制御するための磁束に対応した電圧成分Vdとトルクに対応した電圧成分Vqを演算するモータ電流制御手段68とを備えている。
磁束に対応した電圧成分Vdとトルクに対応した電圧成分Vqから逆変換して得られる2相/3相dq逆変換手段63からの入力(3相モータ駆動制御電圧Vu、Vv、Vw)に応じて、PWM制御手段64は、インバータ回路3に制御信号を出力する。
トルクに対応したq軸電流Iqが設定値Iqsとなるようにフィードバック制御することにより定トルク制御が可能となる。しかし、回転数が上昇すると、モータ誘起電圧が上昇してトルク電流Iqが増加しなくなるので、回転数に応じてd軸電流を増加させる、いわゆる弱め磁束制御によりq軸電流も増加させることができ、トルクを増加させることができる。
図2は、モータ駆動装置動作時の各部の波形関係を示し、ロータ位置検出手段4aの出力基準信号H1、H2、H3のエッジ信号は、60度ごとに変化して、各部状態信号より360度を6分割した角度が判別できる。出力基準信号H1がローからハイとなるハイエッジを基準電気角0度として示し、モータ4のU相巻線誘起電圧Ecは、出力基準信号H1から30度遅れた波形となる。U相モータ電流IuとU相巻線誘起電圧Ecの位相を同じにすると、最大効率が得られる。U相巻線誘起電圧Ecがq軸と同等軸となり、d軸は90度遅れている。q軸電流はモータ誘起電圧位相と同相なので、トルク電流と呼ばれる。
図2において、U相モータ電流Iuは、U相巻線誘起電圧Ecよりわずかに進んで、モータ印加電圧Vuは、U相巻線誘起電圧Ecより30度進んだ波形を示す。Vcは、PWM制御手段64内で生成される鋸歯状、または三角波波形のキャリヤ信号で、Vuは、正弦波状のU相制御電圧でキャリヤ信号VcとU相制御電圧Vuを比較したPWM信号UをPWM制御手段64内で発生させ、インバータ回路3のU相上アームトランジスタの制御
信号として加える。ckは、キャリヤ信号Vcの同期信号で、キャリヤカウンタがカウントアップしてオーバーフローしたときの割込信号である。
モータ4のロータ磁石軸とステータの磁束軸が一致した電気角をd軸として基準電気角0度として静止座標系から回転座標系への座標変換、すなわち、dq変換を行うので、電気角検知手段60は、ロータ位置検出手段4aの出力基準信号H1、H2、H3より30度、90度、150度等の電気角を検知し、60度毎以外は、推定により電気角θを求める。
一般的に、磁束に対応した電流成分をd軸電流Idと呼び、永久磁石の磁束と界磁の磁束が同軸上で永久磁石が界磁に吸引された状態なので、トルクは零となる。また、d軸から電気角で90度の角度で誘起電圧位相と同じ位相となり、トルク最大となる軸をq軸と呼び、トルクに対応した電流成分なので、q軸電流Iqと呼ぶ。さらに、d軸電流を負の方向に増加させると、d軸上の界磁磁束を弱めることと等価となるので、弱め界磁制御、あるいは弱め磁束制御(または磁束弱め制御)と呼ばれる。また、d軸電流Idとq軸電流Iqに分解してそれぞれ独立に制御するので、ベクトル制御と呼ばれる。
3相/2相dq変換手段61は、モータ電流Iu、Iv、Iwを数式1によりd軸電流Idとq軸電流Iqに変換するもので、電気角θに対応して検出したモータ電流瞬時値よりId、Iqを演算する。
Figure 0006500224
記憶手段62には、sinθとcosθのデータを記憶しているので、電気角データに対応したデータを呼び出して積和演算を行うことにより、d軸電流Idとq軸電流Iqに分解できる。電気角θの検知とモータ電流瞬時値の検出は、キャリヤ信号に同期して行うもので、後述するフローチャートに従い、詳細な説明を行う。
回転数検知手段66は、ロータ位置検出手段4aの出力基準信号H3よりモータ回転数を検知し、回転数信号を設定変更手段65、トルク電流制御手段67に加える。設定変更手段65は、モータ4の回転数の設定、回転数に応じたd軸電流設定値Idsの設定、トルク電流制御手段67への設定回転数Nsの設定を行なうとともに、モータ電流制御手段68にd軸電流設定値Idsを加える。なお、出力基準信号は、H1、H2をそれぞれ使用しても良いし、H1〜H3の信号から求めた回転数の平均値を用いてもよい(図示せず)。
トルク電流制御手段67(1次電流判定手段)は、検知回転数nと設定回転数Nsを比較する回転数比較手段67aと、検知回転数nと設定回転数Nsとの誤差信号Δnと、回
転数の変化率(加速度)に応じてq軸電流設定値Iqsを制御するトルク電流設定手段67bと、q軸電流設定値Iqsの値に対し、現在の検知回転数nとの関数より導出される最大Iqsの値と比較し、制限を掛けるIq指令リミッタ部67cとより構成される。
トルク電流設定手段67bは、誤差信号Δnに応じてq軸電流設定値IqsをPI制御する、いわゆる、回転数制御電流マイナーループ制御を行う。PI制御の際のゲインなどの設定切り換えについては、設定変更手段65からの指示を受けるもので、後述するフローチャートに従い説明を行う。
モータ電流制御手段68は、3相/2相dq変換手段61の出力信号Iq、Idと設定値Iqs、Idsをそれぞれ比較して制御電圧信号Vq、Vdを出力するもので、q軸電流比較手段68a、q軸電圧設定手段68b、d軸電流比較手段68c、d軸電圧設定手段68dより構成し、q軸電流Iqとd軸電流Idをそれぞれ制御する電圧信号Vq、Vdを生成する。
d軸電流設定値Idsは、設定変更手段65からモータ電流制御手段68に信号が加えられるもので、埋め込み磁石モータの場合には、回転数に応じてd軸電流設定値Idsを増加させて弱め界磁制御を行う。表面磁石モータの場合には、通常d軸電流設定値Idsは零に設定し、高回転数駆動の場合にd軸電流設定値Idsを増加させる。本実施の形態では、交流電源1から整流回路2に流入する電流を制限するための説明であり、表面磁石モータでは、d軸電流設定値Idsは、零近くの所定の値に設定するため、以降、d軸電流設定値Idsについては特に記載しないこととする。
2相/3相dq逆変換手段63は、電圧信号Vq、Vdより3相モータ駆動制御電圧Vu、Vv、Vwを数式2によって演算するもので、キャリヤ信号に同期して、電気角検知手段60により検知した電気角θに対応した正弦波状の信号をPWM制御手段64に加える。記憶手段62に記憶したsinθ、cosθのデータを呼び出して行う積和演算の方法は、3相/2相dq変換手段61の演算とほぼ同じである。
Figure 0006500224
上記構成のモータ駆動装置について、図3から図7を参照しながら、動作、作用を説明する。図3は、本実施の形態におけるモータ制御の切り替わりを示すフローチャートで、ステップ100により洗濯機や洗濯乾燥機のモータ4の速度制御を行うためのモータ制御を開始する。
ステップ101において、指令速度を決定し、ステップ102において、現在の回転数を検出する。その後、ステップ103において、電流指令値(Iq指令値)を算出するが、同時にステップ104において、Iq指令値のリミット値を後述する方法で取得する。
ステップ105において、電流指令値とIqリミット値を比較し、Iqリミット値よりも電流指令値が高い場合は、ステップ107へ、低い場合は、ステップ106へ進む。
ステップ106では、ステップ103で算出されたIq指令値をそのまま出力する。
ステップ107では、現在回転数に応じて得られるIqリミット値をIq指令値として出力する。
ステップ108では、上記のようにして出力された電流指令値に応じてモータ制御のサブルーチン処理を行う。その後、ステップ109において、モータ制御が継続中ならば、ステップ101に戻り、速度制御を継続する。モータ制御が終了した場合は、速度制御を終了する。
ステップ108で行なわれるモータ駆動サブルーチン(モータ制御サブルーチン)の制御に関して、図4を用いて説明する。
ステップ600によりモータ駆動サブルーチンが開始すると、次に、ステップ601に進んで、キャリヤ信号割込の有無を判定する。キャリヤ信号割込とは、PWM制御手段64のキャリヤカウンタがオーバーフローすると発生する割込信号ckにより実行するもので、キャリヤ信号割込があった場合は、ステップ602に進んで、キャリヤ信号割込サブルーチンを実行する。
図5は、キャリヤ信号割込サブルーチンの詳細フローチャートを示し、ステップ700によりキャリヤ信号割込サブルーチンを開始し、ステップ701にて割込信号ckをカウントする。
次に、ステップ702に進んで、電気角検知手段60によりロータ位置の電気角θを演算する。ロータ位置の電気角θは、別途求めたキャリヤ信号1周期当たりの電気角Δθとキャリヤカウンタのカウント値kを掛けた値k・Δθを、ロータ位置検出手段4aより検知できる60度ごとの電気角φを加えることで推定演算する。
モータ4を8極、キャリヤ周波数を15.6kHz、回転数を900r/minとすると、モータ駆動周波数は60Hzとなり、電気角60度内のキャリヤカウンタのカウント値kは、約43となる。よって、Δθは、約1.4度となる。モータ回転数が低い程、電気角60度内のカウント値kは高くなり、演算上の電気角検知分解能は向上するので、回転数が低く精度が要求される場合でも問題はないことがわかる。
次に、モータ電流Iu、Ivを検出する。ステップ703に進んで、1回目のモータ電流検出を行ない、Iu1、Iv1を得る。電流検出1回ではノイズが含まれる可能性があるので、ステップ704に進んで、再度検出し、Iu2、Iv2を得る。ステップ705にて、これら2回の検出値の平均値を求めてノイズを除去してモータ電流Iu、Ivを算出し、Iw=−(Iu+Iv)よりモータ電流Iwを演算する。
ここでは、ノイズ除去のために単純な二回平均値にてモータ電流Iu、Ivとしたが、この方式に限定されるものではない。たとえば、前回のキャリヤ信号割込の際に検出した電流と今回のキャリヤ信号割込の際に検出した電流との変化分を算出し、変化分を一定比
率で低減して前回検出した電流に足し合わせるようなローパスフィルター機能を構成してノイズ除去を実施しても良い。
次に、ステップ706に進んで、3相/2相dq変換手段61によって電気角θとモータ電流Iu、Iv、Iwより、前記数式1に示した演算を行い、3相/2相dq変換を行い、d軸電流Id、q軸電流Iqを求める。次に、ステップ707に進んで求められた電流値Id、Iqをメモリし、別途ベクトル制御データとして用いる。
次に、ステップ708に進んで、d軸制御電圧Vd、q軸制御電圧Vqを呼び出し、ステップ709に進んで、前記数式2に従い2相/3相dq逆変換手段63によって2相/3相dq逆変換を行い、3相制御電圧Vu、Vv、Vwを求める。この逆変換は、ステップ706と同じように、記憶手段62の電気角θに対応したsinθ、cosθデータを用い、積和演算を高速で行う。
次に、ステップ710に進んで、PWM制御手段64によって3相制御電圧Vu、Vv、Vwに対応したPWM制御を行い、ステップ711に進んで、サブルーチンを終了してリターンする。
PWM制御は、図2でも説明したように、U相、V相、W相各相に対応して、鋸歯状波(または三角波)のキャリヤ信号と制御電圧Vu、Vv、Vwを比較してインバータ回路3のIGBTオンオフ制御信号を発生させ、モータ4を正弦波駆動するもので、上アームトランジスタと下アームトランジスタの信号は、逆転された波形で、上アームトランジスタの導通比を増加させると、出力電圧は正電圧が増加し、下アームトランジスタの導通比を増加させると、出力電圧は負電圧が増加する。
導通比を50%にすると、出力電圧は零となる。電気角θに対応して制御電圧を正弦波状に変化させると、正弦波状の電流が流れる。正弦波駆動の場合、トランジスタの導通比を最大値100%にしたとき、出力電圧は最大となり、変調度Amは100%で、導通比の最大値を50%にしたとき、出力電圧は最低となり、変調度Amは0%と呼ぶ。
モータ電流をベクトル制御するための、3相/2相dq変換と2相/3相dq逆変換をキャリヤ信号毎に高速で実行するので、高速の電流制御が可能となり、さらに、キャリヤ信号毎にベクトル制御することにより、撹拌翼や洗濯兼脱水槽を負荷変動に対応して適切なトルク駆動することができる。
図4に戻って、キャリヤ信号割込サブルーチン(ステップ602)を実行した後、ステップ603に進み、位置信号割込の有無を判定する。ロータ位置検出手段4aの出力基準信号H1、H2、H3のいずれかの信号が変化すると、割込信号が発生し、ステップ604に進んで、図6に示す位置信号割込サブルーチンを実行する。図2に示すように、電気角60度ごとに割込信号が発生する。
ここで、図6により、位置信号割込サブルーチンについて説明する。ステップ800より、位置信号割込サブルーチンを開始し、ステップ801に進んで、出力基準信号H1、H2、H3を電気角検知手段60に入力し、位置検出を行い、次に、ステップ802に進んで、位置信号よりロータ電気角θcを検出する。次に、ステップ803に進んで、キャリヤ信号割込サブルーチンでカウントしているカウント値kをkcにメモリし、ステップ804に進んで、カウント値kをクリヤし、ステップ805に進み、電気角60度間のキャリヤカウンタのカウント値kcより1キャリヤの電気角Δθを演算する。
次に、ステップ806に進んで、回転数検知手段66によって、出力基準信号H3によ
る割込信号か否かを判定し、基準位置信号割込ならば、ステップ807に進んで、回転周期測定タイマーのカウント値Tを周期Toとしてメモリし、ステップ808に進んで、カウント値Tをクリヤし、ステップ809に進んで、モータ回転数nを演算する。次に、ステップ810に進んで、回転周期測定タイマーのカウントを開始させ、ステップ811に進んで、サブルーチンを終了してリターンする。
回転周期測定タイマーの検知分解能を8bit精度にすると、クロックは、64μsとなりキャリヤ信号をクロックに使用できるが、回転制御性能を向上するためには、回転周期検知分解能を向上させる必要があり、クロックの周期は、1〜10μsに設定する必要がある。この場合には、マイクロコンピュータのシステムクロックを分周してクロックに使用する。
以上に説明した回転数検知方法は、出力基準信号H3の周期から求める方法を示したが、出力基準信号H1、H2、H3をすべて使用してもよい。また、キャリヤ信号を三角波にすると、キャリヤカウンタタイマーの周期は、鋸歯状波の2倍となるので、三角波のオーバーフロー信号をクロックにすると、分解能が向上するので、三角波タイマーのオーバーフロー信号をクロックにしてもよい。
図3のステップ104における、Iq指令値のリミット値を取得するIqリミットテーブルについて以下に説明する。
図7は、本発明のモータ駆動装置のIq指令値のリミット値を取得するIqリミットテーブルの一例を示している。交流電源1の電圧がAC100Vの時に、整流回路2へ流れる電流の実効値を7Aとした時の、モータ回転数とIq指令値の関係性を示す特性図である。図7の特性曲線よりも回転数を示すx軸側にIq指令値を保持することにより、整流回路2へ流れる電流の実効値を常に7A以下に制御できることを示している。図7の曲線を数式で表したものが数式3である。
Figure 0006500224
数式3は、2次曲線で表記しているが、Iq指令値が回転数に対してべき乗で単調減少する特性であれば、これに限られるものではなく、数式3であらわされる曲線からx軸、y軸方向の領域にIq指令値を制限することで、1次電流の実効値を検出することなく、任意の値に制限することが可能となる。
たとえば、モータ回転数を700rpmに速度制御している場合、Iq指令値を2.58Aを超えないよう制御することで、整流回路2へ流れる電流の実効値を7A以下に制御することが可能となる。
同様に、モータ回転数を400rpmに速度制御している場合、Iq指令値を3.33Aを超えないよう制御することで、整流回路2へ流れる電流の実効値を7A以下に制御することが可能となる。
以上で説明したIq指令値のリミット制御により、整流回路2へ流れる電流を検出せずとも、所望の値に電流を制御することが可能となり、低回転時に必要以上にIq指令値をリミットさせず、モータ回転数に応じてリミット値を適切に変更することができるため、低回転時のトルク不足による不具合が発生しないようにすることができる。
(実施の形態2)
実施の形態1では、電源電圧が一定の場合における単一の電流リミット制限特性を用いて述べたが、電源電圧が変動する場合については考慮されていない。本実施の形態では、電源電圧が変動した場合にも、必要以上にトルク指令電流を低減させず、1次側電流を所望の値に制限できる構成について図を用いて説明する。
図8は、実施の形態2のモータ駆動装置の一部ブロック化した回路図である。本実施の形態のモータ駆動装置は、実施の形態1の構成に加えて、整流回路2の電圧を検出する電圧検出手段69を備えており、その他の構成は実施の形態1の構成と同じである。以降、実施の形態1と異なる部分について説明し、その他の構成については説明を省略する。
図9は、電圧検出手段69で行う整流電圧検出によるIqリミットテーブルの切替処理をステップごとに図示している。ステップ200において、整流回路2のコンデンサ21の電圧Vpを検出し、ステップ201において、あらかじめ決められた高位規定値と比較を行う。ステップ201において、Vp電圧が高位規定値よりも高い場合は、ステップ203へ進み、高電位対応のIqリミットテーブルを選択し、Vp電圧が高位規定値よりも低い場合は、ステップ202に進む。ステップ202では、更に低位規定値とVp電圧を比較し、Vp電圧が低位規定値よりも低い場合は、ステップ204に進み、低電位対応のIqリミットテーブルを選択し、Vp電圧が低位規定値よりも高い場合はステップ205に進み、標準のIqリミットテーブルを選択する。ステップ203〜205において、選択されたテーブルをIq指令リミッタ部67cのIqリミットテーブルとして設定する。
ステップ201、202で、Vp電圧値と比較する規定値について、図10〜図12を用いて、説明する。
図10は、電源電圧85Vとした条件下での電圧検出手段69による整流電圧検出部の電圧波形(計算波形)を示している。図10(a)では、モータ4の状態は、通電中(回転中)であり、電圧値は、210V〜225Vに脈動し、平均値は、215V程度である。図10(b)では、モータ4の状態は、停止中であり、電圧値の脈動は、小さく、平均値は、235V程度である。電源電圧が85Vの場合、モータ回転中であれば、平均値で235V以下、停止時で255V以下を低位規定値としてテーブルを設定することで、電源電圧変動に対する適切なIqリミットテーブルを選択することができる。
同様に、図11は、標準的な電圧である電源電圧100Vとした条件下での電圧検出手段69による整流電圧検出部の電圧波形(計算波形)を示している。図11(a)では、モータ4の状態は通電中(回転中)であり、電圧値は235V〜265Vに脈動し、平均値は255V程度である。図11(b)では、モータ4の状態は停止中であり、電圧値の脈動は小さく、平均値として275V程度である。電源電圧が100Vの場合、モータ回転中であれば、平均値で235V以上275V未満、停止時で、255V以上295V未満として標準テーブルを設定することで、電源電圧変動に対する適切なIqリミットテーブルを選択することができる。
さらに、同様に、図12は、電源電圧115Vとした条件下での電圧検出手段69による整流電圧検出部の電圧波形(計算波形)を示している。図12(a)では、モータ4の状態は、通電中(回転中)であり、電圧値は、285V〜305Vに脈動し、平均値は、295V程度である。図12(b)では、モータ4の状態は、停止中であり、電圧値の脈動は小さく、平均値として315V程度である。電源電圧が115Vの場合、モータ回転中であれば、平均値で275V以上、停止時であれば、295V以上を高位規定値としてテーブルを設定することで、電源電圧変動に対する適切なIqリミットテーブルを選択す
ることができる。
図13は、交流電源1の電圧がそれぞれ、高電圧条件(AC115V)、標準電圧(AC100V)、低電圧条件(AC85V)の時に、整流回路2へ流れる電流の実効値を7Aとした時の、モータ回転数とIq指令値の関係性を示す特性図である。図13のそれぞれの特性曲線よりも回転数を示すx軸側にIq指令値を保持することにより、電源電圧に応じて、整流回路2へ流れる電流の実効値を常に7A以下に制御できることを示している。
図13の曲線において、高電圧条件(高電位のIqリミットテーブル)の曲線を数式で表したものが数式4、低電圧条件(低電位のIqリミットテーブル)の曲線を数式で表したものが数式5である。標準電圧時(標準電位のIqリミットテーブル)の曲線を数式で表したものは、実施の形態1と同じ数式3である。
Figure 0006500224
Figure 0006500224
数式4、数式5は、2次曲線で表記しているが、Iq指令値が回転数に対してべき乗で単調減少する特性であれば、これに限られるものではなく、数式4、数式5であらわされる曲線からx軸、y軸方向の領域にIq指令値を制限することで、1次側電流の実効値を検出することなく、任意の値に制限することが可能となる。
なお、上述のIqリミットテーブルは、3通りで説明したが、電源電圧変動に応じた基準値を4通り以上で設定しても良い。さらに、電源電圧変動幅に対して、モータ回転数の2乗に比例する項を有し、単調減少する関数の係数を連続的に変化させても良い。
上記のモータ駆動装置を用いた洗濯機、または洗濯乾燥機は、異常時などに交流入力電流が過大にならないように制限しつつ、モータによって駆動されるドラム内の被洗濯物の容量や偏りに応じて変動する負荷に応じた最適なトルク制御でモータを駆動することができるとともに、省エネ性の向上を図ることができる。また、多様な洗濯、すすぎ、乾燥の条件に応じてきめ細かく、効率的にドラムの回転数を制御することができるので、多機能で使い勝手の良い洗濯機、洗濯乾燥機を提供することができる。また、モータ駆動装置の回路構成を簡素化でき、フォトカプラ等の高価な部品も不要とすることができるので、安価な洗濯機、洗濯乾燥機を提供することができる。
本発明に係るモータ駆動装置は、必要以上にトルクに対応した電流成分を制限せずに、入力電流が過大になることを防止できる、低コストなモータ駆動装置を提供することができるので、1次側電流を任意の値に制限する必要がある洗濯機、洗濯乾燥機等のモータ駆動装置に好適に利用することができる。
1 交流電源
2 整流回路
3 インバータ回路
4 モータ(ブラシレスモータ)
4a ロータ位置検出手段
5 電流検出手段
6 制御手段
60 電気角検知手段
61 3相/2相dq変換手段
62 記憶手段
63 2相/3相dq逆変換手段
64 PWM制御手段
65 設定変更手段
66 回転数検知手段
67 トルク電流制御手段(1次電流判定手段)
68 モータ電流制御手段
69 電圧検出手段

Claims (5)

  1. 交流電源と、前記交流電源に接続した整流回路と、前記整流回路の直流電力を交流電力に変換するインバータ回路と、前記インバータ回路により駆動され洗濯兼脱水槽等の負荷を駆動するブラシレスモータと、前記ブラシレスモータのロータ位置を検出するロータ位置検出手段と、前記ブラシレスモータのモータ電流を検出する電流検出手段と、前記インバータ回路を制御する制御手段とを備え、前記制御手段は、前記ブラシレスモータのモータ電流を磁束に対応した電流成分とトルクに対応した電流成分とに分解してそれぞれ所望の値となるように制御するベクトル制御と、前記ロータ位置検出手段によるモータ回転数を所望の指令回転数となるように速度制御とを行うとともに、前記トルクに対応した電流成分を所望の制限値以下に制限する1次電流判定手段を備え、前記1次電流判定手段は、前記モータ回転数に応じて、あらかじめ設定したテーブルにより、前記トルクに対応した電流成分の制限値を切り替えるようにし、前記テーブルによる前記制限値は、前記モータ回転数の2乗に比例する項を有し単調減少する関数によって規定されることを特徴とするモータ駆動装置。
  2. 前記整流回路の直流電圧を検出する電圧検出手段を備えるとともに前記テーブルを複数備え、前記制御手段は、前記電圧検出手段で検出された電圧を、あらかじめ決められた標準値と比較し、その大小関係によって、前記複数のテーブルを選択的に適用して前記トルクに対応した電流成分の制限値を切り替えることを特徴とする請求項に記載のモータ駆動装置。
  3. 前記電圧検出手段で検出された電圧を、あらかじめ決められた標準値と比較し、それよりも高電位と判定された場合、前記テーブルによる前記制限値は、前記モータ回転数の2乗に比例する項を有し単調減少する関数の係数を大きくすることを特徴とする請求項に記載のモータ駆動装置。
  4. 前記電圧検出手段で検出された電圧を、あらかじめ決められた標準値と比較し、それよりも低電位と判定された場合、前記テーブルによる前記制限値は、前記モータ回転数の2乗に比例する項を有し単調減少する関数の係数を小さくすることを特徴とする請求項に記載のモータ駆動装置。
  5. 前記請求項1からのいずれか1項に記載のモータ駆動装置を用いた洗濯機又は洗濯乾燥機。
JP2015088005A 2015-04-23 2015-04-23 モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機 Active JP6500224B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088005A JP6500224B2 (ja) 2015-04-23 2015-04-23 モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088005A JP6500224B2 (ja) 2015-04-23 2015-04-23 モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機

Publications (2)

Publication Number Publication Date
JP2016208678A JP2016208678A (ja) 2016-12-08
JP6500224B2 true JP6500224B2 (ja) 2019-04-17

Family

ID=57488232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088005A Active JP6500224B2 (ja) 2015-04-23 2015-04-23 モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機

Country Status (1)

Country Link
JP (1) JP6500224B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688353B2 (ja) * 1995-08-16 2005-08-24 神鋼電機株式会社 電動機の制御装置
JPH09201093A (ja) * 1996-01-16 1997-07-31 Meidensha Corp 極数切替電動機の運転制御装置
JP4899611B2 (ja) * 2006-04-24 2012-03-21 株式会社ジェイテクト 電動パワーステアリング装置
JP5267848B2 (ja) * 2008-04-15 2013-08-21 株式会社ジェイテクト モータ制御装置
JP2013052065A (ja) * 2011-09-02 2013-03-21 Panasonic Corp 電気洗濯機

Also Published As

Publication number Publication date
JP2016208678A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
KR100639606B1 (ko) 세탁기 모터 구동 장치
JP6269355B2 (ja) マトリクスコンバータ、発電システムおよび力率制御方法
JP3915557B2 (ja) 洗濯機のモータ駆動装置
JP6207953B2 (ja) 電力変換装置及び電力変換方法
WO2015097836A1 (ja) 電力変換装置および電力変換装置の制御方法
US10164558B2 (en) Electric motor control device
JP4238497B2 (ja) 洗濯機のモータ駆動装置
JP2013052065A (ja) 電気洗濯機
JP2003135883A (ja) 洗濯機のモータ駆動装置
JP6685452B1 (ja) 回転電機の制御装置
JP6233428B2 (ja) モータ制御装置およびモータ制御方法
JP7053955B2 (ja) 回転機の制御装置
JP4103354B2 (ja) 洗濯機のモータ駆動装置
JP6500224B2 (ja) モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機
JP6511644B2 (ja) モータ駆動装置およびこれを用いた洗濯機または洗濯乾燥機
JP6500225B2 (ja) 洗濯機のモータ制御装置
JP2018137913A (ja) モータ駆動装置およびこれを用いた洗濯機または洗濯乾燥機
JP2016202592A (ja) モータ駆動装置およびこれを用いた洗濯機又は洗濯乾燥機
JP5671696B2 (ja) 洗濯機のモータ駆動装置
JP2016202593A (ja) 洗濯機のモータ制御装置
CN107482965B (zh) 同步电动机的控制装置
JP6471352B2 (ja) 洗濯機のモータ制御装置
JP7069398B2 (ja) モータ駆動装置及び空気調和機
JP7272909B2 (ja) 電力変換装置及び電力変換方法
JP6509683B2 (ja) 回転位置検出装置及び回転位置検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6500224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151