JPWO2018070115A1 - 蒸発器 - Google Patents

蒸発器 Download PDF

Info

Publication number
JPWO2018070115A1
JPWO2018070115A1 JP2018544693A JP2018544693A JPWO2018070115A1 JP WO2018070115 A1 JPWO2018070115 A1 JP WO2018070115A1 JP 2018544693 A JP2018544693 A JP 2018544693A JP 2018544693 A JP2018544693 A JP 2018544693A JP WO2018070115 A1 JPWO2018070115 A1 JP WO2018070115A1
Authority
JP
Japan
Prior art keywords
evaporation
channel
outflow
supply
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018544693A
Other languages
English (en)
Other versions
JP6601573B2 (ja
Inventor
康光 大見
康光 大見
義則 毅
毅 義則
竹内 雅之
雅之 竹内
功嗣 三浦
功嗣 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JPWO2018070115A1 publication Critical patent/JPWO2018070115A1/ja
Application granted granted Critical
Publication of JP6601573B2 publication Critical patent/JP6601573B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0246Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid heat-exchange elements having several adjacent conduits forming a whole, e.g. blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0358Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by bent plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

サーモサイフォン式のヒートパイプ(10)の一部を構成し、電池(BP)から作動流体へ吸熱させることにより作動流体を蒸発させる蒸発器は、上流端(401a)と下流端(401b)とを有する1つ以上の蒸発流路(401)が形成され、電池に対し熱伝導可能に連結され、1つ以上の蒸発流路内を流れる作動流体を電池の熱で蒸発させる流体蒸発部(40)と、1つ以上の蒸発流路の上流端が連結された供給流路(421)が形成され、該供給流路内へ流入した液相の作動流体を1つ以上の蒸発流路へ供給する液供給部(42)と、1つ以上の蒸発流路の下流端が連結された流出流路(441)が形成され、1つ以上の蒸発流路から流出流路へ流入した作動流体を流出させる流体流出部(44)とを備える。流体流出部は、液供給部よりも上方に配置され、液供給部は、流体蒸発部よりも電池の熱を受けにくい位置に配置される。

Description

関連出願への相互参照
本出願は、2016年10月12日に出願された日本特許出願番号2016−201130号と、2017年4月19日に出願された日本特許出願番号2017−82917号とに基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、サーモサイフォン式のヒートパイプに含まれる蒸発器に関するものである。
この種の蒸発器を備えた装置として、例えば特許文献1に記載された電池温度調節装置が従来から知られている。この特許文献1に記載された電池温度調節装置は、サーモサイフォン方式の冷却装置である。この電池温度調節装置は、凝縮器としての熱媒体冷却部と、蒸発器としての温度調節部とを備えている。そして、熱媒体冷却部と温度調節部とが配管により環状に接続されており、電池温度調節装置は、熱媒体冷却部と温度調節部との間で熱媒体(すなわち、作動流体)が循環するように構成されている。
また、温度調節部は、組電池を構成する複数の電池セルの側面に接するように配置されており、熱媒体の蒸発により組電池を冷却する。
また、温度調節部は電池セルの積層方向すなわちセル積層方向に延びるように形成されている。熱媒体冷却部からの熱媒体は、温度調節部のうちセル積層方向の一端から温度調節部内へ流入する。そして、温度調節部内の熱媒体は、そのセル積層方向の一端から他端へ流れ、その他端から熱媒体冷却部へと流出する。
特許第5942943号公報
特許文献1に記載された電池温度調節装置の温度調節部である蒸発器内では、温度調節部の全体が電池セルの側面に接するように配置されている。発明者の検討によれば、このような構造では、蒸発器内において作動流体が激しく沸騰し、液相の作動流体が存在しないドライアウトが蒸発器内で生じることがある。
本開示は、上記点に鑑みて、サーモサイフォン式のヒートパイプに含まれる蒸発器であって、ドライアウトの発生を抑制することが可能な蒸発器を提供することを目的とする。
本開示の1つの観点によれば、作動流体が循環するサーモサイフォン式のヒートパイプの一部を構成し、1つ以上の電池セルを有する電池から前記作動流体へ吸熱させることにより該作動流体を蒸発させる蒸発器は、
上流端と下流端とを有する1つ以上の蒸発流路が形成され、前記電池に対し熱伝導可能に連結され、前記1つ以上の蒸発流路内を流れる前記作動流体を前記電池の熱で蒸発させる流体蒸発部と、
前記1つ以上の蒸発流路の前記上流端が連結された供給流路が形成され、該供給流路内へ流入した液相の前記作動流体を前記1つ以上の蒸発流路へ供給する液供給部と、
前記1つ以上の蒸発流路の前記下流端が連結された流出流路が形成され、前記1つ以上の蒸発流路から前記流出流路へ流入した前記作動流体を流出させる流体流出部とを備える。
前記蒸発流路内では、前記作動流体が前記上流端から前記下流端へ流れる。前記流体流出部は、前記液供給部よりも上方に配置される。前記液供給部は、前記流体蒸発部よりも前記電池の熱を受けにくい位置に配置される。
このように、液供給部は流体蒸発部よりも組電池の熱を受けにくい位置に配置される。したがって、電池からの熱を受けにくい状態に供給流路内の液相の作動流体を維持しつつその液相の作動流体を蒸発流路へ供給し、その供給された作動流体を蒸発流路で蒸発させることができる。その結果、ドライアウトの発生を抑制することが可能である。また、液供給部は、流体流出部よりも下方に配置されているので、ドライアウトの原因となる気泡が供給流路に滞留するのを抑制することが可能である。
第1実施形態において機器温調装置の概略構成を示した模式図である。 第1実施形態において図1のII−II断面を模式的に示した断面図であって、蒸発器と熱伝導材と組電池との位置関係を示した図である。 第1実施形態において蒸発器の概略構成を示した分解斜視図である。 第1実施形態において、蒸発器内の作動流体流れと組電池との位置関係を模式的に示した斜視図である。 第2実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第1実施形態の図2に相当する図である。 第2実施形態において蒸発器の概略構成を示した分解斜視図であって、第1実施形態の図3に相当する図である。 第3実施形態において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 第4実施形態において蒸発器の概略構成を示した分解斜視図であって、第1実施形態の図3に相当する図である。 第5実施形態において蒸発器の概略構成を示した分解斜視図であって、第1実施形態の図3に相当する図である。 第6実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第2実施形態の図5に相当する図である。 第6実施形態において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 第6実施形態において蒸発器内の作動流体流れと組電池との位置関係を模式的に示した斜視図であって、第1実施形態の図4に相当する図である。 第7実施形態において蒸発器の概略構成を示した分解斜視図であって、第6実施形態の図11に相当する図である。 第7実施形態において蒸発器内の作動流体流れと組電池との位置関係を模式的に示した斜視図であって、第6実施形態の図12に相当する図である。 第8実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第1実施形態の図2に相当する図である。 第8実施形態において蒸発器の概略構成を示した分解斜視図であって、第1実施形態の図3に相当する図である。 第9実施形態において蒸発器の概略構成を示した分解斜視図であって、第8実施形態の図16に相当する図である。 第10実施形態において蒸発器の概略構成を示した分解斜視図であって、第9実施形態の図17に相当する図である。 第11実施形態において蒸発器の概略構成を示した分解斜視図であって、第9実施形態の図17に相当する図である。 第12実施形態において蒸発器の概略構成を示した分解斜視図であって、第9実施形態の図17に相当する図である。 第13実施形態において蒸発器の概略構成を示した模式図であって、図1から蒸発器を抜粋した図に相当する図である。 第14実施形態において、蒸発器と組電池との配置を示した斜視図である。 第14実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第1実施形態の図2に相当する図である。 第14実施形態において蒸発器の概略構成を示した分解斜視図であって、第1実施形態の図3に相当する図である。 図24の蒸発器を構成する複数の積層ユニットのうちの1つを抜粋して示した斜視図、すなわち積層ユニットを単体で示した斜視図である。 図25の積層ユニットをセル積層方向の一方側から見た正面図である。 図26のXXVII−XXVII断面を示した断面図である。 第15実施形態において蒸発器の概略構成を示した分解斜視図であって、第14実施形態の図24に相当する図である。 第15実施形態において、蒸発器を構成する積層ユニットの単体をセル積層方向の一方側から見た正面図であって、第14実施形態の図26に相当する図である。 第16実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第14実施形態の図23に相当する図である。 第16実施形態において蒸発器の概略構成を示した分解斜視図であって、第14実施形態の図24に相当する図である。 第16実施形態において、蒸発器を構成する積層ユニットを単体で示した斜視図であって、第14実施形態の図25に相当する図である。 第16実施形態において、蒸発器を構成する積層ユニットの単体をセル積層方向の一方側から見た正面図であって、第14実施形態の図26に相当する図である。 第16実施形態において、図33のXXXIV−XXXIV断面を示した断面図であって、第14実施形態の図27に相当する図である。 第17実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第14実施形態の図23に相当する図である。 第17実施形態において蒸発器の概略構成を示した分解斜視図であって、第15実施形態の図28に相当する図である。 第18実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第14実施形態の図23に相当する図である。 第19実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第14実施形態の図23に相当する図である。 第20実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第19実施形態の図38に相当する図である。 第21実施形態において第21実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第19実施形態の図38に相当する図である。 第22実施形態において第22実施形態において図1のII−II断面に相当する断面を模式的に示した断面図であって、第21実施形態の図40に相当する図である。 他の実施形態として示された第1の変形例において図1のII−II断面に相当する断面を模式的に示した断面図であって、第2実施形態の図5に相当する図である。 他の実施形態として示された第2の変形例において図1のII−II断面に相当する断面を模式的に示した断面図であって、第2実施形態の図5に相当する図である。 他の実施形態として示された第3の変形例において図1のII−II断面に相当する断面を模式的に示した断面図であって、第1実施形態の図2に相当する図である。 他の実施形態として示された第4の変形例において図1のII−II断面に相当する断面を模式的に示した断面図であって、第2実施形態の図5に相当する図である。 他の実施形態として示された第5の変形例において図1のII−II断面に相当する断面を模式的に示した断面図であって、第2実施形態の図5に相当する図である。 第14実施形態の1つの変形例において、セル積層方向を法線方向とした平面で積層ユニットを切断した断面を模式的に示した断面図である。 変形例23において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 変形例24において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 変形例25において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 変形例26において蒸発器の概略構成を示した分解斜視図であって、第1実施形態の図3に相当する図である。 変形例27において蒸発器の概略構成を示した分解斜視図であって、第14実施形態の図24に相当する図である。 図52の蒸発器を構成するユニットを抜粋して示した斜視図、すなわちユニットを単体で示した斜視図である。 図53のユニットをセル積層方向の一方側から見た正面図である。 変形例28において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 変形例29において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 変形例230において蒸発器の概略構成を示した分解斜視図であって、第2実施形態の図6に相当する図である。 本開示が解決しようとする課題を説明するための図であって、蒸発器を含む電池温度調節装置の断面を模式的に示した断面図である。
以下、図面を参照しながら、実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1に示す本実施形態の機器温調装置1は、車両に搭載された組電池BPを冷却することによって、温調対象機器としての組電池BPの電池温度を調節する。要するに、機器温調装置1は、組電池BPを冷却する電池冷却装置である。機器温調装置1を搭載する車両としては、組電池BPを電源とする図示しない走行用電動モータによって走行可能な電気自動車、または、ハイブリッド自動車などが想定される。
組電池BPは、直方体形状の複数の電池セルBCを有している。そして、組電池BPは、その複数の電池セルBCを積層配置した積層体で構成されている。詳細には、その複数の電池セルBCは、所定の積層方向DRsに積層されている。従って、組電池BP全体も略直方体形状を成している。そして、組電池BPは、その組電池BPの表面の一部分として、下方を向いた電池底面BPaである電池下面BPa(図2参照)と、車両上下方向DRg(すなわち、重力方向DRg)に沿って拡がる電池側面BPb(図2参照)とを有している。なお、本実施形態において、電池セルBCの積層方向DRsは、車両上下方向DRgに交差する方向、厳密に言えば車両上下方向DRgに直交する方向になっている。また、電池セルBCの積層方向DRsをセル積層方向DRsと呼ぶものとする。
組電池BPを構成する複数の電池セルBCは、電気的に直列に接続されている。組電池BPを構成する各電池セルBCは、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)で構成されている。なお、電池セルBCは、直方体形状に限らず、円筒形状等の他の形状を有していてもよい。また、組電池BPは、電気的に並列に接続された電池セルBCを含んで構成されていてもよい。
組電池BPは、図示しない電力変換装置およびモータジェネレータに接続されている。電力変換装置は、例えば、組電池から供給された直流電流を交流電流に変換し、変換した交流電流を走行用電動モータ等の各種電気負荷に対して供給(すなわち、放電)する装置である。また、モータジェネレータは、車両の回生時に、車両の走行エネルギを電気エネルギに逆変換し、逆変換した電気エネルギを回生電力としてインバータ等を介して組電池BPに対して供給する装置である。
組電池BPは車両の走行中の電力供給等を行うと自己発熱するので、組電池BPが仮に冷却されないとすると、その自己発熱に起因して組電池BPが過度に高温になることが想定される。組電池BPが過度に高温になると、組電池BPの入出力特性が低下するだけでなく、電池セルBCの劣化が促進されることから、組電池BPを所定の温度以下に維持するための冷却装置が必要となる。
また、組電池BPを含む蓄電装置は、車両の床下やトランクルームの下側に配置されることが多く、車両の走行中に限らず、夏季における駐車中等にも組電池BPの電池温度が徐々に上昇して、電池温度が過度に高温となることがある。組電池BPが高温環境下で放置されると、劣化が進行することで電池寿命が大幅に低下することから、車両の駐車中等にも組電池BPの電池温度を所定の温度以下に維持することが望まれている。
更に、組電池BPは、複数の電池セルBCで構成されているが、各電池セルBCの温度にバラツキがあると、各電池セルの劣化の進行度合いに偏りが生じて、組電池BP全体の入出力特性が低下してしまう。これは、組電池BPが電池セルBCの直列接続体を含んでいることで、各電池セルBCのうち、最も劣化が進行した電池セルBCの電池特性に応じて組電池BP全体の入出力特性が決まるからである。このため、組電池BPを長期間、所望の性能を発揮させるためには、各電池セルBCの温度バラツキを低減させる均温化が重要となる。
組電池BPを冷却する冷却装置としては、送風機による空冷式の冷却機などが一般的となっている。
ところが、送風機による空冷式の冷却機は、車室内の空気等を組電池BPに送風するだけなので、組電池BPを充分に冷却するだけの冷却能力が得られないことがある。そこで、本実施形態の機器温調装置1では、作動流体の相変化を伴う自然循環によって組電池BPを冷却するサーモサイフォン方式が採用されている。
機器温調装置1は、作動流体が循環する作動流体回路10を備えている。作動流体回路10を循環する作動流体としては、蒸気圧縮式の冷凍サイクルで利用される冷媒(例えば、R134a、R1234yf)が採用される。
作動流体回路10は、作動流体の蒸発および凝縮により熱移動を行うヒートパイプであり、重力によって作動流体が自然循環するサーモサイフォン式となるように構成されている。さらに、作動流体回路10は、気相の作動流体が流れる流路と液相の作動流体が流れる流路とが分離されたループ型となるように構成されている。すなわち、作動流体回路10は、ループ型のサーモサイフォン式ヒートパイプを構成している。
図1に示すように、作動流体回路10は、蒸発器12と凝縮器15とガス通路部16と液通路部18とを含んで構成されている。具体的に作動流体回路10は、蒸発器12、ガス通路部16、凝縮器15、液通路部18の順番でそれらが環状に接続されることにより構成されている。要するに、作動流体回路10は、閉じられた環状の流体回路である。作動流体回路10の内部には所定量の作動流体が封入され、その作動流体回路10の内部はその作動流体で満たされている。
蒸発器12は、蒸発器12内を流通する作動流体と組電池BPとを熱交換させる熱交換器である。すなわち、蒸発器12は、作動流体回路10での作動流体の循環に伴い、組電池BPから液相の作動流体へ吸熱させ、それにより液相の作動流体を蒸発させる。本実施形態の蒸発器12は、組電池BPの側方に熱伝導可能に連結されている。
蒸発器12は、凝縮器15よりも下方に配置されている。これにより、液相の作動流体が、重力によって、蒸発器12を含む作動流体回路10の下部に溜まるようになっている。なお、蒸発器12の詳細な構造については後述する。
凝縮器15は、蒸発器12にて蒸発した気相の作動流体を凝縮させる熱交換器である。凝縮器15は、車両に搭載された空調用の冷凍サイクル装置21の冷媒との熱交換によって作動流体から放熱させ、それによりその作動流体を凝縮させる。冷凍サイクル装置21は、車両用空調装置の一部を構成している。冷凍サイクル装置21は、冷媒が循環して流れる冷媒回路22を備えている。
凝縮器15は、作動流体回路10の作動流体が流れる作動流体側熱交換部15aと、冷媒回路22の冷媒が流れる冷媒側熱交換部15bとを有する。作動流体と冷媒との熱交換が可能なように、作動流体側熱交換部15aと冷媒側熱交換部15bとは熱的に接続されている。
冷媒回路22は、蒸気圧縮式の冷凍サイクルを構成している。具体的には、冷媒回路22は、圧縮機24、空調用凝縮器26、第1膨張弁28、および空調用蒸発器30等が、配管によって接続されることで形成されている。冷凍サイクル装置21は、空調用凝縮器26に空気を送る送風機27と、車室内空間に向かう空気流れを形成する送風機31とを備えている。例えば空調用凝縮器26および送風機27は車室外に設けられており、送風機27は空調用凝縮器26へ車室外の空気である外気を送る。
圧縮機24は、冷媒を圧縮して吐出する。空調用凝縮器26は、空気との熱交換によって圧縮機24から流出の冷媒を放熱させて凝縮させる放熱器である。第1膨張弁28は、空調用凝縮器26から流出の冷媒を減圧させる。空調用蒸発器30は、車室内空間に向かう空気との熱交換によって、第1膨張弁28から流出の冷媒を蒸発させるとともに、車室内空間に向かう空気を冷却する。
更に、冷媒回路22は、第1膨張弁28および空調用蒸発器30に対して、冷媒流れで並列に接続された第2膨張弁32および冷媒側熱交換部15bを有している。第2膨張弁32は、空調用凝縮器26から流出の冷媒を減圧させる。冷媒側熱交換部15bは、作動流体側熱交換部15aを流れる作動流体との熱交換によって、冷媒を蒸発させる冷媒蒸発部である。
また、冷媒回路22は、冷媒側熱交換部15bに向かって冷媒が流れる冷媒流路を開閉する開閉弁34を有している。開閉弁34が閉じられることで、圧縮機24、空調用凝縮器26、第1膨張弁28、空調用蒸発器30の順に冷媒が流れる第1冷媒回路が形成される。開閉弁34が開くことで、第1冷媒回路に加えて、圧縮機24、空調用凝縮器26、第2膨張弁32、冷媒側熱交換部15bの順に冷媒が流れる第2冷媒回路が形成される。
開閉弁34は、例えば組電池BPを冷却する必要性に応じて予め定められた条件に従って適宜開閉される。その開閉弁34が開かれた場合には、少なくとも圧縮機24と送風機27とが作動する。これにより、凝縮器15の作動流体側熱交換部15aで、冷媒側熱交換部15bを流れる冷媒との熱交換によって、作動流体が冷却されて凝縮する。
ガス通路部16は、蒸発器12にて蒸発した気相の作動流体を凝縮器15に導くものである。ガス通路部16は例えば配管部材等で構成され、ガス通路部16の内部には、蒸発器12から凝縮器15へ向かって作動流体が流れるガス通路が形成されている。ガス通路部16が有する下方側の端部は蒸発器12に接続され、ガス通路部16が有する上方側の端部は凝縮器15の作動流体側熱交換部15aに接続されている。
ガス通路部16には、作動流体回路10内に作動流体を充填するための充填口36が設けられている。充填口36は、作動流体回路10のうちガス通路部16以外の部分に設けられていてもよい。ただし、充填口36は、作動流体回路10の内部のうち気相の作動流体が存在する部位に設けられることが好ましい。
液通路部18は、凝縮器15にて凝縮した液相の作動流体を蒸発器12に導くものである。液通路部18は例えば配管部材等で構成され、液通路部18の内部には、凝縮器15から蒸発器12へ向かって作動流体が流れる液通路が形成されている。液通路部18が有する下方側の端部は蒸発器12に接続され、液通路部18が有する上方側の端部は凝縮器15の作動流体側熱交換部15aに接続されている。
続いて、図1を用いて、本実施形態の機器温調装置1の基本作動について説明する。
機器温調装置1では、車両の走行時の自己発熱等によって組電池BPの電池温度が上昇すると、組電池BPの熱が蒸発器12に移動する。蒸発器12では、組電池BPから吸熱することで液相の作動流体の一部が蒸発する。組電池BPは、蒸発器12の内部に存する作動流体の蒸発潜熱によって冷却され、その組電池BPの温度が低下する。
蒸発器12にて蒸発した作動流体は蒸発器12からガス通路部16へ流出し、図1の矢印FL1で示すように、ガス通路部16を介して凝縮器15へ移動する。
凝縮器15では、気相の作動流体が放熱することで、その気相の作動流体が凝縮する。凝縮した液相の作動流体は、重力によって下降する。これにより、凝縮器15で凝縮した液相の作動流体は、凝縮器15から液通路部18へ流出し、図1の矢印FL2で示すように、液通路部18を介して蒸発器12へ移動する。そして、蒸発器12では、流入した液相の作動流体の一部が組電池BPから吸熱することで蒸発する。
このように、機器温調装置1では、作動流体がガス状態と液状態とに相変化しながら蒸発器12と凝縮器15との間を循環し、蒸発器12から凝縮器15へ熱が輸送される。これにより、冷却対象である組電池BPは冷却される。
機器温調装置1は、圧縮機等による作動流体の循環に要する駆動力が無くても、作動流体回路10の内部を作動流体が自然循環する構成となっている。このため、機器温調装置1は、電力消費量および騒音の双方を抑えた効率のよい組電池BPの冷却を実現することができる。
次に、蒸発器12の構造について説明する。図1および図2に示すように、蒸発器12は、流体蒸発部40と、その流体蒸発部40の下端に連結された液供給部42と、流体蒸発部40の上端に連結された流体流出部44とを備えている。流体流出部44は液供給部42および流体蒸発部40よりも上方に配置され、液供給部42は流体流出部44および流体蒸発部40よりも下方に配置されている。なお、図2では、各構成要素の配置を判りやすく図示するために、各構成要素の間に敢えて隙間を空けて各構成要素が図示されている。このことは、後述の図5、図10、図15、図22、図23、図30、図35、および、図37〜図47でも同様である。
流体蒸発部40は、組電池BPのうち立面BPbである電池側面BPbに対し熱伝導可能に連結されている。言い換えれば、流体蒸発部40は組電池BPに熱的に接続している。詳細には、流体蒸発部40は、流体蒸発部40と組電池BPとの間に介在する熱伝導材38に接触することにより、組電池BPに対し熱伝導可能に連結されている。例えば、流体蒸発部40と組電池BPとの間の熱伝導性を高めるために、流体蒸発部40は、組電池BPへ押し付けられた状態で保持されている。
熱伝導材38は電気絶縁性と高い熱伝導性とを備え、流体蒸発部40と組電池BPとの間の熱伝導性を高めるために、流体蒸発部40と組電池BPとに挟まれている。例えば、熱伝導材38としては、グリスまたはシート状物が採用される。なお、流体蒸発部40と組電池BPとの間の電気絶縁性と熱伝導性とが十分に確保されるのであれば、熱伝導材38が設けられずに、流体蒸発部40は組電池BPに直接接触していても差し支えない。
図2および図3に示すように、流体蒸発部40の内部には、車両上下方向DRgに延びる複数の蒸発流路401が形成されている。言い換えれば、その複数の蒸発流路401はそれぞれ、電池側面BPbに沿って、その電池側面BPbが有する側面下端BPc側から電池側面BPbが有する側面上端BPd側へと延びている。
そして、流体蒸発部40は、複数の蒸発流路401内を流れる作動流体を組電池BPの熱で蒸発させる。すなわち、その蒸発流路401内へ流入する液相の作動流体は、蒸発流路401を流れつつ蒸発流路401内で沸騰気化する。なお、図2には作動流体の液面SFが図示されている。また、図3では、見易い図示とするために、電池セルBCは二点鎖線で図示されており、熱伝導材38の図示と組電池BPが有する複数の電池セルBCのうち一部の図示とが省略されている。このことは、後述の図4、図6〜9、図12、図14、および図16〜20でも同様である。
液供給部42の内部には、セル積層方向DRsに延びる供給流路421が形成されている。また、流体流出部44の内部には、セル積層方向DRsに延びる流出流路441が形成されている。
蒸発器12の構成部材に着目すれば、その蒸発器12はプレート積層構造となっている。そのため、蒸発器12は、第1プレート部材121と第2プレート部材122とを有している。そして、蒸発器12は、その一対のプレート部材121、122が積層され且つ各プレート部材121、122の周縁部分で互いに接合されることにより構成されている。この第1プレート部材121と第2プレート部材122は何れも、熱伝導性が高いアルミニウム合金等の金属製であり、プレス加工等によって成形された成型品である。また、プレート部材121、122の接合は例えばロウ付け等によって実施される。
詳細には、第1プレート部材121は、流体蒸発部40に含まれる第1蒸発形成部121aと、液供給部42に含まれる第1供給形成部121bと、流体流出部44に含まれる第1流出形成部121cとを有している。また、第2プレート部材122は、流体蒸発部40に含まれる第2蒸発形成部122aと、液供給部42に含まれる第2供給形成部122bと、流体流出部44に含まれる第2流出形成部122cとを有している。
そして、蒸発器12の各流路401、421、441は、プレート部材121、122の相互接合により蒸発器12の内部空間として形成されている。すなわち、第1プレート部材121が第2プレート部材122に積層されて接合されることにより、複数の蒸発流路401は第1蒸発形成部121aと第2蒸発形成部122aとの間に形成されている。また、プレート部材121、122の接合により、供給流路421は第1供給形成部121bと第2供給形成部122bとの間に形成されている。また、プレート部材121、122の接合により、流出流路441は第1流出形成部121cと第2流出形成部122cとの間に形成されている。
第1蒸発形成部121aは第2蒸発形成部122aと組電池BPとの間に配置されている。従って、流体蒸発部40は、第1蒸発形成部121aにて熱伝導材38に接触している。
第2プレート部材122の第2蒸発形成部122aは、第1プレート部材121の第1蒸発形成部121aへ向けて突き出た複数の凸部122dを有している。その複数の凸部122dはそれぞれ、車両上下方向DRgに延びるように形成されている。言い換えれば、複数の凸部122dはそれぞれ、流体蒸発部40のうち液供給部42側の一端から流体流出部44側の他端へと延びるように形成されている。
そして、複数の凸部122dはそれぞれ、第1蒸発形成部121aに当接し接合されている。その接合は例えばロウ付け等によって実施される。この凸部122dは第1蒸発形成部121aに当接し接合されることにより、複数の蒸発流路401を相互に仕切っている。
また、複数の凸部122dはセル積層方向DRsに相互間隔を空けて並んで配置されているので、複数の蒸発流路401はセル積層方向DRsに並んで配置されている。具体的に言えば、凸部122dと蒸発流路401はセル積層方向DRsに交互に並んでいる。例えば、蒸発流路401は電池セルBCと同数設けられ、電池セルBC毎に1本の蒸発流路401が割り当てられるように配置されている。
また、複数の蒸発流路401の流路断面はそれぞれ、セル積層方向DRsへ延びた扁平断面形状を成している。言い換えれば、蒸発流路401の延び方向(すなわち、本実施形態では車両上下方向DRg)に直交する断面において、その蒸発流路401の断面形状は、セル積層方向DRsを長手方向とした扁平形状を成している。
また、蒸発流路401はそれぞれ、蒸発流路401の下端を上流端401aとして有し、蒸発流路401の上端を下流端401bとして有している。蒸発流路401内では、図3の一点鎖線矢印および破線矢印で示すように、作動流体はその上流端401aから下流端401bへ流れる。すなわち、蒸発流路401内では、作動流体は下方から上方へ流れる。
供給流路421には、その複数の蒸発流路401の上流端401aがそれぞれ連結されている。従って、液供給部42は、供給流路421内へ流入した液相の作動流体を複数の蒸発流路401の各々へ分配供給する。
一方、流出流路441には、複数の蒸発流路401の下流端401bがそれぞれ連結されている。従って、流出流路441には、複数の蒸発流路401の各々から作動流体が流入する。そして、流体流出部44は、その流出流路441に流入した作動流体をガス通路部16へ流出させる。
図1および図3に示すように、液供給部42はセル積層方向DRsに延びるように形成されているので、セル積層方向DRsの一方側に一端部42aを有し、セル積層方向DRsの他方側に他端部42bを有している。その液供給部42の一端部42aには、液通路部18が連結された流体入口422が形成されている。そして、その流体入口422は供給流路421に開放されている。その一方で、液供給部42の他端部42bは供給流路421のうちセル積層方向DRsの他方側の端を形成し、その他方側の端を塞いでいる。
流体流出部44はセル積層方向DRsに延びるように形成されているので、セル積層方向DRsの一方側に一端部44aを有し、セル積層方向DRsの他方側に他端部44bを有している。その流体流出部44の他端部44bには、ガス通路部16が連結された流体出口442が形成されている。そして、その流体出口442は流出流路441に開放されている。その一方で、流体流出部44の一端部44aは流出流路441のうちセル積層方向DRsの一方側の端を形成し、その一方側の端を塞いでいる。
更に、流体出口442は、流体流出部44の他端部44bのうち上方寄りに配置されている。そのため、流出流路441内の気相および液相の作動流体のうち専ら気相の作動流体が流体出口442からガス通路部16へ流出する。すなわち、流体流出部44は、蒸発した作動流体ガスが液相の作動流体とともに吹き上げる気泡流の気液分離を行い、流出流路441は、その分離された作動流体ガスを排出するための流路となっている。要するに、流体流出部44は気液分離機能を備えている。
図1および図2に示すように、流体蒸発部40は熱伝導材38に接触しているが、液供給部42は、組電池BPと熱伝導材38との何れからも離れて配置されている。すなわち、液供給部42と組電池BPおよび熱伝導材38との間に介在する空気は、それらの間の伝熱を妨げる断熱部39として機能する。そして、液供給部42は、その液供給部42と組電池BPおよび熱伝導材38との間にその断熱部39を介在させて配置されているので、組電池BPに対し熱的に接続していない。
表現を変えれば、液供給部42のうち組電池BPまたは熱伝導材38に接触する表面の面積は零である。つまり、組電池BPまたは熱伝導材38に接触する表面の面積が液供給部42では流体蒸発部40に比して小さくなるように、液供給部42は配置されている。
要するに、液供給部42は、流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されているということである。更に別言すれば、流体蒸発部40と液供給部42との比較において、流体蒸発部40よりも液供給部42は、組電池BPに対し熱的に離れているということである。なお、本実施形態では、流体流出部44も組電池BPと熱伝導材38との両方から離れて配置されている。
上述したように蒸発器12の各流路401、421、441は相互に連通しているので、作動流体は、図3と図4とに示す一点鎖線矢印および破線矢印のように蒸発器12内を流通する。なお、その一点鎖線矢印は蒸発器12内の液相の作動流体流れを表し、破線矢印は蒸発器12内の気相の作動流体流れを表している。このことは、後述の図6〜9、図11〜14、および図16〜20でも同様である。
具体的には、液通路部18からの液相の作動流体は、矢印F1のように流体入口422から供給流路421へ流入する。その流入した作動流体は、矢印F2のように、供給流路421内ではセル積層方向DRsの一方側から他方側へ流れる。そして、作動流体は供給流路421から複数の蒸発流路401のそれぞれへ分配される。このとき、液供給部42は組電池BPの熱を受けにくいので、その作動流体は液相のまま蒸発流路401へ流入する。すなわち、凝縮器15から供給された液相の作動流体は供給流路421を経由して、各電池セルBCの下側近傍まで、沸騰せずに且つ気泡流になることなく液相のまま供給される。
蒸発流路401内では作動流体は下方から上方へ流れつつ、組電池BPの熱によって沸騰させられる。すなわち、その作動流体は蒸発流路401内を流れつつ、各電池セルBCから熱を奪い蒸発する。そのため、それぞれの蒸発流路401で作動流体は気相のみ又は気液二相となって流出流路441へ流入する。
流出流路441へ流入した作動流体は気液分離されると共に、矢印F3のように流出流路441内でセル積層方向DRsの一方側から他方側へ流れる。このとき、セル積層方向DRsの他方側ほど、各蒸発流路401から流出流路441内の作動流体流れに合流する作動流体の流量が多く累積される。そのため、図1および図3に示すように、流出流路441は、その流出流路441の流路断面積が作動流体流れ下流側(すなわち、セル積層方向DRsの他方側)ほど大きくなるように形成されている。
流出流路441内でセル積層方向DRsの他方側の端まで流れた気相の作動流体は、矢印F4のように流体出口442からガス通路部16へ流出する。
なお、上記の流出流路441の流路断面積とは、作動流体流れの向きを法線方向とした断面(具体的に流出流路441では、セル積層方向DRsを法線方向とした断面)における流路441の断面積である。また、後述する蒸発流路401の流路断面積と供給流路421の流路断面積とについても、この流出流路441の流路断面積と同様に定義される。
上述したように、本実施形態によれば図1〜図3に示すように、液供給部42の供給流路421には複数の蒸発流路401の上流端401aがそれぞれ連結され、流体流出部44の流出流路441には、複数の蒸発流路401の下流端401bがそれぞれ連結されている。そして、液供給部42は、複数の蒸発流路401が形成された流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されている。そして、その液供給部42が流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されていることとは、例えば、組電池BPまたは熱伝導材38に接触する表面の面積が液供給部42では流体蒸発部40に比して小さくなるように、液供給部42が配置されていることである。更に、その液供給部42が流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されていることとは、液供給部42が組電池BPとの間に断熱部39を介在させて配置されていることでもある。
従って、組電池BPからの熱を受けにくい状態に供給流路421内の液相の作動流体を維持しつつその液相の作動流体を複数の蒸発流路401のそれぞれへ供給し、その供給された作動流体を複数の蒸発流路401のそれぞれで蒸発させることができる。
その結果、作動流体が、積層された複数の電池セルBCに順次加熱されつつ流れるという現象が回避されるので、部分的なドライアウトの発生を抑制することが可能である。そして、組電池BPのうちの一部の電池セルBCがそのドライアウトの影響で冷却されにくくなるという事態を回避できるので、複数の電池セルBC相互の温度バラツキを抑制することが可能である。
また、供給流路421には複数の蒸発流路401が並列に接続されているので、電池セルBC毎に、その電池セルBCを冷却するための液相の作動流体が供給流路421から供給される。従って、仮にドライアウトが発生したとしても、そのドライアウトは各蒸発流路401で均等に生じることになるので、複数の電池セルBC相互の温度バラツキを拡大させ難い。
例えば仮に、他の電池セルBCよりも高温になった電池セルBCがあり、その高温の電池セルBCによって一部の蒸発流路401で作動流体が激しく沸騰したとする。その場合にも、供給流路421では作動流体は液相のまま流れるので、その作動流体が激しく沸騰する蒸発流路401を含む各蒸発流路401には液相の作動流体が満遍なく随時供給され続ける。そのため、流体蒸発部40のうち特定の電池セルBCに隣接する部位全体がドライアウトにより冷却能力を失うという現象が生じにくくなる。その結果、各電池セルBC相互の温度バラツキの拡大を抑制することが可能である。
また、作動流体が蒸発させられる流体蒸発部40内の空間は複数の蒸発流路401としてセル積層方向DRsに細分化され、その複数の蒸発流路401には並列的に液相の作動流体が供給される。従って、複数の電池セルBCを均等に冷却するという目的を達成しつつ、作動流体回路10の作動流体の封入量を低減できる。また、その作動流体の封入量が低減されれば、その分、作動流体回路10の過渡的な能力変動に対する各部の温度応答性が良くなる。
また、本実施形態によれば、複数の蒸発流路401はセル積層方向DRsに並んで配置され、並列に作動流体を流す。従って、各蒸発流路401を短く形成することができる。そして、ドライアウトを誘発する気泡を含む作動流体の流れから、その気泡を早期に分離することが可能である。言い換えれば、沸騰により気泡が発生してから気泡が分離されるまでに作動流体が流れる経路の長さを短くすることが可能である。要するに、本実施形態の蒸発器12では、特許文献1に開示された構造と比較して作動流体の気液分離性が向上する。
ここで、仮に蒸発器12内での気液分離性が悪いと、作動流体が激しく沸騰した場合に、気泡により液相の作動流体が持ち上げられ、それと共に、気泡は上昇するが、液相の作動流体は下へ移動しようとする。その結果、作動流体の液面が図58の矢印A3、A4のように激しく変動する。更に、その気泡が液通路部18へ逆流することもある。これに対し、本実施形態の蒸発器12では作動流体の気液分離性が向上しているので、このような事態を回避することが可能である。
また、本実施形態の蒸発器12では作動流体の気液分離性の向上により、気相と液相とに相変化して作動流体回路10を循環する作動流体の質量流量(すなわち、作動流体の蒸発量)が増す。従って、組電池BPを冷却する冷却能力の向上を図ることが可能である。
また、沸騰により気泡が発生してから気泡が分離されるまでに作動流体が流れる経路の長さを短くすることができるので、その分、気泡流に起因した異音の発生を抑えることが可能である。
また、本実施形態によれば、液供給部42は、蒸発器12のうちの他の部位40、44よりも下方に配置されているので、ドライアウトの原因となる気泡(すなわち、蒸気)が供給流路421に滞留するのを抑制することが可能である。
また、本実施形態によれば、蒸発流路401内では作動流体が下方から上方へ流れる。従って、蒸発流路401で生じた気泡を流出流路441へ導き易い。
また、本実施形態によれば、供給流路421はセル積層方向DRsに延びている。従って、そのセル積層方向DRsに並んだ複数の蒸発流路401の各々へ作動流体を満遍なく行き渡らせることが可能である。
また、本実施形態によれば、流出流路441はセル積層方向DRsに延びている。従って、そのセル積層方向DRsに並んだ複数の蒸発流路401の各々から流出する作動流体を集合させてから蒸発器12の外部へ流出させることが可能である。
また、本実施形態によれば、流出流路441は、その流出流路441の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。従って、流出流路441の容積を不必要に拡大させずに、作動流体の蒸発に起因した気体体積の膨張に対応することが可能である。
また、本実施形態によれば、複数の蒸発流路401はそれぞれ、電池側面BPbに沿って側面下端BPc側から側面上端BPd側へと延びている。従って、蒸発流路401で蒸発した作動流体ガス(すなわち、気相の作動流体)が流出流路441へ抜けやすいように流体蒸発部40を配置することが可能である。
また、本実施形態によれば、複数の蒸発流路401はそれぞれ、セル積層方向DRsへ延びた扁平断面形状を成している。従って、蒸発流路401を細分化して多数設ける場合と比較して、作動流体の流通抵抗の増大を抑え且つ作動流体が組電池BPの熱を受けやすいように、蒸発流路401内に作動流体を流すことが可能である。
また、本実施形態によれば、第1プレート部材121が第2プレート部材122に積層されて接合されることにより、複数の蒸発流路401は第1蒸発形成部121aと第2蒸発形成部122aとの間に形成されている。それと共に、供給流路421は第1供給形成部121bと第2供給形成部122bとの間に形成され、且つ、流出流路441は第1流出形成部121cと第2流出形成部122cとの間に形成されている。また、第1蒸発形成部121aは第2蒸発形成部122aと組電池BPとの間に配置されている。また、第2蒸発形成部122aは、第1プレート部材121の第1蒸発形成部121aへ向けて突き出た複数の凸部122dを有している。そして、その凸部122dは第1蒸発形成部121aに当接することにより、複数の蒸発流路401を相互に仕切っている。従って、少ない部品点数で蒸発器12を構成することが可能である。
(第2実施形態)
次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の第3実施形態以降でも同様である。
図5および図6に示すように、本実施形態における組電池BPと、流体蒸発部40、液供給部42、および流体流出部44との配置関係は、第1実施形態と同様である。すなわち、本実施形態でも、流体蒸発部40は、組電池BPの電池側面BPbに対し熱伝導可能に連結されている。そして、液供給部42は、組電池BPと熱伝導材38との何れからも離れて配置されている。
しかし、本実施形態の蒸発器12は、多穴管50と2つの配管部材51、52とを有し、それらの部材50、51、52がロウ付け等によって互いに接合されることにより構成されている。この点において本実施形態は第1実施形態と異なっている。なお、図5の実線Lsfは、作動流体の液面位置を示している。
具体的には蒸発器12のうち、流体蒸発部40が多穴管50で構成され、液供給部42が上流側配管部材51で構成され、流体流出部44が下流側配管部材52で構成されている。多穴管50、上流側配管部材51、および下流側配管部材52は、例えばアルミニウム合金等の金属製である。
多穴管50は、押出し成形等によって形成された扁平多穴管である。多穴管50は、車両上下方向DRgおよびセル積層方向DRsへ面状に拡がるように形成され、下端である一端50aと上端である他端50bとを有している。そして、多穴管50の内部には複数の連通穴501が形成されている。この複数の連通穴501は複数の蒸発流路401として設けられている。この蒸発流路401としての連通穴501の数は、組電池BPが有する電池セルBCよりも多い。
複数の連通穴501は、互いに隔てられつつ、セル積層方向DRsに積層配置されている。そして、複数の連通穴501はそれぞれ、多穴管50の一端50aから他端50bまで連通し、且つその一端50aと他端50bとのぞれぞれで開放されている。要するに、複数の連通穴501は、多穴管50の一端50aから他端50bへ延びる貫通孔である。
上流側配管部材51および下流側配管部材52はセル積層方向DRsに延びるように形成されている。そして、上流側配管部材51および下流側配管部材52にはそれぞれ、内部空間が形成されている。
上流側配管部材51の内部空間は供給流路421となっており、下流側配管部材52の内部空間は流出流路441となっている。上流側配管部材51には多穴管50の一端50aが接合され、それにより、蒸発流路401としての連通穴501は供給流路421へ連通している。また、下流側配管部材52には多穴管50の他端50bが接合され、それにより、連通穴501は流出流路441へ連通している。
また、流体入口422は、液供給部42のうち、セル積層方向DRsの一方側ではなく他方側に設けられている。
以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40は多穴管50で構成されている。多穴管50には、その多穴管50の一端50aから他端50bまで連通しその一端50aと他端50bとのぞれぞれで開放された複数の連通穴501が形成されている。そして、その複数の連通穴501は複数の蒸発流路401として設けられている。従って、複数の蒸発流路401を容易に形成することが可能である。
(第3実施形態)
次に、第3実施形態について説明する。本実施形態では、前述の第2実施形態と異なる点を主として説明する。
図7に示すように、本実施形態では、第2実施形態とは異なり、蒸発器12は多穴管50を複数有し、流体蒸発部40はその複数の多穴管50で構成されている。その複数の多穴管50はセル積層方向DRsに並んで配置され、上流側配管部材51と下流側配管部材52とに互いに並列に接続されている。
本実施形態の多穴管50も扁平多穴管であるが、本実施形態の多穴管50は各々、第2実施形態の多穴管50よりも扁平断面の長手幅が小さいものとなっている。
なお、本実施形態では例えば複数の多穴管50は電池セルBCと同数設けられ、電池セルBC毎に1本の多穴管50が割り当てられるように配置されている。
以上説明したことを除き、本実施形態は第2実施形態と同様である。そして、本実施形態では、前述の第2実施形態と共通の構成から奏される効果を第2実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40は複数の多穴管50で構成されている。従って、流体蒸発部40を、各電池セルBC相互の微小な位置ずれ等に起因した電池側面BPbの凹凸に追従させ、その電池側面BPbに押し当てることが可能である。要するに、熱伝導材38(図5参照)に対する流体蒸発部40の密着性を向上させることが可能である。
(第4実施形態)
次に、第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図8に示すように、本実施形態では、蒸発流路401の形状および第2プレート部材122の凸部122dの形状が、第1実施形態とは異なっている。
具体的に、セル積層方向DRsの凸部122dの幅が、蒸発流路401の下流端401bに近いほど狭くなっている。そのため、複数の蒸発流路401は、その蒸発流路401の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。その蒸発流路401の流路断面積とは、作動流体流れの向きを法線方向とした断面(具体的には、車両上下方向DRgを法線方向とした断面)における蒸発流路401の断面積である。
以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40の複数の蒸発流路401は何れも、その蒸発流路401の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。従って、蒸発流路401内で作動流体の蒸発により気相の体積割合が大きくなる箇所ほど、蒸発流路401の流路断面積が大きくなる。そのため、各蒸発流路401の容積を不必要に拡大させずに、蒸発流路401における作動流体の気液分離性および気体排出性が良好になる。
なお、本実施形態では、複数の蒸発流路401の全部において、蒸発流路401の流路断面積が作動流体流れ下流側ほど大きくなっているが、蒸発流路401の全部でそうなっている必要はない。すなわち、複数の蒸発流路401のうちの何れかで、蒸発流路401の流路断面積が作動流体流れ下流側ほど大きくなっているだけでもよい。
なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態または第3実施形態と組み合わせることも可能である。
(第5実施形態)
次に、第5実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図9に示すように、本実施形態では、蒸発流路401の形状および第2プレート部材122の凸部122dの形状が、第1実施形態とは異なっている。
具体的に、各凸部122dは、蒸発流路401の上流端401aから下流端401bまでの全長にわたって延びてはいない。複数の凸部122dは、セル積層方向DRsに相互間隔を空けて並んでおり、そのセル積層方向DRsの凸部122dの並びは、2列設けられている。その2列のうちの一方の凸部122dの並びは、他方の凸部122dの並びに対し上方に配置されている。そして、その一方の並びを構成する凸部122dと、他方の並びを構成する凸部122dとの間にも間隔が空いている。
従って、流体蒸発部40の複数の蒸発流路401は、その蒸発流路401の途中にて互いに連通している。すなわち、その複数の蒸発流路401のうちの或る蒸発流路401(別言すれば、一の蒸発流路401)に着目すれば、或る蒸発流路401は、その或る蒸発流路401の途中にて、その或る蒸発流路401と隣り合う蒸発流路401に連通していると言える。
また、本実施形態では、第2プレート部材122の複数の凸部122dは何れも、液供給部42側から流体流出部44側へと延びている。この点では、本実施形態は第1実施形態と同様である。しかし、第1実施形態とは異なり、本実施形態の複数の凸部122dはそれぞれ、セル積層方向DRsに対して傾斜した向きに延びている。従って、本実施形態では、複数の蒸発流路401もそれぞれ、セル積層方向DRsに対して傾斜した向きに延びている。
本実施形態の流出流路441では、その流出流路441の流路断面積はセル積層方向DRsの何れの箇所でも同じであるが、第1実施形態のように、流出流路441の流路断面積は、作動流体流れ下流側ほど大きくなっていても差し支えない。
以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
また、本実施形態によれば、複数の蒸発流路401のうちの或る蒸発流路401は、その或る蒸発流路401の途中にて、その或る蒸発流路401と隣り合う蒸発流路401に連通している。従って、その或る蒸発流路401と、その或る蒸発流路401と隣り合う蒸発流路401との間で内圧を均等に保つことが可能である。すなわち、作動流体の圧力損失を適切に調整することが可能である。
また、複数の蒸発流路401で内圧が均等に保たれれば、一部の蒸発流路401の内圧だけが高圧化することを回避できるので、その高圧化に伴う作動流体の流速上昇も回避できる。そのため、一部の蒸発流路401で作動流体の流速上昇に起因して気液分離性が損なわれることを回避することが可能である。
また、本実施形態によれば、複数の蒸発流路401はそれぞれ、セル積層方向DRsに対して傾斜した向きに延びている。これにより、流体蒸発部40の曲げ強度を確保しやすいというメリットがある。
また、その蒸発流路401の傾斜の向きについて詳しく言うと、蒸発流路401は、蒸発流路401の作動流体流れ下流側ほどセル積層方向DRsの他方側に位置するように、セル積層方向DRsに対して傾斜している。そして、供給流路421の作動流体流れ下流側はセル積層方向DRsの他方側になっている。従って、供給流路421から蒸発流路401へ作動流体が流入する際の流通抵抗を、例えば蒸発流路401が供給流路421に直交するように連結されている場合と比較して低減することが可能である。
なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2〜4実施形態のうちの何れかと組み合わせることも可能である。
(第6実施形態)
次に、第6実施形態について説明する。本実施形態では、前述の第2実施形態と異なる点を主として説明する。
図10および図11に示すように、本実施形態では、流体蒸発部40は、組電池BPのうち電池側面BPbではなく電池下面BPaに対し熱伝導可能に連結されている。この点において本実施形態は第2実施形態と異なっている。なお、図11は蒸発器12単体を図示しており、このことは後述の図13でも同様である。
具体的に、本実施形態の多穴管50は、流体蒸発部40を構成する蒸発構成部502に加え、供給側中継部503と流出側中継部504とを有している。多穴管50の各連通穴501は、供給側中継部503と蒸発構成部502と流出側中継部504との全体にわたって貫通している。例えば、多穴管50の連通穴501のうち蒸発構成部502に含まれる部分が流体蒸発部40の蒸発流路401(図3参照)となっている。
流体蒸発部40は、その流体蒸発部40の上側面402を上方に向けて配置されている。そして、流体蒸発部40は、組電池BPの電池下面BPaに熱伝導材38を挟んで押し付けられている。すなわち、流体蒸発部40は、その流体蒸発部40の上側面402にて、組電池BPのうち電池下面BPaに対し熱伝導可能に連結されている。そして、流体蒸発部40の複数の蒸発流路401としての連通穴501はそれぞれ、組電池BPの電池下面BPaに沿う向きに延びている。
多穴管50の供給側中継部503は、上流側配管部材51と蒸発構成部502との間に配置され、その上流側配管部材51と蒸発構成部502とをつないでいる。供給側中継部503は、蒸発構成部502から、連通穴501内の作動流体流れ上流側すなわち上流側配管部材51側へ延設されている。そして、供給側中継部503は、その供給側中継部503の先端である多穴管50の一端50aにて上流側配管部材51に連結されている。
また、供給側中継部503は、上流側配管部材51側ほど下方に位置するように、車両上下方向DRgに対し傾いて延設されている。従って、本実施形態でも液供給部42は、組電池BPと熱伝導材38との何れからも離れて配置されている。
多穴管50の流出側中継部504は、下流側配管部材52と蒸発構成部502との間に配置され、その下流側配管部材52と蒸発構成部502とをつないでいる。流出側中継部504は、蒸発構成部502から、連通穴501内の作動流体流れ下流側すなわち下流側配管部材52側へ延設されている。そして、流出側中継部504は、その流出側中継部504の先端である多穴管50の他端50bにて下流側配管部材52に連結されている。その下流側配管部材52は、組電池BPから離れて組電池BPの側方に配置されている。
また、流出側中継部504は、下流側配管部材52側ほど上方に位置するように、車両上下方向DRgに対し傾いて延設されている。従って、本実施形態でも、流体流出部44は液供給部42および流体蒸発部40よりも上方に配置され、液供給部42は流体流出部44および流体蒸発部40よりも下方に配置されている。
本実施形態では、下流側配管部材52の内部空間である流出流路441(図3参照)の流路断面積は、セル積層方向DRsの何れの箇所でも同じである。これに関し、その流出流路441の流路断面積は、第2実施形態のように、作動流体流れ下流側ほど大きくなっていても差し支えない。
また、流体入口422は、液供給部42のうち、セル積層方向DRsの他方側ではなく一方側に設けられている。従って、本実施形態の液供給部42の供給流路421(図3参照)では、作動流体がセル積層方向DRsの一方側から他方側へ流れる。
このように構成された蒸発器12では、図11および図12に示すように、液通路部18(図1参照)からの液相の作動流体は、矢印F1のように流体入口422から供給流路421へ流入する。その流入した作動流体は、矢印F2のように供給流路421(図3参照)内を流れ、供給流路421から多穴管50の複数の連通穴501へそれぞれ分配される。すなわち、その作動流体は、その連通穴501から成る複数の蒸発流路401(図3参照)へそれぞれ分配される。その蒸発流路401内の作動流体は、各電池セルBCから熱を奪い蒸発しつつ流れ、多穴管50の流出側中継部504を経て流出流路441(図3参照)へ流入する。
流出流路441へ流入した作動流体は気液分離されると共に、矢印F3のように流出流路441内でセル積層方向DRsの一方側から他方側へ流れ、気相の作動流体が、矢印F4のように流体出口442からガス通路部16(図1参照)へ流出する。
以上説明したことを除き、本実施形態は第2実施形態と同様である。そして、本実施形態では、前述の第2実施形態と共通の構成から奏される効果を第2実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40は、組電池BPのうち電池下面BPaに対し熱伝導可能に連結されている。そして、複数の蒸発流路401としての連通穴501はそれぞれ、電池下面BPaに沿う向きに延びている。従って、組電池BPの自重を利用して、その組電池BPと流体蒸発部40との間に、熱伝導性を高めるための接触荷重を確保することが可能である。
(第7実施形態)
次に、第7実施形態について説明する。本実施形態では、前述の第6実施形態と異なる点を主として説明する。
図13に示すように、本実施形態では、第6実施形態とは異なり、蒸発器12は多穴管50を複数有している。そして、その多穴管50はそれぞれ、蒸発構成部502と供給側中継部503と流出側中継部504とを有している。従って、流体蒸発部40は、複数の多穴管50の蒸発構成部502で構成されている。
その複数の多穴管50はセル積層方向DRsに並んで配置され、上流側配管部材51と下流側配管部材52とに互いに並列に接続されている。
なお、本実施形態では例えば複数の多穴管50は電池セルBCと同数設けられ、電池セルBC毎に1本の多穴管50が割り当てられるように配置されている。
このように構成された蒸発器12では、図13および図14の一点鎖線矢印と破線矢印とで示すように、液通路部18(図1参照)からの液相の作動流体は、基本的に第6実施形態と同様に流れる。
但し、本実施形態の流体入口422は、液供給部42のうち、セル積層方向DRsの一方側ではなく他方側に設けられている。従って、本実施形態の液供給部42の供給流路421(図3参照)では、矢印F2のように作動流体がセル積層方向DRsの他方側から一方側へ流れる。
以上説明したことを除き、本実施形態は第6実施形態と同様である。そして、本実施形態では、前述の第6実施形態と共通の構成から奏される効果を第6実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40は複数の多穴管50で構成されているので、この構成による効果を、これと共通の構成を有する第3実施形態と同様に得ることができる。
(第8実施形態)
次に、第8実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図15および図16に示すように、本実施形態では、第1実施形態と異なり、流体蒸発部40は、組電池BPのうち電池側面BPbではなく電池下面BPaに対し熱伝導可能に連結されている。
また、本実施形態では、液供給部42は、その液供給部42のうち流体蒸発部40側の端縁42cにて、熱伝導材38に接触している。しかし、その熱伝導材38に対するその端縁42cの接触面積は僅かである。従って、本実施形態でも、組電池BPまたは熱伝導材38に接触する表面の面積が液供給部42では流体蒸発部40に比して小さくなるように、液供給部42は配置されている。要するに、液供給部42は、流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されているということに変わりはない。
なお、図16の一点鎖線La、Lbは、第1プレート部材121と第2プレート部材122とが接合された状態でのそれぞれの断面形状を表しており、一点鎖線Laは第1プレート部材121に対応し、一点鎖線Lbは第2プレート部材122に対応する。その一点鎖線La、Lbは、見易い図示とするために、敢えて間隔を空けて図示されている。
以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40は、組電池BPのうち電池下面BPaに対し熱伝導可能に連結されている。このことは前述の第6実施形態と同様である。従って、本実施形態では、前述の第6実施形態と共通の構成から奏される効果を第6実施形態と同様に得ることができる。
(第9実施形態)
次に、第9実施形態について説明する。本実施形態では、前述の第8実施形態と異なる点を主として説明する。
図17に示すように、本実施形態の流出流路441は、その流出流路441の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。この点を除き、本実施形態は第8実施形態と同様である。そして、本実施形態では、前述の第8実施形態と共通の構成から奏される効果を第8実施形態と同様に得ることができる。
また、上述したように本実施形態では、流出流路441は、その流出流路441の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。このことは前述の第1実施形態と同様である。従って、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
(第10実施形態)
次に、第10実施形態について説明する。本実施形態では、前述の第9実施形態と異なる点を主として説明する。
図18に示すように、本実施形態の複数の凸部122dはそれぞれ、セル積層方向DRsに対して傾斜した向きに延びている。従って、本実施形態では、複数の蒸発流路401もそれぞれ、セル積層方向DRsに対して傾斜した向きに延びている。この点を除き、本実施形態は第9実施形態と同様である。そして、本実施形態では、前述の第9実施形態と共通の構成から奏される効果を第9実施形態と同様に得ることができる。
また、上述したように本実施形態では、複数の蒸発流路401はそれぞれ、セル積層方向DRsに対して傾斜した向きに延びている。このことは前述の第5実施形態と同様である。従って、本実施形態では、前述の第5実施形態と共通の構成から奏される効果を第5実施形態と同様に得ることができる。
(第11実施形態)
次に、第11実施形態について説明する。本実施形態では、前述の第9実施形態と異なる点を主として説明する。
図19に示すように、本実施形態では、蒸発流路401の形状および第2プレート部材122の凸部122dの形状が、第9実施形態とは異なっている。更に、本実施形態では、組電池BPが複数設けられていることが、第9実施形態と異なっている。
具体的に本実施形態では、組電池BPが2つ設けられている。その2つの組電池BPにおいて複数の電池セルBCは、互いに同じ向きであるセル積層方向DRsに積層されている。また、流体蒸発部40は、2つの組電池BPの何れでも、電池下面BPaに対し熱伝導可能に連結されている。
第2プレート部材122の全部の凸部122dのうち一部の凸部122dは、蒸発流路401の上流端401aから下流端401bに至るまでの途中で分割されている。その分割され凸部122dと、それ以外の凸部122dすなわち蒸発流路401の上流端401aから下流端401bまで連続して延びる凸部122dとが、蒸発流路401を挟み交互にセル積層方向DRsに並んでいる。
そして、その分割された凸部122dの一方の分割部分と他方の分割部分とは、蒸発流路401の延び方向へ相互間隔を空けて直列に並んでいる。そのため、分割された凸部122dを挟んで互いに隣り合う2本の蒸発流路401は、その分割された凸部122dの一方の分割部分と他方の分割部分との相互間隔を介して、相互に連通している。要するに、その隣り合う2本の蒸発流路401のうちの一方の蒸発流路401は、その一方の蒸発流路401の途中にて、他方の蒸発流路401に連通している。
以上説明したことを除き、本実施形態は第9実施形態と同様である。そして、本実施形態では、前述の第9実施形態と共通の構成から奏される効果を第9実施形態と同様に得ることができる。
また、本実施形態によれば、第2プレート部材122は、蒸発流路401の上流端401aから下流端401bに至るまでの途中で分割された凸部122dを含んでいる。このことは前述の第5実施形態と同様である。従って、本実施形態では、前述の第5実施形態と共通の構成から奏される効果を第5実施形態と同様に得ることができる。
なお、本実施形態は第9実施形態に基づいた変形例であるが、本実施形態を前述の第2〜4、6〜8、10実施形態のうちの何れかと組み合わせることも可能である。
(第12実施形態)
次に、第12実施形態について説明する。本実施形態では、前述の第9実施形態と異なる点を主として説明する。
図20に示すように、本実施形態では、組電池BPと流体蒸発部40と流体流出部44とがそれぞれ2つずつ設けられている。この点において本実施形態は第9実施形態と異なっている。
具体的に本実施形態では、2つの組電池BPの各々が有する複数の電池セルBCは、互いに同じ向きであるセル積層方向DRsに積層されている。そして、2つの流体蒸発部40のうちの一方の流体蒸発部40は、2つの組電池BPのうちの一方の組電池BPが有する電池下面BPaに対し熱伝導可能に連結されている。これと同様に、他方の流体蒸発部40は、他方の組電池BPが有する電池下面BPaに対し熱伝導可能に連結されている。
そして、本実施形態の蒸発器12は、液供給部42を中心として対称的に形成されている。例えば、本実施形態の蒸発器12のうち、液供給部42を境として一方側に含まれる流体蒸発部40および流体流出部44は、第9実施形態の流体蒸発部40および流体流出部44と同様に構成されている。また、本実施形態の蒸発器12のうち、液供給部42を境として他方側に含まれる流体蒸発部40および流体流出部44も、第9実施形態の流体蒸発部40および流体流出部44と同様に構成されている。
従って、液供給部42は、一方の流体蒸発部40と他方の流体蒸発部40との間に配置され、それぞれの流体蒸発部40へ連結されている。すなわち、液供給部42は、供給流路421内へ流入した液相の作動流体を、一方の流体蒸発部40が有する複数の蒸発流路401の各々へ分配供給すると同時に、他方の流体蒸発部40が有する複数の蒸発流路401の各々へも分配供給する。
また、2つの流体流出部44のうちの一方の流体流出部44は、一方の流体蒸発部40に、液供給部42側とは反対側にて連結されている。これと同様に、他方の流体流出部44は、他方の流体蒸発部40に、液供給部42側とは反対側にて連結されている。その一方の流体流出部44と他方の流体流出部44とのそれぞれに、流体出口442が形成されている。各流体出口442はガス通路部16へ接続されている。
以上説明したことを除き、本実施形態は第9実施形態と同様である。そして、本実施形態では、前述の第9実施形態と共通の構成から奏される効果を第9実施形態と同様に得ることができる。
なお、本実施形態は第9実施形態に基づいた変形例であるが、本実施形態を前述の第2〜8、10、11実施形態のうちの何れかと組み合わせることも可能である。
(第13実施形態)
次に、第13実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図21に示すように、本実施形態の供給流路421は、その供給流路421の流路断面積が作動流体流れ下流側ほど小さくなるように形成されている。この点を除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
また、上述したように本実施形態では、供給流路421は、その供給流路421の流路断面積が作動流体流れ下流側ほど小さくなるように形成されている。従って、作動流体回路10の作動流体の封入量を抑えつつ、供給流路421を流れる作動流体の圧損低減を図ることが可能である。
なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2〜12実施形態のうちの何れかと組み合わせることも可能である。
(第14実施形態)
次に、第14実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
図22および図23に示すように、本実施形態では、第1実施形態と同様に、流体蒸発部40は、組電池BPのうち電池側面BPbに対し熱伝導可能に連結されている。具体的には、その流体蒸発部40は、電池側面BPbに対し熱伝導材38を介して連結されている。そして、液供給部42は、組電池BPと熱伝導材38との何れからも離れて配置されている。
しかし、本実施形態では、第1実施形態と異なり、供給流路421と流出流路441は、電池側面BPbの正面に配置されている。そして、液供給部42と組電池BPとの間および流体流出部44と組電池BPとの間にはそれぞれ、蒸発流路401の一部が介在している。これにより、組電池BPが車両上下方向DRgに占める高さ範囲Hbp内に液供給部42および流体流出部44を配置し、その高さ範囲Hbp内に蒸発器12を収めることが可能となっている。
例えば、本実施形態では、2つの組電池BPの上端と蒸発器12の上端は車両上下方向DRgで相互に揃えられており、2つの組電池BPの下端と蒸発器12の下端も車両上下方向DRgで相互に揃えられている。
また、本実施形態の蒸発器12は2つの組電池BPを同時に冷却する。すなわち、その蒸発器12では、流体蒸発部40は、流体蒸発部40の一面側にて、2つの組電池BPのうちの一方に熱伝導可能に連結されている。それと共に、その流体蒸発部40は、流体蒸発部40の他面側にて、2つの組電池BPのうちの他方に熱伝導可能に連結されている。
なお、図22では、熱伝導材38の図示が省略されている。また、図23には、蒸発流路401内の作動流体が沸騰していないときの作動流体の停止時液面Foffと、蒸発流路401内の作動流体が沸騰しているときの作動流体の冷却時液面Fonとが併記されている。これらの液面Foff、Fonを比較して判るように、作動流体の液面は、作動流体が組電池BPから吸熱し沸騰することにより上昇する。
具体的には、図23および図24に示すように、蒸発器12は、セル積層方向DRsへ積層された複数の積層ユニット60と、エンドプレート62とを備えている。その積層ユニット60およびエンドプレート62は何れも、熱伝導性が高いアルミニウム合金等の金属製である。なお、図24では、見易い図示とするために、電池セルBCは二点鎖線で図示されると共に熱伝導材38は破線で図示されている。そして、組電池BPが有する複数の電池セルBCのうち一部の図示と、複数の積層ユニット60のうち一部の図示とが省略されている。このことは、後述の図28、図31、および図36でも同様である。
図25および図26に示すように、積層ユニット60(言い換えれば、ブロック状の積層ブロック60)は、車両上下方向DRgへ延びるように形成された中空の直方体形状を成している。また、積層ユニット60は、セル積層方向DRsおよび車両上下方向DRgに沿って拡がるユニット側面601を有している。そのユニット側面601は積層ユニット60の外表面の一部であり、2つのうちの一方の組電池BP側および他方の組電池BP側(すなわち、積層ユニット60の両側)にそれぞれ形成されている。
なお、本実施形態において、ユニット側面601は平面状であり、そのユニット側面601の法線方向DRaは、セル積層方向DRsおよび車両上下方向DRgに交差する方向、厳密に言えばセル積層方向DRsおよび車両上下方向DRgに直交する方向になっている。また、ユニット側面601の法線方向DRaを側面法線方向DRaと呼ぶものとする。
また、積層ユニット60は側面法線方向DRaに対称形状となるように形成されている。積層ユニット60の積層数は、組電池BPが有する電池セルBCの積層数と同じであってもよいし、異なっていてもよい。そして、セル積層方向DRsにおいて積層ユニット60は電池セルBC毎に一対一で対応して設けられていてもよいし、組電池BPの長さのうちの或る区間毎に一対一で対応して設けられていてもよい。
図24および図26に示すように、ユニット側面601は、組電池BPの電池側面BPbに対向している。それと共に、ユニット側面601は熱伝導材38に接触し、その熱伝導材38を介して電池側面BPbに対し熱伝導可能に連結されている。
図26および図27に示すように、積層ユニット60は中空形状であるので、積層ユニット60の外壁として、一対の側方壁602と下方壁603と上方壁604と蒸発流路仕切壁605とを有している。その一対の側方壁602は、側面法線方向DRaにおける積層ユニット60の一方側と他方側とにそれぞれ設けられている。そして、ユニット側面601は、積層ユニット60のうち、この側方壁602に形成されている。
また、下方壁603は積層ユニット60の下端に設けられ、上方壁604は積層ユニット60の上端に設けられている。
積層ユニット60の単体としては、セル積層方向DRsにおいて積層ユニット60の一方側は開放されており、積層ユニット60の他方側は蒸発流路仕切壁605に覆われている。この蒸発流路仕切壁605は、図24および図27に示すように、複数の蒸発流路401をセル積層方向DRsに仕切る仕切壁となっている。なお、積層ユニット60の開放された上記一方側は、その一方側に積層ユニット60が積層されることで、その一方側に積層された積層ユニット60が有する蒸発流路仕切壁605によって覆われる。
例えば、複数の積層ユニット60のうちの或る積層ユニット60である第1の積層ユニット60と、その第1の積層ユニット60に対しセル積層方向DRsの一方側に隣接する第2の積層ユニット60とを想定したとする。その場合、その第2の積層ユニット60が有する蒸発流路仕切壁605は、第1および第2の積層ユニット60に形成されたそれぞれの蒸発流路401をセル積層方向DRsに仕切っている。
図26および図27に示すように、蒸発流路仕切壁605は、第1壁貫通孔605bを形成する第1貫通孔形成部605aと、第2壁貫通孔605dを形成する第2貫通孔形成部605cとを有している。その第1壁貫通孔605bと第2壁貫通孔605dは何れも、蒸発流路仕切壁605をセル積層方向DRsに貫通する貫通孔である。また、第1貫通孔形成部605aは、蒸発流路仕切壁605のうち下方寄りに配置され、第2貫通孔形成部605cは、蒸発流路仕切壁605のうち上方寄りに配置されている。
また、積層ユニット60は、液供給部42の一部を構成する壁状の供給側壁部606と、流体流出部44の一部を構成する壁状の流出側壁部607とを有している。この供給側壁部606と流出側壁部607はそれぞれ蒸発流路仕切壁605に固定され、積層ユニット60の外壁602、603、604、605で囲まれた積層ユニット60の内部空間内に収容されている。
供給側壁部606は、蒸発流路仕切壁605からセル積層方向DRsの一方側(すなわち、積層ユニット60の内部空間側)へ突き出た壁形状を成している。そして、供給側壁部606は、積層ユニット60内で蒸発流路401と供給流路421との間を仕切る仕切壁として構成された供給側仕切部となっている。
詳細には、供給側壁部606は、積層ユニット60内で下方寄りに配置されている。また、供給側壁部606は、下方が開放された溝を内部に形成するU字断面形状の壁で構成されている。そして、供給側壁部606は、セル積層方向DRsにおける蒸発流路仕切壁605の一方側で、第1壁貫通孔605bに対する上方および側面法線方向DRaでの両側を覆うように形成されている。その一方で、供給側壁部606の開放された下方部分は、供給側開口606aとなっている。この供給側開口606aは、第1壁貫通孔605bの中心よりも下方に位置している。
流出側壁部607は、蒸発流路仕切壁605からセル積層方向DRsの一方側(すなわち、積層ユニット60の内部空間側)へ突き出た壁形状を成している。そして、流出側壁部607は、積層ユニット60内で蒸発流路401と流出流路441との間を仕切る仕切壁として構成された流出側仕切部となっている。
詳細には、流出側壁部607は、積層ユニット60内で上方寄りに配置されている。また、流出側壁部607は、上方が開放された溝を内部に形成するU字断面形状の壁で構成されている。そして、流出側壁部607は、セル積層方向DRsにおける蒸発流路仕切壁605の一方側で、第2壁貫通孔605dに対する下方および側面法線方向DRaでの両側を覆うように形成されている。その一方で、流出側壁部607の開放された上方部分は、流出側開口607aとなっている。この流出側開口607aは、第2壁貫通孔605dの中心よりも上方に位置している。
また、複数の積層ユニット60は、セル積層方向DRsへ積層されて互いに接合されることにより、流体蒸発部40と液供給部42と流体流出部44とを構成する。すなわち、個々の積層ユニット60は、流体蒸発部40の一部と液供給部42の一部と流体流出部44の一部とを有している。
具体的に、各積層ユニット60において、その積層ユニット60が有する上記流体蒸発部40の一部には、上記の側方壁602と、下方壁603と、上方壁604と、蒸発流路仕切壁605のうち蒸発流路401に面している部分とが該当する。また、積層ユニット60が有する上記液供給部42の一部には、第1貫通孔形成部605aと供給側壁部606とが該当する。また、積層ユニット60が有する上記流体流出部44の一部には、第2貫通孔形成部605cと流出側壁部607とが該当する。
積層ユニット60同士の接合では、詳細には、一対の側方壁602、下方壁603、上方壁604、供給側壁部606、および流出側壁部607のセル積層方向DRsにおける一方側の端縁がそれぞれ、その一方側に隣接し接合相手になる積層ユニット60の蒸発流路仕切壁605に接合される。
図24〜図26に示すように、エンドプレート62は、セル積層方向DRsを厚み方向とした板状に形成されている。エンドプレート62は、複数の積層ユニット60のうちセル積層方向DRsの一方側の端に位置する積層ユニット60すなわち一方端積層ユニット60aに対し更に一方側に配置されている。そして、エンドプレート62は、セル積層方向DRsにおける一方端積層ユニット60aの一方側を覆うように、その一方端積層ユニット60aに接合されている。詳細には、一方端積層ユニット60aが有する一対の側方壁602、下方壁603、上方壁604、供給側壁部606、および流出側壁部607のセル積層方向DRsにおける一方側の端縁がそれぞれ、エンドプレート62に接合されている。なお、積層ユニット60同士の接合、および積層ユニット60とエンドプレート62との接合は、例えばロウ付け等の接合方法により行われ、気密な接合となっている。
また、エンドプレート62には、流体入口422と、その流体入口422よりも上方に配置された流体出口442が形成されている。流体入口422および複数の第1壁貫通孔605bは、蒸発器12のうち下方寄りの位置で、セル積層方向DRsへ延びる共通の軸線上に設けられている。また、流体出口442および複数の第2壁貫通孔605dは、蒸発器12のうち上方寄りの位置で、セル積層方向DRsへ延びる共通の軸線上に設けられている。
従って、複数の積層ユニット60がセル積層方向DRsに積層されることで、供給流路421と流出流路441とがそれぞれ、セル積層方向DRsに沿って直線状に延びるように形成される。別言すれば、供給流路421は、複数の第1壁貫通孔605bを含んで蒸発流路仕切壁605を貫通し、セル積層方向DRsに延びている。そして、流出流路441は、複数の第2壁貫通孔605dを含んで蒸発流路仕切壁605を貫通し、セル積層方向DRsに延びている。
なお、複数の積層ユニット60のうちセル積層方向DRsの他方側の端に位置する積層ユニット60すなわち他方端積層ユニット60bが有する蒸発流路仕切壁605には、貫通孔605b、605dは形成されていない。
図25〜図27に示すように、本実施形態では、積層ユニット60毎に、1本の蒸発流路401が形成されている。言い換えれば、複数の積層ユニット60の各々には、1本の蒸発流路401が形成されている。
詳細には、複数の積層ユニット60の各々において、その積層ユニット60に形成された蒸発流路401は、蒸発中間流路401cと、一対の上流側流路401dと、一対の下流側流路401hとを有している。その蒸発中間流路401cと一対の上流側流路401dと一対の下流側流路401hは何れも、作動流体を下方から上方へ流す流路である。そして、その一対の下流側流路401hは蒸発中間流路401cよりも作動流体流れ下流側に設けられ、その蒸発中間流路401cは一対の上流側流路401dよりも作動流体流れ下流側に設けられている。
また、蒸発流路401は、車両上下方向DRgにおいて、積層ユニット60内の略全長に及んでいる。そのため、図26の領域Acとして示すユニット側面601の全体が、組電池BPを冷却する流体蒸発部40の冷却面として機能する。
蒸発中間流路401cは、積層ユニット60のうち車両上下方向DRgで、液供給部42の一部を構成する供給側壁部606と、流体流出部44の一部を構成する流出側壁部607との間に配置されている。そして、蒸発中間流路401cは、一対の下流側流路401hを介して流出流路441へ接続し、且つ、一対の上流側流路401dを介して供給流路421へ接続している。
一対の上流側流路401dはそれぞれ、電池側面BPbと供給流路421との間に介在するように配置される供給側介在流路として設けられている。その一対の上流側流路401dはそれぞれ、蒸発中間流路401cに対し下方に配置され、蒸発中間流路401cと供給流路421とを接続する。そして、一対の上流側流路401dはそれぞれ、蒸発中間流路401cへ連結された上端401eと、蒸発流路401の上流端401aとしての下端401fとを有している。上流側流路401dでは作動流体は下端401fから上端401eへ流れる。すなわち、上流側流路401dの上端401eは、下端401fよりも作動流体流れ下流側に設けられている。
また、上流側流路401dの下端401fは、供給流路421から下向きに開口する供給側開口606aに連結している。要するに、その上流側流路401dの下端401fは、供給流路421に対し、その供給流路421の下方にて連結している。
また、一対の上流側流路401dのうち一方の上流側流路401dは、供給側壁部606に対し、側面法線方向DRaの一方側に配置されている。従って、その一方の上流側流路401dは、側面法線方向DRaで、2つの組電池BPのうち一方の組電池BPが有する電池側面BPbと供給流路421との間に介在するように配置されている。
これと同様に、一対の上流側流路401dのうち他方の上流側流路401dは、供給側壁部606に対し、側面法線方向DRaの他方側に配置されている。従って、その他方の上流側流路401dは、側面法線方向DRaで、2つの組電池BPのうち他方の組電池BPが有する電池側面BPbと供給流路421との間に介在するように配置されている。
このような配置関係から判るように、供給側壁部606は、一対の上流側流路401dと供給流路421との間および蒸発中間流路401cと供給流路421との間を仕切るように形成されている。
一対の下流側流路401hはそれぞれ、電池側面BPbと流出流路441との間に介在するように配置される流出側介在流路として設けられている。その一対の下流側流路401hはそれぞれ、蒸発中間流路401cに対し上方に配置され、蒸発中間流路401cと流出流路441とを接続する。そして、一対の下流側流路401hはそれぞれ、蒸発流路401の下流端401bとしての上端401iと、蒸発中間流路401cへ連結された下端401jとを有している。下流側流路401hでは作動流体は下端401jから上端401iへ流れる。すなわち、下流側流路401hの下端401jは、上端401iよりも作動流体流れ上流側に設けられている。
また、下流側流路401hの上端401iは、流出流路441から上向きに開口する流出側開口607aに連結している。要するに、その下流側流路401hの上端401iは、流出流路441に対し、その流出流路441の上方にて連結している。
また、一対の下流側流路401hのうち一方の下流側流路401hは、流出側壁部607に対し、側面法線方向DRaの一方側に配置されている。従って、その一方の下流側流路401hは、側面法線方向DRaで、2つの組電池BPのうち一方の組電池BPが有する電池側面BPbと流出流路441との間に介在するように配置されている。
これと同様に、一対の下流側流路401hのうち他方の下流側流路401hは、流出側壁部607に対し、側面法線方向DRaの他方側に配置されている。従って、その他方の下流側流路401hは、側面法線方向DRaで、2つの組電池BPのうち他方の組電池BPが有する電池側面BPbと流出流路441との間に介在するように配置されている。
このような配置関係から判るように、流出側壁部607は、一対の下流側流路401hと流出流路441との間および蒸発中間流路401cと流出流路441との間を仕切るように形成されている。
図25〜図27に示すように、複数の積層ユニット60のそれぞれにおいて、流出側壁部607には仕切連通孔607bが形成されている。この仕切連通孔607bは、流出流路441から壁状の流出側壁部607を下方へ貫通する貫通孔として形成されているので、その流出流路441の下方に配置されている。このように形成されているので、仕切連通孔607bは、流出流路441を下流側流路401hを経ずに蒸発中間流路401cへ連通させる。すなわち、仕切連通孔607bは、蒸発中間流路401cに対して、下流側流路401hと並列に接続されている。
この仕切連通孔607bは、下流側流路401hから液相の作動流体が噴出し流出側壁部607内の流出流路441に流入した場合に、その流入した液相の作動流体を図25の矢印Drnのように蒸発中間流路401cへ戻す。
そのために、仕切連通孔607bは、作動流体の流れが一対の下流側流路401hのうちの各々の流路を通る場合よりも仕切連通孔607bを通る場合の方が絞られる大きさとなるように形成されている。要するに、作動流体の流路としての仕切連通孔607bの流路断面積は、一対の下流側流路401hのうちの各々の流路の流路断面積よりも格段に小さくなっている。これにより、蒸発中間流路401cから上方へ流れる気液二相の作動流体の殆どは、仕切連通孔607bではなく一対の下流側流路401hへと流れる。
なお、積層ユニット60の単体で見れば仕切連通孔607bは溝状に形成されている。そして、その仕切連通孔607bが形成された流出側壁部607が、セル積層方向DRsに隣接する積層ユニット60の蒸発流路仕切壁605に接合されることで、その仕切連通孔607bは完全な孔形状になる。仕切連通孔607bは完全な孔形状である必要はなく溝状であってもよい。
複数の積層ユニット60のそれぞれにおいて、供給側壁部606には、供給流路421内に発生した気泡を図25の矢印Egのように排出するための気泡排出孔606bが形成されている。この気泡排出孔606bは、供給流路421から壁状の供給側壁部606を上方へ貫通する貫通孔として形成されているので、その供給流路421の上方に配置されている。
この気泡排出孔606bは、液相の作動流体の流通を妨げつつ気相の作動流体の流通を許容する非常に小さい流路断面積となるように形成されている。そのため、供給流路421内の気相の作動流体は、供給流路421内で上方に偏り、気泡排出孔606bを介して蒸発流路401へ排出される。また、供給流路421内の液相の作動流体の殆どは、供給側開口606aから一対の上流側流路401dへ流れる。
なお、積層ユニット60の単体で見れば気泡排出孔606bは溝状に形成されている。そして、その気泡排出孔606bが形成された供給側壁部606が、セル積層方向DRsに隣接する積層ユニット60の蒸発流路仕切壁605に接合されることで、その気泡排出孔606bは完全な孔形状になる。気泡排出孔606bは完全な孔形状である必要はなく溝状であってもよい。
以上のように構成された蒸発器12では、作動流体は、図24〜図26に示す矢印F1、F11、F12、F13、F14、F15、F16、F17、F18、F4のように流通する。
具体的には、液通路部18(図1参照)からの液相の作動流体は、矢印F1のように流体入口422から供給流路421へ流入する。その流入した作動流体は、矢印F11のように、供給流路421内ではセル積層方向DRsの一方側から他方側へ流れる。そして、その供給流路421内の作動流体は、各積層ユニット60において、供給側開口606aから一対の上流側流路401dへそれぞれ矢印F12、F13のように流れる。
蒸発流路401内では作動流体は矢印F14、F15のように下方から上方へ流れつつ、2つの組電池BPの熱によって沸騰させられる。詳細には、作動流体は、一対の上流側流路401d、蒸発中間流路401c、一対の下流側流路401hの順に流れつつ、各電池セルBCから熱を奪い蒸発する。そのため、それぞれの蒸発流路401で作動流体は気相のみ又は気液二相となって流出流路441へ流入する。
このとき、一対の上流側流路401dでは作動流体が蒸発しつつ流れるので、その一対の上流側流路401dは、2つの組電池BPのそれぞれと液供給部42との間を断熱する断熱部(言い換えれば、断熱層)として機能する。詳細に言えば、その上流側流路401dに流れる液相または気液二相の作動流体は、2つの組電池BPからの熱を吸熱して蒸発することにより、2つの組電池BPのそれぞれと液供給部42との間を断熱する。また、上流側流路401dが占める空間分、液供給部42が2つの組電池BPのそれぞれから離れていることによっても、上流側流路401dは、2つの組電池BPのそれぞれと液供給部42との間を断熱する。
このように液供給部42が組電池BPとの間に断熱部としての上流側流路401dを介在させて配置されているので、本実施形態でも第1実施形態と同様に、液供給部42は、流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されている。そして、流体入口422から流入した液相の作動流体は供給流路421を経由して、各積層ユニット60内に形成された蒸発流路401の上流端401aまで、沸騰せずに且つ気泡流になることなく略液相のまま供給される。
なお、作動流体回路10に封入されている作動流体の封入量は、作動流体が組電池BPからの熱で沸騰した場合にその作動流体の液面が流出側壁部607の上端近傍(例えば、図23の冷却時液面Fon)にまで上昇するように設定されている。
矢印F14、F15のように蒸発流路401内を流れた作動流体は、矢印F16、F17のように流出側開口607aから流出流路441へ流入する。その流出流路441へ流入した作動流体は気液分離されつつ、矢印F18のように流出流路441内でセル積層方向DRsの他方側から一方側へ流れる。このとき、気液分離された気相の作動流体は流出流路441のうち上方に偏りつつ流れ、液相の作動流体は流出流路441のうち下方に偏りつつ流れる。そのため、流体出口442は、気相と液相とのうち気相の作動流体を優先して流出させるために、流出流路441のうち上方寄りの位置に連結されている。
流出流路441内でセル積層方向DRsの一方側の端まで流れた気相の作動流体は、矢印F4のように流体出口442からガス通路部16(図1参照)へ流出する。
以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
また、本実施形態によれば、複数の蒸発流路401はそれぞれ一対の上流側流路401dを有している。そして、その一対の上流側流路401dはそれぞれ、組電池BPの電池側面BPbと供給流路421との間に介在するように配置されている。従って、組電池BPと供給流路421との間を上流側流路401dで断熱することが可能である。それと共に、蒸発流路401を組電池BPと供給流路421との間にまで延ばすことができる。
これにより、蒸発器12の車両上下方向DRgの高さを制限しつつ液供給部42を設けたことに起因して、組電池BPからの熱を受ける流体蒸発部40の面積が少なくなってしまうことを防止することが可能である。その組電池BPからの熱を受ける流体蒸発部40の面積とは、具体的に言えば、熱伝導材38を介して電池側面BPbに連結される流体蒸発部40の面積であり、図26では領域Acの大きさがそれに相当する。
また、本実施形態によれば、複数の蒸発流路401はそれぞれ下流側流路401hを有している。そして、その下流側流路401hは、組電池BPの電池側面BPbと流出流路441との間に介在するように配置されている。従って、蒸発流路401を組電池BPと流出流路441との間にまで延ばすことができる。これにより、蒸発器12の車両上下方向DRgの高さを制限しつつ流体流出部44を設けたことに起因して、組電池BPからの熱を受ける流体蒸発部40の面積が少なくなってしまうことを防止することが可能である。
本実施形態では、図23〜図26に示すように、車両上下方向DRgの積層ユニット60の高さ一杯を流体蒸発部40として利用しながら、供給流路421と流出流路441とを成立させている。そして、その積層ユニット60の高さは組電池BPの高さに揃えられている。例えば、組電池BPおよび蒸発器12は車両に搭載される場合には床下または荷物室の下に配置されることが多く、このように蒸発器12を車両上下方向DRgに小型化することにより、車両への搭載性を向上させることができる。
また、本実施形態では、流体蒸発部40の一部が液供給部42と組電池BPとの間の伝熱を妨げる断熱層としてして機能する。そのため、流体蒸発部40が組電池BPからの熱を受ける受熱面積を十分に確保しつつ、組電池BPからの熱に起因した液供給部42内の温度上昇を抑制し、液供給部42内の作動流体の蒸発を抑制することが可能である。このように流体蒸発部40の受熱面積を増やす構造により、その受熱面積の増加分に応じて蒸発器12の冷却能力を高めることが可能である。そして、組電池BPの温度分布において温度バラツキを低減することが可能である。
また、本実施形態によれば、上流側流路401dは、蒸発流路401の上流端401aとしての下端401fと、その下端401fよりも作動流体流れ下流側に設けられた上端401eとを有している。そして、上流側流路401dの下端401fは、供給流路421に対しその供給流路421の下方にて連結している。従って、上流側流路401dで作動流体を組電池BPから吸熱させつつ車両上下方向DRgに最大限長く流通させることが可能である。これにより、その上流側流路401dを流れる作動流体に組電池BPから吸熱させ易くなる。
また、本実施形態によれば、液供給部42が有する壁状の供給側壁部606は、上流側流路401dと供給流路421との間を仕切っている。従って、供給流路421と上流側流路401dとの間において作動流体の流通経路を制限し、供給流路421から上流側流路401dへ流れる作動流体を上流側流路401dの下端401fなど特定の場所へと導くことが可能である。
また、本実施形態によれば、下流側流路401hは、蒸発流路401の下流端401bとしての上端401iと、その上端401iよりも作動流体流れ上流側に設けられた下端401jとを有している。そして、下流側流路401hの上端401iは、流出流路441に対しその流出流路441の上方にて連結している。従って、下流側流路401hで作動流体を組電池BPから吸熱させつつ車両上下方向DRgに最大限長く流通させることが可能である。これにより、その下流側流路401hを流れる作動流体に組電池BPから吸熱させ易くなる。
また、本実施形態によれば、流体流出部44は、下流側流路401hと流出流路441との間および蒸発中間流路401cと流出流路441との間を仕切る壁状の流出側壁部607を有している。その流出側壁部607には、蒸発中間流路401cに対して下流側流路401hと並列に接続され且つ流出流路441を蒸発中間流路401cへ連通させる仕切連通孔607bが形成されている。そして、その仕切連通孔607bは流出流路441の下方に配置され、作動流体の流れが下流側流路401hを通る場合よりも仕切連通孔607bを通る場合の方が絞られる大きさとなるように形成されている。
ここで、蒸発器12の冷却能力が大きく発揮されるときには、流体蒸発部40での作動流体の沸騰が激しく起こるので、気泡の上昇により作動流体の液面が上昇する。その結果、液相の作動流体が一時的に流出流路441内に流れ込むことがある。
本実施形態では、上記のように仕切連通孔607bが設けられているので、このような激しい沸騰等に起因して液相の作動流体が一時的に流出流路441内に溜まった場合に、その液相の作動流体を蒸発流路401へ戻すことが可能である。例えばその激しい沸騰が収まった後に、流出流路441内に溜まった液相の作動流体を仕切連通孔607bを介して蒸発流路401へ戻すことが可能である。
そして、上記した仕切連通孔607bの大きさにより、蒸発中間流路401cで上方へ流れる作動流体の気泡流は仕切連通孔607bではなく専ら下流側流路401hへと流れる。すなわち、その蒸発流路401で気泡流となった作動流体が仕切連通孔607bを通って流出流路441へ流れ込むことを防止することが可能である。
また、本実施形態によれば、図24〜図26に示すように、蒸発器12は複数の積層ユニット60を備え、その複数の積層ユニット60は各々、流体蒸発部40の一部と液供給部42の一部と流体流出部44の一部とを有し、車両上下方向DRgへ延びるように形成される。そして、その複数の積層ユニット60には、車両上下方向DRgに沿って拡がるユニット側面601が形成されている。そのユニット側面601は、組電池BPの電池側面BPbに対向すると共に、その電池側面BPbに対し熱伝導可能に連結されている。また、複数の積層ユニット60は、セル積層方向DRsへ積層されて互いに接合されることにより、流体蒸発部40と液供給部42と流体流出部44とを構成する。
従って、組電池BPが有する電池セルBCの積層数に応じて積層ユニット60の積層数を定めることで、組電池BPの体格に合わせた蒸発器12を構成することが可能である。例えば、複数の積層ユニット60を積層することで、電池セルBC毎またはセル積層方向DRsの或る区間毎に、車両上下方向DRgに延びる蒸発流路401を形成することができる。これにより、蒸発器12のうちセル積層方向DRsでの一部分のみがドライアウトしてしまうことを抑制することができる。そして、組電池BPにおいて電池セルBC毎の冷却バラツキや温度バラツキが生じることを抑制することができる。
(第15実施形態)
次に、第15実施形態について説明する。本実施形態では、前述の第14実施形態と異なる点を主として説明する。
図28および図29に示すように、本実施形態では、蒸発器12は断熱管64を備えている。この点において本実施形態は第14実施形態と異なっている。
具体的に、断熱管64は、その断熱管64の内側と外側との間を断熱する断熱材として機能する。例えば断熱管64は樹脂製のパイプであり、その材質から、断熱管64は、ユニット側面601が形成された側方壁602と比較して高い断熱性を有する。
断熱管64は、セル積層方向DRsへ延びるパイプである。この断熱管64は、例えば、複数の積層ユニット60とエンドプレート62とが相互にロウ付け接合された後に、複数の積層ユニット60とエンドプレート62とからなる積層接合体の中へエンドプレート62の流体入口422から挿入される。
そして、蒸発器12の中では、断熱管64のうちセル積層方向DRsの一方側に形成された一方側開口641は流体入口422に接続している。そのため、流体入口422へ流入した作動流体は、一方側開口641から断熱管64内へ流れ込んで、断熱管64内をセル積層方向DRsの一方側から他方側へと流通する。
従って、断熱管64内の空間が供給流路421となっている。そのため、断熱管64と積層ユニット60に設けられた供給側壁部606とが、一対の上流側流路401dと供給流路421との間および蒸発中間流路401cと供給流路421との間を仕切る供給側仕切部を構成する。そして、本実施形態では、その供給側仕切部は、断熱材として機能する断熱管64を含んで構成されていることになる。
また、上記の積層接合体の中へ挿入された断熱管64は、各積層ユニット60の第1壁貫通孔605bを通って他方端積層ユニット60bの内部にまで到達している。そして、断熱管64には、断熱管64の径方向へ貫通した複数の径方向孔642が形成されている。本実施形態では、断熱管64の上方に複数の径方向孔642が形成されると共に、断熱管64の下方にも複数の径方向孔642が形成されており、それらの径方向孔642は何れも断熱管64の管壁を車両上下方向DRgに貫通している。
また、断熱管64の径方向孔642は、積層ユニット60毎に少なくとも1つ、積層ユニット60内へ開口するように設けられている。そのため、断熱管64内を流通する液相の作動流体は、各積層ユニット60にて矢印Adsのように径方向孔642から流出し、各積層ユニット60に分配される。
以上説明したことを除き、本実施形態は第14実施形態と同様である。そして、本実施形態では、前述の第14実施形態と共通の構成から奏される効果を第14実施形態と同様に得ることができる。
また、本実施形態によれば、一対の上流側流路401dと供給流路421との間および蒸発中間流路401cと供給流路421との間を仕切る供給側壁部606は、断熱材として機能する断熱管64を含んで構成されている。従って、一対の上流側流路401dに加えその断熱管64によっても、組電池BPと供給流路421との間を断熱することが可能である。
これにより、断熱管64が無い場合と比較して、組電池BPからの熱が供給流路421内の作動流体へ更に伝わりにくくなり、供給流路421での作動流体の蒸発を抑制することができる。その結果として例えば、断熱管64が無い場合と比較して、供給流路421でのドライアウトが発生する可能性を低減することが可能である。そして、蒸発器12においてセル積層方向DRsの或る区間毎(例えば、積層ユニット60毎)の冷却能力を均等化することが可能である。言い換えれば、蒸発器12の冷却能力がセル積層方向DRsにバラツキを生じることを抑制することが可能である。
(第16実施形態)
次に、第16実施形態について説明する。本実施形態では、前述の第14実施形態と異なる点を主として説明する。
図30〜図32に示すように、本実施形態では、蒸発器12を構成する複数の積層ユニット60は供給側壁部606(図25参照)を備えていない。この点において本実施形態は第14実施形態と異なっている。
但し、流体入口422および複数の第1壁貫通孔605bの配置は、第14実施形態と同様である。すなわち、本実施形態でも、流体入口422および複数の第1壁貫通孔605bは、セル積層方向DRsへ延びる共通の軸線Csである供給流路軸線Cs上に設けられている。
従って、流体入口422に流入する液相の作動流体は、複数の第1壁貫通孔605bを順次通って、セル積層方向DRsの一方側から他方側へと流れる。すなわち、積層された複数の積層ユニット60内でその供給流路軸線Csに沿って延びる空間、すなわち、流体入口422から複数の第1壁貫通孔605bを含みセル積層方向DRsへ延びる空間が、供給流路421となっている。
このようなことから、第1貫通孔形成部605aは、セル積層方向DRsへ並んで複数配置されることで液供給部42を構成している。そして、第1貫通孔形成部605aは、セル積層方向DRsへ並んで複数配置されることで、セル積層方向DRsへ並んで配置された複数の第1壁貫通孔605bを含む供給流路421をセル積層方向DRsへ延びるように形成している。
図33および図34に示すように、蒸発流路仕切壁605は第14実施形態と同様であるが、詳細に述べると、その蒸発流路仕切壁605は中間仕切壁部605gと、その中間仕切壁部605gから下方へ延設された供給側仕切壁部605hとを有している。その中間仕切壁部605gは、蒸発流路仕切壁605のうち、セル積層方向DRsに隣接する蒸発中間流路401c同士の間をセル積層方向DRsに仕切る部分である。また、供給側仕切壁部605hは、蒸発流路仕切壁605のうち、セル積層方向DRsに互いに隣接する上流側流路401d同士の間をセル積層方向DRsに仕切る部分である。
また、蒸発流路仕切壁605は第1貫通孔形成部605a有しているが、詳しくは、その蒸発流路仕切壁605のうち供給側仕切壁部605hが第1貫通孔形成部605a有している。従って、第1貫通孔形成部605aが形成する第1壁貫通孔605bは、蒸発流路仕切壁605のうち供給側仕切壁部605hをセル積層方向DRsに貫通している。
以上説明したことを除き、本実施形態は第14実施形態と同様である。そして、本実施形態では、前述の第14実施形態と共通の構成から奏される効果を第14実施形態と同様に得ることができる。
また、本実施形態によれば、流体蒸発部40は、複数の蒸発流路401をセル積層方向DRsに仕切る蒸発流路仕切壁605を有している。その蒸発流路仕切壁605は、上流側流路401d同士の間をセル積層方向DRsに仕切る供給側仕切壁部605hを有している。また、その供給側仕切壁部605hは、その供給側仕切壁部605hをセル積層方向DRsに貫通する第1壁貫通孔605bを形成する第1貫通孔形成部605aを有している。更に、その第1貫通孔形成部605aは、セル積層方向DRsへ並んで複数配置されることで液供給部42を構成している。そして、第1貫通孔形成部605aはセル積層方向DRsへ並んで複数配置されることで、セル積層方向DRsへ並んで配置された複数の第1壁貫通孔605bを含む供給流路421をセル積層方向DRsへ延びるように形成する。
従って、供給流路421と上流側流路401dとの間を仕切る壁(例えば、図26の供給側壁部606)等が無くても、供給流路421の液相の作動流体を、複数の第1壁貫通孔605bを順に通しつつセル積層方向DRsに沿って流すことが可能である。そして、組電池BPからの熱により上流側流路401dで沸騰し気泡流となった作動流体がセル積層方向DRsへの流れとなることは、供給側仕切壁部605hによって妨げられる。
例えば、上流側流路401dでは積層ユニット60の側方壁602上(別言すれば、上流側流路401dのうち側方壁602に接する部分)にて作動流体は最も活発に沸騰する。そのため、その上流側流路401dでの作動流体の蒸発量に対し液相の作動流体の供給量が十分であれば、上流側流路401dの気泡流が供給流路421の流れを妨げるほど供給流路421へ浸入してくることは防止される。そして、その気泡流となった作動流体は上流側流路401dにて供給側仕切壁部605hに沿って下方から上方へと流れる。すなわち、供給側仕切壁部605hは、作動流体の気泡が蒸発器12内の特定の部位に集中してドライアウトを生じることを抑制する。
このようにして、上流側流路401dでの作動流体の蒸発量に対し液相の作動流体の供給量が十分であれば、上流側流路401dで気泡流となった作動流体を組電池BPと供給流路421との間の断熱層として機能させることが可能である。そして、複数の第1壁貫通孔605bがセル積層方向DRsへ連なることで形成された供給流路421では、液相の作動流体をセル積層方向DRsへ流すことが可能である。
(第17実施形態)
次に、第17実施形態について説明する。本実施形態では、前述の第15実施形態と異なる点を主として説明する。
図35および図36に示すように、本実施形態では、蒸発器12を構成する複数の積層ユニット60は供給側壁部606(図29参照)を備えていない。この点において本実施形態は第15実施形態と異なっている。
本実施形態では、供給側壁部606が設けられていないので、断熱管64が、一対の上流側流路401dと供給流路421との間および蒸発中間流路401cと供給流路421との間を仕切る供給側仕切部を構成する。
以上説明したことを除き、本実施形態は第15実施形態と同様である。そして、本実施形態では、前述の第15実施形態と共通の構成から奏される効果を第15実施形態と同様に得ることができる。
(第18実施形態)
次に、第18実施形態について説明する。本実施形態では、前述の第14実施形態と異なる点を主として説明する。
図37に示すように、本実施形態では、蒸発器12を構成する複数の積層ユニット60はそれぞれ、複数の蒸発流路分割壁608を備えている。この点において本実施形態は第14実施形態と異なっている。
具体的には、複数の蒸発流路分割壁608は、車両上下方向DRgへ延びる壁形状を成し、積層ユニット60に形成された蒸発流路401のうち蒸発中間流路401cに配置されている。そして、複数の蒸発流路分割壁608は、側面法線方向DRaを厚み方向として形成され、蒸発中間流路401cを側面法線方向DRaに仕切り分けている。そのため、蒸発中間流路401cは、車両上下方向DRgへ延びる複数の分割流路に分割されている。
これにより、蒸発流路401の作動流体の沸騰があまり激しくないときに、蒸発流路401において液相の作動流体が気泡ポンプ効果で上方へ持ち上げられ易くなる。その結果、ユニット側面601上における車両上下方向DRgの温度分布においてバラツキを小さくすることが可能である。なお、上記の気泡ポンプ効果とは、作動流体の沸騰により生じた気泡が蒸発流路401内で上昇することに連れて、組電池BPにより加熱された側方壁602の内側近傍で作動流体の液面が持ち上げられる作用効果である。
以上説明したことを除き、本実施形態は第14実施形態と同様である。そして、本実施形態では、前述の第14実施形態と共通の構成から奏される効果を第14実施形態と同様に得ることができる。
(第19実施形態)
次に、第19実施形態について説明する。本実施形態では、前述の第14実施形態と異なる点を主として説明する。
図38に示すように、本実施形態の積層ユニット60の外形は第14実施形態のものと同様である。しかし、本実施形態では、積層ユニット60内における供給流路421と蒸発流路401との連結関係、および、流出流路441と蒸発流路401との連結関係が、第14実施形態と異なっている。
具体的には、本実施形態の蒸発流路401は蒸発中間流路401cを有するが、図26に示す上流側流路401dと下流側流路401hとを有していない。
そして、複数の積層ユニット60は各々、供給側壁部606および流出側壁部607(図26参照)に替えて、図38に示すユニット内下方壁部60cとユニット内上方壁部60dとを有している。ユニット内下方壁部60cは積層ユニット60内で蒸発流路401よりも下方に設けられ、ユニット内下方壁部60c内には供給流路421が形成されている。また、ユニット内上方壁部60dは積層ユニット60内で蒸発流路401よりも上方に設けられ、ユニット内上方壁部60d内には流出流路441が形成されている。
すなわち、本実施形態のユニット内下方壁部60cは第14実施形態の供給側壁部606に対応し、本実施形態のユニット内上方壁部60dは第14実施形態の流出側壁部607に対応するものである。
但し、図38に示すように、第14実施形態とは異なり、本実施形態のユニット内下方壁部60cはそのユニット内下方壁部60cの上方部分にて蒸発流路401へ開口している。そして、ユニット内上方壁部60dはそのユニット内上方壁部60dの下方部分にて蒸発流路401へ開口している。
そのため、複数の積層ユニット60の各々において、供給流路421はその供給流路421の上方にて蒸発流路401の上流端401aに連結し、流出流路441はその流出流路441の下方にて蒸発流路401の下流端401bに連結している。
また、ユニット内下方壁部60cは、積層ユニット60の側方壁602および下方壁603に接触し、ユニット内上方壁部60dは、積層ユニット60の側方壁602および上方壁604に接触している。また、ユニット内上方壁部60dは、積層ユニット60の側方壁602と同様にアルミニウム合金等の金属製であるが、ユニット内下方壁部60cは、側方壁602の構成材料よりも断熱性が高い樹脂等の断熱材で構成されている。なお、本実施形態では、ユニット内下方壁部60cのうち内側の内壁部分は、供給流路421が形成された液供給部42を構成する。そして、ユニット内下方壁部60cのうち液供給部42に対する外周部分(すなわち、ユニット内下方壁部60cから液供給部42を除いた残余部分)は、液供給部42と組電池BPとの間に介在しそれらの間を断熱する断熱部を構成する。また、ユニット内上方壁部60dは、流出流路441が形成された流体流出部44を構成する。
以上説明したことを除き、本実施形態は第14実施形態と同様である。そして、本実施形態では、前述の第14実施形態と共通の構成から奏される効果を第14実施形態と同様に得ることができる。
また、本実施形態によれば、ユニット内下方壁部60cは樹脂等の断熱材で構成されているので、そのユニット内下方壁部60cが例えば金属製である場合と比較して、供給流路421を流れる液相の作動流体が気化することを抑制することが可能である。
なお、本実施形態において、組電池BPを冷却する流体蒸発部40の冷却面の面積は、第14実施形態と比較して小さくなるが、蒸発器12が車両上下方向DRgに占める大きさは第14実施形態と同等である。
(第20実施形態)
次に、第20実施形態について説明する。本実施形態では、前述の第19実施形態と異なる点を主として説明する。
図39に示すように、本実施形態では、積層ユニット60内に形成された蒸発流路401の側面法線方向DRaの幅が、供給流路421の幅および流出流路441の幅よりも狭くなっている。この点において本実施形態は第19実施形態と異なり、その他の点では第19実施形態と同様である。
本実施形態では、前述の第19実施形態と共通の構成から奏される効果を第19実施形態と同様に得ることができる。
(第21実施形態)
次に、第21実施形態について説明する。本実施形態では、前述の第19実施形態と異なる点を主として説明する。
図40に示すように、本実施形態では、積層ユニット60が有するユニット内下方壁部60cは、断熱材で構成されておらず、積層ユニット60の側方壁602と同様にアルミニウム合金等の金属製である。この点において本実施形態は第19実施形態と異なり、その他の点では第19実施形態と同様である。
本実施形態では、前述の第19実施形態と共通の構成から奏される効果を第19実施形態と同様に得ることができる。
なお、本実施形態のユニット内下方壁部60cは断熱部に相当する構成を含まないので、ユニット内下方壁部60cの全部が液供給部42を構成すると解することができる。そして、図40に示すように、本実施形態の蒸発器12では、熱伝導材38に接触する表面の面積が液供給部42では流体蒸発部40に比して小さくなるように、液供給部42が配置されている。従って、本実施形態でも、液供給部42は、流体蒸発部40よりも組電池BPの熱を受けにくい位置に配置されている。但し、ユニット内下方壁部60cは断熱部に相当する構成を含まないので、本実施形態の供給流路421を流れる作動流体は、第19実施形態と比較すれば組電池BPの熱の影響を受けやすい。
(第22実施形態)
次に、第22実施形態について説明する。本実施形態では、前述の第21実施形態と異なる点を主として説明する。
図41に示すように、本実施形態では、積層ユニット60内に形成された蒸発流路401の側面法線方向DRaの幅が、供給流路421の幅および流出流路441の幅よりも狭くなっている。この点において本実施形態は第21実施形態と異なり、その他の点では第21実施形態と同様である。
本実施形態では、前述の第21実施形態と共通の構成から奏される効果を第21実施形態と同様に得ることができる。
(他の実施形態)
(1)上述の第1実施形態では図3に示すように、第1蒸発形成部121aと第2蒸発形成部122aとのうち第2蒸発形成部122aが複数の凸部122dを有しているが、これは一例である。例えば第2蒸発形成部122aの替わりに第1蒸発形成部121aが複数の凸部122dを有していてもよいし、第1、第2蒸発形成部121a、122aの両方が複数の凸部122dを有していてもよい。
要するに、第1蒸発形成部121aと第2蒸発形成部122aとのうちの一方の蒸発形成部が、他方の蒸発形成部へ向けて突き出た複数の凸部122dを有していればよい。そして、その凸部122dが、他方の蒸発形成部に当接することにより、複数の蒸発流路401を相互に仕切っていればよい。このことは、第2実施形態以降の実施形態のうち、蒸発器12が一対のプレート部材121、122で構成される実施形態においても同様である。なお、蒸発流路401が例えば2本であれば、その凸部122dは複数ではなく1つでよい。
(2)上述の各実施形態では図2等に示すように、液供給部42と組電池BPとの間に介在する空気は断熱部39として機能するが、これは一例である。例えば、その断熱部39は、空気ではなく、断熱性が高い樹脂等の断熱材で構成されていても差し支えない。
(3)上述の第1実施形態では図3に示すように、供給流路421内では作動流体はセル積層方向DRsの一方側から他方側へ流れ、流出流路441内でも作動流体はセル積層方向DRsの一方側から他方側へ流れる。すなわち、作動流体は、その何れの流路421、441でも同方向へ流れるが、それぞれの流路421、441で互いに逆向きになるように流れてもよい。例えば、供給流路421内では作動流体はセル積層方向DRsの一方側から他方側へ流れ、流出流路441内では作動流体はセル積層方向DRsの他方側から一方側へ流れてもよい。このことは、第2実施形態以降の実施形態においても同様である。
(4)上述の第1実施形態では図3および図4に示すように、蒸発流路401は、組電池BPが有する電池セルBCと同数設けられているが、これは一例である。例えば、蒸発流路401の本数は電池セルBCの数よりも多くてもよいし、少なくてもよい。すなわち、1つの電池セルBCに対し複数本の蒸発流路401が割り当てられてもよいし、複数の電池セルBCに対し1本の蒸発流路401が割り当てられてもよい。このことは、第2実施形態以降の実施形態においても同様である。
(5)上述の第3実施形態では、図7に示すように複数の多穴管50が設けられ、その多穴管50の本数は、組電池BPが有する電池セルBCと同数であるが、これは一例である。例えば、多穴管50の本数は電池セルBCの数よりも多くてもよいし、少なくてもよい。このことは、第7実施形態でも同様である。
(6)上述の第1実施形態では図2に示すように、流体流出部44は組電池BPと熱伝導材38との何れからも離れて配置されているが、これは一例である。流体流出部44は、組電池BPまたは熱伝導材38に接触していても接触していなくてもよい。すなわち、流体流出部44は、組電池BPと熱的に接続していても熱的に接続していなくてもよい。このことは、第2実施形態以降の実施形態においても同様である。
(7)上述の第1実施形態において、例えば図1では、紙面左側はセル積層方向DRsの一方側であり、紙面右側はセル積層方向DRsの他方側であるが、そのセル積層方向DRsの一方側と他方側とが相互に入れ替わっていても差し支えない。このことは、第2実施形態以降の実施形態においても同様である。
(8)上述の第1実施形態では図3に示すように、流体蒸発部40の蒸発流路401にはインナフィンは設けられていないが、その蒸発流路401にインナフィンが設けられても差し支えない。そのようにインナフィンによる内部熱伝達構造を設けることも、作動流体と組電池BPとを熱交換させる上で有効である。このインナフィンを設けることは、第1実施形態のほか例えば第4実施形態など、一対のプレート部材121、122で構成される蒸発器12に適用することができる。
(9)上述の第2実施形態では図5に示すように、蒸発器12は1つの組電池BPを冷却するものであるが、複数の組電池BPを同時に冷却するものであっても差し支えない。例えば図42に示すように、蒸発器12が2つの組電池BPを同時に冷却するものであってもよい。図42の蒸発器12では、流体蒸発部40は、流体蒸発部40の一面側にて、2つの組電池BPのうちの一方に熱伝導可能に連結されている。それと共に、その流体蒸発部40は、流体蒸発部40の他面側にて、2つの組電池BPのうちの他方に熱伝導可能に連結されている。
また、図43に示すように、蒸発器12に対する組電池BPの姿勢が、図42に示す姿勢と異なっていても差し支えない。
また、図42および図43に示す蒸発器12は、第2実施形態と同様に多穴管50と2つの配管部材51、52とから構成されているが、図44に示すように、互いに積層された一対のプレート部材121、122から構成されていてもよい。その図44に示す一対のプレート部材121、122は、図2に示す一対のプレート部材121、122と同様である。
また、図42および図43に示す蒸発器12が有する液供給部42は1つであるが、図45に示すように、蒸発器12は複数の液供給部42を有していてもよい。その図45に示す蒸発器12は、具体的には2つの液供給部42を有しており、その2つの液供給部42は各々、流体蒸発部40へ連結されている。従って、液相の作動流体は、その2つの液供給部42の両方から流体蒸発部40へ供給される。
また、第2実施形態の蒸発器12が有する多穴管50は、図5および図6に示すように車両上下方向DRgに沿った直管形状を成しているが、その多穴管50は、図46に示すように曲がっていても差し支えない。図46の蒸発器12では、多穴管50が曲がって形成されることで、液供給部42と流体流出部44とがそれぞれ組電池BPから離れた位置に配置されている。
(10)上述の各実施形態では図1に示すように、凝縮器15は、冷凍サイクル装置21の冷媒と作動流体との熱交換により、その作動流体を凝縮させるが、これは一例である。例えば、凝縮器15は、冷媒と作動流体とを熱交換する第1の熱交換部に加え、外気などの空気と作動流体との熱交換によりその作動流体を凝縮させる第2の熱交換部を、第1の熱交換部と直列に又は並列に備えていても差し支えない。或いは、凝縮器15は、その第1の熱交換部を備えずに第2の熱交換部を備えたものであっても差し支えない。
(11)上述の各実施形態では図3に示すように、流体蒸発部40に形成された全部の蒸発流路401はそれぞれ、セル積層方向DRsへ延びた扁平断面形状を成しているが、全部の蒸発流路401がそのような扁平断面形状を成している必要はない。
(12)上述の各実施形態において、作動流体回路10内に充填されている作動流体は、例えばフロン系冷媒であるが、その作動流体回路10内の作動流体はフロン系冷媒に限らない。例えば、その作動流体回路10内に充填されている作動流体として、プロパンまたはCOなどの他の冷媒や、相変化する他の媒体が用いられても差し支えない。
(13)上述の各実施形態では、機器温調装置1は組電池BPを冷却することで組電池BPの温度調整を行うが、機器温調装置1は、そのような冷却機能に加え、組電池BPを加熱する加熱機能を備えていても差し支えない。
(14)上述の第14実施形態では図24に示すように、積層ユニット60毎に1本の蒸発流路401が形成されているが、積層ユニット60毎に、2本以上の蒸発流路401がその積層ユニット60内に形成されていても差し支えない。要するに、複数の積層ユニット60の各々には、蒸発器12が有する複数の蒸発流路401のうちの少なくとも1本の蒸発流路401が形成されていればよい。
(15)上述の第14実施形態では図24に示すように、流体入口422と流体出口442との両方がセル積層方向DRsで蒸発器12の一方側に設けられているが、流体入口422と流体出口442との配置はこれに限らない。例えば、流体入口422と流体出口442とのうちの一方がセル積層方向DRsにおける蒸発器12の一方側に設けられ、他方がセル積層方向DRsにおける蒸発器12の他方側に設けられていてもよい。
(16)上述の第14実施形態では、図24に示す流体出口442は、流出流路441のうち上方寄りの位置に連結されているが、これは一例である。例えば、その流体出口442は、図26の仕切連通孔607bよりも上方に設けられ流出流路441に連結されていれば、流出流路441のうち上方寄りの位置に連結されていなくても差し支えない。
(17)上述の第14実施形態では図23に示すように、液供給部42および流体流出部44は、組電池BPが車両上下方向DRgに占める高さ範囲Hbp内に配置されているが、これは一例である。例えば、液供給部42がその範囲Hbpから下方に外れて配置されていることも想定される。或いは、流体流出部44がその範囲Hbpから上方に外れて配置されていることも想定される。
(18)上述の第14実施形態では図23および図26に示すように、組電池BPは側面法線方向DRaにおいて積層ユニット60の両側にそれぞれ配置されているが、これは一例である。例えば、その組電池BPは2つではなく1つ設けられ、その組電池BPは、積層ユニット60に対し側面法線方向DRaの一方側にだけ設けられていることも想定される。その場合、積層ユニット60内の上流側流路401dは液供給部42に対し側面法線方向DRaの上記一方側に設けられていればよく、組電池BPが設けられていない他方側には無くてもよい。そして、このことは下流側流路401hについても同様である。
(19)上述の第14実施形態では図25〜図27に示すように、蒸発流路仕切壁605のうち蒸発流路401に面している仕切り部分に孔は無いが、これは一例である。その蒸発流路401同士の間の仕切りは完全である必要はない。例えば、作動流体のセル積層方向DRsへの流れを生じさせるために、蒸発流路仕切壁605の上記仕切り部分において部分的に貫通孔等が設けられ、作動流体のセル積層方向DRsへの流れが或る程度許容されていてもよい。
(20)上述の第14実施形態では図24〜図27に示すように、複数の積層ユニット60はそれぞれ、ロウ付け接合により形成されたブロック状を成しているが、その積層ユニット60の製造方法に限定はない。例えば、その積層ユニット60は、図3に示されるようなプレート部材を積層して製造されてもよい。あるいは、積層ユニット60は、押出成形により形成されたチューブを主体として製造されたチューブ構造を備えていてもよい。
(21)上述の第14実施形態では図26に示すように、供給側壁部606は、一対の上流側流路401dと供給流路421との間および蒸発中間流路401cと供給流路421との間を仕切るように形成されているが、これは一例である。その供給側壁部606は、蒸発流路401のうちの少なくとも上流側流路401dと供給流路421との間を仕切っていればよい。
(22)上述の第14実施形態では図26に示すように、蒸発流路401は、蒸発中間流路401cと上流側流路401dと下流側流路401hという3つの流路を有しているが、蒸発流路401がそれら3つの流路のうちの1つ又は2つの流路を有さないことも想定できる。例えば図47に示すように、蒸発流路401が上記3つの流路のうち、蒸発中間流路401cと下流側流路401hとを有さず上流側流路401dだけを有する構成も想定できる。この図47の例では、上流側流路401dの上端401eは流出流路441へ直接連結している。
(23)上述の第2実施形態では、図6に示すように、下流側配管部材52内の流出流路は、セル積層方向DRsに沿って流体出口442に近付くほど、上下方向の長さが長く、かつ、流路断面積が大きく、かつ、上端が高くなっている。そして、流体出口442は、下流側配管部材52の上端に接続されている。
しかし、必ずしもこのようになっておらずともよい。例えば、図48に示すように、下流側配管部材52内の流出流路は、セル積層方向DRsに沿って、上下方向の長さが等しく、かつ、流路断面積が一定で、上端の高さが一定であってもよい。
(24)上述の第2実施形態および上記変形例23では、流体蒸発部40が1つの多穴管50で構成されている。しかし、必ずしもこのようになっておらずともよい。例えば、図49に示すように、多穴管50に代えて、穴を1つしか有さない配管70が採用されてもよい。
配管70は、押出し成形等によって形成された扁平管である。配管70は、車両上下方向DRgおよびセル積層方向DRsへ面状に拡がるように形成され、下端である一端と上端である他端とを有している板部材である。そして、配管70の内部には連通穴701が1個のみ形成されている。この連通穴701は1つの蒸発流路401として設けられている。この蒸発流路401としての連通穴701の数は、組電池BPが有する電池セルBCよりも少ない。
連通穴701は、配管70の上記一端から上記他端まで連通し、且つその一端と他端とのぞれぞれで開放されている。要するに、連通穴701は、配管70の一端から他端へ延びる貫通孔である。そして連通穴701は配管70の上記一端において1個だけ開口を有し、その開口を介して液供給部42内の供給流路へ連通している。また連通穴701は配管70の上記他端において1個だけ開口を有し、その開口を介して流体流出部44内の流出流路に連通している。
また、連通穴701は、すべての電池セルBCの電池側面BPbと、板面直交方向に重なる。ここで、板面直交方向とは、配管70の板面に直交する方向である。
また、本例のように、流体蒸発部40が唯一の連通穴701を有する構造であっても、冷媒がすべての電池セルBCの電池側面BPb近傍を通るよう、液供給部42内の供給流路が形成されている。より具体的には、組電池BPの熱を受けにくい位置にある液供給部42は、すべての電池セルBCの電池側面BPbの真下の領域と、板面直交方向に重なる。このことは、本例に限らず、第1〜第13実施形態およびその変形例において成り立つ。
したがって、そして、配管70を通る冷媒によって、すべての電池セルBCが概ね均等に冷却され、部分的なドライアウトが抑制される。なお、図48には、連通穴701内の作動流体が沸騰していないときの作動流体の停止時液面Foffが示されている。
(25)上述の変形例24では、配管70に形成された連通穴701は配管70の上記一端と上記下端においてそれぞれ1個だけ開口を有している。しかし、かならずしもこのようになっておらずともよい。例えば、図50に示すように、配管70に代えて、配管71が採用されてもよい。
配管71は、押出し成形等によって形成された扁平管である。配管71は、矩形形状の板と、当該矩形形状の上端の辺から上方に伸びた4つの上方突起部と、当該矩形形状の下端の辺から下方に伸びた4つの下方突起部とを有する。
そして、配管71の内部には連通穴711が1個のみ形成されている。この連通穴711は1つの蒸発流路401として設けられている。この蒸発流路401としての連通穴711の数は、組電池BPが有する電池セルBCよりも少ない。
連通穴711は、4つの下方突起部の各々の下端から上方突起部の各々の上端まで、連通し、且つこれら4つの下端と4つの上端のぞれぞれで開放されている。したがって連通穴711は、配管71の4つの下端から4つの上端へ延びる1続きの貫通孔である。そして連通穴711は配管71の上記4つの下端の各々において1個だけ開口を有し、これら合計4個の開口を介して液供給部42内の供給流路へ連通している。また連通穴711は配管71の上記4つの上端の各々において1個だけ開口を有し、これら合計4個の開口を介して流体流出部44内の流出流路へ連通している。
また、連通穴711は、すべての電池セルBCの電池側面BPbと、板面直交方向に重なる。そして、配管71を通る冷媒によって、すべての電池セルBCが概ね均等に冷却され、部分的なドライアウトが抑制される。このようになる理由は、変形例24と同じである。なお、図48には、連通穴711内の作動流体が沸騰していないときの作動流体の停止時液面Foffが示されている。
(26)上述の第1実施形態では、複数の凸部122dによって、流体蒸発部40の内部が複数の蒸発流路401が仕切られている。しかし、必ずしもこのようになっておらずともよい。例えば、図51に示すように、第1実施形態の蒸発器12に対して、複数の凸部122dのすべてを廃する変更を施してもよい。この場合、流体蒸発部40の内部に形成される蒸発流路401は1つのみである。
この単一の蒸発流路401の流路断面は、セル積層方向DRsへ延びた扁平断面形状を成している。また、蒸発流路401はそれぞれ、蒸発流路401の下端を上流端401aとして有し、蒸発流路401の上端を下流端401bとして有している。蒸発流路401内では、図51の一点鎖線矢印および破線矢印で示すように、作動流体はその上流端401aから下流端401bへ流れる。すなわち、蒸発流路401内では、作動流体は下方から上方へ流れる。供給流路421には、その蒸発流路401の上流端401a連結され、流出流路441には、蒸発流路401の下流端401bが連結されている。
また、蒸発流路401は、すべての電池セルBCの電池側面BPbと、板面直交方向に重なる。ここで、板面直交方向とは、プレート部材1220の板面に直交する方向である。
また、本例のように、単一の蒸発流路401のみが流体蒸発部40の内部に形成されている構造であっても、冷媒がすべての電池セルBCの電池側面BPb近傍を通るよう、液供給部42内の供給流路が形成されている。より具体的には、組電池BPの熱を受けにくい位置にある液供給部42は、すべての電池セルBCの電池側面BPbの真下の領域と、板面直交方向に重なる。このことは、本例に限らず、第1〜第13実施形態およびその変形例において成り立つ。
したがって、そして、蒸発流路401を通る冷媒によって、すべての電池セルBCが概ね均等に冷却され、部分的なドライアウトが抑制される。なお、図51には、蒸発流路401内の作動流体が沸騰していないときの作動流体の停止時液面Foffが示されている。
(27)上述の第14〜第22実施形態および変形例22では、複数の積層ユニット60がセル積層方向DRsに配置されているが、必ずしもこのようになっておらずともよい。蒸発器は、複数の積層ユニット60に代えて、ユニットを1つのみ有していてもよい。
その場合も、当該1つのユニットは、すべての電池セルBCに対して、当該電池セルBCの電池側面に対して正面に配置される。したがって、ユニット内の蒸発流路401は、すべての電池セルBCの電池側面BPbと、板面直交方向に重なる。
つまり、第14〜第22実施形態および変形例22における各積層ユニットのセル積層方向DRsの幅に比べ、本例における当該1つの積層ユニットの同じ方向の幅は、遙かに広い。
また、液供給部42が、第14〜第22実施形態および変形例22と同様、組電池BPの熱を受けにくい位置に形成されている。そして、冷媒がすべての電池セルBCの電池側面BPb近傍を通るよう、液供給部42内の供給流路が形成されている。
このようになっていることで、単一のユニット内の蒸発流路401のみが流体蒸発部40の内部に形成されている構造であっても、蒸発流路401を通る冷媒によって、すべての電池セルBCが概ね均等に冷却され、部分的なドライアウトが抑制される。
例えば、図52、図53、図54に、第14実施形態における複数の積層ユニット60を単一のユニット60xに置き換えた蒸発器の例を示す。以下、この例について説明する。以下、積層ユニット60とユニット60xにおいて、同じ符号が付された要素は同等の要素である。
図52に示すように、ユニット60xは、セル積層方向DRsにおける一方側端の電池セルBCの電池側面BPbから、セル積層方向DRsにおける他方側端の電池セルBCの電池側面BPbまで、伸びている。
それと共に、ユニット60xは、車両上下方向DRgへ延びるように形成された中空の直方体形状を成している。また、ユニット60xが有する2つのユニット側面601は、セル積層方向DRsおよび車両上下方向DRgに沿って拡がるが、セル積層方向DRsの長さについては、第14実施形態と比較して、遙かに長い。実際、2つのユニット側面601の各々は、当該側面側に配置されたすべての電池セルBCに対して、当該電池セルBCの電池側面に対して正面に配置される。つまり、ユニット60xは複数の電池セルBCと一対多で対応して設けられている。
ユニット60xは、ユニット60xの外壁として、第14実施形態と同様に、一対の側方壁602と下方壁603と上方壁604、および、1つの蒸発流路仕切壁605を有している。
セル積層方向DRsにおいてユニット60xの一方側は開放されており、ユニット60xの他方側は蒸発流路仕切壁605に覆われている。この蒸発流路仕切壁605は、第14実施形態とは異なり、貫通孔を有しておらず、ユニット60xの内部を液密かつ気密に不才でいる。なお、ユニット60xの開放された上記一方側は、エンドプレート62によって覆われる。
また、ユニット60xは、第14実施形態における供給側壁部606と流出側壁部607が一体となった内部壁部609を有している。この内部壁部609は蒸発流路仕切壁605に固定され、ユニット60xの外壁602、603、604、605で囲まれた積層ユニット60の内部空間内に収容されている。
内部壁部609は、第14実施形態の供給側壁部606と流出側壁部607が有する構成を含んでいる。ただし、供給側壁部606の天面と流出側壁部607の底面とが一体に接合されている。
したがって、ユニット60xに形成された蒸発流路401は、第14実施形態の蒸発中間流路401c、一対の上流側流路401d、一対の下流側流路401hに代えて、互いに離れた一対のサブ蒸発流路401xを有する。
一対のサブ蒸発流路401xは、電池側面BPbと供給流路421との間および電池側面BPbと流出流路441の間に介在するように配置される供給側介在流路として設けられている。一対のサブ蒸発流路401xはそれぞれ、供給流路421と流出流路441とを接続する。一対のサブ蒸発流路401xの各々において、作動流体はその下端である上流端401aからその上端である下流端401bへ流れる。
このように、内部壁部609は、一対のサブ蒸発流路401x、供給流路421、流出流路441の間を仕切るように形成されている。また、本例においては、第14実施形態における仕切連通孔607b、気泡排出孔606bが、内部壁部609に形成されていない。
以上のように構成された蒸発器12では、作動流体は、第14実施形態と同様、図53、図54に示す矢印F1、F11、F12、F13、F14、F15、F16、F17、F18、F4のように流通する。
具体的には、液通路部18からの液相の作動流体は、矢印F1のように流体入口422から供給流路421へ流入する。その流入した作動流体は、矢印F11のように、供給流路421内ではセル積層方向DRsの一方側から他方側へ流れる。そして、その供給流路421内の作動流体は、供給側開口606aから一対のサブ蒸発流路401xへそれぞれ矢印F12、F13のように流れる。
各サブ蒸発流路401x内では作動流体は矢印F14、F15のように下方から上方へ流れつつ、2つの組電池BPの熱によって沸騰させられる。そのため、それぞれのサブ蒸発流路401xで作動流体は気相のみ又は気液二相となって、流出側開口607aから流出流路441へ流入する。
(28)上記各実施形態および変形例では、冷媒によって冷却される電池として、複数の電池セルBCを有する組電池BPが例示されている。しかし、冷却対象の電池は、組電池である必要はない。上記各実施形態および変形例において、冷却対象の電池を、電池セルを1つのみ有する単電池に置き換えてもよい。図55に、変形例24の組電池BPを単電池BSに置き換えた例を示す。
このような場合でも、液供給部は流体蒸発部よりも電池の熱を受けにくい位置に配置される。したがって、電池BSからの熱を受けにくい状態に供給流路内の液相の作動流体を維持しつつその液相の作動流体を蒸発流路へ供給し、その供給された作動流体を蒸発流路で蒸発させることができる。その結果、ドライアウトの発生を抑制することが可能である。また、液供給部は、流体流出部よりも下方に配置されているので、ドライアウトの原因となる気泡が供給流路に滞留するのを抑制することが可能である。
(29)上記第1〜第5実施形態およびそれらの上記変形例では、直方体形状の各電池セルBCの6個の表面のうち、電極が配置された面と隣り合う面が、流体蒸発部40に最も近接して流体蒸発部40内部の冷媒と最も熱交換し易い。
しかし、上記第1〜第5実施形態およびそれらの上記変形例を、直方体形状の各電池セルBCの6個の表面のうち、電極が配置された面と反対側の面が、流体蒸発部40に最も近接して流体蒸発部40内部の冷媒と最も熱交換し易くなるよう、変更してもよい。図56に、変形例24に対してこのような変更を施した例を示す。この例では、配管70の表面に直方体形状の各電池セルBCの6個の表面のうち、電極が配置された面と反対側の面が、接触している。
(30)上記変形例24に対して、電池セルBCの配置を図57のように変更してもよい。本例では、複数の電池セルBCは、複数のセル列BLを有している。複数のセル列BLの各々は、車両上下方向DRgに一列に積層されていた複数の電池セルBCを有している。これら複数のセル列BLは、車両上下方向DRgに直交する方向に並んでいる。したがって、本例では、電池セルの積層方向は、車両上下方向DRgでもあるし、車両上下方向DRgに直交する方向でもある。なお、本例のような変更は、上記変形例24に限らず、第1〜第22実施形態および変形例(1)〜(29)のいずれにも適用可能である。
(31)上述の各実施形態において、蒸発流路401にはウィックは設けられていないが、ウィックが蒸発流路401に設けられ、そのウィックの毛細管現象により、液相の作動流体が蒸発流路401において流出流路441側へ導かれるようになっていても差し支えない。
(32)上述の各実施形態において、蒸発流路401は、作動流体の熱交換を促進する内部フィンを有する内部フィン構造を備えていないが、そのような内部フィン構造を備えることにより、蒸発流路401を流れる作動流体の蒸発を促進するようにしてもよい。
なお、本開示は、上述の実施形態に限定されることなく、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、蒸発流路内では、作動流体が上流端から下流端へ流れる。流体流出部は、液供給部よりも上方に配置される。液供給部は、流体蒸発部よりも電池の熱を受けにくい位置に配置される。
また、第2の観点によれば、1つ以上の電池セルは複数の電池セルであり、電池は組電池であり、1つ以上の蒸発流路は複数の蒸発流路である。複数の蒸発流路は、電池セルの積層方向(DRs)に並ぶ。流体蒸発部は、複数の蒸発流路内を流れる作動流体を組電池の熱で蒸発させる。供給流路には、複数の蒸発流路の上流端がそれぞれ連結される。液供給部は、該供給流路内へ流入した液相の作動流体を複数の蒸発流路の各々へ分配供給する。
流出流路には、複数の蒸発流路の下流端がそれぞれ連結される。流体流出部は、複数の蒸発流路の各々から流出流路へ流入した作動流体を流出させる。
図58に示すように、特許文献1に記載された電池温度調節装置90の温度調節部である蒸発器91内では、セル積層方向の一端から液相の作動流体が矢印A1のように供給されつつ、その作動流体はセル積層方向の他端へ向かって流れる。更に、その作動流体は、そのように流れると同時に、各電池セルからの熱により蒸発する。例えば蒸発器91内の作動流体流れの最下流側に位置する電池セルの冷却に関して言えば、蒸発器91内で作動流体は、その最下流側の電池セルの熱によって蒸発させられる位置に辿り着くまでの供給経路において他の電池セルによって加熱されることになる。
このように電池セルの各々から作動流体が順次受熱しつつセル積層方向に流れる構造では、蒸発器91内において作動流体が激しく沸騰し、液相の作動流体が存在しないドライアウトが蒸発器91内で部分的に生じることがある。また、このドライアウトは作動流体の沸騰圧力により蒸発器91内で部分的に発生し、ドライアウトが発生していても、電池温度調節装置90の全体では作動流体の循環は継続する。図58では、ドライアウトが発生している範囲がA2範囲として示されている。
ここで、サーモサイフォンの蒸発器91は、各電池セルを冷却するものであるが、各電池セルの温度を均一化する均温も目的としている。上記のように蒸発器91内でドライアウトが発生すると、そのドライアウトの部分では作動流体が殆ど吸熱しないので、組電池のうち冷却されない部分、または、冷却されにくい部分が発生する。すなわち、そのドライアウトに起因して、複数の電池セルの中で温度バラツキが拡大する。そして、組電池のうち温度の高い部分の電池セルの劣化が促進され、結果として、組電池の充電容量の減少や組電池の出力低下が促進されてしまうことになる。
また、蒸発器91内で液相の作動流体が作動流体下流側にまで十分に行き渡るようにするために蒸発器91の容量を拡大することも考えられるが、それは好ましくはない。なぜなら、蒸発器91の容量拡大は、作動流体の重量増加、作動流体量の増加に起因した電池温度調節装置90の体格拡大、コストアップ、および、作動流体の沸騰流動に起因した異音の増大につながるからである。発明者らの詳細な検討の結果、以上のようなことが見出された。
上記第2の観点によれば、組電池からの熱を受けにくい状態に供給流路内の液相の作動流体を維持しつつその液相の作動流体を複数の蒸発流路のそれぞれへ供給し、その供給された作動流体を複数の蒸発流路のそれぞれで蒸発させることができる。その結果、作動流体が、積層された複数の電池セルに順次加熱されつつ流れるという現象が回避されるので、部分的なドライアウトの発生を抑制することが可能である。そして、組電池のうちの一部の電池セルがそのドライアウトの影響で冷却されにくくなるという事態を回避できるので、複数の電池セル相互の温度バラツキを抑制することが可能である。
また、第3の観点によれば、上記の液供給部が流体蒸発部よりも組電池の熱を受けにくい位置に配置されることとは、組電池または熱伝導材に接触する表面の面積が液供給部では流体蒸発部に比して小さくなるように、液供給部が配置されることである。
また、第4の観点によれば、上記の液供給部が流体蒸発部よりも組電池の熱を受けにくい位置に配置されることとは、液供給部が組電池との間に断熱部を介在させて配置されることである。
また、第5の観点によれば、蒸発流路内では作動流体が下方から上方へ流れる。従って、蒸発流路で生じた気泡を流出流路へ導き易い。
また、第6の観点によれば、供給流路は積層方向に延びている。従って、その積層方向に並んだ複数の蒸発流路の各々へ作動流体を満遍なく行き渡らせることが可能である。
また、第7の観点によれば、供給流路は、その供給流路の流路断面積が作動流体流れ下流側ほど小さくなるように形成されている。従って、作動流体回路の作動流体の封入量を抑えつつ、供給流路を流れる作動流体の圧損低減を図ることが可能である。
また、第8の観点によれば、流出流路は積層方向に延びている。従って、その積層方向に並んだ複数の蒸発流路の各々から流出する作動流体を集合させてから蒸発器の外部へ流出させることが可能である。
また、第9の観点によれば、流出流路は、その流出流路の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。従って、流出流路の容積を不必要に拡大させずに、作動流体の蒸発に起因した気体体積の膨張に対応することが可能である。
また、第10の観点によれば、流体蒸発部は、組電池のうち電池下面に対し熱伝導可能に連結される。そして、複数の蒸発流路はそれぞれ、電池下面に沿う向きに延びる。従って、組電池の自重を利用して、その組電池と流体蒸発部との間に、熱伝導性を高めるための接触荷重を確保することが可能である。
また、第11の観点によれば、複数の蒸発流路はそれぞれ、電池側面に沿って側面下端側から側面上端側へと延びる。従って、蒸発流路で蒸発した作動流体ガス(すなわち、気相の作動流体)が流出流路へ抜けやすいように流体蒸発部を配置することが可能である。
また、第12の観点によれば、複数の蒸発流路はそれぞれ、積層方向に対して傾斜した向きに延びる。
また、第13の観点によれば、複数の蒸発流路のうちの或る蒸発流路は、その或る蒸発流路の途中にて、その或る蒸発流路と隣り合う蒸発流路に連通している。従って、その或る蒸発流路と、その或る蒸発流路と隣り合う蒸発流路との間で内圧を均等に保つことが可能である。
また、第14の観点によれば、複数の蒸発流路のうちの少なくとも何れかは、その蒸発流路の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている。従って、蒸発流路内で作動流体の蒸発により気相の体積割合が大きくなる箇所ほど、蒸発流路の流路断面積が大きくなる。そのため、各蒸発流路の容積を不必要に拡大させずに、蒸発流路における作動流体の気液分離性および気体排出性が良好になる。
また、第15の観点によれば、複数の蒸発流路のうちの少なくとも何れかは、積層方向へ延びた扁平断面形状を成す。従って、蒸発流路を細分化して多数設ける場合と比較して、作動流体の流通抵抗の増大を抑え且つ作動流体が組電池の熱を受けやすいように、蒸発流路内に作動流体を流すことが可能である。
また、第16の観点によれば、第1プレート部材が第2プレート部材に積層されて接合されることにより、複数の蒸発流路は第1蒸発形成部と第2蒸発形成部との間に形成されている。それと共に、供給流路は第1供給形成部と第2供給形成部との間に形成され、且つ、流出流路は第1流出形成部と第2流出形成部との間に形成されている。また、第1蒸発形成部は第2蒸発形成部と組電池との間に配置される。また、第1蒸発形成部と第2蒸発形成部とのうちの一方の蒸発形成部は他方の蒸発形成部へ向けて突き出た凸部を有し、その凸部は、他方の蒸発形成部に当接することにより、複数の蒸発流路を相互に仕切っている。従って、少ない部品点数で蒸発器を構成することが可能である。
また、第17の観点によれば、流体蒸発部は多穴管で構成される。多穴管には、その多穴管の一端から他端まで連通しその一端と他端とのぞれぞれで開放された複数の連通穴が形成されている。そして、その複数の連通穴は複数の蒸発流路として設けられている。従って、複数の蒸発流路を容易に形成することが可能である。
また、第18の観点によれば、組電池は、上下方向に沿って拡がる電池側面を有し、流体蒸発部は、組電池のうち電池側面に対し熱伝導可能に連結される。そして、供給流路は電池側面の正面に配置され、複数の蒸発流路はそれぞれ、電池側面と供給流路との間に介在するように配置される供給側介在流路を有している。従って、組電池と供給流路との間を供給側介在流路で断熱することが可能である。それと共に、蒸発流路を組電池と供給流路との間にまで延ばすことができる。これにより、蒸発器の上下方向の高さを制限しつつ液供給部を設けたことに起因して、組電池からの熱を受ける流体蒸発部の面積が少なくなってしまうことを防止することが可能である。
また、第19の観点によれば、供給側介在流路は、上流端としての下端と、その下端よりも作動流体流れ下流側に設けられた上端とを有する。そして、供給側介在流路の下端は、供給流路に対しその供給流路の下方にて連結している。従って、供給側介在流路で作動流体を組電池から吸熱させつつ上下方向に最大限長く流通させることが可能である。これにより、その供給側介在流路を流れる作動流体に組電池から吸熱させ易くなる。
また、第20の観点によれば、液供給部は、蒸発流路と供給流路との間を仕切る壁状の供給側仕切部を有している。そして、その給側仕切部は、蒸発流路のうちの少なくとも供給側介在流路と供給流路との間を仕切っている。従って、供給流路と供給側介在流路との間において作動流体の流通経路を制限し、供給流路から供給側介在流路へ流れる作動流体を供給側介在流路の下端など特定の場所へと導くことが可能である。
また、第21の観点によれば、供給側仕切部は、断熱材を含んで構成されている。従って、供給側介在流路に加えその断熱材によっても、組電池と供給流路との間を断熱することが可能である。これにより、断熱材が無い場合と比較して、組電池からの熱が供給流路内の作動流体へ更に伝わりにくくなり、供給流路での作動流体の蒸発を抑制することができる。その結果として例えば、断熱材が無い場合と比較して、供給流路でのドライアウトが発生する可能性を低減することが可能である。そして、蒸発器において積層方向の或る区間毎の冷却能力を均等化することが可能である。言い換えれば、蒸発器の冷却能力が積層方向にバラツキを生じることを抑制することが可能である。
また、第22の観点によれば、流体蒸発部は、複数の蒸発流路を積層方向に仕切る蒸発流路仕切壁を有し、その蒸発流路仕切壁は、供給側介在流路同士の間を積層方向に仕切る供給側仕切壁部を有する。その供給側仕切壁部は、その供給側仕切壁部を積層方向に貫通する壁貫通孔を形成する貫通孔形成部を有する。そして、その貫通孔形成部は積層方向へ並んで複数配置されることで、液供給部を構成し、且つ、積層方向へ並んで配置された複数の壁貫通孔を含む供給流路を積層方向へ延びるように形成する。
従って、供給流路と供給側介在流路との間を仕切る壁等が無くても、供給流路の液相の作動流体を、複数の壁貫通孔を順に通しつつ積層方向に沿って流すことが可能である。そして、組電池からの熱により供給側介在流路で沸騰し気泡流となった作動流体が積層方向への流れとなることは、供給側仕切壁部によって妨げられるので、その気泡流となった作動流体は供給側介在流路にて供給側仕切壁部に沿って下方から上方へと流れる。その結果、供給側介在流路で気泡流となった作動流体を組電池と供給流路との間の断熱層として機能させつつ、複数の壁貫通孔が積層方向へ連なることで形成された供給流路では液相の作動流体を積層方向へ流すことが可能である。
また、第23の観点および第24の観点によれば、流出流路は電池側面の正面に配置される。そして、複数の蒸発流路はそれぞれ流出側介在流路を有し、その流出側介在流路は、電池側面と流出流路との間に介在するように配置される。従って、蒸発流路を組電池と流出流路との間にまで延ばすことができる。これにより、蒸発器の上下方向の高さを制限しつつ流体流出部を設けたことに起因して、組電池からの熱を受ける流体蒸発部の面積が少なくなってしまうことを防止することが可能である。
また、第25の観点によれば、流出側介在流路は、下流端としての上端と、その上端よりも作動流体流れ上流側に設けられた下端とを有する。そして、流出側介在流路の上端は、流出流路に対しその流出流路の上方にて連結している。従って、流出側介在流路で作動流体を組電池から吸熱させつつ上下方向に最大限長く流通させることが可能である。これにより、その流出側介在流路を流れる作動流体に組電池から吸熱させ易くなる。
また、第26の観点によれば、複数の蒸発流路はそれぞれ、流出側介在流路を介して流出流路へ接続し上下方向で液供給部と流体流出部との間に配置された蒸発中間流路を有する。流体流出部は、流出側介在流路と流出流路との間および蒸発中間流路と流出流路との間を仕切る壁状の流出側仕切部を有する。その流出側仕切部には、蒸発中間流路に対して流出側介在流路と並列に接続され且つ流出流路を蒸発中間流路へ連通させる仕切連通孔が形成される。そして、その仕切連通孔は流出流路の下方に配置され、作動流体の流れが流出側介在流路を通る場合よりも仕切連通孔を通る場合の方が絞られる大きさとなるように形成されている。従って、蒸発流路での激しい沸騰等に起因して液相の作動流体が一時的に流出流路内に溜まった場合に、その液相の作動流体を蒸発流路へ戻すことが可能である。そして、蒸発流路で気泡流となった作動流体が仕切連通孔を通って流出流路へ流れ込むことを防止することが可能である。
また、第27の観点によれば、蒸発器は複数の積層ユニットを備え、その複数の積層ユニットは各々、流体蒸発部の一部と液供給部の一部と流体流出部の一部とを有し、上下方向へ延びるように形成される。そして、その複数の積層ユニットには、上下方向に沿って拡がるユニット側面が形成されている。そのユニット側面は、組電池の電池側面に対向すると共に、組電池のうち電池側面に対し熱伝導可能に連結される。また、複数の積層ユニットは、積層方向へ積層されて互いに接合されることにより、流体蒸発部と液供給部と流体流出部とを構成する。従って、組電池が有する電池セルの積層数に応じて積層ユニットの積層数を定めることで、組電池の体格に合わせた蒸発器を構成することが可能である。
前記蒸発流路内では、前記作動流体が前記上流端から前記下流端へ流れる。前記流体流出部は、前記液供給部よりも上方に配置される。前記液供給部は、前記流体蒸発部よりも前記電池の熱を受けにくい位置に配置され、前記流体流出部は、前記複数の蒸発流路の各々から前記流出流路へ流入した前記作動流体を流出させ、
前記組電池は、上下方向(DRg)に沿って拡がる電池側面(BPb)を有し、
前記流体蒸発部は、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、
前記供給流路は、前記電池側面の正面に配置され、
前記複数の蒸発流路はそれぞれ、前記電池側面と前記供給流路との間に介在するように配置される供給側介在流路(401d)を有している。
本開示の他の観点によれば、作動流体が循環するサーモサイフォン式のヒートパイプ(10)の一部を構成し、1つ以上の電池セル(BC)を有する電池(BP)から前記作動流体へ吸熱させることにより該作動流体を蒸発させる蒸発器は、上流端(401a)と下流端(401b)とを有する1つ以上の蒸発流路(401)が形成され、前記電池に対し熱伝導可能に連結され、前記1つ以上の蒸発流路内を流れる前記作動流体を前記電池の熱で蒸発させる流体蒸発部(40)と、前記1つ以上の蒸発流路の前記上流端が連結された供給流路(421)が形成され、該供給流路内へ流入した液相の前記作動流体を前記1つ以上の蒸発流路へ供給する液供給部(42)と、前記1つ以上の蒸発流路の前記下流端が連結された流出流路(441)が形成され、前記1つ以上の蒸発流路から前記流出流路へ流入した前記作動流体を流出させる流体流出部(44)とを備え、前記蒸発流路内では、前記作動流体が前記上流端から前記下流端へ流れ、前記流体流出部は、前記液供給部よりも上方に配置され、前記液供給部は、前記流体蒸発部よりも前記電池の熱を受けにくい位置に配置され、前記1つ以上の電池セルは複数の電池セルであり、前記電池は組電池であり、前記1つ以上の蒸発流路は複数の蒸発流路であり、前記複数の蒸発流路は、前記電池セルの積層方向(DRs)に並び、前記流体蒸発部は、前記複数の蒸発流路内を流れる前記作動流体を前記組電池の熱で蒸発させ、前記供給流路には、前記複数の蒸発流路の前記上流端がそれぞれ連結され、前記液供給部は、該供給流路内へ流入した液相の前記作動流体を前記複数の蒸発流路の各々へ分配供給し、前記流出流路には、前記複数の蒸発流路の前記下流端がそれぞれ連結され、前記流体流出部は、前記複数の蒸発流路の各々から前記流出流路へ流入した前記作動流体を流出させ、前記組電池は、上下方向(DRg)に沿って拡がる電池側面(BPb)を有し、前記流体蒸発部は、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、前記流出流路は、前記電池側面の正面に配置され、前記複数の蒸発流路はそれぞれ、前記電池側面と前記流出流路との間に介在するように配置される流出側介在流路(401h)を有している。
本開示の更に他の観点によれば、作動流体が循環するサーモサイフォン式のヒートパイプ(10)の一部を構成し、1つ以上の電池セル(BC)を有する電池(BP)から前記作動流体へ吸熱させることにより該作動流体を蒸発させる蒸発器は、上流端(401a)と下流端(401b)とを有する1つ以上の蒸発流路(401)が形成され、前記電池に対し熱伝導可能に連結され、前記1つ以上の蒸発流路内を流れる前記作動流体を前記電池の熱で蒸発させる流体蒸発部(40)と、前記1つ以上の蒸発流路の前記上流端が連結された供給流路(421)が形成され、該供給流路内へ流入した液相の前記作動流体を前記1つ以上の蒸発流路へ供給する液供給部(42)と、前記1つ以上の蒸発流路の前記下流端が連結された流出流路(441)が形成され、前記1つ以上の蒸発流路から前記流出流路へ流入した前記作動流体を流出させる流体流出部(44)と、前記流体蒸発部の一部と前記液供給部の一部と前記流体流出部の一部とを有し、上下方向(DRg)へ延びるように形成され、前記上下方向に沿って拡がるユニット側面(601)が形成された複数の積層ユニット(60)と、を備え、前記蒸発流路内では、前記作動流体が前記上流端から前記下流端へ流れ、前記流体流出部は、前記液供給部よりも上方に配置され、前記液供給部は、前記流体蒸発部よりも前記電池の熱を受けにくい位置に配置され、前記1つ以上の電池セルは複数の電池セルであり、前記電池は組電池であり、前記1つ以上の蒸発流路は複数の蒸発流路であり、前記複数の蒸発流路は、前記電池セルの積層方向(DRs)に並び、前記流体蒸発部は、前記複数の蒸発流路内を流れる前記作動流体を前記組電池の熱で蒸発させ、前記供給流路には、前記複数の蒸発流路の前記上流端がそれぞれ連結され、前記液供給部は、該供給流路内へ流入した液相の前記作動流体を前記複数の蒸発流路の各々へ分配供給し、前記流出流路には、前記複数の蒸発流路の前記下流端がそれぞれ連結され、前記流体流出部は、前記複数の蒸発流路の各々から前記流出流路へ流入した前記作動流体を流出させ、前記組電池は、前記上下方向に沿って拡がる電池側面(BPb)を有し、前記ユニット側面は、前記電池側面に対向すると共に、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、前記複数の積層ユニットは、前記積層方向へ積層されて互いに接合されることにより、前記流体蒸発部と前記液供給部と前記流体流出部とを構成し、前記供給流路と前記流出流路は、前記電池側面の正面に配置され、前記複数の積層ユニットの各々には、前記複数の蒸発流路のうちの少なくとも1本の蒸発流路が形成されており、前記複数の積層ユニットの各々において、該積層ユニットに形成された前記蒸発流路は、前記電池側面と前記供給流路との間に介在するように配置される供給側介在流路(401d)と、該供給側介在流路よりも作動流体流れ下流側に設けられ、前記電池側面と前記流出流路との間に介在するように配置される流出側介在流路(401h)とを有し、前記供給側介在流路は、前記上流端としての下端(401f)と、該下端よりも作動流体流れ下流側に設けられた上端(401e)とを有し、前記流出側介在流路は、前記下流端としての上端(401i)と、該上端よりも作動流体流れ上流側に設けられた下端(401j)とを有し、前記供給側介在流路の下端は、前記供給流路に対し該供給流路の下方にて連結し、前記流出側介在流路の上端は、前記流出流路に対し該流出流路の上方にて連結し、前記複数の積層ユニットはそれぞれ、前記複数の蒸発流路を前記積層方向に仕切る蒸発流路仕切壁(605)を有し、該蒸発流路仕切壁は、該蒸発流路仕切壁を前記積層方向に貫通する第1壁貫通孔(605b)を形成し前記液供給部に含まれる第1貫通孔形成部(605a)と、前記蒸発流路仕切壁を前記積層方向に貫通する第2壁貫通孔(605d)を形成し前記流体流出部に含まれる第2貫通孔形成部(605c)とを有し、前記供給流路は、前記第1壁貫通孔を含んで前記蒸発流路仕切壁を貫通し、前記積層方向に延びており、前記流出流路は、前記第2壁貫通孔を含んで前記蒸発流路仕切壁を貫通し、前記積層方向に延びている。

Claims (27)

  1. 作動流体が循環するサーモサイフォン式のヒートパイプ(10)の一部を構成し、1つ以上の電池セル(BC)を有する電池(BP)から前記作動流体へ吸熱させることにより該作動流体を蒸発させる蒸発器であって、
    上流端(401a)と下流端(401b)とを有する1つ以上の蒸発流路(401)が形成され、前記電池に対し熱伝導可能に連結され、前記1つ以上の蒸発流路内を流れる前記作動流体を前記電池の熱で蒸発させる流体蒸発部(40)と、
    前記1つ以上の蒸発流路の前記上流端が連結された供給流路(421)が形成され、該供給流路内へ流入した液相の前記作動流体を前記1つ以上の蒸発流路へ供給する液供給部(42)と、
    前記1つ以上の蒸発流路の前記下流端が連結された流出流路(441)が形成され、前記1つ以上の蒸発流路から前記流出流路へ流入した前記作動流体を流出させる流体流出部(44)とを備え、
    前記蒸発流路内では、前記作動流体が前記上流端から前記下流端へ流れ、
    前記流体流出部は、前記液供給部よりも上方に配置され、
    前記液供給部は、前記流体蒸発部よりも前記電池の熱を受けにくい位置に配置される蒸発器。
  2. 前記1つ以上の電池セルは複数の電池セルであり、
    前記電池は組電池であり、
    前記1つ以上の蒸発流路は複数の蒸発流路であり、
    前記複数の蒸発流路は、前記電池セルの積層方向(DRs)に並び、
    前記流体蒸発部は、前記複数の蒸発流路内を流れる前記作動流体を前記組電池の熱で蒸発させ、
    前記供給流路には、前記複数の蒸発流路の前記上流端がそれぞれ連結され、
    前記液供給部は、該供給流路内へ流入した液相の前記作動流体を前記複数の蒸発流路の各々へ分配供給し、
    前記流出流路には、前記複数の蒸発流路の前記下流端がそれぞれ連結され、
    前記流体流出部は、前記複数の蒸発流路の各々から前記流出流路へ流入した前記作動流体を流出させる請求項1に記載の蒸発器。
  3. 前記流体蒸発部は、前記組電池に接触し、又は該流体蒸発部と該組電池との間に介在し熱伝導性を備えた熱伝導材(38)に接触することにより、前記組電池に対し熱伝導可能に連結され、
    前記液供給部が前記流体蒸発部よりも前記組電池の熱を受けにくい位置に配置されることとは、前記組電池または前記熱伝導材に接触する表面の面積が前記液供給部では前記流体蒸発部に比して小さくなるように、前記液供給部が配置されることである請求項2に記載の蒸発器。
  4. 前記液供給部が前記流体蒸発部よりも前記組電池の熱を受けにくい位置に配置されることとは、前記液供給部が前記組電池との間に断熱部(39、401d)を介在させて配置されることである請求項2に記載の蒸発器。
  5. 前記蒸発流路内では前記作動流体が下方から上方へ流れる請求項2ないし5のいずれか1つに記載の蒸発器。
  6. 前記供給流路は前記積層方向に延びている請求項2ないし5のいずれか1つに記載の蒸発器。
  7. 前記供給流路は、該供給流路の流路断面積が作動流体流れ下流側ほど小さくなるように形成されている請求項6に記載の蒸発器。
  8. 前記流出流路は前記積層方向に延びている請求項2ないし7のいずれか1つに記載の蒸発器。
  9. 前記流出流路は、該流出流路の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている請求項8に記載の蒸発器。
  10. 前記組電池は下方を向いた電池下面(BPa)を有し、
    前記流体蒸発部は、前記組電池のうち前記電池下面に対し熱伝導可能に連結され、
    前記複数の蒸発流路はそれぞれ、前記電池下面に沿う向きに延びる請求項2ないし9のいずれか1つに記載の蒸発器。
  11. 前記組電池は、側面上端(BPd)と側面下端(BPc)とを有する電池側面(BPb)を有し、
    前記流体蒸発部は、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、
    前記複数の蒸発流路はそれぞれ、前記電池側面に沿って前記側面下端側から前記側面上端側へと延びる請求項2ないし9のいずれか1つに記載の蒸発器。
  12. 前記複数の蒸発流路はそれぞれ、前記積層方向に対して傾斜した向きに延びる請求項2ないし11のいずれか1つに記載の蒸発器。
  13. 前記複数の蒸発流路のうちの或る蒸発流路は、前記或る蒸発流路の途中にて、前記或る蒸発流路と隣り合う蒸発流路に連通している請求項2ないし12のいずれか1つに記載の蒸発器。
  14. 前記複数の蒸発流路のうちの少なくとも何れかは、該蒸発流路の流路断面積が作動流体流れ下流側ほど大きくなるように形成されている請求項2ないし13のいずれか1つに記載の蒸発器。
  15. 前記複数の蒸発流路のうちの少なくとも何れかは、前記積層方向へ延びた扁平断面形状を成す請求項2ないし14のいずれか1つに記載の蒸発器。
  16. 前記流体蒸発部に含まれる第1蒸発形成部(121a)と前記液供給部に含まれる第1供給形成部(121b)と前記流体流出部に含まれる第1流出形成部(121c)とを有する第1プレート部材(121)と、
    前記流体蒸発部に含まれる第2蒸発形成部(122a)と前記液供給部に含まれる第2供給形成部(122b)と前記流体流出部に含まれる第2流出形成部(122c)とを有する第2プレート部材(122)とを備え、
    前記第1プレート部材が前記第2プレート部材に積層されて接合されることにより、前記複数の蒸発流路は前記第1蒸発形成部と前記第2蒸発形成部との間に形成され、前記供給流路は前記第1供給形成部と前記第2供給形成部との間に形成され、且つ、前記流出流路は前記第1流出形成部と前記第2流出形成部との間に形成されており、
    前記第1蒸発形成部は前記第2蒸発形成部と前記組電池との間に配置され、
    前記第1蒸発形成部と前記第2蒸発形成部とのうちの一方の蒸発形成部は他方の蒸発形成部へ向けて突き出た凸部(122d)を有し、
    前記凸部は、前記他方の蒸発形成部に当接することにより、前記複数の蒸発流路を相互に仕切っている請求項2ないし15のいずれか1つに記載の蒸発器。
  17. 前記流体蒸発部は多穴管(50)で構成され、
    該多穴管には、該多穴管の一端(50a)から他端(50b)まで連通し該一端と該他端とのぞれぞれで開放された複数の連通穴(501)が形成され、
    該複数の連通穴は前記複数の蒸発流路として設けられている請求項2ないし15のいずれか1つに記載の蒸発器。
  18. 前記組電池は、上下方向(DRg)に沿って拡がる電池側面(BPb)を有し、
    前記流体蒸発部は、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、
    前記供給流路は、前記電池側面の正面に配置され、
    前記複数の蒸発流路はそれぞれ、前記電池側面と前記供給流路との間に介在するように配置される供給側介在流路(401d)を有している請求項2ないし9のいずれか1つに記載の蒸発器。
  19. 前記供給側介在流路は、前記上流端としての下端(401f)と、該下端よりも作動流体流れ下流側に設けられた上端(401e)とを有し、
    前記供給側介在流路の下端は、前記供給流路に対し該供給流路の下方にて連結している請求項18に記載の蒸発器。
  20. 前記液供給部は、前記蒸発流路と前記供給流路との間を仕切る壁状の供給側仕切部(606、64)を有し、
    該供給側仕切部は、前記蒸発流路のうちの少なくとも前記供給側介在流路と前記供給流路との間を仕切っている請求項18または19に記載の蒸発器。
  21. 前記供給側仕切部は、断熱材(64)を含んで構成されている請求項20に記載の蒸発器。
  22. 前記流体蒸発部は、前記複数の蒸発流路を前記積層方向に仕切る蒸発流路仕切壁(605)を有し、
    前記蒸発流路仕切壁は、前記供給側介在流路同士の間を前記積層方向に仕切る供給側仕切壁部(605h)を有し、
    前記供給側仕切壁部は、該供給側仕切壁部を前記積層方向に貫通する壁貫通孔(605b)を形成する貫通孔形成部(605a)を有し、
    前記貫通孔形成部は前記積層方向へ並んで複数配置されることで、前記液供給部を構成し、且つ、前記積層方向へ並んで配置された複数の前記壁貫通孔を含む前記供給流路を前記積層方向へ延びるように形成する請求項18または19に記載の蒸発器。
  23. 前記流出流路は、前記電池側面の正面に配置され、
    前記複数の蒸発流路はそれぞれ、前記供給側介在流路よりも作動流体流れ下流側に設けられた流出側介在流路(401h)を有し、
    該流出側介在流路は、前記電池側面と前記流出流路との間に介在するように配置される請求項18ないし22のいずれか1つに記載の蒸発器。
  24. 前記組電池は、上下方向(DRg)に沿って拡がる電池側面(BPb)を有し、
    前記流体蒸発部は、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、
    前記流出流路は、前記電池側面の正面に配置され、
    前記複数の蒸発流路はそれぞれ、前記電池側面と前記流出流路との間に介在するように配置される流出側介在流路(401h)を有している請求項2ないし9のいずれか1つに記載の蒸発器。
  25. 前記流出側介在流路は、前記下流端としての上端(401i)と、該上端よりも作動流体流れ上流側に設けられた下端(401j)とを有し、
    前記流出側介在流路の上端は、前記流出流路に対し該流出流路の上方にて連結している請求項23または24に記載の蒸発器。
  26. 前記複数の蒸発流路はそれぞれ、前記流出側介在流路を介して前記流出流路へ接続し前記上下方向で前記液供給部と前記流体流出部との間に配置された蒸発中間流路(401c)を有し、
    前記流体流出部は、前記流出側介在流路と前記流出流路との間および前記蒸発中間流路と前記流出流路との間を仕切る壁状の流出側仕切部(607)を有し、
    該流出側仕切部には、前記蒸発中間流路に対して前記流出側介在流路と並列に接続され且つ前記流出流路を前記蒸発中間流路へ連通させる仕切連通孔(607b)が形成され、
    該仕切連通孔は前記流出流路の下方に配置され、前記作動流体の流れが前記流出側介在流路を通る場合よりも前記仕切連通孔を通る場合の方が絞られる大きさとなるように形成されている請求項25に記載の蒸発器。
  27. 前記流体蒸発部の一部と前記液供給部の一部と前記流体流出部の一部とを有し、上下方向(DRg)へ延びるように形成され、前記上下方向に沿って拡がるユニット側面(601)が形成された複数の積層ユニット(60)を備え、
    前記組電池は、前記上下方向に沿って拡がる電池側面(BPb)を有し、
    前記ユニット側面は、前記電池側面に対向すると共に、前記組電池のうち前記電池側面に対し熱伝導可能に連結され、
    前記複数の積層ユニットは、前記積層方向へ積層されて互いに接合されることにより、前記流体蒸発部と前記液供給部と前記流体流出部とを構成し、
    前記供給流路と前記流出流路は、前記電池側面の正面に配置され、
    前記複数の積層ユニットの各々には、前記複数の蒸発流路のうちの少なくとも1本の蒸発流路が形成されており、
    前記複数の積層ユニットの各々において、該積層ユニットに形成された前記蒸発流路は、前記電池側面と前記供給流路との間に介在するように配置される供給側介在流路(401d)と、該供給側介在流路よりも作動流体流れ下流側に設けられ、前記電池側面と前記流出流路との間に介在するように配置される流出側介在流路(401h)とを有し、
    前記供給側介在流路は、前記上流端としての下端(401f)と、該下端よりも作動流体流れ下流側に設けられた上端(401e)とを有し、
    前記流出側介在流路は、前記下流端としての上端(401i)と、該上端よりも作動流体流れ上流側に設けられた下端(401j)とを有し、
    前記供給側介在流路の下端は、前記供給流路に対し該供給流路の下方にて連結し、
    前記流出側介在流路の上端は、前記流出流路に対し該流出流路の上方にて連結し、
    前記複数の積層ユニットはそれぞれ、前記複数の蒸発流路を前記積層方向に仕切る蒸発流路仕切壁(605)を有し、
    該蒸発流路仕切壁は、該蒸発流路仕切壁を前記積層方向に貫通する第1壁貫通孔(605b)を形成し前記液供給部に含まれる第1貫通孔形成部(605a)と、前記蒸発流路仕切壁を前記積層方向に貫通する第2壁貫通孔(605d)を形成し前記流体流出部に含まれる第2貫通孔形成部(605c)とを有し、
    前記供給流路は、前記第1壁貫通孔を含んで前記蒸発流路仕切壁を貫通し、前記積層方向に延びており、
    前記流出流路は、前記第2壁貫通孔を含んで前記蒸発流路仕切壁を貫通し、前記積層方向に延びている請求項2ないし5のいずれか1つに記載の蒸発器。
JP2018544693A 2016-10-12 2017-08-24 蒸発器 Expired - Fee Related JP6601573B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016201130 2016-10-12
JP2016201130 2016-10-12
JP2017082917 2017-04-19
JP2017082917 2017-04-19
PCT/JP2017/030422 WO2018070115A1 (ja) 2016-10-12 2017-08-24 蒸発器

Publications (2)

Publication Number Publication Date
JPWO2018070115A1 true JPWO2018070115A1 (ja) 2019-03-07
JP6601573B2 JP6601573B2 (ja) 2019-11-06

Family

ID=61906283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018544693A Expired - Fee Related JP6601573B2 (ja) 2016-10-12 2017-08-24 蒸発器

Country Status (5)

Country Link
US (1) US10996002B2 (ja)
JP (1) JP6601573B2 (ja)
CN (1) CN109844438B (ja)
DE (1) DE112017005160T5 (ja)
WO (1) WO2018070115A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6919511B2 (ja) * 2017-11-09 2021-08-18 株式会社デンソー 蒸発器
US11811039B2 (en) * 2018-01-31 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Battery pack
KR101990592B1 (ko) * 2018-05-28 2019-06-18 한국기계연구원 상변화 냉각모듈 및 이를 이용하는 배터리팩
WO2019227221A1 (en) * 2018-05-30 2019-12-05 Dana Canada Corporation Thermal management systems and heat exchangers for battery thermal modulation
JP2020184429A (ja) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 冷却装置
JP2020184430A (ja) * 2019-04-26 2020-11-12 トヨタ自動車株式会社 冷却装置
JP7128165B2 (ja) * 2019-09-30 2022-08-30 豊田鉄工株式会社 電池冷却器
DE102019216052A1 (de) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Kühlvorrichtung für eine Traktionsbatterie eines Fahrzeugs
US11964535B2 (en) * 2019-11-18 2024-04-23 Bollinger Motors, Inc. Electric automotive vehicle
JP7376415B2 (ja) 2020-04-09 2023-11-08 トヨタ自動車株式会社 冷却器
CN111540977B (zh) * 2020-04-21 2022-04-22 华南理工大学 一种动力电池液冷型热管理系统及吹胀型铝质均热板
DE102020205930A1 (de) * 2020-05-12 2021-11-18 Mahle International Gmbh Akkumulator
JP7375699B2 (ja) 2020-07-20 2023-11-08 株式会社豊田自動織機 電気装置用冷却装置
FR3124348B1 (fr) * 2021-06-22 2023-10-20 Valeo Systemes Thermiques Dispositif de régulation thermique pour système électronique
CN114243152B (zh) * 2021-12-07 2024-04-19 国网中兴有限公司 锂电池的冷却及余热回收装置
US11943904B2 (en) 2022-05-31 2024-03-26 GE Grid GmbH Hybrid thermosyphon with immersion cooled evaporator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134901A (ja) * 2007-11-28 2009-06-18 Sanyo Electric Co Ltd バッテリシステム
WO2010050011A1 (ja) * 2008-10-29 2010-05-06 三菱重工業株式会社 電気要素システム
JP2010192207A (ja) * 2009-02-17 2010-09-02 Mitsubishi Heavy Ind Ltd 電池用冷却装置及び組電池
JP2011503794A (ja) * 2007-11-09 2011-01-27 エルジー・ケム・リミテッド 放熱特性が優れたバッテリーモジュール及び熱交換部材
JP2011049137A (ja) * 2009-07-31 2011-03-10 Sanyo Electric Co Ltd 組電池
JP2011243358A (ja) * 2010-05-17 2011-12-01 Denso Corp 電池パック
US20110293974A1 (en) * 2010-06-01 2011-12-01 Ji-Hyoung Yoon Battery pack
JP2012018915A (ja) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd 電池モジュール
JP2013134993A (ja) * 2011-12-22 2013-07-08 Samsung Sdi Co Ltd バッテリモジュール
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
JP2014192044A (ja) * 2013-03-27 2014-10-06 Sanyo Electric Co Ltd 車両用のバッテリシステム及びバッテリシステムを備える電動車両
JP2015116910A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 熱交換システム
JP2015175534A (ja) * 2014-03-14 2015-10-05 カルソニックカンセイ株式会社 冷却装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942943B2 (ja) 1976-10-12 1984-10-18 株式会社東芝 陰極線管
JP2636337B2 (ja) * 1988-06-02 1997-07-30 株式会社デンソー 冷媒蒸発器
FR2737559B1 (fr) * 1995-07-31 1997-09-12 Valeo Climatisation Echangeur de chaleur, en particulier du type brase, pour vehicule automobile
US7848829B2 (en) 2006-09-29 2010-12-07 Fisher-Rosemount Systems, Inc. Methods and module class objects to configure absent equipment in process plants
TWI320094B (en) * 2006-12-21 2010-02-01 Spray type heat exchang device
JP4450056B2 (ja) 2007-11-21 2010-04-14 トヨタ自動車株式会社 排気熱回収器
JP2009222254A (ja) * 2008-03-13 2009-10-01 Toyota Motor Corp 排気熱回収器
JP5422596B2 (ja) * 2011-04-22 2014-02-19 株式会社日立製作所 二次電池モジュール及び二次電池パック
JP2013040702A (ja) * 2011-08-12 2013-02-28 T Rad Co Ltd 冷却装置
JP5942943B2 (ja) * 2013-08-20 2016-06-29 トヨタ自動車株式会社 電池温度調節装置
CN103904383A (zh) * 2014-01-26 2014-07-02 上海汽车集团股份有限公司 具有流体冷却通道的电池模组
US20160040942A1 (en) * 2014-08-08 2016-02-11 Halla Visteon Climate Control Corp. Heat exchanger with integrated noise suppression
CN104617352B (zh) * 2015-01-28 2017-04-19 中国科学院工程热物理研究所 一种内置式电动汽车车用电池包散热方法及装置
JP6593102B2 (ja) 2015-10-28 2019-10-23 浜名湖電装株式会社 電磁弁
WO2018070116A1 (ja) 2016-10-12 2018-04-19 株式会社デンソー 冷却装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503794A (ja) * 2007-11-09 2011-01-27 エルジー・ケム・リミテッド 放熱特性が優れたバッテリーモジュール及び熱交換部材
JP2009134901A (ja) * 2007-11-28 2009-06-18 Sanyo Electric Co Ltd バッテリシステム
WO2010050011A1 (ja) * 2008-10-29 2010-05-06 三菱重工業株式会社 電気要素システム
JP2010192207A (ja) * 2009-02-17 2010-09-02 Mitsubishi Heavy Ind Ltd 電池用冷却装置及び組電池
JP2011049137A (ja) * 2009-07-31 2011-03-10 Sanyo Electric Co Ltd 組電池
JP2011243358A (ja) * 2010-05-17 2011-12-01 Denso Corp 電池パック
US20110293974A1 (en) * 2010-06-01 2011-12-01 Ji-Hyoung Yoon Battery pack
JP2012018915A (ja) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd 電池モジュール
JP2013134993A (ja) * 2011-12-22 2013-07-08 Samsung Sdi Co Ltd バッテリモジュール
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
JP2014192044A (ja) * 2013-03-27 2014-10-06 Sanyo Electric Co Ltd 車両用のバッテリシステム及びバッテリシステムを備える電動車両
JP2015116910A (ja) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 熱交換システム
JP2015175534A (ja) * 2014-03-14 2015-10-05 カルソニックカンセイ株式会社 冷却装置

Also Published As

Publication number Publication date
WO2018070115A1 (ja) 2018-04-19
CN109844438B (zh) 2020-06-12
DE112017005160T5 (de) 2019-07-25
US10996002B2 (en) 2021-05-04
JP6601573B2 (ja) 2019-11-06
US20200096260A1 (en) 2020-03-26
CN109844438A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
JP6601573B2 (ja) 蒸発器
JP5942943B2 (ja) 電池温度調節装置
JP6604442B2 (ja) 機器温調装置
WO2018230349A1 (ja) 冷却器、およびサーモサイフォン
JP6183100B2 (ja) 蓄冷熱交換器
JP6693480B2 (ja) 端子冷却装置
JP6756278B2 (ja) バッテリ冷却システム
WO2018047533A1 (ja) 機器温調装置
US20200338963A1 (en) Cooling device
KR20170128559A (ko) 특히, 자동차용 열 배터리 및 대응 용도
JP6148066B2 (ja) 熱交換器
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
WO2014129621A1 (ja) 熱交換器及び車両用空調装置
CN111854489A (zh) 冷却装置
WO2019123881A1 (ja) 機器温調装置
JP6082629B2 (ja) 熱交換器
WO2019221237A1 (ja) 機器温調装置
WO2020129645A1 (ja) 機器温調装置
JP6919511B2 (ja) 蒸発器
KR20110100002A (ko) 상변화 물질을 포함하는 이중 증발기
WO2018070182A1 (ja) 機器温調装置
WO2020084956A1 (ja) 温度調整装置
JP6327386B2 (ja) 蓄冷熱交換器
WO2019146262A1 (ja) 車両用サーモサイフォン式冷却装置
JP6151961B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R151 Written notification of patent or utility model registration

Ref document number: 6601573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees