JP7053955B2 - 回転機の制御装置 - Google Patents

回転機の制御装置 Download PDF

Info

Publication number
JP7053955B2
JP7053955B2 JP2021521666A JP2021521666A JP7053955B2 JP 7053955 B2 JP7053955 B2 JP 7053955B2 JP 2021521666 A JP2021521666 A JP 2021521666A JP 2021521666 A JP2021521666 A JP 2021521666A JP 7053955 B2 JP7053955 B2 JP 7053955B2
Authority
JP
Japan
Prior art keywords
rotation speed
torque
estimated
control device
rotary machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021521666A
Other languages
English (en)
Other versions
JPWO2020240748A1 (ja
Inventor
翔太 埴岡
雅宏 家澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020240748A1 publication Critical patent/JPWO2020240748A1/ja
Application granted granted Critical
Publication of JP7053955B2 publication Critical patent/JP7053955B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、回転機を制御する、回転機の制御装置に関する。
一般に回転機の電流を所望の値に制御するためには電流検出器が不可欠である。しかしながら、定格電流が大きい回転機を扱う場合、電流検出器が高価になるという問題がある。このため、電流検出器を有さない、いわゆる電流センサレスの構成が望まれる。
電流センサレスの構成において、回転機の性能を十分に引き出すためには、回転子の位置情報が必要である。従来の回転機の制御装置は、回転機に取付けられた位置検出器で検出される位置情報を用いている。
下記特許文献1には、多相巻線構造の回転機において、回転二軸座標上の電流指令に対して任意の時定数を有する応答電流を演算し、回転角速度、電流指令及び応答電流に基づいて回転二軸座標上の電圧指令を演算することにより、回転機の電流を所望の値に制御する技術が提案されている。
特許第4161064号公報
しかしながら、上記特許文献1に開示された構成において、低分解能の位置センサを使用した場合、速度検出精度が低下する。このため、特に、低速時の加減速駆動時においては、速度検出精度の低下の影響が大きく現れ、電流追従性が悪化し、速度応答性が低下するという課題がある。
本発明は、上記に鑑みてなされたものであって、低分解能な位置センサを用いる安価な構成であっても、電流追従性の悪化及び速度応答性の低下を抑制することができる回転機の制御装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、回転機の回転速度情報に基づいて回転機を制御する制御装置である。制御装置には、回転機の回転軸に作用するトルクである軸トルク及び回転機のイナーシャに基づいて推定される回転機の回転速度の推定値である推定回転速度と、回転機の回転子位置を検出する位置検出器から出力される位置検出信号に基づいて得られる回転速度の検出値である検出回転速度とが入力される。制御装置は、回転速度選択部を備える。回転速度選択部は、軸トルクがトルク閾値より大きい場合は推定回転速度を選択し、軸トルクがトルク閾値より小さい場合は検出回転速度を選択して回転速度情報として出力する。
本発明によれば、低分解能な位置センサを用いる安価な構成であっても、電流追従性の悪化及び速度応答性の低下を抑制することができるという効果を奏する。
実施の形態に係る回転機の制御装置を含む回転機の駆動システムの構成を示す図 図1に示す位置検出器がホールセンサである場合の位置検出信号の例を示す図 実施の形態における制御部の構成を示すブロック図 図3に示す回転速度及び回転子位置演算部の構成を示すブロック図 図4に示す回転速度及び回転子位置演算部で用いる軸トルクの演算処理の説明に供するブロック図 従来技術による動作波形を比較例として示す第1の図 実施の形態に係る制御装置による効果の説明に供する第1の図 従来技術による動作波形を比較例として示す第2の図 実施の形態に係る制御装置による効果の説明に供する第2の図 実施の形態に係る制御装置における第1のハードウェア構成例を示す図 実施の形態に係る制御装置における第2のハードウェア構成例を示す図
以下に添付図面を参照し、本発明の実施の形態に係る回転機の制御装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。
実施の形態.
図1は、実施の形態に係る回転機の制御装置(以下、適宜「制御装置」と略す)1を含む回転機の駆動システム(以下、適宜「駆動システム」と略す)100の構成を示す図である。駆動システム100は、制御装置1と、回転機2とを含む。図1では、永久磁石を備える回転子21と、三相巻線2aを有する固定子22とを有する回転機2が例示されているが、これに限定されない。固定子22の巻線は単相巻線であってもよいし、4相以上の多相巻線であってもよい。回転機2には、回転機2における回転子21の回転位置である回転子位置を検出する位置検出器26が設けられている。位置検出器26の一例は、ホールセンサである。
制御装置1は、電力変換器10と、制御部30とを備える。制御部30には、上位制御系からの回転速度の指令値である回転速度指令wrm*と、位置検出器26から出力される位置検出信号Hall_Sigとが入力される。電力変換器10は、直流電力を回転機2への三相交流電力に変換して回転機2に供給する。
次に、電力変換器10の構成及び機能について説明する。電力変換器10は、図1に示すように、直流電源11と、平滑コンデンサ12と、インバータ主回路13とを備える。直流電源11及び平滑コンデンサ12は、インバータ主回路13の両端に並列に接続される。直流電源11は、インバータ主回路13に直流電圧を印加する。平滑コンデンサ12は、直流電源11がインバータ主回路13に印加する直流電圧を平滑する。
インバータ主回路13は、上アームのスイッチング素子13aと、下アームのスイッチング素子13bとが直列接続されたスイッチング素子対を3組備える。3組のスイッチング素子対は互いに並列接続されて三相のフルブリッジ回路を構成する。各スイッチング素子対において、上アームのスイッチング素子13aと、下アームのスイッチング素子13bとの接続点は、対応する相の三相巻線2aに接続される。
スイッチング素子13a,13bの例は、金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)、又は絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)であるが、これら以外の半導体スイッチング素子を用いてもよい。スイッチング素子13a,13bの各両端には、図示のような逆並列ダイオードが接続される構成が一般的である。
なお、図1では、インバータ主回路13は、三相のフルブリッジ回路を示しているが、これに限定されない。インバータ主回路13は、回転機2の巻線構造に対応して単相もしくは多相の構成となることは言うまでもない。
次に、位置検出器26の動作について説明する。図2は、図1に示す位置検出器26がホールセンサである場合の位置検出信号の例を示す図である。なお、以下では、3つのホールセンサを使用して回転子位置を検出する例で説明するが、ホールセンサの数は3つ以外でもよい。
3つのホールセンサは、電気角で120度の位相差を設けて設置される。3つのホールセンサの検出信号をA相、B相及びC相とする。ホールセンサは、回転子21に設けられる検出用磁石の磁束がホールセンサを鎖交する値の閾値に対する大小関係に基づき、High又はLowを出力する。これにより、A相、B相及びC相による各検出信号は、図2に示されるように、High又はLowが180度ごとに現れる信号となる。また、A相、B相及びC相による各検出信号間の位相差は、High又はLowのエッジが120度の位相差を有する信号となる。なお、回転機2が、回転子21に永久磁石が設けられる永久磁石モータである場合、回転子21に設けられた永久磁石の磁束をホールセンサの検出用磁石として併用することも可能である。
次に、制御部30の構成及び機能の詳細を、図3を参照して説明する。図3は、実施の形態における制御部30の構成を示すブロック図である。
制御部30は、図3に示すように、電圧指令生成部40と、座標変換部50と、キャリア比較パルス幅変調(Pulse Width Modulation:PWM)部60とを備える。また、電圧指令生成部40は、回転速度及び回転子位置演算部41と、電流指令演算部42と、電圧指令演算部43とを備える。
回転速度及び回転子位置演算部41は、回転機2の回転軸に作用するトルクである軸トルクTsh、回転機2のイナーシャJsh及び位置検出信号Hall_Sigに基づいて、回転子21の機械角速度wrmと、回転子位置θeleを演算する。
電流指令演算部42は、回転速度指令wrm*と、回転速度及び回転子位置演算部41で演算された回転子21の機械角速度wrmとに基づいて、回転二軸座標上の電流指令であるd軸電流指令id*と、q軸電流指令iq*とを演算する。以下に、電流指令演算部42をPI制御器で構成した場合の具体的な算出式を示す。
まず、速度制御器の伝達関数Gs(s)は、以下の(1)式で表せる。
Figure 0007053955000001
上記(1)式において、Kspは比例ゲイン、Ksiは積分ゲインである。比例ゲインKsp及び積分ゲインKsiは、応答速度、出力軸のイナーシャ、モータ定数といったパラメータに基づいて決定することができる。なお、ゲインの計算方法については、本発明の制御装置1とは関連性が低いため、詳述はしない。
q軸電流指令iq*は、上記(1)式、及び負荷トルクTloadにより、以下の(2)式を満たすように演算される。
Figure 0007053955000002
なお、ここで言う、負荷トルクTloadには、通電によって回転子21に生じる電磁トルクTmotに加え、出力軸に作用する図示しないベアリングの摩擦トルクなども含まれている。
次に、d軸電流指令id*について説明する。但し、d軸電流指令id*は、本発明との関連性は低いため、詳述はしない。ここでは、回転機2が表面磁石型永久磁石モータである場合の算出式を記載する。
まず、以下の(3)式により、制限電圧Vomが演算される。
Figure 0007053955000003
上記(3)式において、Vratioは電圧利用率であり、Vdcは母線電圧の検出値であり、Rsは回転機2における電気的パラメータである相抵抗であり、IphLIMは相電流制限値である。
そして、d軸電流指令id*は、制限電圧Vom、電気角速度wre、相電流制限値IphLIM及び回転機2の電気的パラメータに基づいて、以下の(4)~(6)式で演算される。
(i)wrm<wrmW1の場合
Figure 0007053955000004
(ii)wrm<wrmW2の場合
Figure 0007053955000005
(iii)wrm>wrmW2の場合
Figure 0007053955000006
なお、上記(4)~(6)式を切り替える際の閾値となる回転子21の機械角速度wrmW1,wrmW2は、以下の(7)、(8)式で与えられる。
Figure 0007053955000007
Figure 0007053955000008
次に、電圧指令演算部43の機能について説明する。電圧指令演算部43は、電流指令演算部42で算出された回転二軸座標上の電流指令id*,iq*,回転機2の定数である相巻線抵抗Rs、q軸インダクタンスLq、d軸インダクタンスLd、及び鎖交磁束φmagに基づいて、回転二軸座標上の電圧指令vd*,vq*を演算する。具体的には、以下の流れで実施する。
まず、電流の過渡特性を考慮して、回転二軸座標上の電流指令id*,iq*に対して、回転二軸座標上の実際に通電される電流id,iqを、以下の(9)式で推定する。
Figure 0007053955000009
上記(9)式において、電流id,iqは、回転二軸座標上の電流指令id*,iq*に対する任意の時定数Tcの応答電流である。言い替えると、電流指令id*,iq*を時定数Tcの逆数1/Tc[rad/s]で追従させた電流の推定値であり、「推定電流」と呼ぶ。
そして、以下の(10)式を用いて、回転二軸座標上の電圧指令vd*,vq*を演算する。
Figure 0007053955000010
上記(10)式に示されるように、回転二軸座標上の電圧指令vd*,vq*は、回転速度及び回転子位置演算部41にて算出される機械角速度(機械角周波数)wrmに回転子の極対数Pmを乗算して得られる回転子21の電気角速度(電気角周波数)wre、推定電流id,iq、回転機定数である相巻線抵抗Rs、q軸インダクタンスLq、d軸インダクタンスLd、及び鎖交磁束φmagに基づいて演算される。
ここで、制御部30のプロセッサに安価で演算能力が低いマイコンなどを使用することを想定する。この場合、制御部30における制御周期が長くなるので、演算開始時と演算終了時との間で回転速度の差が大きくなる。そして、指令電流を回転機2に通電させるために必要な回転機2への印加電圧と、指令電圧として算出される電圧指令とが乖離し、電流追従性が顕著に悪化することがある。このような場合には、上記(10)式の電気角周速度wreを補正することが有効である。具体的な補正式の例は、以下の通りである。
第1の例は、角加速度を一定とし、以下の(11)式で補正する。
Figure 0007053955000011
上記(11)式において、wreOldは、1制御周期前の電気角速度である。
また、第2の例として、軸トルクに基づいて、以下の(12)式のように補正することも有効である。
Figure 0007053955000012
上記(12)式において、Tsampは、制御部30のプロセッサにおける演算周期である。
次に、座標変換部50の機能について説明する。座標変換部50は、電圧指令生成部40にて生成される回転二軸座標上の電圧指令vd*,vq*を、回転速度及び回転子位置演算部41で演算される回転子位置の電気角θeleに基づいて、以下の(13)式で三相電圧指令vu*,vv*,vw*に変換する。
Figure 0007053955000013
次に、キャリア比較PWM部60の機能について説明する。なお、以下の説明において、キャリア比較PWM部60で用いるキャリアは三角波とするが、三角波以外のキャリアを用いてもよいことは言うまでもない。
まず、キャリア比較PWM部60は、座標変換部50にて生成された三相電圧指令vu*,vv*,vw*を母線電圧の検出値の1/2の値(Vdc/2)で正規化する。そして、振幅が±1である三角波と、正規化された三相電圧指令との比較に基づいて、三角波比較PWMでスイッチング信号を生成する。電圧指令が三角波よりも大きい場合は、各相で上アームのスイッチング素子13aをオン、下アームのスイッチング素子13bをオフし、小さい場合は上アームのスイッチング素子13aをオフ、下アームのスイッチング素子13bをオンするスイッチング信号を生成する。なお、上アームのスイッチング素子13aと下アームのスイッチング素子13bが同時オンすることを防止するためのデッドタイムが設けられることは言うまでもない。
図3に示されるように、キャリア比較PWM部60からは、各相上下アームのスイッチング素子13a,13bをPWM制御するためのスイッチング信号SW_UP,SW_UN,SW_VP,SW_VN,SW_WP,SW_WNが出力される。スイッチング信号SW_UPは、U相上アームのスイッチング素子13aをPWM制御するためのスイッチング信号であり、スイッチング信号SW_UNは、U相下アームのスイッチング素子13bをPWM制御するためのスイッチング信号である。スイッチング信号SW_VPは、V相上アームのスイッチング素子13aをPWM制御するためのスイッチング信号であり、スイッチング信号SW_VNは、V相下アームのスイッチング素子13bをPWM制御するためのスイッチング信号である。スイッチング信号SW_WPは、W相上アームのスイッチング素子13aをPWM制御するためのスイッチング信号であり、スイッチング信号SW_WNは、W相下アームのスイッチング素子13bをPWM制御するためのスイッチング信号である。
キャリア比較PWM部60から出力されるスイッチング信号SW_UP,SW_UN,SW_VP,SW_VN,SW_WP,SW_WNによってスイッチング素子13a,13bがPWM制御され、回転機2の三相巻線2aに印加される電圧が制御される。これにより、回転機2の軸トルクに寄与する通電電流の制御が可能となる。また、回転機2の軸トルクを制御することにより、回転子21の回転速度を指令通りに制御することが可能となる。
次に、回転速度及び回転子位置演算部41の構成及び機能の詳細を、図4を参照して説明する。図4は、図3に示す回転速度及び回転子位置演算部41の構成を示すブロック図である。
回転速度及び回転子位置演算部41は、図4に示すように、回転速度推定部45と、回転速度演算部46と、回転子位置判定部47と、回転速度選択部48とを備える。
回転速度推定部45は、回転機2の軸トルクTshと、回転機2のイナーシャJshとを用い、以下の(14)式に基づいて、回転機2の角速度の推定値である推定回転速度wrmESTを演算する。
Figure 0007053955000014
ここで、軸トルクTshの演算については、以下に示す数式、及び図5を参照して説明する。図5は、図4に示す回転速度及び回転子位置演算部41で用いる軸トルクTshの演算処理の説明に供するブロック図である。
軸トルクTshは、以下の(15)式で示すように、電磁トルクTmotと、負荷トルクTloadの和で算出される。図5には、加算器72で実現する例が示されている。
Figure 0007053955000015
回転機2が表面磁石型永久磁石モータである場合、電磁トルクTmotは、回転機2の電気的パラメータである永久磁石の鎖交磁束φmagと、回転子の極対数Pmとに基づいて、以下の(16)式で算出することができる。図5には、増幅器74で実現する例が示されている。
Figure 0007053955000016
なお、本実施の形態では、特に表面磁石型永久磁石モータの例を挙げるが、埋め込み磁石型永久磁石モータ、誘導電動機などのモータでもよく、それぞれの電磁トルクを表す式に基づいて算出することができる。
また、負荷トルクTloadは、回転機2の回転数情報wrmの関数を用いた演算処理、又はテーブルを参照することで与えられる。図5には、テーブル76を参照することで、負荷トルクTloadを求める例が示されている。
次に、回転速度演算部46の機能について説明する。回転速度演算部46は、位置検出信号Hall_Sigに基づいて、回転機2の角速度を演算する。回転速度演算部46によって演算された角速度を「検出回転速度」と呼び、「wrmHall」で表す。位置検出信号Hall_Sigが、前述した図2に示されるホールセンサ信号である場合、以下の処理手順で検出回転速度wrmHallを演算することができる。
ホールセンサ信号は、図2に示されるように、電気角60度毎に3つのセンサのうちの1つのセンサにおいて、HighとLowとが切り替わる。HighからLow、又はLowからHighに切り替わる毎にエッジを検出し、タイマなどで検出時刻を記録する。1つ前にエッジを検出した時刻から、次のエッジが検出されるまでの時刻tHallを演算する。そして、検出回転速度wrmHallを以下の(17)式で演算する。
Figure 0007053955000017
次に、回転速度選択部48の機能について説明する。回転速度選択部48は、推定回転速度wrmEST及び検出回転速度wrmHallのうちの1つを、推定回転速度wrmEST、検出回転速度wrmHall及び軸トルクTshに基づいて選択する。
具体的に、回転機2の軸トルクTshが閾値トルクTthよりも大きく、且つ、処理時刻における回転機2の機械角速度wrmが閾値角速度wrmthよりも小さい場合には、以下の(18)式に示されるように、推定回転速度wrmESTを選択し、選択した推定回転速度wrmESTを回転速度情報wrmとして電流指令演算部42に出力する。
Figure 0007053955000018
一方、回転機2の軸トルクTshが閾値トルクTth以下であり、又は、処理時刻における回転機2の機械角速度wrmが閾値角速度wrmth以上である場合には、以下の(19)式に示されるように、検出回転速度wrmHallを選択し、選択した検出回転速度wrmHallを回転速度情報wrmとして電流指令演算部42に出力する。
Figure 0007053955000019
なお、電流指令演算部42に出力される回転速度情報wrmが検出回転速度wrmHallから推定回転速度wrmESTに切り替わる際には、推定回転速度wrmESTを、検出回転速度wrmHallで初期化することが好ましい。これにより、検出回転速度wrmHallから推定回転速度wrmESTに切り替わる際に、回転速度情報wrmの値が大きく変動するのを抑制することができる。
また、上記の選択処理では、回転機2の軸トルクTshと閾値トルクTthとが等しい場合、又は処理時刻における回転機2の機械角速度wrmと閾値角速度wrmthとが等しい場合を、上記(19)式に従う処理としているが、これに限定されない。回転機2の軸トルクTshと閾値トルクTthとが等しい場合、及び回転機2の現在の機械角速度wrmと閾値角速度wrmthとが等しい場合を、上記(18)式に従う処理としてもよい。
また、上記の選択処理では、閾値角速度wrmthと比較する回転速度を機械角速度wrmとしているが、これに限定されない。閾値角速度wrmthと比較する回転速度が、電気角に換算された電気角速度wreであってもよい。
次に、回転子位置判定部47の機能について説明する。回転子位置判定部47は、図2に示される3つのホールセンサ信号のHighからLow、又はLowからHighに切り替わるエッジを検出した後、High又はLowの状態に応じて、回転子21気角θeleを判定する。例えば、U相巻線に鎖交する磁石磁束が最大となる条件を電気角0度とすることができる。なお、細部は割愛するが、回転子21の電気角θeleは、演算周期Tsampに対して、回転子21の機械角速度wrmが一定であることを前提とし、以下の(20)式を用いて補間してもよい。
Figure 0007053955000020
次に、実施の形態に係る制御装置1による効果について図6から図9を参照して説明する。図6は、従来技術による動作波形を比較例として示す第1の図である。図7は、実施の形態に係る制御装置1による効果の説明に供する第1の図である。図8は、従来技術による動作波形を比較例として示す第2の図である。図9は、実施の形態に係る制御装置1による効果の説明に供する第2の図である。図6から図9において、横軸は時間を示している。なお、図6から図8の横軸の1目盛りは「秒」であるのに対し、図9の横軸の1目盛りは「ミリ秒」である。また、図6及び図7では、上段部から順に、回転速度、q軸電流及びd軸電流の波形を示している。また、図8及び図9では、上段部から順に、回転速度及びq軸電流の波形を示している。
図6には、低速且つ高加速駆動時において、ホールセンサによる検出回転速度のみを用いたときの各種の動作波形が示されている。即ち、図6には、図4に示す回転速度推定部45及び回転速度選択部48を有さず、回転速度演算部46から出力される検出回転速度wrmHallを回転速度情報wrmとして用いたときの各種の動作波形が示されている。また、図7には、低速且つ高加速駆動時において、回転速度選択部48によって選択された回転数情報wrmを用いたときの各種の動作波形が示されている。
図6及び図7の上段部において、破線K1は回転速度指令wrm*を示し、実線K2は電気角速度wreを示している。また、図6の上段部において、一点鎖線K3は回転速度の検出値、即ちホールセンサによる検出回転速度wrmHallを示している。また、図7の上段部において、一点鎖線K4は回転速度選択部48によって選択された回転数情報wrmを示している。
また、図6及び図7の中段部において、実線K5はq軸電流を示し、破線K6はq軸電流指令iq*を示し、一点鎖線K7はq軸電流の推定値、即ち推定電流iqを示している。また、図6及び図7の下段部において、実線K8はd軸電流を示し、破線K9はd軸電流指令id*を示している。
従来技術の場合、図6のA1部に示されるように、回転速度の演算精度が低下していることが分かる。また、図6のA2部に示されるように、加速時にq軸電流が追従しない現象が見られる。これらの現象は、回転機2の始動時において、従来技術では、検出回転速度と実回転速度との間の誤差が大きくなり、出力する電圧ベクトルにも誤差が生じることが原因である。これにより、主にトルクに寄与するq軸電流が指令に追従せず、d軸電流の増加を招いている。
これに対し、実施の形態の場合、図7のA3部に示されるように、回転速度選択部48によって選択された回転数情報wrmは電気角速度wreに追従しており、回転速度の演算精度が改善されていることが分かる。また、図7のA4部及び下段部の動作波形に示されるように、低速且つ高加速駆動時において、q軸電流及びd軸電流共に指令に対する追従性が改善されていることが分かる。即ち、低速且つ高加速駆動時においては、軸トルク及び軸イナーシャに基づいた推定回転速度を選択することにより、回転速度の演算精度が改善され、且つ、指令に対する追従性が改善されることが分かる。
なお、図6及び図7では、低速且つ高加速駆動時の動作について説明したが、低速且つ高減速駆動時においても同様な効果が得られることは言うまでもない。
また、図8には、低速且つ一定回転時において、推定回転速度wrmESTを選択するときの各種の動作波形が示されている。また、図9には、低速且つ一定回転時においては、推定回転速度wrmESTを選択せずに、検出回転速度wrmHallを選択した場合の各種の動作波形が示されている。
図8及び図9の上段部において、実線K11は実際の回転速度を示し、一点鎖線K12は回転速度指令wrm*を示し、破線K13は回転速度の検出値、即ちホールセンサによる検出回転速度wrmHallを示し、破線K14は、回転速度の推定値、即ち推定回転速度wrmESTを示している。また、図8及び図9の下段部において、実線K15はq軸電流を示し、破線K16はq軸電流指令iq*を示している。
推定回転速度wrmESTを選択する制御を行った場合に、図8の上段部には、回転速度の脈動が大きくなる動作波形が示され、図8の下段部には、q軸電流がq軸電流指令iq*から乖離する動作波形が示されている。速度脈動が大きくなり、q軸電流がq軸電流指令iq*から乖離する理由は、負荷トルクが変動する用途又は駆動システムでは、軸トルクを正確に推定することは困難であり、低速且つ一定回転時において、推定回転速度wrmESTは、検出回転速度wrmHallよりも精度が低いと考えられるためである。
これに対し、図9に示す実施の形態の動作波形のように、加速度が小さい条件においては、検出回転速度wrmHallに基づいて回転速度を制御するようにすれば、回転速度の脈動が抑えられ、q軸電流がq軸電流指令iq*から乖離するのを抑制することができる。
上記で説明した内容を整理すると、以下のように要約することができる。まず、実施の形態に係る回転機の制御装置の構成によれば、回転機を駆動する回転機の駆動システムにおいて、低速且つ高加減速駆動時においては、軸トルク及び回転機のイナーシャに基づく推定回転速度を選択し、低速且つ低加減速駆動時においては、検出回転速度を選択する。これにより、回転速度指令から電圧指令を生成する際に使用する機械角速度と実角速度との誤差を低減でき、指令に対してより正確な電圧指令を与えることができる。
従って、指令通りのq軸電流を通電することができ、低速且つ低加減速駆動時の実角速度をより正確に検出できるので、低速且つ高加減速駆動時の電流追従性が改善される。これにより、低分解能な位置センサを用いる安価な構成であっても、電流追従性の悪化及び速度応答性の低下を抑制することができる。また、不要なd軸電流を低減することができるので、通電による銅損の低減が可能となる。
以上説明したように、実施の形態に係る回転機の制御装置は、軸トルクがトルク閾値より大きい場合は推定回転速度を選択し、軸トルクがトルク閾値より小さい場合は検出回転速度を選択して回転速度情報として出力する。これにより、低分解能な位置センサを用いる安価な構成であっても、電流追従性の悪化及び速度応答性の低下を抑制することができる。また、トルクに寄与しない電流を低減できるので、回転機における銅損を低減することができる。
なお、上記の選択処理において、軸トルクの情報に加え、処理時刻における回転速度情報に基づいて推定回転速度及び検出回転速度のうちの何れかを選択するようにしてもよい。これにより、低速且つ加減速駆動時の速度応答の高応答化と、低速且つ一定回転時の速度安定性との両立を図ることができる。
また、回転機に印加する電圧を決める電圧指令は、電流指令に対する任意の時定数の応答電流、回転機の回転子位置、回転速度及び回転機の電気的定数に基づいて演算するようにしてもよい。これにより、実速度と演算に使用する速度との誤差が通電電流により顕著に表れる電流センサレス制御の構成においても、低速且つ加減速駆動時の速度応答の高応答化と、低速且つ一定回転時の速度安定性との両立を図ることができる。
また、電圧指令は、次の電圧指令更新時刻における回転速度情報に基づいて算出するようにしてもよい。これにより、次演算周期までの回転速度をより正確に推定して電圧指令を生成できるので、電流追従性の改善を図ることができる。
次に、実施の形態に係る制御装置1の機能を実現するためのハードウェアについて説明する。まず、実施の形態に係る制御装置1の機能は、処理回路を用いて実現することができる。ここで言う制御装置1の機能とは、電圧指令生成部40、座標変換部50及びキャリア比較PWM部60の機能である。
図10は、実施の形態に係る制御装置1における第1のハードウェア構成例を示す図である。図10には、専用処理回路101のような専用のハードウェアにより上記の処理回路を実現する例が示される。図10に示すように専用のハードウェアを利用する場合、専用処理回路101は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。上記の各機能のそれぞれを、処理回路で実現してもよいし、まとめて処理回路で実現してもよい。
図11は、実施の形態に係る制御装置1における第2のハードウェア構成例を示す図である。図11には、プロセッサ102及び記憶装置103により上記の処理回路を実現する例が示される。図11に示すようにプロセッサ102及び記憶装置103を利用する場合、上記の各機能のそれぞれは、ソフトウェア、ファームウェア又はこれらの組合せにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、記憶装置103に記憶される。プロセッサ102は記憶装置103に記憶されたプログラムを読み出して実行する。またこれらのプログラムは、上記の各機能のそれぞれが実行する手順及び方法をコンピュータに実行させるものであるとも言える。記憶装置103は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、又はEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった半導体メモリが該当する。半導体メモリは不揮発性メモリでもよいし揮発性メモリでもよい。また記憶装置103は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disc)が該当する。
また、上記の各機能のそれぞれは、一部をハードウェアで実現し、一部をソフトウェア又はファームウェアで実現してもよい。
なお、本稿に記載した内容は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能である。また、本稿では、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、又は様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本稿に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
1 回転機の制御装置、2 回転機、2a 三相巻線、10 電力変換器、11 直流電源、12 平滑コンデンサ、13 インバータ主回路、13a,13b スイッチング素子、21 回転子、22 固定子、26 位置検出器、30 制御部、40 電圧指令生成部、41 回転速度及び回転子位置演算部、42 電流指令演算部、43 電圧指令演算部、45 回転速度推定部、46 回転速度演算部、47 回転子位置判定部、48 回転速度選択部、50 座標変換部、60 キャリア比較PWM部、72 加算器、74 増幅器、76 テーブル、100 回転機の駆動システム、101 専用処理回路、102 プロセッサ、103 記憶装置。

Claims (7)

  1. 回転機の回転速度情報に基づいて前記回転機を制御する制御装置であって、
    前記回転機の回転軸に作用するトルクである軸トルク及び前記回転機のイナーシャに基づいて推定される前記回転機の回転速度の推定値である推定回転速度と、前記回転機の回転子位置を検出する位置検出器から出力される位置検出信号に基づいて得られる前記回転速度の検出値である検出回転速度とが入力され、
    前記軸トルクがトルク閾値より大きい場合は前記推定回転速度を選択し、前記軸トルクが前記トルク閾値より小さい場合は前記検出回転速度を選択して前記回転速度情報として出力する回転速度選択部を備える
    ことを特徴とする回転機の制御装置。
  2. 前記回転速度選択部は、前記軸トルクに加え、処理時刻における前記回転速度情報に基づいて、前記推定回転速度及び前記検出回転速度のうちの何れかを選択する
    ことを特徴とする請求項1に記載の回転機の制御装置。
  3. 前記回転速度選択部は、前記回転速度情報が回転速度閾値よりも小さく、且つ、前記軸トルクが前記トルク閾値よりも大きい場合には前記推定回転速度を選択し、前記回転速度情報が回転速度閾値よりも大きい場合、又は、前記軸トルクが前記トルク閾値よりも小さい場合には前記検出回転速度を選択する
    ことを特徴とする請求項2に記載の回転機の制御装置。
  4. 前記回転機には、電圧指令に基づいて生成される電圧が印加され、
    前記電圧指令は、電流指令に対する任意の時定数の応答電流、前記回転機の回転子位置、回転速度及び前記回転機の電気的定数に基づいて演算される
    ことを特徴とする請求項1から3の何れか1項に記載の回転機の制御装置。
  5. 前記電圧指令は、次の電圧指令更新時刻における前記回転速度情報に基づいて算出される
    ことを特徴とする請求項4に記載の回転機の制御装置。
  6. 前記軸トルクは、前記回転機の出力トルク推定値及び負荷トルク推定値に基づいて演算され、
    前記出力トルク推定値は、前記回転機に通流する通電電流及び前記回転機の電気的パラメータに基づいて推定される
    ことを特徴とする請求項1から5の何れか1項に記載の回転機の制御装置。
  7. 前記負荷トルク推定値は、前記回転速度情報に基づくテーブル又は前記回転速度情報の関数に基づいて推定される
    ことを特徴とする請求項6に記載の回転機の制御装置。
JP2021521666A 2019-05-29 2019-05-29 回転機の制御装置 Active JP7053955B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021419 WO2020240748A1 (ja) 2019-05-29 2019-05-29 回転機の制御装置

Publications (2)

Publication Number Publication Date
JPWO2020240748A1 JPWO2020240748A1 (ja) 2021-10-21
JP7053955B2 true JP7053955B2 (ja) 2022-04-12

Family

ID=73553117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021521666A Active JP7053955B2 (ja) 2019-05-29 2019-05-29 回転機の制御装置

Country Status (2)

Country Link
JP (1) JP7053955B2 (ja)
WO (1) WO2020240748A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023177399A (ja) * 2022-06-02 2023-12-14 三菱電機株式会社 回転機制御装置
JP2024067912A (ja) * 2022-11-07 2024-05-17 三菱重工サーマルシステムズ株式会社 制御装置、制御方法および空気調和機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318724A (ja) 2004-04-28 2005-11-10 Nsk Ltd モータ駆動装置及び電動パワーステアリング装置
WO2009145270A1 (ja) 2008-05-28 2009-12-03 本田技研工業株式会社 モータの制御装置および電動ステアリング装置
JP2012101676A (ja) 2010-11-10 2012-05-31 Hitachi Automotive Systems Ltd ブレーキ制御装置
JP2016100964A (ja) 2014-11-20 2016-05-30 アイシン・エィ・ダブリュ株式会社 車両用動力伝達装置の電動ポンプ用回転電機制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318724A (ja) 2004-04-28 2005-11-10 Nsk Ltd モータ駆動装置及び電動パワーステアリング装置
WO2009145270A1 (ja) 2008-05-28 2009-12-03 本田技研工業株式会社 モータの制御装置および電動ステアリング装置
JP2012101676A (ja) 2010-11-10 2012-05-31 Hitachi Automotive Systems Ltd ブレーキ制御装置
JP2016100964A (ja) 2014-11-20 2016-05-30 アイシン・エィ・ダブリュ株式会社 車両用動力伝達装置の電動ポンプ用回転電機制御装置

Also Published As

Publication number Publication date
JPWO2020240748A1 (ja) 2021-10-21
WO2020240748A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP3661642B2 (ja) モータの制御装置及びその制御方法
US6462491B1 (en) Position sensorless motor control apparatus
JP3982232B2 (ja) 同期発電機のセンサレス制御装置と制御方法
US8102141B2 (en) Inverter device
KR100639606B1 (ko) 세탁기 모터 구동 장치
JP4067949B2 (ja) モータ制御装置
JP5485232B2 (ja) スイッチング回路の制御装置
JP3674741B2 (ja) 永久磁石同期電動機の制御装置
JP7053955B2 (ja) 回転機の制御装置
JP7145968B2 (ja) モータ駆動装置
JP3971978B2 (ja) 電動機の制御装置
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
JP6156162B2 (ja) モータ制御装置
JP2009189146A (ja) 電動モータの制御装置
JP4535082B2 (ja) 同期発電機のセンサレス制御装置と制御方法
WO2021200389A1 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP4578500B2 (ja) インバータ制御装置並びに冷凍空調装置
CN114270695B (zh) 推测装置以及交流电动机的驱动装置
JP2013021869A (ja) スイッチング回路の制御装置
JP4446688B2 (ja) 多相電流供給回路及びその制御方法
JP2010130752A (ja) 電動機の相電流推定装置
JP5186352B2 (ja) 電動機の磁極位置推定装置
JP6633399B2 (ja) モータ制御装置
JP6318653B2 (ja) モータ制御装置
JP7321375B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350