JP5186352B2 - 電動機の磁極位置推定装置 - Google Patents

電動機の磁極位置推定装置 Download PDF

Info

Publication number
JP5186352B2
JP5186352B2 JP2008317189A JP2008317189A JP5186352B2 JP 5186352 B2 JP5186352 B2 JP 5186352B2 JP 2008317189 A JP2008317189 A JP 2008317189A JP 2008317189 A JP2008317189 A JP 2008317189A JP 5186352 B2 JP5186352 B2 JP 5186352B2
Authority
JP
Japan
Prior art keywords
current
axis
magnetic pole
voltage
pole position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008317189A
Other languages
English (en)
Other versions
JP2010142047A (ja
Inventor
雅彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008317189A priority Critical patent/JP5186352B2/ja
Publication of JP2010142047A publication Critical patent/JP2010142047A/ja
Application granted granted Critical
Publication of JP5186352B2 publication Critical patent/JP5186352B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電動機の磁極位置推定装置に関する。
従来、例えばdq座標系に対して位相差を有するγδ座標系でのγ軸電流およびδ軸電流とモータのモデルに基づいて算出した各軸電流との電流偏差から、モータの回転速度を推定する装置が知られている(例えば、特許文献1参照)。
特開平08−308286号公報
ところで、上記従来技術に係る装置においては、モータの電圧方程式をオイラー近似を用いて離散化して得たモデルにより各軸電流を算出していることから、例えば制御周期がモータの電気的時定数に近い値となる場合などにおいては、離散化誤差が増大し、磁極位置の推定精度が低下してしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、演算負荷の増大を抑制しつつ、磁極位置の推定精度の低下を防止することが可能な電動機の磁極位置推定装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、本発明の第1態様に係る電動機の磁極位置推定装置は、パルス幅変調信号により3相交流の電動機(例えば、実施の形態でのモータ11)への通電を順次転流させるインバータ(例えば、実施の形態でのインバータ13)と、前記パルス幅変調信号を搬送波信号により生成するパルス幅変調信号生成手段(例えば、実施の形態でのPWM信号生成部25)と、dq座標系に対して位相差を有するγδ座標系を設定し、前記電動機に通電される電流に応じた実電流(例えば、実施の形態でのγ軸電流Iγ及びδ軸電流Iδ)と前記電動機の所定モデルの電圧方程式に応じたモデル電流(例えば、実施の形態でのγ軸モデル電流IγM及びδ軸モデル電流IδM)との電流偏差に基づき前記位相差を算出する位相差算出手段(例えば、実施の形態での磁極位置誤差推定部46)と、前記位相差算出手段により算出された前記位相差に基づき前記電動機の磁極位置を演算する磁極位置演算手段(例えば、実施の形態での回転速度−磁極位置演算部47)とを備え、前記位相差算出手段は、前記所定モデルの電圧方程式に応じたモデル電流を、前記電動機のステータコイルのγδ座標系での指令電圧と前記ステータコイルに流れる前記γδ座標系での電流との関係を、ロータ位置の実際値と推定値との差である位置推定誤差を用いて表した電圧方程式から前記磁極位置および回転速度に係る項を除いた連続時間モデル式を0次ホールドにて離散化して得た離散時間状態方程式である前記所定モデルの電圧方程式に、指令電圧に前記ロータ位置の推定値に基づく所定電圧を適用して算出した電流値とする。
さらに、本発明の第2態様に係る電動機の磁極位置推定装置では、前記位相差算出手段は、前記所定モデルの電圧方程式を下記数式(1)に示すように記述しており、下記数式(1)は、任意の自然数nと、制御サイクルnでの前記γδ座標系での前記モデル電流であるγ軸モデル電流IγM[n] およびδ軸モデル電流IδM[n]と、制御サイクル(n−1)での前記γδ座標系での前記実電流であるγ軸電流Iγ[n−1] およびδ軸電流Iδ[n−1]と、制御サイクル(n−1)での前記γδ座標系でのγ軸電圧Vγ[n−1]およびδ軸電圧Vδ[n−1]と、巻線抵抗Rと、d軸インダクタンスLdと、制御周期Tsとからなる。
Figure 0005186352
本発明の第1態様に係る電動機の磁極位置推定装置によれば、γδ座標系での電動機の電圧方程式から磁極位置および回転速度に係る項を除いて得た式を連続時間モデル式(つまり、連続時間での電圧方程式)とし、この連続時間モデル式を0次ホールドにて離散化して得た離散時間状態方程式を、電動機の所定モデルの電圧方程式とする。これにより、例えば連続時間モデル式をオイラー近似などの各種の近似法により離散化する場合に比べて、磁極位置の推定精度の低下を防止することができ、例えば制御周期がモータの電気的時定数に近い値となる場合などであっても、磁極位置を精度良く推定することができる。
本発明の第2態様に係る電動機の磁極位置推定装置によれば、電動機の電気的回路定数(例えば、巻線抵抗Rおよびd軸インダクタンスLd)と制御周期Tsとは既知であるから、上記数式(1)において底がネイピア数eである指数関数の項を予め算出しておくことができる。これにより、制御サイクル毎の位相差の算出負荷が増大することを防止しつつ、位相差の算出精度を向上させることができる。
以下、本発明の電動機の磁極位置推定装置の実施形態について添付図面を参照しながら説明する。
この実施形態による電動機の磁極位置推定装置10(以下、単に、磁極位置推定装置10と呼ぶ)は、例えば3相交流のブラシレスDCモータ11(以下、単に、モータ11と呼ぶ)の磁極位置(つまり、所定の基準回転位置からの回転子の磁極の回転角度)を推定し、このモータ11は、界磁に利用する永久磁石を有する回転子(図示略)と、この回転子を回転させる回転磁界を発生する固定子(図示略)とを備えて構成されている。
磁極位置推定装置10は、例えば図1に示すように、バッテリ12を直流電源とするインバータ13と、モータ制御装置14とを備えて構成されている。
この3相(例えば、U相、V相、W相の3相)交流のモータ11の駆動はモータ制御装置14から出力される制御指令を受けてインバータ13によりおこなわれる。
インバータ13は、スイッチング素子(例えば、MOSFET:Metal Oxide Semi-conductor Field Effect Transistor)を複数用いてブリッジ接続してなるブリッジ回路13aと平滑コンデンサCとを具備し、このブリッジ回路13aがパルス幅変調(PWM)された信号によって駆動される。
このブリッジ回路13aでは、例えば各相毎に対をなすハイ側およびロー側U相トランジスタUH,ULと、ハイ側およびロー側V相トランジスタVH,VLと、ハイ側およびロー側W相トランジスタWH,WLとがブリッジ接続されている。そして、各トランジスタUH,VH,WHはドレインがバッテリ12の正極側端子に接続されてハイサイドアームを構成し、各トランジスタUL,VL,WLはソースがバッテリ12の接地された負極側端子に接続されてローサイドアームを構成している。そして、各相毎に、ハイサイドアームの各トランジスタUH,VH,WHのソースはローサイドアームの各トランジスタUL,VL,WLのドレインに接続され、各トランジスタUH,UL,VH,VL,WH,WLのドレイン−ソース間には、ソースからドレインに向けて順方向となるようにして、各ダイオードDUH,DUL,DVH,DVL,DWH,DWLが接続されている。
インバータ13は、例えばモータ11の駆動時等においてモータ制御装置14から出力されて各トランジスタUH,VH,WH,UL,VL,WLのゲートに入力されるスイッチング指令であるゲート信号(つまり、PWM信号)に基づき、各相毎に対をなす各トランジスタのオン(導通)/オフ(遮断)状態を切り替えることによって、バッテリ12から供給される直流電力を3相交流電力に変換し、3相のステータ巻線への通電を順次転流させることで、各相のステータ巻線に交流のU相電流IuおよびV相電流IvおよびW相電流Iwを通電する。
モータ制御装置14は、後述するように、回転直交座標をなすγ−δ座標上で電流のフィードバック制御(ベクトル制御)を行うものであり、指令γ軸電流Iγc及び指令δ軸電流Iδcを演算し、指令γ軸電流Iγc及び指令δ軸電流Iδcに基づいて各相電圧指令Vu,Vv,Vwを算出し、各相電圧指令Vu,Vv,Vwに応じてインバータ13に対するゲート信号であるPWM信号を出力する。そして、実際にインバータ13からモータ11に供給される各相電流Iu,Iv,Iwをγ−δ座標上に変換して得たγ軸電流Iγ及びδ軸電流Iδと、指令γ軸電流Iγc及び指令δ軸電流Iδcとの各偏差がゼロとなるように制御をおこなう。
モータ制御装置14は、例えば相電流センサI/F(インターフェース)21と、制御装置22と、PWM信号生成部23とを備えて構成されている。
相電流センサI/F(インターフェース)21は、インバータ13のブリッジ回路13aとモータ11との間において、3相の各相電流のうち少なくとも何れか2相の各相電流(例えば、U相電流およびV相電流)を検出する各相電流センサ32に接続され、各相電流センサ32から出力される検出信号を制御装置22に出力する。
制御装置22は、例えば図2に示すように、実際のモータ11が有する回転直交座標のd−q軸に対して、実際の回転角と推定または指定した回転角との差である位相差Δθeおよび回転速度ωeを有する回転直交座標のγ−δ軸を設定し、このγ−δ座標上で電流のフィードバック制御(ベクトル制御)をおこなう。
制御装置22は、指令γ軸電流Iγc及び指令δ軸電流Iδcを生成し、指令γ軸電流Iγc及び指令δ軸電流Iδcに基づいて各相電圧指令Vu,Vv,Vwを算出し、PWM信号生成部23に出力する。
また、制御装置22は、各相電流センサ32から出力される検出信号に応じた各相電流Iu,Iv,Iwをγδ座標上に変換して得たγ軸電流Iγ及びδ軸電流Iδと、指令γ軸電流Iγc及び指令δ軸電流Iδcとの各偏差がゼロとなるように電流のフィードバック制御(ベクトル制御)をおこなう。
なお、この制御装置22の動作の詳細は後述する。
PWM信号生成部23は、正弦波状の電流を3相のステータ巻線に通電するために、各相電圧指令Vu,Vv,Vwと、三角波などのキャリア信号とを比較して、インバータ13の各トランジスタUH,VH,WH,UL,VL,WLをオン/オフ駆動させるゲート信号(つまり、PWM信号)を生成する。そして、インバータ13において3相の各相毎に対をなす各トランジスタのオン(導通)/オフ(遮断)状態を切り替えることによって、バッテリ12から供給される直流電力を3相交流電力に変換し、3相のモータ11の各ステータ巻線への通電を順次転流させることで、各ステータ巻線に交流のU相電流IuおよびV相電流IvおよびW相電流Iwを通電する。
制御装置22は、例えば図3に示すように、速度制御部41と、指令電流生成部42と、電流制御部43と、γδ−3相変換部44と、3相−γδ変換部45と、磁極位置誤差推定部46と、回転速度−磁極位置演算部47と、電気角−機械角変換部48とを備えて構成されている。
速度制御部41は、外部から入力される回転速度指令値ωrcに基づき、例えば電気角−機械角変換部48から出力される回転速度ωr(機械角)に応じたクローズループ制御により、トルク指令Tcを演算する。そして、トルク指令Tcを出力する。
なお、制御装置22は、この速度制御部41の代わりにトルク制御部を備え、トルク制御を実行してもよい。
指令電流生成部42は、速度制御部41から出力されるトルク指令Tcに基づき、指令δ軸電流Iδcおよび指令γ軸電流Iγcを演算して出力する。
電流制御部43は、指令電流生成部42から出力される指令γ軸電流Iγcと3相−γδ変換部45から出力されるγ軸電流Iγとの偏差ΔIγを算出し、指令電流生成部42から出力される指令δ軸電流Iδcと3相−γδ変換部45から出力されるδ軸電流Iδとの偏差ΔIδを算出する。そして、例えばPI(比例・積分)動作などにより、偏差ΔIγを制御増幅してγ軸電圧指令値Vγを算出し、偏差ΔIδを制御増幅してδ軸電圧指令値Vδを算出する。そして、γ軸電圧指令値Vγおよびδ軸電圧指令値Vδを出力する。
γδ−3相変換部44は、回転速度−磁極位置演算部47から出力されるモータ11の磁極位置推定値θeにより、γ−δ座標上でのγ軸電圧指令値Vγおよびδ軸電圧指令値Vδを、静止座標である3相交流座標上での電圧指令値であるU相電圧指令VuおよびV相電圧指令VvおよびW相電圧指令Vwに変換する。
3相−γδ変換部45は、相電流センサI/F(インターフェース)21から出力される各相電流Iu,Ivの検出信号に基づき、同一タイミングでの各相電流の電流値の総和はゼロであることを用いて、2相の相電流(例えば、各相電流Iu,Iv)の電流値から、他の1相の相電流(例えば、W相電流Iw)の電流値を算出する。そして、回転速度−磁極位置演算部47から出力されるモータ11の磁極位置推定値θeにより、各相電流Iu,Iv,Iwを、γ−δ座標上でのγ軸電流Iγ及びδ軸電流Iδに変換する。
磁極位置誤差推定部46は、例えば、電流制御部43から出力されるγ軸電圧指令値Vγ及びδ軸電圧指令値Vδと、3相−γδ変換部45から出力されるγ軸電流Iγ及びδ軸電流Iδとに基づき、モータ11の回転時にモータ11が発生する誘起電圧が回転速度によって変化することを利用して位相差Δθeを推定する。
磁極位置誤差推定部46は、例えば図4に示すように、モータモデル電流演算部51と、γ軸電流偏差算出部52aおよびδ軸電流偏差算出部52bと、磁極位置誤差演算部53とを備えて構成されている。
モータモデル電流演算部51は、電流制御部43から出力されるγ軸電圧指令値Vγ及びδ軸電圧指令値Vδを用いて、モータ11の所定モデルの電圧方程式によりγ軸モデル電流IγM及びδ軸モデル電流IδMを算出し、各モデル電流IγM,IδMを出力する。
先ず、以下に、モータ11の所定モデルの電圧方程式について説明する。
γδ座標系でのモータ11の電圧方程式(つまり、連続時間での電圧方程式)は、例えば、γ軸電圧指令値Vγ及びδ軸電圧指令値Vδと、巻線抵抗Rと、微分演算子pと、d軸インダクタンスLdおよびq軸インダクタンスLqと、位相差Δθeと、回転速度推定値ωeと、d軸電流Id及びq軸電流Iqと、永久磁石の磁束成分(誘起電圧定数)φとにより、例えば下記数式(2)に示すように記述される。
Figure 0005186352
上記数式(2)において、磁極位置および回転速度に係る項を外乱として削除すると、モータ11の簡易的な電圧方程式は、下記数式(3)に示すように記述される。
Figure 0005186352
ところで、一般的な連続時間系システムの状態方程式は、微分演算子pと、状態量x(t)と、操作量u(t)と、各係数Ac,Bcとにより、下記数式(4)に示すように記述される。
Figure 0005186352
上記数式(4)において、サンプリング時間をキャリア信号の1周期Tsとし、0次ホールドつまり操作量u(t)が時刻tから時刻(t+Ts)の期間中で一定であると仮定して離散化をおこなうと、任意の自然数iと、時刻t=(i×Ts)における状態量x(t)=x(i×Ts)(以下、単に、x(i)と記述する)と、時刻t=((i+1)×Ts)における状態量x(t)=x((i+1)×Ts)(以下、単に、x(i+1)と記述する)とにより、例えば下記数式(5)に示すように記述される差分方程式が得られる。
Figure 0005186352
上記数式(3)と上記数式(4)とを対応させると、上記数式(5)に示す係数Adは、例えば下記数式(6)に示すように記述され、上記数式(5)に示す係数Bdは、例えば下記数式(7)に示すように記述される。
Figure 0005186352
Figure 0005186352
上記数式(5)〜(7)により、連続時間での簡易的な電圧方程式である上記数式(3)に対して、任意の自然数nにより、例えば下記数式(8)に示すように記述される離散時間状態方程式が得られる。なお、下記数式(8)において、任意の自然数nは、例えば任意の制御周期でのキャリア信号の山側のキャリア頂点に対応するインデックスである。
Figure 0005186352
モータモデル電流演算部51は、電流制御部43から出力されるγ軸電圧指令値Vγ及びδ軸電圧指令値Vδの(n−1)番目の値つまりγ軸電圧指令値Vγ[n−1]及びδ軸電圧指令値Vδ[n−1]と、3相−γδ変換部45から出力されるγ軸電流Iγ及びδ軸電流Iδの(n−1)番目の値つまりγ軸電流Iγ[n−1]及びδ軸電流Iδ[n−1]とを用いて、下記数式(9)に示すモータ11の所定モデルの電圧方程式により、(n)番目でのγ軸モデル電流IγM[n]及びδ軸モデル電流IδM[n]を算出し、各モデル電流IγM[n],IδM[n]を出力する。
Figure 0005186352
γ軸電流偏差算出部52aおよびδ軸電流偏差算出部52bは、例えば下記数式(10)に示すように、同一タイミング、例えばキャリア信号の山側のキャリア頂点の(n)番目で、3相−γδ変換部45から出力されるγ軸電流Iγ[n]及びδ軸電流Iδ[n]と、モータモデル電流演算部51から出力される各モデル電流IγM[n],IδM[n]との各電流偏差ΔIγM[n],ΔIδM[n]を算出し、各電流偏差ΔIγM[n],ΔIδM[n]を出力する。
Figure 0005186352
磁極位置誤差演算部53は、例えば、γ軸電流偏差算出部52aおよびδ軸電流偏差算出部52bから出力される(n)番目での各電流偏差ΔIγM[n],ΔIδM[n]と、(n−1)番目での回転速度推定値ωe[n−1]と、3相−γδ変換部45から出力される(n−1)番目でのγ軸電流Iγ[n−1]及びδ軸電流Iδ[n−1]と、予め既知とされるモータ11の電気的回路定数(つまり、巻線抵抗Rおよび各インダクタンスLd,Lqおよびキャリア信号の1周期Ts)とを、所定の数式に適用することにより、(n)番目での位相差Δθeを算出する。そして、位相差Δθeを出力する。
なお、位相差Δθeを算出する際の所定の数式は、上記数式(2)に示すモータ11の電圧方程式を離散化して得た離散時間状態方程式と、上記数式(9)に示すモータ11の所定モデルの電圧方程式、つまりモータ11の簡易的な電圧方程式を離散化して得た離散時間状態方程式とに基づき算出される。
回転速度−磁極位置演算部47は、磁極位置誤差推定部46から出力される位相差Δθeに基づき、PLL(Phase-locked loop)による位相同期処理をおこなう。
位相同期部56は、位相同期処理として、例えばPI(比例・積分)動作を実行し、例えば下記数式(11)に示すように記述される伝達関数Ge(s)に基づき、比例ゲインKpおよび積分ゲインKiにより、例えば下記数式(12)に示すようにして、位相差Δθeから回転速度推定値ωeを演算する。そして、回転速度推定値ωeを出力する。
Figure 0005186352
Figure 0005186352
積分演算部57は、例えば下記数式(13)に示すように、位相同期部56から出力される回転速度推定値ωeを積分して磁極位置推定値θeを演算する。そして、磁極位置推定値θeを出力する。
Figure 0005186352
なお、回転速度−磁極位置演算部47は、PI動作に限定されず、例えば図6および下記数式(14)に示す第1変形例のように、位相差Δθeを入力値とする同一次元オブザーバによる追従演算処理を実行して、回転速度推定値ωe及び磁極位置推定値θeを演算してもよい。
Figure 0005186352
電気角−機械角変換部48は、モータ11の極対数qに応じて、回転速度−磁極位置演算部47から出力される回転速度推定値ωeを回転速度ωr(機械角)に変換し、回転速度ωr(機械角)を出力する。
上述したように、本実施形態による電動機の磁極位置推定装置10によれば、上記数式(9)に示す離散時間状態方程式をモータ11の所定モデルの電圧方程式とすることで、例えばモータ11の所定の連続時間モデル(つまり、連続時間での電圧方程式)をオイラー近似などの各種の近似法により離散化する場合に比べて、例えば制御周期がモータ11の電気的時定数に近い値となる場合などであっても、磁極位置推定値θeの推定精度の低下を防止することができる。しかも、モータ11の電気的回路定数(例えば、巻線抵抗Rおよびd軸インダクタンスLd)と制御周期Tsとは既知であるから、上記数式(9)において底がネイピア数eである指数関数の項を予め算出しておくことができる。これにより、制御サイクル毎の位相差Δθeの算出負荷が増大することを防止しつつ、位相差Δθeの算出精度を向上させることができる。
なお、上述した実施の形態において、磁極位置誤差推定部46は、モータ11の回転時にモータ11が発生する誘起電圧が回転速度によって変化することを利用して位相差Δθeを推定するとしたが、これに限定されず、例えば電流制御部43から出力されるγ軸電圧指令値Vγ及びδ軸電圧指令値Vδに高調波電圧を印加し、インダクタンスが磁極位置により変化することを利用して位相差Δθeを推定してもよい。
この上述した実施の形態の第2変形例に係る磁極位置推定装置10の制御装置22は、例えば図7に示すように、速度制御部41と、指令電流生成部42と、電流制御部43と、γδ−3相変換部44と、3相−γδ変換部45と、磁極位置誤差推定部46と、回転速度−磁極位置演算部47と、電気角−機械角変換部48と、検出用電圧印加部49とを備えて構成されている。
つまり、この第2変形例に係る磁極位置推定装置10と、上述した実施の形態に係る磁極位置推定装置10との間で、装置の構成上で異なる点は、第2変形例に係る磁極位置推定装置10において検出用電圧印加部49が追加されている点である。
この第2変形例では、電流制御部43は、指令電流生成部42から出力される指令γ軸電流Iγcと3相−γδ変換部45から出力されるγ軸電流Iγとの偏差ΔIγを算出し、指令電流生成部42から出力される指令δ軸電流Iδcと3相−γδ変換部45から出力されるδ軸電流Iδとの偏差ΔIδを算出する。そして、例えばPI(比例・積分)動作などにより、偏差ΔIγを制御増幅してγ軸電圧指令値Vγcを算出し、偏差ΔIδを制御増幅してδ軸電圧指令値Vδcを算出する。そして、γ軸電圧指令値Vγcおよびδ軸電圧指令値Vδcを出力する。
検出用電圧印加部49は、電流制御部43から出力されるγ軸電圧指令値Vγcおよびδ軸電圧指令値Vδcに重畳される高調波電圧として、例えば所定周波数のパルス電圧などからなるγ軸検出用電圧Vhγおよびδ軸検出用電圧Vhδを出力する。
そして、電流制御部43から出力される各γ軸電圧指令値Vγcおよびδ軸電圧指令値Vδcと、検出用電圧印加部49から出力される各γ軸検出用電圧Vhγおよびδ軸検出用電圧Vhδとは加算され、各γ軸電圧指令値Vγ(=Vγc+Vhγ)およびδ軸電圧指令値Vδ(=Vδc+Vhδ)として、γδ−3相変換部44および磁極位置誤差推定部46に入力される。
磁極位置誤差推定部46のモータモデル電流演算部51は、γ軸電圧指令値Vγ及びδ軸電圧指令値Vδを用いて、上記数式(9)に示すモータ11の所定モデルの電圧方程式によりγ軸モデル電流IγM及びδ軸モデル電流IδMを算出し、各モデル電流IγM,IδMを出力する。
つまり、この第2変形例において、dq座標系でのモータ11の電圧方程式を、磁極位置に係る拡張誘起電圧Eexを用いて記述すると、例えば下記数式(15)に示すように記述される。
下記数式(15)において、d軸をγ軸に置換し、q軸をδ軸に置換し、磁極位置および回転速度に係る項を外乱として削除すると、モータ11の簡易的な電圧方程式は、上述した実施の形態と同様に、上記数式(3)に示すように記述される。これにより、この変形例でのモータ11の所定モデルの電圧方程式は、上述した実施の形態と同様に、上記数式(9)に示すように記述される離散時間状態方程式となる。
Figure 0005186352
そして、磁極位置誤差推定部46の磁極位置誤差演算部53は、下記数式(16)に示すγδ座標系でのモータ11の電圧方程式を、離散化して得た離散時間状態方程式と、上記数式(9)に示すモータ11の所定モデルの電圧方程式、つまりモータ11の簡易的な電圧方程式を離散化して得た離散時間状態方程式とに基づき、位相差Δθeを算出する。
Figure 0005186352
なお、上述した実施の形態においては、各相電流センサ32の代わりに、インバータ13のブリッジ回路13aとバッテリ12の負極側端子あるいは正極側端子との間においてインバータ13のブリッジ回路13aの直流側電流Idcを検出する直流側電流センサを設けてもよい。この第3変形例では、直流側電流センサから出力される検出信号と、PWM信号生成部23からインバータ13に入力されるゲート信号とに基づき各相電流を推定し、各相電流の推定値を3相−γδ変換部45に入力する。なお、この場合、上記数式(8)に示す電圧方程式は、各相電流の推定値が有するタイミングと同一のタイミングで同期化されていればよい。
本発明の実施形態に係る電動機の磁極位置推定装置の構成図である。 本発明の実施形態に係る回転直交座標のγ−δ軸およびd−q軸の一例を示す図である。 本発明の実施形態に係る電動機の磁極位置推定装置の構成図である。 図4に示す磁極位置誤差推定部の構成図である。 図4に示す回転速度−磁極位置演算部の構成図である。 本発明の実施形態の第1変形例に係る回転速度−磁極位置演算部の構成図である。 本発明の実施形態の第2変形例に係る電動機の磁極位置推定装置の構成図である。 図7に示す磁極位置誤差推定部の構成図である。
符号の説明
10 電動機の磁極位置推定装置
11 モータ
13 インバータ
23 制御装置
24 PWM信号生成部(パルス幅変調信号生成手段)
46 磁極位置誤差推定部(位相差算出手段)
47 回転速度−磁極位置演算部(磁極位置演算手段)

Claims (2)

  1. パルス幅変調信号により3相交流の電動機への通電を順次転流させるインバータと、前記パルス幅変調信号を搬送波信号により生成するパルス幅変調信号生成手段と、
    dq座標系に対して位相差を有するγδ座標系を設定し、前記電動機に通電される電流に応じた実電流と前記電動機の所定モデルの電圧方程式に応じたモデル電流との電流偏差に基づき前記位相差を算出する位相差算出手段と、前記位相差算出手段により算出された前記位相差に基づき前記電動機の磁極位置を演算する磁極位置演算手段と
    を備え、
    前記位相差算出手段は、前記所定モデルの電圧方程式に応じたモデル電流を、前記電動機のステータコイルのγδ座標系での指令電圧と前記ステータコイルに流れる前記γδ座標系での電流との関係を、ロータ位置の実際値と推定値との差である位置推定誤差を用いて表した電圧方程式から前記磁極位置および回転速度に係る項を除いた連続時間モデル式を0次ホールドにて離散化して得た離散時間状態方程式である前記所定モデルの電圧方程式に、指令電圧に前記ロータ位置の推定値に基づく所定電圧を適用して算出した電流値とすることを特徴とする電動機の磁極位置推定装置。
  2. 前記位相差算出手段は、前記所定モデルの電圧方程式を下記数式(1)に示すように記述しており、
    下記数式(1)は、任意の自然数nと、制御サイクルnでの前記γδ座標系での前記モデル電流であるγ軸モデル電流IγM[n] およびδ軸モデル電流IδM[n]と、制御サイクル(n−1)での前記γδ座標系での前記実電流であるγ軸電流Iγ[n−1] およびδ軸電流Iδ[n−1]と、制御サイクル(n−1)での前記γδ座標系でのγ軸電圧Vγ[n−1]およびδ軸電圧Vδ[n−1]と、巻線抵抗Rと、d軸インダクタンスLdと、制御周期Tsとからなることを特徴とする請求項1に記載の電動機の磁極位置推定装置。
    Figure 0005186352
JP2008317189A 2008-12-12 2008-12-12 電動機の磁極位置推定装置 Expired - Fee Related JP5186352B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317189A JP5186352B2 (ja) 2008-12-12 2008-12-12 電動機の磁極位置推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317189A JP5186352B2 (ja) 2008-12-12 2008-12-12 電動機の磁極位置推定装置

Publications (2)

Publication Number Publication Date
JP2010142047A JP2010142047A (ja) 2010-06-24
JP5186352B2 true JP5186352B2 (ja) 2013-04-17

Family

ID=42351660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317189A Expired - Fee Related JP5186352B2 (ja) 2008-12-12 2008-12-12 電動機の磁極位置推定装置

Country Status (1)

Country Link
JP (1) JP5186352B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6667407B2 (ja) * 2016-09-12 2020-03-18 ルネサスエレクトロニクス株式会社 制御装置
CN113241986B (zh) * 2021-05-11 2023-12-08 广东美的白色家电技术创新中心有限公司 一种电机的控制方法、控制系统和存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789720B2 (ja) * 2006-07-07 2011-10-12 三洋電機株式会社 モータ制御装置
JP2008067556A (ja) * 2006-09-11 2008-03-21 Sanyo Electric Co Ltd モータ制御装置
JP4988374B2 (ja) * 2007-02-15 2012-08-01 三洋電機株式会社 モータ制御装置
JP2008219982A (ja) * 2007-02-28 2008-09-18 Univ Nagoya 同期モータの位置推定方法およびそのプログラム
JP5074318B2 (ja) * 2008-07-29 2012-11-14 本田技研工業株式会社 同期電動機のロータ位置推定装置
JP5165545B2 (ja) * 2008-12-08 2013-03-21 本田技研工業株式会社 電動機の磁極位置推定装置

Also Published As

Publication number Publication date
JP2010142047A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5155344B2 (ja) 電動機の磁極位置推定装置
JP4746667B2 (ja) 電動機の相電流推定装置および電動機の磁極位置推定装置
JP4674525B2 (ja) 磁極位置推定方法及びモータ制御装置
JP5156352B2 (ja) 交流モータの制御装置
JP5081131B2 (ja) 電動機の相電流推定装置および電動機の磁極位置推定装置
JP3783695B2 (ja) モーター制御装置
JPWO2013124991A1 (ja) 電動機の磁極位置推定装置およびそれを用いた制御装置
JP5428202B2 (ja) 永久磁石形同期電動機の制御装置
JP2001309697A (ja) 電動機制御装置
JPWO2017022083A1 (ja) 同期電動機制御装置、圧縮機駆動装置、空気調和機及び同期電動機の制御方法
JP2004048958A (ja) Dcブラシレスモータの制御装置
JP5165545B2 (ja) 電動機の磁極位置推定装置
JP2015149875A (ja) 電動機制御装置
JP6473992B2 (ja) モータ制御装置及び発電機制御装置
JP5499594B2 (ja) 永久磁石形同期電動機の制御装置
JP5186352B2 (ja) 電動機の磁極位置推定装置
JP2013146155A (ja) 巻線温度推定装置及び巻線温度推定方法
JP5534991B2 (ja) 同期電動機の制御装置
KR102409792B1 (ko) 영구 자석 동기 전동기의 제어 장치, 마이크로 컴퓨터, 전동기 시스템 및 영구 자석 동기 전동기의 운전 방법
JP7196469B2 (ja) 同期リラクタンスモータの制御装置
JP6116449B2 (ja) 電動機駆動制御装置
CN110140290B (zh) 同步电动机的控制装置
JP2010130752A (ja) 電動機の相電流推定装置
JP2010028981A (ja) 同期モータの回転子位置推定方法および同期モータの制御装置
JP2010136585A (ja) 電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

R150 Certificate of patent or registration of utility model

Ref document number: 5186352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees