WO2018230349A1 - 冷却器、およびサーモサイフォン - Google Patents

冷却器、およびサーモサイフォン Download PDF

Info

Publication number
WO2018230349A1
WO2018230349A1 PCT/JP2018/020960 JP2018020960W WO2018230349A1 WO 2018230349 A1 WO2018230349 A1 WO 2018230349A1 JP 2018020960 W JP2018020960 W JP 2018020960W WO 2018230349 A1 WO2018230349 A1 WO 2018230349A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooler
flow path
liquid
phase refrigerant
Prior art date
Application number
PCT/JP2018/020960
Other languages
English (en)
French (fr)
Inventor
康光 大見
義則 毅
功嗣 三浦
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018003046.6T priority Critical patent/DE112018003046T5/de
Priority to CN201880039896.0A priority patent/CN110753822B/zh
Publication of WO2018230349A1 publication Critical patent/WO2018230349A1/ja
Priority to US16/692,800 priority patent/US20200088471A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a cooler and a thermosiphon.
  • thermosyphon includes a cooler that evaporates the liquid phase refrigerant by heat exchange between the liquid phase refrigerant and the battery and cools the battery, and a condenser that condenses the gas-phase refrigerant from the cooler. And a refrigerant circuit that circulates the refrigerant between the condenser and the condenser (for example, see Patent Document 1).
  • the present inventors have studied a thermosiphon for a vehicle that cools a battery mounted on an automobile with a cooler with reference to the thermosiphon of Patent Document 1.
  • the cooler 2 includes a refrigerant supply channel 2a to which the liquid phase refrigerant from the condenser is supplied, and an evaporation flow for evaporating the liquid phase refrigerant by heat exchange between the liquid phase refrigerant from the refrigerant supply channel 2a and the battery.
  • a passage 2b and a refrigerant discharge passage 2c for guiding the gas-phase refrigerant from the evaporation passage 2b to the condenser are provided (see FIGS. 27A and 27B).
  • the cooler 2 becomes a posture inclined more than a predetermined posture (hereinafter referred to as a reference posture).
  • the refrigerant is affected by gravity and gathers at the lowermost part in the thermosiphon refrigerant circuit. For this reason, the liquid phase refrigerant in the refrigerant supply flow path 2a of the cooler may be reduced.
  • the liquid phase refrigerant is located below the refrigerant inlet of the evaporation channel 2b of the refrigerant supply channel 2a. Liquid level may be located.
  • This disclosure is intended to provide a cooler and a thermosiphon that stabilize cooling of an object to be cooled.
  • a cooler that constitutes a thermosiphon that circulates a refrigerant together with a condenser that condenses the gas-phase refrigerant and discharges the liquid-phase refrigerant
  • a first flow path forming unit that forms a supply flow path through which the liquid refrigerant from the condenser flows; It has a refrigerant inlet that communicates with the supply flow path, and is formed to extend upward from the refrigerant inlet.
  • a second flow path forming unit that forms an evaporation flow path for evaporating the liquid phase refrigerant to generate the gas phase refrigerant;
  • a third flow path forming part that forms a discharge flow path through which the gas-phase refrigerant from the evaporation flow path flows toward the condenser, The refrigerant inlet is located on the lower side of the supply flow path with respect to the center portion in the vertical direction.
  • the refrigerant inlet is in the supply channel with respect to the center in the vertical direction. Compared to the case of being positioned on the upper side, it is advantageous in disposing the liquid level of the liquid phase refrigerant above the refrigerant inlet.
  • the liquid phase refrigerant can be stably supplied from the supply channel to the evaporation channel. For this reason, the cooling of the object to be cooled can be stabilized.
  • the central part of the supply channel is at the top. It means the middle position between the position and the lowest position.
  • a cooler that constitutes a thermosiphon that circulates a refrigerant together with a condenser that condenses the gas-phase refrigerant and discharges the liquid-phase refrigerant
  • a first flow path forming unit that forms a supply flow path through which the liquid refrigerant from the condenser flows;
  • the gas-phase refrigerant has a refrigerant inlet into which the liquid-phase refrigerant from the supply channel enters, and evaporates the liquid-phase refrigerant by heat exchange between the liquid-phase refrigerant that has flowed through the refrigerant inlet and the object to be cooled.
  • a second flow path forming portion for forming an evaporation flow path for circulating the liquid toward the condenser;
  • a third flow path forming part that forms a discharge flow path through which the gas-phase refrigerant from the evaporation flow path flows toward the condenser,
  • One or more liquid storage parts that are formed to be recessed downward from the supply flow path, and store liquid phase refrigerant from the supply flow path, The refrigerant inlet communicates with the liquid storage part and is located at the same height as the liquid level of the liquid phase refrigerant in the liquid storage part or below the liquid level.
  • the refrigerant inlet is in the supply channel with respect to the center in the vertical direction. Compared to the case of being positioned on the upper side, it is advantageous in disposing the liquid level of the liquid phase refrigerant above the refrigerant inlet.
  • the liquid phase refrigerant can be stably supplied from the supply channel to the evaporation channel. For this reason, the cooling of the object to be cooled can be stabilized.
  • a condenser that condenses a gas-phase refrigerant and discharges the liquid-phase refrigerant, and a liquid-phase refrigerant by heat exchange between the liquid-phase refrigerant that flows from the condenser and the object to be cooled. And a thermosiphon that circulates the refrigerant between the condenser and the cooler.
  • a determination unit for determining whether or not the cooler is inclined with respect to a predetermined posture; When the determination unit determines that the cooler is tilted with respect to the predetermined attitude, the condenser determines that the cooler is not inclined with respect to the predetermined attitude.
  • a refrigerant increasing unit that increases the amount of liquid phase refrigerant supplied to the cooler.
  • the cooler when the cooler is tilted from a predetermined posture, the supply amount of the liquid phase refrigerant from the condenser to the cooler is increased, so that the liquid phase refrigerant can be stably supplied to the evaporation channel. it can. For this reason, the cooling of the object to be cooled can be stabilized.
  • A is a cross-sectional view of the evaporator. It is a perspective view which shows the internal structure of the cooler of FIG. It is a schematic diagram which shows the refrigerant
  • FIG. 24A It is XXIVC-XXIVC sectional drawing in FIG. 24A. It is a figure which shows the internal structure of the cooler in 7th Embodiment.
  • FIG. 25B is a sectional view taken along line XXVB-XXVB in FIG. 25A.
  • FIG. 25B is a sectional view taken along line XXVC-XXVC in FIG. 25A. It is a figure which shows the internal structure of the cooler in 8th Embodiment.
  • FIG. 26B is a sectional view taken along the line XXVIB-XXVIB in FIG. 26A. It is XXVIC-XXVIC sectional drawing in FIG. 26A. It is a figure which shows the internal structure of the cooler in contrast. It is XXVIIB-XXVIIB sectional drawing in FIG. 27A.
  • the battery cooling unit 10 of this embodiment shown in FIG. 1 is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle. And in this embodiment, the battery cooling unit 10 cools the secondary batteries 12a and 12b mounted in the electric vehicle. That is, the objects to be cooled that are cooled by the battery cooling unit 10 are the secondary batteries 12a and 12b.
  • the electric power stored in a power storage device (in other words, a battery pack) including the secondary batteries 12a and 12b as a component is used as an inverter circuit or the like.
  • a power storage device in other words, a battery pack
  • the secondary batteries 12a and 12b self-heat when outputting electric power to the electric motor via the inverter.
  • the battery temperature rises not only when the vehicle is running but also during parking in summer.
  • the power storage device is often arranged under the floor of a vehicle or under a trunk room, and although the amount of heat per unit time given to the secondary batteries 12a and 12b is small, the battery temperature gradually rises when left for a long time. .
  • the battery temperature is maintained at a low temperature, for example, by cooling the secondary batteries 12a and 12b while the vehicle is left. It is hoped that.
  • the secondary batteries 12a and 12b of the present embodiment are configured as an assembled battery in which a plurality of battery cells 13 are stacked in the vehicle traveling direction, if the temperature of each battery cell 13 varies, the battery cell 13 The deterioration is biased and the performance of the power storage device is reduced.
  • the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 13 that is most deteriorated. Therefore, in order to allow the power storage device to exhibit desired performance over a long period of time, it is important to equalize the temperature so as to reduce temperature variations among the plurality of battery cells 13.
  • the secondary batteries 12a and 12b are cooled by the sensible heat of the air by the blower blower, the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation between the battery cells 13 cannot be sufficiently suppressed. .
  • the cooling capacity is high in the refrigeration cycle method, since the heat exchange part with the battery cell 13 is sensible heat cooling by either air cooling or water cooling, similarly, the temperature variation between the battery cells 13 cannot be sufficiently suppressed. Furthermore, driving the compressor or cooling fan of the refrigeration cycle while parked is not preferable because it causes an increase in power consumption and noise.
  • the battery cooling unit 10 of the present embodiment employs a thermosiphon system that cools the secondary batteries 12a and 12b by natural convection of a refrigerant without using a compressor.
  • the battery cooling unit 10 includes a cooler 14, a condenser 16, an outward piping 18, and a return piping 20.
  • the condenser 16, the forward piping 18, the cooler 14, and the return piping 20 are connected in an annular shape to constitute a thermosiphon circuit 26 in which the refrigerant as the refrigerant of the battery cooling unit 10 circulates.
  • thermosiphon circuit 26 constitutes a thermosiphon that performs heat transfer by evaporation and condensation of the refrigerant.
  • the thermosiphon circuit 26 is configured to be a loop-type thermosiphon (in other words, a refrigerant circulation circuit) in which the flow path through which the gas-phase refrigerant flows and the flow path through which the liquid-phase refrigerant flow are separated. .
  • the arrow DR1 indicates the direction of gravity
  • the up arrow indicates the upper side of the vehicle gravity direction
  • the down arrow indicates the lower side of the vehicle gravity direction.
  • the arrow DR2 indicates the vertical direction of the battery cooling unit 10 with the battery cooling unit 10 mounted on the vehicle.
  • the arrow DR3 indicates the horizontal direction. When the traveling direction of the vehicle coincides with the horizontal direction, the gravitational direction and the vertical direction coincide.
  • An arrow DR4 indicates the vehicle traveling direction.
  • the arrow DR5 indicates the vehicle width direction (that is, the vehicle left-right direction).
  • the thermosiphon circuit 26 of the present embodiment is filled with a refrigerant.
  • the thermosiphon circuit 26 is filled with the refrigerant.
  • the refrigerant circulates in the thermosiphon circuit 26 by natural convection, and the battery cooling unit 10 adjusts the temperature of the secondary batteries 12a and 12b by the phase change between the liquid phase and the gas phase of the refrigerant. Specifically, the secondary batteries 12a and 12b are cooled by the phase change of the refrigerant.
  • the refrigerant filled in the thermosiphon circuit 26 is, for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a. Or you may use various working fluids other than Freon-type refrigerant
  • the cooler 14 is disposed between the secondary batteries 12a and 12b and exchanges heat between the secondary batteries 12a and 12b and the refrigerant to transfer heat from the secondary batteries 12a and 12b to the refrigerant. It is a heat exchanger that cools the secondary batteries 12a and 12b by being moved.
  • the cooler 14 is made of a metal having high thermal conductivity, for example.
  • the charging amount of the refrigerant into the thermosiphon circuit 26 is such that the heat exchange between the secondary batteries 12a, 12b and the refrigerant is stopped and the traveling direction of the vehicle coincides with the horizontal direction. The amount is filled with the liquid phase refrigerant.
  • the cooler 14 has an inlet 14a and an outlet 14b.
  • the inlet 14a and the outlet 14b are provided on the front side of the cooler 14 in the vehicle traveling direction.
  • the outlet 14b is arranged on the heaven region improvement side with respect to the inlet 14a.
  • the forward flow passage 18 a formed inside the forward piping 18 is in communication with the cooler 14. Therefore, when the refrigerant circulates through the thermosiphon circuit 26, the liquid-phase refrigerant in the forward flow passage 18a flows into the cooler 14 through the inlet 14a.
  • the forward flow passage 18 a is a refrigerant flow path through which the liquid refrigerant flows from the condenser 16 to the cooler 14.
  • the outlet 14 b of the cooler 14 communicates the return flow passage 20 a formed in the return pipe 20 into the cooler 14.
  • the return flow passage 20 a is a refrigerant flow path for flowing the gas-phase refrigerant from the outlet 14 b of the cooler 14 to the condenser 16.
  • the cooler 14 has a structure (not shown) that allows the gas-phase refrigerant to exit from the outlet 14b exclusively of the inlet 14a and the outlet 14b.
  • the condenser 16 is a heat exchanger that exchanges heat between the gas-phase refrigerant and the heat receiving fluid in the condenser 16 to dissipate heat from the refrigerant to the heat receiving fluid. More specifically, the gas phase refrigerant flows into the condenser 16 from the return pipe 20, and the condenser 16 condenses the refrigerant by dissipating heat from the refrigerant to the heat receiving fluid.
  • the heat-receiving fluid that exchanges heat with the refrigerant in the condenser 16 is, for example, air (that is, air outside the passenger compartment) or water.
  • the condenser 16 of the present embodiment is installed so as to be positioned on the heaven region improvement side with respect to the cooler 14 even when the vehicle traveling direction (or vehicle width direction) of the vehicle is inclined with respect to the horizontal direction. ing.
  • the condenser 16 is disposed above the cooler 14 in the gravity direction.
  • the condenser 16 is accommodated in a front storage room or a trunk room.
  • the front storage chamber is a chamber that is disposed on the front side in the vehicle traveling direction with respect to the vehicle interior of the vehicle and stores the traveling engine and the traveling electric motor.
  • the trunk room is a storage room that is arranged on the rear side in the vehicle traveling direction with respect to the vehicle interior of the vehicle and stores luggage and the like.
  • the return pipe 20 is connected to the upper part of the condenser 16 in the direction of gravity. In short, the return pipe 20 is connected to the condenser 16 above the forward pipe 18 in the direction of gravity.
  • the cooler 14 is composed of evaporators 30a, 30b, 30c, 30d,... 30m stacked in the vehicle traveling direction, and is a heat exchanger that cools the secondary batteries 12a, 12b.
  • the evaporators 30a to 30m are provided for each battery cell 13 of the secondary batteries 12a and 12b (see FIGS. 4 and 9).
  • FIG. 4 illustrations of the evaporators 30 a, 30 b, 30 c,..., 30 m other than the evaporators 30 a, 30 b, 30 c are omitted.
  • the secondary battery 12a is arranged on one side in the vehicle width direction with respect to the evaporators 30a to 30m.
  • the secondary battery 12a includes a plurality of battery cells 13 stacked in the vehicle traveling direction. That is, the plurality of battery cells 13 are stacked in the same direction as the stacking direction of the evaporators 30a to 30m.
  • the secondary battery 12b is disposed on the other side in the vehicle width direction with respect to the evaporators 30a to 30m.
  • the secondary battery 12b includes a plurality of battery cells 13 stacked in the vehicle traveling direction.
  • secondary batteries 12a and 12b are the same secondary batteries although the reference numerals different from each other are given for convenience of explanation.
  • the heat conductive materials 40a and 40b are each formed in a thin plate shape from a material having electrical insulation and high heat conductivity.
  • the heat conductive material 40a is disposed between the evaporators 30a to 30m and the secondary battery 12a.
  • the heat conductive material 40b is disposed between the evaporators 30a to 30m and the secondary battery 12b.
  • the heat conductive materials 40a and 40b of the present embodiment may have an effect of absorbing dimensional errors of the evaporators 30a to 30m and the secondary batteries 12a and 12b.
  • Each of the evaporators 30a to 30m of the present embodiment is formed in a block shape in which the vertical dimension is larger than the vehicle traveling direction dimension and the vertical dimension is larger than the vehicle width dimension. ing.
  • the evaporators 30a to 30m are arranged in the order of the evaporator 30a ⁇ the evaporator 30b ⁇ the evaporator 30c ⁇ the evaporator 30m from the front side in the vehicle traveling direction to the rear side in the vehicle traveling direction to constitute a block laminated structure. That is, the arrangement direction of the evaporators 30a to 30m of the present embodiment is the same as the vehicle traveling direction.
  • the structure of the evaporator 30a will be described using the evaporator 30a as a representative of the evaporators 30a to 30m of the present embodiment.
  • the evaporator 30a includes a case 40 and a lid 50 that are formed in a rectangular parallelepiped.
  • the case 40 forms an opening that opens to the front side in the vehicle traveling direction.
  • the case 40 includes an upper surface 41, a lower surface 42, side surfaces 43 and 44, and a back surface 45.
  • the upper surface 41 forms an opening together with the lower surface 42 and the side surfaces 43 and 44.
  • the rear surface 45 is disposed on the rear side in the vehicle traveling direction with respect to the upper surface 41, the lower surface 42, and the side surfaces 43 and 44.
  • the lid 50 is provided with an inlet 14a and an outlet 14b penetrating in the vehicle traveling direction. That is, the inlet 14a and the outlet 14b are arranged on the front side in the vehicle traveling direction with respect to the evaporators 30a to 30m.
  • the outlet of the condenser 16 is connected to the inlet 14a through the outward piping 18.
  • the outlet 14b communicates with a region on the upper side in the gravity direction of the gas-liquid separation chamber 62 of the evaporator 30a.
  • the outlet 14 b is connected to the inlet of the condenser 16 through the return pipe 20.
  • partition walls 60a, 60b, and 60c are provided.
  • Each of the partition walls 60a and 60b is formed in a plate shape extending in the direction of gravity.
  • the partition walls 60a and 60b are arranged in the vehicle width direction.
  • the partition wall 60 a forms an evaporation channel 61 a that exchanges heat between the refrigerant and the secondary battery 12 a between the side wall 43 and the side wall 43.
  • the evaporating flow path 61a is formed so as to extend along the partition wall 60a and the side surface 43 toward the Tenchi region improvement side.
  • the partition wall 60b forms an evaporation channel 61b that exchanges heat between the refrigerant and the secondary battery 12b with the side surface 44.
  • the evaporating flow path 61b is formed so as to extend along the partition wall 60b and the side surface 44 toward the Tenchi region improvement side.
  • the evaporation channels 61a and 61b are constituted by partition walls 60a and 60b, side surfaces 43 and 44, and the like as second channel forming portions.
  • a wick capillary structure
  • a heat exchange fin may be incorporated. Accordingly, heat exchange between the refrigerant and the secondary batteries 12a and 12b can be promoted, so that evaporation of the refrigerant can be promoted.
  • a gas-liquid separation chamber 62 and a liquid-phase refrigerant supply chamber 63 are formed between the partition walls 60a and 60b.
  • the partition wall 60 c is formed so as to separate the gas-liquid separation chamber 62 and the liquid-phase refrigerant supply chamber 63.
  • the gas-liquid separation chamber 62 is formed above the partition wall 60c in the gravity direction. As will be described later, the gas-liquid separation chamber 62 separates the refrigerant supplied from the evaporation channels 61a and 61b into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the liquid phase refrigerant supply chamber 63 is formed on the lower side in the gravity direction with respect to the partition wall 60c.
  • a path 70 is formed.
  • the lower side of the liquid phase refrigerant supply chamber 63 of the evaporator 30 a is formed so as to be recessed downward from the refrigerant supply channel 70, and a liquid storage unit 63 a that stores the liquid phase refrigerant from the refrigerant supply channel 70.
  • an inlet 64a of the evaporation channel 61a is formed between the partition wall 60a and the lower surface 42.
  • the inlet 64a communicates with the liquid storage part 63a, and the liquid phase refrigerant from the liquid storage part 63a flows into the inlet 64a.
  • the inlet 64 a is located on the lower side in the vertical direction with respect to the refrigerant supply flow path 70. In other words, the inlet 64 a is located on the lower side in the vertical direction with respect to the communication opening 68.
  • the inlet 64a communicates with the liquid storage part 63a.
  • the inlet 64a communicates with the refrigerant supply channel 70 through the liquid storage part 63a.
  • an inlet 64b of the evaporation channel 61b is formed between the partition wall 60b and the lower surface 42.
  • the inlet 64b communicates with the liquid storage part 63a, and the liquid phase refrigerant from the liquid storage part 63a flows into the inlet 64b.
  • the inlet 64b is located on the lower side in the vertical direction with respect to the refrigerant supply channel 70. In other words, the inlet 64 b is located on the lower side in the vertical direction with respect to the communication opening 68.
  • the inlet 64b communicates with the liquid storage part 63a. As a result, the inlet 64b communicates with the refrigerant supply channel 70 through the liquid storage portion 63a.
  • a communication passage 65a is formed between the partition wall 60a and the upper surface 41 so as to communicate between the evaporation channel 61a and the gas-liquid separation chamber 62 and supply the refrigerant from the evaporation channel 61a to the gas-liquid separation chamber 62. Has been.
  • a communication path 65b that communicates between the evaporation channel 61b and the gas-liquid separation chamber 62 and supplies refrigerant from the evaporation channel 61b to the gas-liquid separation chamber 62.
  • the partition wall 60c is formed with a refrigerant return channel 66 that communicates between the gas-liquid separation chamber 62 and the liquid-phase refrigerant supply chamber 63.
  • the refrigerant return channel 66 returns the liquid phase refrigerant in the gas-liquid separation chamber 62 to the liquid phase refrigerant supply chamber 63.
  • a communication hole 67 communicating with the gas-liquid separation chamber 62 of the evaporator 30b is formed in the rear surface 45 above the partition wall 60c in the gravity direction.
  • the evaporator 30b is disposed on the rear side in the vehicle traveling direction with respect to the evaporator 30a.
  • the two adjacent evaporators 30 a and 30 b are communicated with each other through the communication hole 67 between the gas-liquid separation chambers 62.
  • a communication opening 68 penetrating in the vehicle traveling direction is provided below the partition wall 60c in the rear surface 45 in the direction of gravity. That is, the communication opening 68 of the evaporator 30a communicates between the liquid phase refrigerant supply chamber 63 of the evaporator 30a and the liquid phase refrigerant supply chamber 63 of the evaporator 30b.
  • the communication opening 68 is formed in a pentagon.
  • the lower edge 68a that forms the lower side of the communication opening 68 on the back surface 45 is located closer to the heaven region improving side as it goes from the vehicle width direction center to the vehicle width direction right side, and the vehicle width direction center.
  • the vehicle is formed in a V-shape that is located on the heaven region improvement side as it goes to the left in the vehicle width direction.
  • a rear wall 69 that functions as a weir for damming the liquid refrigerant is formed below the communication opening 68 in the rear surface 45 in the direction of gravity.
  • the back wall 69 of the evaporator 30a is a wall which partitions each liquid storage part 63a of two adjacent evaporators 30a and 30b.
  • the liquid storage part 63a of the evaporator 30a is partitioned by the lower surface 42, the partition walls 60a and 60b, the back wall 69, and the lid part 50.
  • the lid part 50 and the partition walls 60a, 60b, 60c of this embodiment are made of a metal material such as aluminum.
  • the evaporators 30b to 30m of this embodiment include a case 40 and partition walls 60a, 60b, and 60c.
  • the case 40 in the evaporator 30a and the case 40 in the evaporators 30b to 30m are the same.
  • partition walls 60a, 60b and 60c in the evaporator 30a and the partition walls 60a, 60b and 60c in the evaporators 30b to 30m are the same.
  • the opening of the evaporator case 40 on the rear side in the vehicle traveling direction is blocked by the back surface 45 of the evaporator case 40 on the one side in the vehicle traveling direction. Yes.
  • the opening of the case 40 of the evaporator 30b on the rear side in the vehicle traveling direction of the two adjacent evaporators 30a and 30b is blocked by the back surface 45 of the case 40 of the evaporator 30a on the one side in the vehicle traveling direction.
  • the evaporators 30b to 30m each include a gas-liquid separation chamber 62, a liquid-phase refrigerant supply chamber 63, and a liquid storage section 63a for each evaporator.
  • the gas-liquid separation chamber 62 of each of the evaporators 30b to 30m separates the refrigerant supplied from the evaporation channels 61a and 61b into a gas phase refrigerant and a liquid phase refrigerant.
  • each gas-liquid separation chamber 62 of two adjacent evaporators among the evaporators 30a to 30m communicate with each other through the communication hole 67.
  • Each gas-liquid separation chamber 62 of each of the evaporators 30a to 30m, together with a communication hole 67 for each evaporator, has one gas-phase refrigerant flow path 71 (FIG. 9) for guiding the gas-phase refrigerant in the gas-liquid separation chamber 62 to the outlet 14b. Reference).
  • the gas-phase refrigerant flow channel 71 is formed by partition walls 60a and 60b and a back surface 45 as third flow channel forming portions.
  • the lower side in the gravitational direction with respect to the gas-phase refrigerant channel 71 functions to store the gas-liquid separated liquid-phase refrigerant.
  • the liquid storage portions 63a of the evaporators 30b to 30m are partitioned for each evaporator by the lower surface 42, the partition walls 60a and 60b, and the two back walls 69.
  • the two back walls 69 are the back walls 69 of the two adjacent evaporators among the evaporators 30b to 30m.
  • the liquid storage part 63a of the evaporator 30b is formed between the back wall 69 of the evaporator 30a and the back wall 69 of the evaporator 30b.
  • the liquid storage part 63a of the evaporator 30c is formed between the back wall 69 of the evaporator 30b and the back wall 69 of the evaporator 30c.
  • the liquid refrigerant supply chambers 63 of two adjacent evaporators among the evaporators 30a to 30m are communicated with each other through the communication opening 68.
  • the Tenchi region improvement side communicates with each other through the respective communication openings 68 of the evaporators 30a to 30k. Constitute.
  • each of the liquid storage portions 63a of the evaporators 30b to 30m is formed below the communication opening 68 in the liquid-phase refrigerant supply chamber 63.
  • the refrigerant supply channel 70 of the present embodiment is configured by partition walls 60a, 60b, 60c and the like as the first channel configuration unit.
  • the evaporation channels 61a and 61b, the gas-liquid separation chamber 62, and the liquid-phase refrigerant supply chamber 63 are provided for each evaporator.
  • one refrigerant supply passage 70 for supplying the liquid-phase refrigerant flowing from the condenser 16 through the inlet 14a to the liquid storage part 63a for each evaporator is configured.
  • the evaporation channels 61a (or 61b) of the evaporators 30a to 30m are arranged in the refrigerant flow direction of the refrigerant supply channel.
  • the channel cross-sectional area of the evaporation channel 61a of this embodiment is smaller than the channel cross-sectional area of the refrigerant supply channel 70.
  • the cross-sectional area of the evaporating flow path 61 b is smaller than the cross-sectional area of the refrigerant supply flow path 70.
  • the channel cross-sectional area of the evaporation channel 61a is an area of a cross section cut in a direction orthogonal to the refrigerant flow direction in the evaporation channel 61a.
  • the cross-sectional area of the evaporating flow path 61b is an area of a cross section cut in a direction perpendicular to the refrigerant flow direction in the evaporating flow path 61b.
  • the flow path cross-sectional area of the refrigerant supply flow path 70 is an area of a cross section cut in a direction orthogonal to the refrigerant flow direction in the refrigerant supply flow path 70.
  • the flow path cross-sectional area of the refrigerant supply flow path 70 of the present embodiment matches the opening area of the communication opening 68.
  • the lower side in the vertical direction of the evaporation channel 61a of the evaporator 30a of this embodiment is opposed to the lower side in the vertical direction of the secondary battery 12a with the heat conducting material 40a interposed therebetween.
  • the lower side in the vertical direction of the evaporation channel 61b of the evaporator 30a is opposed to the lower side in the vertical direction of the secondary battery 12b with the heat conductive material 40b interposed therebetween.
  • each of the evaporation channels 61a of the evaporators 30b to 30m faces the lower side in the vertical direction of the secondary battery 12a with the heat conducting material 40a interposed therebetween.
  • the lower side in the vertical direction of each of the evaporation channels 61b of the evaporators 30b to 30m is opposed to the lower side in the vertical direction of the secondary battery 12b with the heat conducting material 40b interposed therebetween.
  • the battery cooling unit 10 assumes a predetermined posture (hereinafter referred to as a reference posture).
  • thermosiphon circuit 26 is filled with a refrigerant so that the liquid phase refrigerant is filled in the evaporation channels 61a and 61b of the evaporators 30a to 30m.
  • the liquid level ha of the liquid phase refrigerant is located in the evaporation channels 61a and 61b and the liquid storage part 63a of the evaporators 30a to 30m.
  • the secondary batteries 12a and 12b generate heat, and the temperature of the secondary batteries 12a and 12b increases. Then, heat is transferred from the secondary battery 12a to the side surface 43 of the case 40 of the evaporators 30a to 30m through the heat conductive material 40a. Heat is transferred from the secondary battery 12b to the side surface 44 of the case 40 of the evaporators 30a to 30m as indicated by the arrow Nb through the heat conducting material 40b.
  • liquid phase refrigerant in the evaporation channels 61a and 61b in the evaporators 30a to 30m boils due to the heat transferred from the secondary batteries 12a and 12b to the evaporators 30a to 30m through the heat conducting materials 40a and 40b.
  • the refrigerant evaporates from the liquid phase refrigerant in the evaporation channels 61a and 61b in the evaporators 30a to 30m.
  • occur
  • coolant
  • the volume of the liquid-phase refrigerant containing bubbles becomes larger than the volume of the liquid-phase refrigerant not containing bubbles when the heat exchange is stopped. For this reason, the liquid level of the liquid refrigerant (see ha in FIG. 5) in the evaporation channels 61a and 61b rises above the liquid level of the liquid refrigerant when the vehicle is stopped.
  • the liquid level refrigerant in the evaporation channels 61a and 61b rises due to the bubble pump effect in which the liquid-phase refrigerant containing bubbles rises as a bubble mixed flow.
  • the liquid-phase refrigerant is supplied to the upper side in the vertical direction in the evaporation channels 61a and 61b, and the secondary batteries 12a and 12b are deprived of heat and evaporated to become a gas-phase refrigerant.
  • the bubble mixed flow is separated into the gas-phase refrigerant and the liquid-phase refrigerant in the gas-phase refrigerant channel 71.
  • the gas-phase refrigerant flows to the outlet 14b through the gas-phase refrigerant channel 71 as indicated by an arrow Ka in FIG.
  • the liquid refrigerant is stored in the gas-liquid separation chamber 62 on the lower side in the vertical direction. Then, the liquid phase refrigerant in the gas-liquid separation chamber 62 returns to the liquid phase refrigerant supply chamber 63 through the refrigerant return channel 66a.
  • the total amount of the bubble mixed flow in the evaporation channels 61a and 61b can be reduced, so that the liquid level of the liquid-phase refrigerant can be prevented from moving above the outlet 14b in the gravitational direction.
  • the liquid-phase refrigerant is stored in the gas-liquid separation chamber 62 when the liquid-phase refrigerant in the evaporation channels 61a and 61b boils, the liquid-phase refrigerant containing bubbles in the evaporation channels 61a and 61b. Less. For this reason, the fluctuation
  • the gas-phase refrigerant moves from the outlet 14b to the condenser 16 through the return flow passage 20a of the return pipe 20.
  • the liquid phase in the condenser 16 The refrigerant begins to condense.
  • the gas phase refrigerant dissipates heat to the heat receiving fluid, and the gas phase refrigerant condenses.
  • the condensed liquid phase refrigerant flows to the inlet 14 a of the cooler 14 through the forward flow passage 18 a of the forward piping 18 due to gravity.
  • the liquid phase refrigerant flows through the refrigerant supply channel 70 to the respective liquid storage portions 63a of the evaporators 30a to 30m.
  • the liquid phase refrigerant is stored in the liquid storage part 63a of the evaporator 30a ⁇ the liquid storage part 63a of the evaporator 30b ⁇ the liquid storage part 63a of the evaporator 30c ⁇ the liquid storage part 63a of the evaporator 30d ⁇ -> Flows in the order of the liquid storage part 63a of the evaporator 30m.
  • the liquid phase refrigerant is sequentially supplied from the liquid storage part 63a to the evaporator on the front side in the vehicle traveling direction and from the liquid storage part 63a to the evaporator on the rear side in the vehicle traveling direction. Flowing.
  • the liquid refrigerant flows from the liquid storage part 63a to the evaporation channels 61a and 61b.
  • these operations are performed by natural circulation of the refrigerant sealed in the thermosiphon circuit 26 without requiring a driving device such as a compressor.
  • Natural circulation is that the refrigerant circulates in the thermosiphon circuit 26 by natural convection caused by a temperature difference between the condenser 16 and the evaporators 30a to 30m.
  • the vehicle traveling direction is oblique with respect to the horizontal direction
  • the front side in the vehicle traveling direction of the battery cooling unit 10 is on the heaven region improvement side with respect to the rear side in the vehicle traveling direction.
  • the rear side in the vehicle traveling direction of the battery cooling unit 10 is the heavenly region improvement side than the front side in the vehicle traveling direction.
  • the vehicle width direction is inclined with respect to the horizontal direction, and the right side in the vehicle width direction of the battery cooling unit 10 is on the heaven region improvement side than the left side in the vehicle width direction.
  • the left side in the vehicle width direction of the battery cooling unit 10 may be on the heaven region improvement side than the right side in the vehicle width direction.
  • the vehicle traveling direction (or the vehicle width direction) may be inclined with respect to the horizontal direction.
  • the battery cooling unit 10 is inclined with respect to the reference posture described above.
  • each of the liquid storage portions 63a of the evaporators 30a to 30m is surrounded by the partition walls 60a and 60b and the two back walls 69 for each evaporator as described above.
  • the liquid-phase refrigerant in the liquid storage section 63a for each evaporator is held in the liquid storage section 63a. That is, when the battery cooling unit 10 is tilted from the reference posture described above, the liquid-phase refrigerant is suppressed from flowing out from the liquid storage portion 63a through the communication opening 68.
  • the inlet 64a of the evaporation channel 61a is located on the lower side in the top-and-bottom direction than the center in the top-and-bottom direction in the refrigerant supply channel 70.
  • the vertical direction of the refrigerant supply flow path 70 The center is the middle between the uppermost part and the lowermost part.
  • the inlet 64a of the evaporation channel 61a communicates with the lower side of the liquid storage part 63a in the vertical direction.
  • the inlet 64b of the evaporation channel 61b communicates with the lower side of the liquid storage part 63a in the vertical direction.
  • the evaporation channel The liquid level of the liquid phase refrigerant is more easily located on the Tenchi region improvement side than the inlet 64a (or 64b) of 61a (or 61b).
  • the evaporation channel 61a (or 61b ) At the same level as the liquid level of the liquid phase refrigerant in the liquid storage part 53a for each evaporator, or below the liquid level of the liquid phase refrigerant in the liquid storage part 53a for each evaporator. To position.
  • the cooler 14 has the communication opening 68 for each section of the refrigerant supply flow path 70 (that is, for each evaporator), but the position is lower than the lower end of the communication opening 68.
  • the rear wall 69 that is, the weir
  • the liquid storage part 63a are configured.
  • the liquid storage part 63a can retain the liquid phase refrigerant even when the vehicle is tilted.
  • the liquid phase refrigerant supplied from the upstream at the time of the inclination fills the upstream liquid storage part 63a, the liquid storage part 63a on the downstream side.
  • the liquid phase refrigerant flows out to fill the downstream liquid storage part 63a one after another.
  • the liquid-phase refrigerant receives heat from the secondary batteries 12a and 12b (that is, the object to be cooled) and takes heat to evaporate. . Then, the liquid phase refrigerant below the evaporation channels 61a and 61b becomes a bubble flow due to the buoyancy of the generated bubbles and the viscosity of the liquid, and the bubble pump effect from below the evaporation channels 61a and 61b to above the 61a and 61b. Press to raise the liquid level.
  • the liquid-phase refrigerant below the evaporation channels 61a and 61b is supplied to the upper side of the evaporation channels 61a and 61b, and the area for removing heat from the secondary batteries 12a and 12b is increased, and the cooling effect is increased.
  • the gas-phase refrigerant separated from the bubble flow that has risen as the liquid-phase refrigerant has evaporated in the evaporation channels 61a and 61b returns to the condenser 16 via the return pipe 20, is condensed, and is again lowered as the liquid-phase refrigerant. Is supplied to the cooler 14 by the force of gravity.
  • the battery cooling unit 10 includes the condenser 16 that condenses the gas-phase refrigerant and discharges the liquid-phase refrigerant, and the cooler 14 that constitutes the thermosiphon that circulates the refrigerant together with the condenser 16.
  • the cooler 14 constitutes one refrigerant supply channel 70 through which the liquid refrigerant from the condenser 16 flows, and evaporates evaporation channels 61 a and 61 b having refrigerant inlets 64 a and 64 b communicating with the refrigerant supply channel 70. Form for each vessel.
  • the evaporation channels 61a and 61b evaporate the liquid phase refrigerant by heat exchange between the liquid phase refrigerant flowing from the refrigerant supply channel 70 through the refrigerant inlets 64a and 64b and the secondary batteries 12a and 12b. It is made to circulate toward the condenser 16.
  • the liquid storage unit 63a for each evaporation communicates with the inlets 64a and 64b of the corresponding evaporation channels 61a and 61b among the evaporation channels 61a and 61b for each evaporator.
  • the refrigerant inlets 64a and 64b are located on the lower side of the refrigerant supply flow path 70 with respect to the center portion in the vertical direction.
  • the refrigerant inlets 64 a and 64 b are connected to the refrigerant supply flow path 70.
  • the liquid phase refrigerant can be stably supplied from the refrigerant supply channel 70 to the evaporation channels 61a and 61b. For this reason, cooling of the secondary batteries 12a and 12b can be stabilized.
  • thermosyphon cooler 14A (see FIG. 13A) is used for cooling a large-sized secondary battery
  • a dry portion of the cooler 14A may be formed above the liquid surface of the liquid phase refrigerant.
  • the temperature limit of the secondary battery is controlled so that the temperature of the battery cell at the highest temperature does not exceed the upper limit threshold value, so the temperature of the secondary battery that has become insufficiently cooled will reach the upper limit target value. And even if the temperature of other battery cells is low, the output as a battery pack (assembled battery) is limited or stopped so that the maximum cell temperature does not exceed the upper limit temperature.
  • the cooler 14 of the present embodiment is provided with a liquid storage portion 63a for each evaporator. For this reason, even if the cooler 14 ⁇ / b> A is inclined from the reference posture, it is possible to prevent the cooler 14 from being collected at the lowermost portion. Accordingly, the supply of the liquid phase refrigerant from the liquid phase refrigerant supply chamber 63 to the evaporation channels 61a and 61b can be stabilized for each evaporator. For this reason, the heat exchange between the liquid refrigerant in the evaporation flow paths 61a and 61b and the secondary batteries 12A and 12B can be stabilized for each evaporator. For this reason, it is possible to prevent the battery pack from being limited or stopped.
  • the channel cross-sectional area of the evaporation channels 61 a and 61 b of the present embodiment is smaller than the channel cross-sectional area of the refrigerant supply channel 70.
  • the channel cross-sectional area of the evaporation channels 61a and 61b is too large, bubbles are easily separated from the liquid-phase refrigerant in the evaporation channels 61a and 61b, and the liquid level of the liquid-phase refrigerant is the evaporation channel 61a. , 61b becomes difficult to rise. For this reason, the supply amount of the liquid-phase refrigerant from the liquid storage part 63a to the evaporation channels 61a and 61b is also reduced.
  • the channel cross-sectional areas of the evaporation channels 61a and 61b of the present embodiment are smaller than the channel cross-sectional area of the refrigerant supply channel 70 as described above. For this reason, it becomes difficult for bubbles to be separated from the liquid-phase refrigerant in the evaporation channels 61a and 61b. For this reason, the liquid level of the liquid phase refrigerant rises into the evaporation channels 61a and 61b, and the supply amount of the liquid phase refrigerant from the liquid storage part 63a to the evaporation channels 61a and 61b also increases.
  • the lower edge 68a that forms the lower side of the communication opening 68 in the back surface 45 of the present embodiment is formed in a V shape. For this reason, even if the vehicle width direction is inclined with respect to the horizontal direction, the liquid refrigerant is prevented from moving through the communication opening 68 between the liquid storage portions 63a of the two adjacent evaporators. be able to.
  • the battery cooling structure for cooling the secondary batteries 12a and 12b using the cooler 14 is different between the present embodiment and the first embodiment. For this reason, hereinafter, the battery cooling structure of the battery cooling unit 10 will be described, and description of the other components will be omitted.
  • the battery cooling unit 10 of this embodiment includes two coolers 14 and two pairs of secondary batteries 12a and 12b as a battery cooling structure.
  • Each of the two coolers 14 is configured in the same manner as the cooler 14 of the first embodiment.
  • the two coolers 14 are arranged in the vehicle traveling direction.
  • the cooler 14M is located on the front side in the vehicle traveling direction of the two coolers 14, and the cooler 14U is located on the rear side in the vehicle traveling direction of the two coolers 14.
  • the coolers 14M and 14U are arranged such that the stacking direction of the evaporators 30a to 30m coincides with the vehicle width direction. That is, in each of the coolers 14M and 14U, the refrigerant supply passage 70 extends in the vehicle width direction.
  • the vehicle width direction is a direction intersecting the vehicle traveling direction, that is, a crossing direction.
  • an inlet 14a and an outlet 14b are provided on one side in the vehicle width direction.
  • a refrigerant outlet 14c is provided on the other side in the vehicle width direction of the cooler 14M.
  • the refrigerant outlet 14c communicates with the refrigerant supply channel 70 of the cooler 14M.
  • An outlet 14b is provided on one side of the cooler 14U in the vehicle width direction.
  • An inlet 14a is provided on the other side in the vehicle width direction of the cooler 14U.
  • the outlet 14c of the cooler 14M and the inlet 14a of the cooler 14U are connected by a refrigerant pipe 80.
  • the refrigerant pipe 80 constitutes a refrigerant flow path that guides the liquid-phase refrigerant from the outlet 14c of the cooler 14M to the inlet 14a of the cooler 14U.
  • the cooler 14M is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle traveling direction with the cooler 14M interposed therebetween.
  • the cooler 14U is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle traveling direction with the cooler 14U interposed therebetween.
  • the stacking direction of the battery cells 13 is aligned with the vehicle width direction.
  • the liquid-phase refrigerant flows from the condenser 16 into the inlet 14a of the cooler 14M into the refrigerant supply channel 70. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14M.
  • the liquid-phase refrigerant discharged from the refrigerant supply flow path 70 through the outlet 14c flows through the refrigerant pipe 80 and the refrigerant supply flow path 70 through the inlet 14a of the cooler 14U. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14U.
  • the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the respective evaporators of the coolers 14M and 14U arranged in series in the vehicle traveling direction and connected in series. Therefore, the evaporators 30a to 30n of the coolers 14M and 14U operate in the same manner as in the first embodiment. For this reason, two pairs of secondary batteries 12a and 12b can be cooled by the coolers 14M and 14U.
  • the lower edge 68a that forms the lower side of the communication opening 68 on the rear surface 45 is located closer to the heaven region improving side as it advances from the vehicle traveling direction center to the vehicle traveling direction front. It forms in the V shape located in the heavens region improvement side, so that it progresses from the center part of the advancing direction to the back side in the advancing direction of the vehicle (see FIG. 17).
  • FIG. 14 (Third embodiment) In the second embodiment, the example in which the two coolers 14 are arranged in the vehicle traveling direction has been described. Instead, the third embodiment in which the three coolers 14 are arranged in the vehicle traveling direction is illustrated in FIG. This will be described with reference to FIGS. 18B, 19A, and 19B.
  • the cooler located on the front side in the traveling direction in two coolers corresponds to the first cooler
  • the cooler located on the front side in the traveling direction corresponds to the second cooler.
  • the inlet 14a of the cooler 14 corresponding to the first cooler corresponds to the first refrigerant inlet
  • the inlet 14a of the cooler 14 corresponding to the second cooler corresponds to the second refrigerant inlet.
  • the battery cooling structure for cooling the secondary batteries 12a and 12b using the cooler 14 is different between the present embodiment and the second embodiment. For this reason, hereinafter, the battery cooling structure of the battery cooling unit 10 will be described, and description of the other components will be omitted.
  • the battery cooling unit 10 of this embodiment includes three coolers 14 and three pairs of secondary batteries 12a and 12b as a battery cooling structure.
  • the three coolers 14 are arranged in the vehicle traveling direction.
  • the three coolers 14 are configured in the same manner as the cooler 14 of the first embodiment.
  • the three coolers 14 are arranged such that the stacking direction of the evaporators 30a to 30m coincides with the vehicle traveling direction. That is, in each of the coolers 14M and 14U, the refrigerant supply flow path 70 extends in the vehicle traveling direction.
  • cooler 14M a cooler located on the front side in the vehicle traveling direction among the three coolers 14
  • cooler 14U a cooler located on the rear side in the vehicle traveling direction among the two coolers 14
  • a cooler disposed between the coolers 14M and 14U is referred to as a cooler 14N.
  • the coolers 14M, 14N, and 14U each have an inlet 14a provided on the front side in the vehicle traveling direction.
  • Each of the coolers 14M, 14N, and 14U has an outlet 14c provided on the rear side in the vehicle traveling direction.
  • the refrigerant outlet 14c communicates with the respective refrigerant supply passages 70 of the coolers 14M, 14N, and 14U.
  • the outlet 14c of the cooler 14M and the inlet 14a of the cooler 14N are connected by a refrigerant pipe 81.
  • the refrigerant pipe 81 constitutes a refrigerant flow path that guides the liquid-phase refrigerant from the outlet 14c of the cooler 14M to the inlet 14a of the cooler 14N.
  • the outlet 14c of the cooler 14N and the inlet 14a of the cooler 14U are connected by a refrigerant pipe 82.
  • the refrigerant pipe 82 constitutes a refrigerant flow path that guides the liquid-phase refrigerant from the outlet 14c of the cooler 14N to the inlet 14a of the cooler 14U.
  • the cooler 14M is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle width direction with the cooler 14M interposed therebetween.
  • the inlet 14a of the cooler 14M and the inlet 14a of the cooler 14N are connected by a bypass pipe 83, bypassing the refrigerant supply flow path 70 of the cooler 14M.
  • the bypass pipe 83 constitutes a refrigerant flow path that guides the liquid-phase refrigerant from the condenser 16 to the inlet 14a of the cooler 14N, bypassing the refrigerant supply flow path 70 of the cooler 14M.
  • the on-off valve 90 is provided in the bypass pipe 83.
  • the on-off valve 90 opens and closes the refrigerant flow path of the bypass pipe 83 in accordance with the inclination of the vehicle (that is, the coolers 14M, 14N, and 14U).
  • the cooler 14N is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle width direction with the cooler 14N interposed therebetween.
  • the inlet 14a of the cooler 14N and the inlet 14a of the cooler 14U are connected by a bypass pipe 84, bypassing the refrigerant supply flow path 70 of the cooler 14N.
  • the bypass pipe 84 constitutes a refrigerant flow path that guides the liquid-phase refrigerant flowing from the condenser 16 through the bypass pipe 83 to the inlet 14a of the cooler 14U, bypassing the refrigerant supply flow path 70 of the cooler 14N.
  • the on-off valve 91 is provided in the bypass pipe 84.
  • the on-off valve 91 opens and closes the refrigerant flow path of the bypass pipe 84 in accordance with the inclination of the vehicle (that is, the coolers 14M, 14N, and 14U).
  • the on-off valves 90 and 91 of the present embodiment each include a valve case 92 and a valve body 93 housed in the valve case 92, as shown in FIG.
  • valve case 92 flow path openings 92a and 92b are formed that form a refrigerant flow path between the refrigerant outlet of the condenser 16 and the inlet 14a of the cooler 14N (or the cooler 14U).
  • the flow path opening 92a is disposed on the front side in the vehicle traveling direction with respect to the flow path opening 92b.
  • the valve body 93 is formed in a spherical shape, and closes one of the flow path openings 92a and 92b according to the inclination of the vehicle. Accordingly, the on-off valves 90 and 91 open and close the refrigerant flow path between the refrigerant outlet of the condenser 16 and the inlet 14a of the cooler 14N (or the cooler 14U) according to the inclination of the vehicle.
  • the on-off valves 90 and 91 have flow path openings 92a and 92b.
  • the valve body 93 is located between them. For this reason, the flow path openings 92 a and 92 b are opened by the valve body 93. Therefore, the on-off valves 90 and 91 are opened (see FIGS. 18A and 19A).
  • the remaining liquid phase refrigerant other than a part of the liquid phase refrigerant that has flowed into the cooler 14 ⁇ / b> M passes through the bypass pipe 83 and the on-off valve 90.
  • a part of the passed liquid-phase refrigerant flows into the refrigerant supply passage 70 through the inlet 14a of the cooler 14N. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14N.
  • the remaining liquid-phase refrigerant other than the liquid-phase refrigerant that has flowed to the cooler 14N passes through the bypass pipe 84 and the on-off valve 91 and flows to the cooler 14U. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14U.
  • the evaporators 30a to 30n of the coolers 14M, 14N, and 14U operate in the same manner as in the first embodiment. For this reason, three pairs of secondary batteries 12a and 12b can be cooled by the coolers 14M, 14N, and 14U.
  • the coolers 14M, 14N, and 14U are inclined with respect to the reference posture.
  • the on-off valves 90 and 91 the flow path opening of the flow path openings 92 a and 92 b is closed by the valve body 93. For this reason, the on-off valves 90 and 91 are closed (see FIGS. 18B and 19B).
  • the liquid-phase refrigerant from the condenser 16 flows into the refrigerant supply channel 70 through the inlet 14a of the cooler 14M. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14M.
  • the liquid-phase refrigerant that has passed through the refrigerant supply channel 70 of the cooler 14M flows through the refrigerant pipe 81 to the inlet 14a of the cooler 14N. For this reason, the liquid phase refrigerant flows into the refrigerant supply passage 70 of the cooler 14N. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14N.
  • the liquid-phase refrigerant that has passed through the refrigerant supply passage 70 of the cooler 14N flows through the refrigerant pipe 82 to the inlet 14a of the cooler 14U. For this reason, a liquid phase refrigerant flows into refrigerant supply channel 70 of cooler 14U. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14U.
  • the evaporators 30a to 30n of the coolers 14M, 14N, and 14U operate in the same manner as in the first embodiment. For this reason, three pairs of secondary batteries 12a and 12b can be cooled by the coolers 14M, 14N, and 14U.
  • the on-off valves 90 and 91 are opened.
  • the refrigerant supply passages 70 of the coolers 14M, 14N, and 14U are connected in parallel to the forward passage 18. Therefore, a lot of liquid phase refrigerant can be supplied from the condenser 16 to the coolers 14M, 14N, and 14U.
  • the on-off valves 90 and 91 are closed (see FIG. 20B).
  • the refrigerant supply passages 70 of the coolers 14M, 14N, and 14U are connected in series to the forward passage 18. Accordingly, it is possible to reduce the deviation in the supply amount of the liquid-phase refrigerant supplied from the condenser 16 to the coolers 14M, 14N, and 14U. For this reason, in the coolers 14M, 14N, and 14U, it is difficult to generate a dry portion in which the liquid phase refrigerant is insufficient.
  • the refrigerant supply flow paths 70 of the coolers 14M, 14N, and 14U are connected in series to the forward piping 18. For this reason, compared with the case where the refrigerant supply flow paths 70 of the coolers 14M, 14N, and 14U are connected in parallel, the supply amount of the liquid-phase refrigerant supplied from the condenser 16 to the coolers 14M, 14N, and 14U is reduced. .
  • the refrigerant control process of the electronic control device 200 of the fifth embodiment to be described later is performed to increase the condensing capacity of the condenser 16, and from the condenser 16 to the coolers 14M, 14N, and 14U. A decrease in the supply amount of the supplied liquid-phase refrigerant may be compensated.
  • the battery cooling structure for cooling the secondary batteries 12a and 12b using the cooler 14 is different between the present embodiment and the third embodiment. For this reason, hereinafter, the battery cooling structure of the battery cooling unit 10 will be described, and description of the other components will be omitted.
  • the battery cooling unit 10 of the present embodiment includes four coolers 14 and four pairs of secondary batteries 12a and 12b as a battery cooling structure.
  • Each of the four coolers 14 is configured similarly to the cooler 14 of the first embodiment.
  • the four coolers 14 are arranged in the vehicle traveling direction.
  • the cooler located on the front side in the vehicle traveling direction among the four coolers 14 is the cooler 14M
  • the cooler located on the rear side in the vehicle traveling direction among the four coolers 14 is the cooler. 14U.
  • the coolers 14M and 14U are arranged such that the stacking direction of the evaporators 30a to 30m coincides with the vehicle width direction.
  • the refrigerant supply flow path 70 extends in the vehicle width direction (that is, the direction intersecting the vehicle traveling direction).
  • the cooler disposed between the coolers 14M and 14U is the cooler 14N, and among the four coolers 14, the cooler disposed between the coolers 14N and 14U is cooled. Assume that the container 14Q.
  • the coolers 14M and 14Q each have an inlet 14a provided on one side of the refrigerant supply passage 70 in the vehicle width direction.
  • Each of the coolers 14M and 14Q has an outlet 14c provided on the other side in the vehicle width direction of the refrigerant supply passage 70.
  • the coolers 14N and 14U have respective inlets 14a provided on the other side in the vehicle width direction of the refrigerant supply passage 70.
  • Each of the coolers 14 ⁇ / b> M and 14 ⁇ / b> Q has an inlet / outlet 14 d provided on one side of the refrigerant supply flow path 70 in the vehicle width direction.
  • the inlet / outlet 14d is an inlet / outlet serving as both a refrigerant inlet and a refrigerant outlet of the refrigerant supply channel 70.
  • the outlet 14c of the cooler 14M and the inlet 14a of the cooler 14N are connected by a refrigerant pipe 100 as a communication flow path forming part.
  • the refrigerant pipe 100 constitutes a refrigerant flow path that guides the liquid-phase refrigerant from the outlet 14c of the cooler 14M to the inlet 14a of the cooler 14N.
  • the cooler 14M is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle traveling direction with the cooler 14M interposed therebetween.
  • the inlet 14a of the cooler 14M and the inlet / outlet 14d of the cooler 14N are connected by bypassing the coolers 14M and 14N by a bypass pipe 101 as a bypass flow path forming part.
  • the bypass pipe 101 constitutes a refrigerant flow path for supplying the liquid-phase refrigerant from the condenser 16 to the inlet / outlet 14d of the cooler 14N by bypassing the coolers 14M and 14N.
  • the bypass pipe 101 is provided with an on-off valve 90 that opens and closes the refrigerant flow path of the bypass pipe 101.
  • the cooler 14N is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle traveling direction with the cooler 14N interposed therebetween.
  • the inlet / outlet port 14d of the cooler 14N and the inlet port 14a of the cooler 14Q are connected by a refrigerant pipe 102 as a communication flow path forming part.
  • the refrigerant pipe 102 constitutes a refrigerant flow path that guides the liquid phase refrigerant from the bypass pipe 101 and the inlet / outlet 14d of the cooler 14N to the inlet 14a of the cooler 14Q.
  • the cooler 14Q is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle traveling direction with the cooler 14Q interposed therebetween.
  • the outlet 14c of the cooler 14Q and the inlet 14a of the cooler 14U are connected by a refrigerant pipe 103 as a communication flow path forming portion.
  • the refrigerant pipe 103 forms a refrigerant flow path that guides the liquid-phase refrigerant from the outlet 14c of the cooler 14Q to the inlet 14a of the cooler 14U.
  • the inlet 14a of the cooler 14Q and the inlet / outlet 14d of the cooler 14U are connected by a bypass pipe 104 as a bypass flow path forming part.
  • the bypass pipe 104 constitutes a refrigerant flow path that guides the liquid-phase refrigerant from the refrigerant pipe 102 to the inlet / outlet 14d of the cooler 14N by bypassing the coolers 14Q and 14U.
  • the bypass pipe 104 is provided with an on-off valve 91 that opens and closes the refrigerant flow path of the bypass pipe 104.
  • the cooler 14U is disposed between the pair of secondary batteries 12a and 12b.
  • the pair of secondary batteries 12a and 12b are arranged in the vehicle traveling direction with the cooler 14U interposed therebetween.
  • the on-off valves 90 and 91 of the present embodiment are configured in the same manner as the on-off valves 90 and 91 of the third embodiment.
  • liquid phase refrigerants other than a part of the liquid phase refrigerant that has flowed into the cooler 14 ⁇ / b> M pass through the bypass pipe 101 and the on-off valve 90.
  • a part of the passed liquid-phase refrigerant flows into the refrigerant supply passage 70 through the inlet 14a of the cooler 14N. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14N.
  • the remaining liquid refrigerant other than the liquid refrigerant that has flowed to the cooler 14N passes through the refrigerant pipe 102.
  • Part of the liquid-phase refrigerant that has passed through the refrigerant pipe 102 flows to the inlet 14a of the cooler 14Q. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14Q.
  • the remaining liquid phase refrigerant other than a part of the refrigerant that has flowed to the cooler 14Q flows to the inlet / outlet 14d of the cooler 14U. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14U.
  • the evaporators 30a to 30n of the coolers 14M, 14N, 14Q, and 14U operate in the same manner as in the first embodiment. Therefore, the four pairs of secondary batteries 12a and 12b can be cooled by the coolers 14M, 14N, 14Q, and 14U.
  • the coolers 14M, 14N, 14Q, and 14U are inclined with respect to the reference posture.
  • the on-off valves 90 and 91 are closed.
  • the liquid-phase refrigerant from the condenser 16 flows into the refrigerant supply channel 70 through the inlet 14a of the cooler 14M. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14M.
  • the liquid-phase refrigerant that has passed through the refrigerant supply channel 70 of the cooler 14M flows through the refrigerant pipe 100 to the inlet 14a of the cooler 14N. For this reason, the liquid phase refrigerant flows into the refrigerant supply passage 70 of the cooler 14N. For this reason, the liquid-phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14N.
  • the liquid-phase refrigerant that has passed through the refrigerant supply flow path 70 of the cooler 14N flows through the refrigerant pipe 102 to the inlet 14a of the cooler 14Q. For this reason, a liquid phase refrigerant flows into refrigerant supply channel 70 of cooler 14Q. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14Q.
  • the liquid-phase refrigerant that has passed through the refrigerant supply passage 70 of the cooler 14Q flows through the refrigerant pipe 103 to the inlet 14a of the cooler 14U. For this reason, a liquid phase refrigerant flows into refrigerant supply channel 70 of cooler 14U. For this reason, the liquid phase refrigerant is sequentially supplied to the liquid storage portions 63a of the evaporators 30a to 30n of the cooler 14U.
  • the evaporators 30a to 30n of the coolers 14M, 14N, 14Q, and 14U operate in the same manner as in the first embodiment. For this reason, three pairs of secondary batteries 12a and 12b can be cooled by the coolers 14M, 14N, 14Q, and 14U.
  • the on-off valves 90 and 91 are opened. For this reason, the refrigerant supply passages 70 of the coolers 14M, 14N, and 14U are connected in parallel to the forward passage 18.
  • FIG. 21 shows the overall configuration of the battery cooling unit 10 of the present embodiment.
  • the battery cooling unit 10 of the present embodiment is obtained by adding an electronic control device 200, an electric fan 215, a current sensor 213, and a tilt sensor 214 to the battery cooling unit 10 of the first embodiment.
  • the electronic control device 200 includes a microcomputer, a memory, and the like, and executes a refrigerant control process according to a computer program stored in advance in the memory.
  • the electronic control device 200 controls the electric fan 215 according to the detection value of the current sensor 213 and the detection value of the inclination sensor 214 as the refrigerant control process is executed.
  • a memory is a non-transitional physical storage medium.
  • the current sensor 213 detects the current flowing from the secondary batteries 12a and 12b to the inverter circuit (that is, the electric motor).
  • the inclination sensor 214 detects an inclination angle in the vehicle width direction with respect to the horizontal direction and an inclination angle in the vehicle traveling direction with respect to the horizontal direction.
  • the electric fan 215 generates a flow of air as heat receiving fluid that passes through the condenser 16.
  • the electronic control device 200 executes the refrigerant control process according to the flowchart of FIG.
  • the electronic control device 200 repeatedly executes the refrigerant control process.
  • step 100 the electronic control unit 200 determines whether or not the vehicle is tilted according to the detection value of the tilt sensor 214.
  • the electronic control unit 200 determines whether or not the vehicle is tilted according to the detection value of the tilt sensor 214.
  • the vehicle width direction is tilted with respect to the horizontal direction, or when the vehicle traveling direction is tilted with respect to the horizontal direction, it is determined that the cooler 14 is tilted with respect to the reference posture and YES is determined in step 100. To do.
  • step 110 the electronic control unit 200 determines whether or not the secondary batteries 12a and 12b are generating heat according to the detection value of the current sensor 213.
  • the electronic control unit 200 determines YES in step 110, assuming that the secondary batteries 12a and 12b are generating heat.
  • the electronic control unit 200 condenses the gas-phase refrigerant in the condenser 16 by controlling the electric fan 215 and increasing the air volume of the air flow passing through the condenser 16 as a refrigerant increasing unit in step 120. Improve the cooling performance.
  • step 110 the electronic control unit 200 determines YES because the vehicle is tilted.
  • the electronic control unit 200 proceeds to step 110.
  • NO is determined in step 110 because the secondary batteries 12a and 12b are not generating heat.
  • step 130 the electronic control unit 200 controls the electric fan 215 to reduce the air volume of the air flow passing through the condenser 16. For this reason, the amount of heat radiated from the gas-phase refrigerant in the condenser 16 to the air flow is reduced. Therefore, the amount of refrigerant condensed in the condenser 16 is reduced. Along with this, the supply amount of the liquid-phase refrigerant supplied from the condenser 16 to the cooler 14 decreases.
  • step 100 the electronic control unit 200 determines that the cooler 14 is in the reference posture when the vehicle width direction matches the horizontal direction and the vehicle traveling direction matches the horizontal direction. judge. In this case, the inclination determination in step 100 is repeated.
  • the electronic control device 200 determines that the cooler 14 is inclined with respect to the reference posture and determines that the secondary batteries 12a and 12b are generating heat
  • the fan 215 is controlled to increase the amount of air flow through the condenser 16.
  • the supply amount of the liquid-phase refrigerant supplied from the condenser 16 to the cooler 14 can be increased.
  • each evaporator will be provided. Parts that become dry in the evaporation channels 61a and 61b are unlikely to occur.
  • the upstream liquid storage part 63a and the downstream liquid storage part 63a In some cases, the liquid refrigerant is not supplied to the liquid storage part 63a at the center of the liquid.
  • the amount of heat released from the secondary batteries 12a and 12b to the liquid phase refrigerant can be increased. Accordingly, the secondary batteries 12a and 12b can be cooled well.
  • cooler 14 of the present embodiment Since the structure of the cooler 14 is different between the present embodiment and the first embodiment, the cooler 14 of the present embodiment will be described below, and the description other than the cooler 14 will be omitted.
  • the cooler 14 of this embodiment includes a plurality of extrusion pipes 110, a refrigerant supply pipe 70A, and a gas phase refrigerant pipe 71A.
  • the plurality of extruded pipes 110 are arranged in the vehicle traveling direction.
  • the plurality of extruded pipes 110 are composite flow paths composed of a plurality of thin tubes 110a.
  • the plurality of narrow tubes 110a are formed so as to be arranged in the vehicle traveling direction and extend in the vertical direction.
  • the narrow tube 110a corresponds to a narrow channel.
  • Each of the plurality of narrow tubes 110a constitutes the evaporation channel 61a of the first embodiment in which the liquid phase refrigerant is evaporated by heat exchange between the liquid phase refrigerant from the refrigerant supply pipe 70A and the secondary battery 12a.
  • the flow path cross-sectional area of each of the plurality of thin tubes 110a of this embodiment is smaller than the flow path cross-sectional area of the refrigerant supply flow path 70.
  • the refrigerant supply pipe 70 ⁇ / b> A constitutes a refrigerant supply flow path 70 that supplies the liquid-phase refrigerant from the condenser 16 to the plurality of extrusion pipes 110.
  • the refrigerant supply pipe 70A is formed to extend in the vehicle traveling direction.
  • the refrigerant supply pipe 70 ⁇ / b> A is disposed on the lower side in the vertical direction with respect to the plurality of extrusion pipes 110.
  • the refrigerant supply pipe 70A is provided with a plurality of through-holes 72a that are open to the heaven region improvement side and are arranged in the vehicle traveling direction.
  • the lower side of the corresponding extrusion pipe 110 among the plurality of extrusion pipes 110 is inserted into the plurality of through holes 72a of the refrigerant supply pipe 70A.
  • the refrigerant inlets 64a of the plurality of thin tubes 110a are disposed below the center in the top-bottom direction in the refrigerant supply flow path 70.
  • the vertical direction of the refrigerant supply flow path 70 The center is the middle between the uppermost part and the lowermost part.
  • the gas-phase refrigerant pipe 71 ⁇ / b> A constitutes a gas-phase refrigerant flow path 71 that collects the gas-phase refrigerant from the plurality of extrusion pipes 110 and flows it to the condenser 16.
  • the gas-phase refrigerant pipe 71A is formed to extend in the vehicle traveling direction.
  • the gas-phase refrigerant pipe 71 ⁇ / b> A is disposed on the Tenchi region improvement side with respect to the plurality of extrusion pipes 110.
  • the gas-phase refrigerant pipe 71A is provided with a plurality of through holes 72b that are opened downward in the vertical direction and arranged in the vehicle traveling direction.
  • the upper side of the corresponding extruded piping 110 among the plurality of extruded piping 110 is inserted into the plurality of through holes 72b of the gas-phase refrigerant piping 71A.
  • the corresponding battery cell 13 of the plurality of battery cells 13 of the secondary battery 12a is in contact with each of the plurality of extruded pipes 110 of the present embodiment.
  • the liquid-phase refrigerant from the condenser 16 flows through the refrigerant supply passage 70 of the refrigerant supply pipe 70A. Then, the liquid refrigerant from the refrigerant supply passage 70 enters the plurality of thin tubes 110 a for each of the extrusion pipes 110.
  • the secondary batteries 12a and 12b generate heat, and heat is transferred from the secondary battery 12a to the plurality of extruded pipes 110.
  • the liquid-phase refrigerant in the plurality of thin tubes 110a for each extruded piping 110 evaporates.
  • coolant
  • the volume of the liquid phase refrigerant containing bubbles is larger than the volume of the liquid phase refrigerant not containing bubbles when the heat exchange is stopped. For this reason, the liquid level of the liquid phase refrigerant in the plurality of narrow tubes 110a rises higher than the liquid level of the liquid phase refrigerant when the vehicle is stopped.
  • the liquid level refrigerant in the evaporation channels 61a and 61b rises due to the bubble pump effect in which the liquid refrigerant containing bubbles rises as a bubble mixed flow.
  • the liquid-phase refrigerant is supplied to the upper side in the vertical direction among the plurality of thin tubes 110a, and the heat is removed from the secondary batteries 12a and 12b to evaporate to become a gas-phase refrigerant.
  • the gas phase refrigerant flows to the condenser 16 through the gas phase refrigerant pipe 71A.
  • the cooler 14 includes a plurality of extrusion pipes 110 that constitute an evaporator, and the inlets 64a of the plurality of thin tubes 110a are below the center in the top-bottom direction in the refrigerant supply flow path 70. Arranged on the side.
  • the refrigerant inlet 64a is in the top and bottom of the refrigerant supply channel 70. Compared to the case where the liquid phase refrigerant is positioned above the central portion in the direction, it is advantageous in arranging the liquid level of the liquid phase refrigerant above the refrigerant supply channel 70.
  • the liquid phase refrigerant can be stably supplied from the refrigerant supply channel 70 to the plurality of extrusion pipes 110.
  • the secondary battery 12a can be stably cooled by the liquid phase refrigerant.
  • a protruding portion 120 that protrudes downward in the vertical direction is provided for each extruded pipe 110.
  • the protrusion 120 for each extrusion pipe 110 forms a liquid storage part 63a that is recessed downward from the refrigerant supply pipe 70A in the vertical direction.
  • Each refrigerant inlet 64a of the plurality of thin tubes 110a of the present embodiment is disposed in the liquid storage part 63a below the center in the top-bottom direction in the refrigerant supply flow path 70. For this reason, even if the supply amount of the liquid-phase refrigerant from the condenser 16 to the cooler 14 is reduced, the refrigerant inlet 64a is compared to the case where the refrigerant supply flow path 70 is located above the central portion in the vertical direction. Thus, it is more advantageous to dispose the liquid level of the liquid phase refrigerant above the refrigerant supply channel 70.
  • the dam portion 130 is formed so as to protrude toward the heaven region improvement side of the refrigerant supply pipe 70A.
  • the weir part 130 is arranged downstream of the refrigerant flow with respect to the extruded pipe 110 for each extruded pipe 110. For this reason, a plurality of dam portions 130 are arranged in the refrigerant flow direction at intervals in the refrigerant supply pipe 70A.
  • a liquid storage portion 63a that is recessed from the refrigerant supply channel 70 downward in the vertical direction.
  • Each refrigerant inlet 64a of the plurality of thin tubes 110a of the present embodiment is disposed in the liquid storage part 63a below the center in the top-bottom direction in the refrigerant supply flow path 70. For this reason, as in the seventh embodiment, compared to the case where the refrigerant inlet 64a is positioned above the central portion of the refrigerant supply flow path 70 in the vertical direction, the liquid supply is higher than the refrigerant supply flow path 70. This is even more advantageous in arranging the liquid level of the phase refrigerant.
  • thermosiphon of the present disclosure may be applied to a portable battery with a cooling function that can be carried out by combining the battery with a thermosiphon.
  • the lower edge portion 68a that forms the lower side of the communication opening 68 is formed in a V shape on the back surface 45 of each of the evaporators 30a to 30m.
  • the communication opening 68 of the back surface 45 may have any shape, a circular shape, or a rectangular shape.
  • the liquid storage part 63a for each evaporator is formed by the lower surface 42, the partition walls 60a and 60b, and the rear wall 69 so as to correspond to the inclination in the four directions of front, rear, left and right.
  • the liquid storage part 63a for each evaporator may have any shape as long as it corresponds to the inclination in at least one direction.
  • the inlets 64a and 64b of the evaporation channels 61a and 61b are located on the lower side of the refrigerant supply channel 70 than the center in the vertical direction, the inlets 64a and 64b of the evaporation channels 61a and 61b of the liquid reservoir 63a
  • the place where the inlets 64a and 64b communicate may be anywhere.
  • the inlets 64a and 64b of the evaporation channels 61a and 61b may communicate with the top and bottom of the liquid storage unit 63a.
  • the temperature of the heat medium passing through the vessel 16 is lowered.
  • the cooling performance of the gas-phase refrigerant in the condenser 16 is improved by cooling the gas-phase refrigerant in the condenser 16 with a cooling element such as a Peltier element.
  • step 120 the cooling performance of the gas-phase refrigerant in the condenser 16 is improved and the supply amount of the liquid-phase refrigerant from the condenser 16 to the cooler 14 is increased.
  • the following (8a) and (8b) may be used.
  • the supply amount of the liquid phase refrigerant supplied from the condenser 16 to the cooler 14 is increased by heating the liquid phase refrigerant with a heater or a Peltier element.
  • the electronic control device 200 has described an example in which it is determined in step 110 whether or not the secondary batteries 12a and 12b are generating heat according to the detection value of the current sensor 213. However, instead of this, the following (9a) and (9b) may be used.
  • the electronic control unit 200 may determine whether or not the secondary batteries 12a and 12b are generating heat according to the detection value of the temperature sensor that detects the temperature of the secondary batteries 12a and 12b.
  • the electronic control unit 200 may detect the temperature distribution of the secondary batteries 12a and 12b and determine whether or not the secondary batteries 12a and 12b are generating heat according to the temperature distribution.
  • the electronic control apparatus 200 has described the example in which it is determined in step 100 whether or not the cooler 14 is tilted according to the detection value of the tilt sensor 214. Instead, it may be as follows.
  • the electronic control unit 200 may detect the temperature distribution of the secondary batteries 12a and 12b and determine whether or not the cooler 14 is tilted according to the temperature distribution.
  • the present invention is not limited to this, and the evaporators 30a to 30m are provided for each section. And the evaporators 30a to 30m do not need to be configured for each battery cell 121.
  • the evaporator 14 is provided with the two evaporation channels 61a and 61b in the cooler 14, but instead of this, the evaporators 30a to 30m are provided. Each of these may be provided with one evaporation channel or three or more evaporation channels.
  • the battery cooling unit 10 may be configured by combining two or more embodiments that can be combined among the first to eighth embodiments.
  • the battery cooling unit 10 may be configured by combining two or more embodiments as in the following (15a) to (15d).
  • the battery cooling unit 10 may be configured by employing the cooler 14 of the sixth embodiment.
  • the battery cooling unit 10 may be configured by adopting the cooler 14 of the seventh embodiment.
  • the battery cooling unit 10 may be configured by adopting the cooler 14 of the eighth embodiment in any one of the first to fifth embodiments.
  • the present invention is not limited thereto, and the evaporators 30a to 30m may be arranged in a direction intersecting the vehicle traveling direction. .
  • coolers 14M and 14U are arranged in the vehicle traveling direction.
  • the present invention is not limited thereto, and the coolers 14M and 14U may be arranged in a direction intersecting the vehicle traveling direction. .
  • the present invention is not limited to this, and the evaporators 30a to 30m may be arranged in a direction intersecting the vehicle width direction. .
  • the present invention is not limited thereto, and the evaporators 30a to 30m may be arranged in a direction intersecting the vehicle traveling direction. .
  • the on-off valves 90 and 91 are configured using a solenoid valve or an electric valve.
  • the electronic control unit opens and closes the on-off valves 90 and 91 according to the detected value of the inclination sensor that detects the inclination of the vehicle (that is, the cooler).
  • the condenser 16 when the vehicle is inclined, if the condenser 16 is disposed on the Tenchi region improvement side with respect to the cooler 14 (14M, 14N, 14U), the condenser 16 is replaced with the cooler 14 (14M, 14N, 14U) may be arranged on the rear side in the vehicle traveling direction.
  • the liquid phase refrigerant can be favorably distributed to the evaporators connected in parallel. Therefore, the temperature distribution generated in the secondary batteries 12a and 12b is reduced. Become good.
  • the cooler 14 is in the reference posture when the vehicle width direction matches the horizontal direction and the vehicle traveling direction matches the horizontal direction. However, instead of this, the following may be performed.
  • the angle formed between the horizontal direction and the vehicle width direction is less than the first threshold value, and the angle formed between the horizontal direction and the vehicle traveling direction is less than the second threshold value.
  • the angle formed between the horizontal direction and the vehicle width direction is equal to or greater than the first threshold, and the angle formed between the horizontal direction and the vehicle traveling direction is equal to or greater than the second threshold. At any one time, it is determined that the cooler 14 is tilted with respect to the reference posture.
  • the cooler 14 may be determined whether or not the cooler 14 is in the reference posture in consideration of a slight error in the determination of the tilt angle.
  • the electronic control unit determines whether the cooler 14 is in the reference posture in consideration of a slight error in the tilt angle based on the detection value of the tilt sensor that detects the tilt of the cooler. Determine whether or not.
  • the electronic control unit opens the on-off valves 90 and 91 when it is determined that the cooler 14 is in the reference posture.
  • the electronic control device closes the on-off valves 90 and 91.
  • the liquid refrigerant is caused to flow from the front side in the vehicle traveling direction to the rear side in the vehicle traveling direction in the cooler 14 (14M, 14N, 14Q, 14U). Instead, in the cooler 14 (14M, 14N, 14Q, 14U), the liquid-phase refrigerant may flow from the rear side in the vehicle traveling direction to the front side in the vehicle traveling direction.
  • the refrigerant is used together with the condenser that condenses the gas-phase refrigerant and discharges the liquid-phase refrigerant.
  • a cooler constituting a thermosiphon to be circulated, having a first flow path forming portion that forms a supply flow path through which a liquid-phase refrigerant from a condenser flows, and a refrigerant inlet that communicates with the supply flow path.
  • an evaporation channel is formed that evaporates the liquid-phase refrigerant and generates a gas-phase refrigerant by heat exchange between the liquid-phase refrigerant flowing from the supply channel through the refrigerant inlet and the object to be cooled.
  • a third channel forming unit that forms a discharge channel through which the gas-phase refrigerant from the evaporation channel flows toward the condenser.
  • the refrigerant inlet is disposed below the supply flow path.
  • the refrigerant inlet This is even more advantageous in arranging the liquid level of the liquid phase refrigerant on the upper side.
  • the third aspect it is formed so as to be recessed downward from the supply flow path, and includes one or more liquid storage parts for storing the liquid phase refrigerant from the supply flow path.
  • a condenser that constitutes a thermosiphon that circulates a refrigerant together with a condenser that condenses gas-phase refrigerant and discharges the liquid-phase refrigerant, wherein the liquid-phase refrigerant from the condenser flows.
  • a first flow path forming portion that forms a flow path, and a refrigerant inlet into which a liquid phase refrigerant from a supply flow path enters; the liquid phase is obtained by heat exchange between the liquid phase refrigerant that has flowed through the refrigerant inlet and the object to be cooled.
  • a second flow path forming unit that forms an evaporation flow path for evaporating the refrigerant to flow the vapor phase refrigerant toward the condenser, and a discharge flow path for the vapor phase refrigerant from the evaporation flow path to the condenser are formed.
  • a third flow path forming part One or more liquid storage parts that are formed to be recessed downward from the supply flow path, and store liquid phase refrigerant from the supply flow path, the refrigerant inlet being in communication with the liquid storage part, and the liquid storage It is located at the same height as the liquid level of the liquid refrigerant in the section or below the liquid level.
  • the apparatus includes a plurality of evaporation channels arranged in the refrigerant flow direction of the supply channel, and the one or more liquid storage units are arranged in the refrigerant flow direction of the supply channel.
  • Each of the plurality of liquid storage portions communicates with the refrigerant inlet of the corresponding evaporation channel among the plurality of evaporation channels.
  • the channel cross-sectional area of the evaporation channel is smaller than the channel cross-sectional area of the supply channel.
  • the liquid level of the liquid phase refrigerant in the evaporation channel can be raised, the supply of the liquid phase refrigerant to the evaporation channel can be increased.
  • the evaporation channel has a plurality of narrow channels having a channel cross-sectional area smaller than the channel cross-sectional area of the supply channel.
  • the apparatus includes a condenser that is applied to the moving body and that condenses the gas-phase refrigerant and discharges the liquid-phase refrigerant, and a plurality of coolers that evaporate the liquid-phase refrigerant from the condenser.
  • thermosiphon for circulating refrigerant between the condenser and the plurality of coolers
  • the plurality of coolers includes a first flow path forming unit that forms a supply flow path through which the liquid-phase refrigerant from the condenser flows, A second flow path forming unit that forms an evaporating flow path for generating a vapor phase refrigerant by evaporating the liquid phase refrigerant by heat exchange between the liquid phase refrigerant from the supply flow path and the object to be cooled;
  • Each of the plurality of coolers are arranged in the traveling direction of the moving body and are supplied to each of the third flow path forming portions. By connecting the flow paths in series, the liquid-phase refrigerant is sequentially supplied to the supply flow paths of the plurality of coolers.
  • the cooler on one side in the traveling direction is positioned higher than the cooler on the other side in the traveling direction in the plurality of coolers. Therefore, it is possible to satisfactorily supply the liquid refrigerant to the supply channels of the plurality of coolers.
  • the supply flow paths of the plurality of coolers are formed to extend in the traveling direction of the moving body.
  • the bypass flow-path formation part which forms a bypass flow path
  • the on-off valve which opens and closes a bypass flow path, and is located in the advancing direction front side in two coolers among several coolers
  • the first cooler is the first cooler
  • the second cooler is the second cooler that is located on the rear side in the direction of travel relative to the first cooler.
  • the on-off valve When the first refrigerant is bypassed and communicated between the first refrigerant inlet and the second refrigerant inlet of the second cooler, and the plurality of coolers are in a predetermined posture, the on-off valve is bypassed.
  • the first cooler is opened and a part of the liquid phase refrigerant from the condenser passes through the first refrigerant inlet.
  • a part of the liquid-phase refrigerant other than the part of the liquid-phase refrigerant supplied from the condenser to the supply passage and the part of the liquid-phase refrigerant passes through the bypass passage, the on-off valve, and the second refrigerant inlet.
  • the on-off valve closes the bypass flow path, and the liquid phase refrigerant from the condenser is It supplies in order of a 1st refrigerant
  • the supply flow paths of the plurality of coolers are formed so as to extend in a direction intersecting the traveling direction of the moving body.
  • the apparatus includes a bypass channel forming unit that forms a bypass channel, a communication channel forming unit that forms a communication channel, and an on-off valve that opens and closes the bypass channel.
  • the cooler positioned on the front side in the traveling direction in the two coolers is the first cooler
  • the cooler positioned on the rear side in the traveling direction with respect to the first cooler is the second cooler.
  • the first cooler has a refrigerant inlet that allows liquid-phase refrigerant to flow into the supply flow path, and a refrigerant outlet that discharges liquid-phase refrigerant from the supply flow path.
  • a first refrigerant inlet and a second refrigerant inlet for allowing liquid phase refrigerant to flow into the supply flow path are provided, and the communication flow path is between the refrigerant outlet of the first cooler and the first refrigerant inlet of the second cooler.
  • the bypass flow path communicates between the refrigerant inlet of the first cooler and the second refrigerant inlet of the second cooler, bypassing the first cooler and the second cooler, When the plurality of coolers are in a predetermined posture, the on-off valve opens the bypass flow path, and a part of the liquid-phase refrigerant from the condenser passes through the refrigerant inlet of the first cooler.
  • a part of the liquid phase refrigerant other than the part of the liquid phase refrigerant supplied from the condenser to the supply channel is supplied to the second cooler through the bypass channel and the on-off valve. Supplied to the flow path, When the plurality of coolers are inclined with respect to a predetermined posture, the on-off valve closes the bypass flow path, and the liquid-phase refrigerant from the condenser flows into the refrigerant inlet, the first cooler supply flow path, It supplies in order of a communicating flow path and the supply flow path of a 2nd cooler.
  • each of the evaporating flow paths of the plurality of coolers has a refrigerant inlet that communicates with the supply flow path, and the refrigerant inlet is located below the central portion of the supply flow path in the vertical direction. Located on the side.
  • the refrigerant inlet is disposed below the supply flow path.
  • each evaporation channel of the plurality of coolers has a refrigerant inlet communicating with the supply channel, and each of the plurality of coolers is recessed downward from the supply channel.
  • a liquid storage part that is formed and stores liquid phase refrigerant from the supply flow path, the refrigerant inlet of each evaporation flow path of the plurality of coolers communicates with each liquid storage part of the plurality of coolers, and It is the same height as the liquid level of the liquid refrigerant in each liquid storage part of a plurality of coolers, or is located below the liquid level.
  • the determination unit that determines whether or not the plurality of coolers are inclined with respect to the predetermined attitude, and the determination that the plurality of coolers are inclined with respect to the predetermined attitude
  • the refrigerant increase increases the amount of liquid-phase refrigerant supplied from the condenser to the cooler compared to when the determination unit determines that the cooler is not inclined with respect to a predetermined posture Department.
  • the channel cross-sectional area of each of the plurality of coolers is smaller than the channel cross-sectional area of the supply channel.
  • each of the evaporation channels of the plurality of coolers has a plurality of narrow channels having a channel cross-sectional area smaller than the channel cross-sectional area of the supply channel.
  • a condenser that condenses the gas-phase refrigerant and discharges the liquid-phase refrigerant;
  • a cooler that evaporates the liquid phase refrigerant by heat exchange between the liquid phase refrigerant that has flowed from the condenser and the object to be cooled and discharges the gas phase refrigerant to the condenser, and between the condenser and the cooler
  • a thermosyphon that circulates refrigerant,
  • a determination unit for determining whether or not the cooler is inclined with respect to a predetermined posture; When the determination unit determines that the cooler is tilted with respect to the predetermined attitude, the condenser determines that the cooler is not inclined with respect to the predetermined attitude.
  • a refrigerant increasing unit that increases the amount of liquid phase refrigerant supplied to the cooler.
  • the cooler has a first flow path forming portion that forms a supply flow path through which the liquid-phase refrigerant from the condenser flows, and a refrigerant inlet that communicates with the supply flow path.
  • a second flow path forming unit that forms an evaporating flow path for generating a vapor phase refrigerant by evaporating the liquid phase refrigerant by heat exchange between the liquid phase refrigerant flowing in from the refrigerant inlet and the object to be cooled;
  • a third flow path forming part that forms a discharge flow path through which the gas-phase refrigerant from the flow direction toward the condenser.
  • the refrigerant inlet is located on the lower side of the supply channel with respect to the center in the vertical direction.
  • the refrigerant inlet is located below the supply flow path.
  • the cooler includes one or more liquid storage parts (63a) that are formed to be recessed downward from the supply flow path and store the liquid-phase refrigerant from the supply flow path.
  • the refrigerant inlet communicates with the liquid storage unit and is positioned at the same height as the liquid level of the liquid phase refrigerant in the liquid storage unit or below the liquid level.
  • the one or more liquid storage units are a plurality of liquid storage units arranged in the refrigerant flow direction of the supply flow path, and the cooler is arranged in the refrigerant flow direction of the supply flow path.
  • the plurality of evaporation channels are formed, and each of the plurality of liquid storage portions communicates with the refrigerant inlet of the corresponding evaporation channel among the plurality of evaporation channels.
  • the channel cross-sectional area of the evaporation channel is smaller than the channel cross-sectional area of the supply channel.
  • the evaporation channel has a plurality of narrow channels having a channel cross-sectional area smaller than the channel cross-sectional area of the supply channel.

Abstract

気相冷媒を凝縮して液相冷媒を排出する凝縮器(16)とともに、冷媒を循環させるサーモサイフォンを構成する冷却器は、前記凝縮器からの前記液相冷媒が流れる供給流路(70)を形成する第1流路形成部(60a、60b、60c)と、前記供給流路に連通する冷媒入口(64a、64b)を有し、前記冷媒入口から上側に延びるように形成され、前記供給流路から冷媒入口を通して流入した前記液相冷媒と被冷却対象(12a、12b)との間の熱交換により前記液相冷媒を蒸発させて前記気相冷媒を発生させる蒸発流路(61a、61b)を形成する第2流路形成部(60a、43、60b、44)と、前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路(71)を形成する第3流路形成部(60a、60b、45)とを、備え、前記冷媒入口は、前記供給流路のうち天地方向の中央部に対して下側に位置する。

Description

冷却器、およびサーモサイフォン 関連出願への相互参照
 本出願は、2017年6月16日に出願された日本特許出願番号2017-118870号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、冷却器、およびサーモサイフォンに関するものである。
 従来、サーモサイフォンでは、液相冷媒および電池の間の熱交換により液相冷媒を蒸発して電池を冷却する冷却器と、冷却器からの気相冷媒を凝縮する凝縮器とを備え、冷却器および凝縮器の間で冷媒を循環させる冷媒回路を構成するものがある(例えば、特許文献1参照)。
特許59429943号明細書
 本発明者等は、特許文献1のサーモサイフォンを参考にして、自動車に搭載される電池を冷却器によって冷却する車両用サーモサイフォンについて検討した。
 冷却器2は、凝縮器からの液相冷媒が供給される冷媒供給流路2aと、冷媒供給流路2aからの液相冷媒と電池との間の熱交換により液相冷媒を蒸発させる蒸発流路部2bと、蒸発流路部2bからの気相冷媒を凝縮器に導く冷媒排出流路2cとを備える(図27A、図27B参照)。
 ここで、自動車の上り坂を登っているときなどには、自動車のうち車両進行方向前側が車両進行方向後側よりも上側に位置する。このため、冷却器2は、予め決められた姿勢(以下、基準姿勢という)よりも傾いた姿勢になる。
 この場合、冷媒は、重力の影響を受けて、サーモサイフォンの冷媒回路内のうち最も下側の部位に集まる。このため、冷却器の冷媒供給流路2a内の液相冷媒が少なくなる場合がある。
 したがって、冷媒供給流路2aのうち上側に蒸発流路部2bの冷媒入口を配置した場合には、冷媒供給流路2aのうち蒸発流路部2bの冷媒入口よりも下側に液相冷媒の液面が位置する恐れがある。
 このため、冷媒供給流路2aから蒸発流路部2bへの液相冷媒の供給が不安定になり、電池(すなわち、被冷却対象)の冷却が不安定になる。
 本開示は、被冷却対象の冷却を安定化させるようにした冷却器、およびサーモサイフォンを提供することを目的とする。
 本開示の1つの観点によれば、気相冷媒を凝縮して液相冷媒を排出する凝縮器とともに、冷媒を循環させるサーモサイフォンを構成する冷却器は、
 前記凝縮器からの前記液相冷媒が流れる供給流路を形成する第1流路形成部と、
 前記供給流路に連通する冷媒入口を有し、前記冷媒入口から上側に延びるように形成され、前記供給流路から冷媒入口を通して流入した前記液相冷媒と被冷却対象との間の熱交換により前記液相冷媒を蒸発させて前記気相冷媒を発生させる蒸発流路を形成する第2流路形成部と、
 前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路を形成する第3流路形成部とを、備え、
 前記冷媒入口は、前記供給流路のうち天地方向の中央部に対して下側に位置する。
 したがって、冷却器が予め決められた姿勢よりも傾いて、凝縮器から冷却器への液相冷媒の供給量が少なくなっても、冷媒入口が供給流路のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒入口よりも上側に液相冷媒の液面を配置させる上で有利となる。
 これにより、供給流路から蒸発流路に液相冷媒を安定して供給することができる。このため、被冷却対象の冷却を安定化させることができる。
 但し、供給流路のうち最も天地方向上側の位置を最上位置とし、供給流路のうち最も天地方向下側の位置を最下位置とすると、供給流路のうち天地方向の中央部は、最上位置と最下位置との間の真ん中の位置を意味する。
 本開示の他の観点によれば、気相冷媒を凝縮して液相冷媒を排出する凝縮器とともに、冷媒を循環させるサーモサイフォンを構成する冷却器は、
 前記凝縮器からの前記液相冷媒が流れる供給流路を形成する第1流路形成部と、
 前記供給流路からの液相冷媒が入る冷媒入口を有し、前記冷媒入口を通して流入した前記液相冷媒と被冷却対象との間の熱交換により前記液相冷媒を蒸発して前記気相冷媒を前記凝縮器に向けて流通させる蒸発流路を形成する第2流路形成部と、
 前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路を形成する第3流路形成部とを、備え、
 前記供給流路から下側に凹むように形成されて、前記供給流路からの液相冷媒を貯める1つ以上の貯液部と、を備え、
 前記冷媒入口は、前記貯液部に連通し、かつ前記貯液部内の液相冷媒の液面と同一高さ、或いは前記液面よりも下側に位置する。
 したがって、冷却器が予め決められた姿勢よりも傾いて、凝縮器から冷却器への液相冷媒の供給量が少なくなっても、冷媒入口が供給流路のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒入口よりも上側に液相冷媒の液面を配置させる上で有利となる。
 これにより、供給流路から蒸発流路に液相冷媒を安定して供給することができる。このため、被冷却対象の冷却を安定化させることができる。
 本開示のさらに他の観点によれば、気相冷媒を凝縮して液相冷媒を排出する凝縮器と、凝縮器から流入した液相冷媒と被冷却対象との間の熱交換により液相冷媒を蒸発して気相冷媒を凝縮器に排出する冷却器と、を備え、凝縮器および冷却器の間で冷媒を循環させるサーモサイフォンは、
 冷却器が予め決められた姿勢に対して傾いているか否か判定する判定部と、
 冷却器が予め決められた姿勢に対して傾いていると判定部が判定したときには、冷却器が予め決められた姿勢に対して傾いていないと判定部が判定したときに比べて、凝縮器から冷却器に供給する液相冷媒の冷媒量を増加させる冷媒増加部と、を備せる。
 したがって、冷却器が予め決められた姿勢よりも傾いたとき、凝縮器から冷却器への液相冷媒の供給量を増加させることにより、蒸発流路に液相冷媒を安定して供給することができる。このため、被冷却対象の冷却を安定化させることができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態における電池冷却ユニットの車両搭載図であって、車両が傾いた状態を示す図である。 図1の電池冷却ユニットの概略構成を示す模式図である。 図1の冷却器および二次電池の外観を示す模式図である。 図1の冷却器および二次電池の分解図である。 図4の蒸発器の内部構造を示す図である。 図4の蒸発器の内部構造を示す斜視図である。 A部分は図4の蒸発器の正面図でありB部分は蒸発器の断面図である。 B部分は図4の蒸発器の正面図、A部分は蒸発器の断面図である。 図1の冷却器の内部構造を示す透視図である。 図1の冷却器の内部の冷媒流れを示す模式図である。 傾斜時の図1の冷却器内の冷媒流れを示す模式図である。 傾斜時の図1の冷却器内の冷媒流れを示す模式図である。 対比例における冷却器内の冷媒流れを示す模式図である。 対比例における冷却器内の冷媒流れを示す模式図である。 第2実施形態における電池冷却ユニットの車両搭載図であって、車両が傾いた状態を示す図である。 図14の電池冷却ユニットの概略構成を示す模式図である。 図14の冷却器の内部の冷媒流れを示す模式図である。 図14の蒸発器の内部構造を示す図である。 第3実施形態における電池冷却ユニットの電池冷却構造を示す図である。 第3実施形態における電池冷却ユニットの電池冷却構造を示す図である。 第3実施形態における電池冷却ユニットの開閉弁の内部構造を示す図である。 第3実施形態における電池冷却ユニットの開閉弁の内部構造を示す図である。 第4実施形態における電池冷却ユニットの電池冷却構造を示す図である。 第4実施形態における電池冷却ユニットの電池冷却構造を示す図である。 第5実施形態における電池冷却ユニットの全体構成を示す図である。 第5実施形態における電子制御装置の冷媒制御処理を示すフローチャートである。 第6実施形態における冷却器の分解図である。 図23における冷却器の内部構造を示す図である。 図24A中XXIVB-XXIVB断面図である。 図24A中XXIVC-XXIVC断面図である。 第7実施形態における冷却器の内部構造を示す図である。 図25A中XXVB-XXVB断面図である。 図25A中XXVC-XXVC断面図である。 第8実施形態における冷却器の内部構造を示す図である。 図26A中XXVIB-XXVIB断面図である。 図26A中XXVIC-XXVIC断面図である。 対比例における冷却器の内部構造を示す図である。 図27A中XXVIIB-XXVIIB断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す本実施形態の電池冷却ユニット10は、電気自動車やハイブリッド自動車などの電動自動車に搭載される。そして、本実施形態では、電池冷却ユニット10は、その電動自動車に搭載される二次電池12a、12bを冷却する。すなわち、電池冷却ユニット10が冷却する被冷却対象は二次電池12a、12bである。
 電池冷却ユニット10を搭載する電動自動車(以下、単に「車両」とも呼ぶ)では、二次電池12a、12bを構成部品として含む蓄電装置(言い換えれば、電池パック)に蓄えた電力がインバータ回路などを介して電動モータに供給され、それによって車両は走行する。二次電池12a、12bは、電力をインバータを介して電動モータに出力する際に自己発熱する。
 そして、二次電池12a、12bが過度に高温になると、その二次電池12a、12bを構成する電池セル13の劣化が促進されることから、自己発熱が少なくなるように電池セル13の出力および入力に制限を設ける必要がある。
 そのため、電池セル13の出力および入力を確保するためには、二次電池12a、12bを所定の温度以下に維持するための冷却装置が必要となる。
 また、車両走行中だけでなく夏季の駐車放置中などにも電池温度は上昇する。また、蓄電装置は車両の床下やトランクルーム下などに配置されることが多く、二次電池12a、12bに与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。
 二次電池12a、12bを高温状態で放置すると、二次電池12a、12bの寿命が大幅に低下するので、車両の放置中も二次電池12a、12bを冷却するなど電池温度を低温に維持することが望まれている。
 本実施形態の二次電池12a、12bは、複数の電池セル13を車両進行方向に積層してなる組電池として構成されているが、各電池セル13の温度にばらつきがあると電池セル13の劣化に偏りが生じ、蓄電装置の性能が低下してしまう。
 これは、最も劣化した電池セル13の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって蓄電装置に所望の性能を発揮させるためには、複数の電池セル13相互間の温度ばらつきを低減させる均温化が重要となる。
 また、二次電池12a、12bを冷却する他の冷却装置として、これまでブロワによる送風や、冷凍サイクルを用いた空冷、水冷、あるいは冷媒直接冷却方式が一般的となっているが、ブロワは車室内の空気を送風するだけなので、ブロワの冷却能力は低い。
 また、ブロワによる送風では空気の顕熱で二次電池12a、12bを冷却するので、空気流れの上流と下流との間で温度差が大きくなり、電池セル13間の温度ばらつきを十分に抑制できない。
 また、冷凍サイクル方式では冷却能力は高いが、電池セル13との熱交換部は空冷または水冷の何れでも顕熱冷却であるので、同じく、電池セル13間の温度ばらつきを十分に抑制できない。更には、駐車放置中に冷凍サイクルのコンプレッサや冷却ファンを駆動させることは、電力消費の増大や騒音などの原因となるので好ましくない。
 これらの背景から、本実施形態の電池冷却ユニット10では、コンプレッサを用いず冷媒の自然対流で二次電池12a、12bを冷却するサーモサイフォン方式が採用されている。
 具体的に、電池冷却ユニット10は、図1に示すように、冷却器14、凝縮器16、往路配管18と、復路配管20とを備える。そして、その凝縮器16と往路配管18と冷却器14と復路配管20は環状に連結され、電池冷却ユニット10の冷媒としての冷媒が循環するサーモサイフォン回路26を構成する。
 すなわち、サーモサイフォン回路26は、冷媒の蒸発および凝縮により熱移動を行うサーモサイフォンを構成する。そして、サーモサイフォン回路26は、気相冷媒が流れる流路と液相冷媒が流れる流路とが分離されたループ型のサーモサイフォン(言い換えれば、冷媒の循環回路)となるように構成されている。
 各図において、矢印DR1は、重力方向を示すもので、矢印DR1において上矢印は車両の重力方向の上側を示し、下矢印は車両の重力方向の下側を示している。矢印DR2は、電池冷却ユニット10を車両に搭載した状態の電池冷却ユニット10の上下方向を示している。矢印DR3は、水平方向を示している。車両の進行方向が水平方向に一致したときに、重力方向と上下方向とは一致することになる。矢印DR4は、車両進行方向を示している。矢印DR5は、車両幅方向(すなわち、車両左右方向)を示す。
 本実施形態のサーモサイフォン回路26内には冷媒が封入充填されている。そして、サーモサイフォン回路26内はその冷媒で満たされている。その冷媒はサーモサイフォン回路26を自然対流により循環し、電池冷却ユニット10は、その冷媒の液相と気相との相変化によって二次電池12a、12bの温度を調整する。詳細には、その冷媒の相変化によって二次電池12a、12bを冷却する。
 サーモサイフォン回路26内に充填されている冷媒は、例えば、HFO-1234yfまたはHFC-134aなどのフロン系冷媒である。或いは、冷媒として、水、アンモニア等のフロン系冷媒以外の各種の作動流体を用いても良い。
 図3に示すように、冷却器14は、二次電池12a、12bの間に配置されて二次電池12a、12bおよび冷媒の間で熱交換して二次電池12a、12bから冷媒へ熱を移動させることにより二次電池12a、12bを冷却する熱交換器である。冷却器14は、例えば熱伝導性の高い金属製である。
 ここで、サーモサイフォン回路26内への冷媒の充填量は、二次電池12a、12bおよび冷媒の間の熱交換が停止し、かつ車両の進行方向が水平方向に一致した状態において冷却器14の内部が液相冷媒で満たされる量とされている。
 冷却器14には、図2に示すように、入口14aと出口14bとが形成されている。入口14aと出口14bとは、冷却器14のうち車両進行方向前側に設けられている。出口14bは、入口14aに対して天地方向上側に配置されている。
 往路配管18の内部に形成された往路流通路18aは、冷却器14内へ連通されている。したがって、サーモサイフォン回路26を冷媒が循環すると、往路流通路18aの液相冷媒は、入口14aを介して冷却器14内部に流入する。
 往路流通路18aは、凝縮器16から冷却器14へ液相冷媒を流通させる冷媒の流路である。冷却器14の出口14bは、復路配管20に形成された復路流通路20aを冷却器14内へ連通させている。
 したがって、サーモサイフォン回路26を冷媒が循環すると、冷却器14内の気相冷媒は出口14bを通して復路流通路20aへ出る。その復路流通路20aは、冷却器14の出口14bから凝縮器16へ気相冷媒を流す冷媒流路である。
 なお、冷却器14は、気相冷媒を入口14aと出口14bとのうち専ら出口14bから出させる不図示の構造を備えている。
 凝縮器16は、凝縮器16内の気相冷媒および受熱流体の間で熱交換して冷媒から受熱流体へ放熱させる熱交換器である。詳細に言えば、凝縮器16には復路配管20から気相冷媒が流入し、凝縮器16は、冷媒から受熱流体に放熱させることによりその冷媒を凝縮させる。
 凝縮器16内の冷媒と熱交換させられる受熱流体としては、例えば空気(すなわち、車室外の空気)、或いは水などである。
 本実施形態の凝縮器16は、車両の車両進行方向(或いは、車両幅方向)が水平方向に対して傾いた状態になっても、冷却器14よりも天地方向上側に位置するように設置されている。
 凝縮器16は、冷却器14よりも重力方向の上側に配置されている。本実施形態では、凝縮器16は、フロント格納室やトランクルームに収納されている。フロント格納室は、車両のうち車室内に対して車両進行方向前側に配置されて、走行用エンジンや走行用電動機を収納する室である。トランクルームは、車両のうち車室内に対して車両進行方向後側に配置されて荷物等を収納する格納室である。
 凝縮器16のうち重力方向の上側の部位には復路配管20が接続されている。要するに、復路配管20は、往路配管18よりも重力方向の上側にて凝縮器16に接続されている。
 次に、本実施形態の冷却器14の冷却構造の詳細について説明する。
 冷却器14は、車両進行方向に積層してなる蒸発器30a、30b、30c、30d、・・・・・・30mから構成されて、二次電池12a、12bを冷却する熱交換器である。 本実施形態では、蒸発器30a~30mは、二次電池12a、12bの電池セル13毎に設けられている(図4、図9参照)。
 なお、図4では、蒸発器30a、30b、30c、・・・・・・30mのうち蒸発器30a、30b、30c以外の図示を省略している。
 二次電池12aは、蒸発器30a~30mに対して車両幅方向一方側に配置されている。二次電池12aは、車両進行方向に積層されている複数の電池セル13を備える。つまり、複数の電池セル13は、蒸発器30a~30mの積層方向と同一方向に積層されている。
 二次電池12bは、蒸発器30a~30mに対して車両幅方向他方側に配置されている。二次電池12bは、車両進行方向に積層されている複数の電池セル13を備える。
 なお、二次電池12a、12bは、説明の便宜上、互いに相違する符号が付してあるが、互いに同じ二次電池である。
 熱伝導材40a、40bは、それぞれ、電気絶縁性を有し、かつ高い熱伝導性を有する材料によって薄板状に形成されている。熱伝導材40aは、蒸発器30a~30mと二次電池12aとの間に配置されている。熱伝導材40bは、蒸発器30a~30mと二次電池12bとの間に配置されている。
 本実施形態の熱伝導材40a、40bとしては、蒸発器30a~30mや二次電池12a、12bの寸法誤差の吸収の効果を持たせてもよい。
 本実施形態の蒸発器30a~30mは、それぞれ、車両進行方向の寸法よりも上下方向の寸法の方が大きく、かつ車両幅方向の寸法よりも上下方向の寸法の方が大きいブロック状に形成されている。
 蒸発器30a~30mは、蒸発器30a→蒸発器30b→蒸発器30c→・・・蒸発器30mの順に車両進行方向前側から車両進行方向後側に並べられてブロック積層構造を構成する。つまり、本実施形態の蒸発器30a~30mの並び方向は、車両進行方向と同一になっている。
 次に、本実施形態の蒸発器30a~30mのうち蒸発器30aを代表として蒸発器30aの構造について説明する。
 蒸発器30aは、直方体に形成されているケース40と蓋部50とを備える。ケース40は、車両進行方向前側に開口する開口部を形成する。
 ケース40は、上面41、下面42、側面43、44、および背面45を備える。上面41は、下面42、側面43、44とともに、開口部を形成する。背面45は、上面41、下面42、側面43、44に対して車両進行方向後側に配置されている。
 図4の蓋部50は、ケース40の開口部を塞いでいる。蓋部50には、車両進行方向に貫通する入口14aと出口14bが設けられている。つまり、入口14aと出口14bは、蒸発器30a~30mに対して車両進行方向前側に配置されている。
 入口14aには、往路配管18を通して凝縮器16の出口が接続されている。出口14bは、蒸発器30aの気液分離室62のうち重力方向上側の領域と連通している。出口14bは、復路配管20を通して凝縮器16の入口が接続されている。
 ケース40内には、仕切壁60a、60b、60cが設けられている。仕切壁60a、60bは、それぞれ、重力方向に延びる板状に形成されている。仕切壁60a、60bは、車両幅方向に並べられている。
 仕切壁60aは、側面43との間に、冷媒および二次電池12aの間で熱交換させる蒸発流路61aを形成する。蒸発流路61aは、仕切壁60aおよび側面43に沿って天地方向上側に延びるように形成されている。
 仕切壁60bは、側面44との間に、冷媒および二次電池12bの間で熱交換させる蒸発流路61bを形成する。蒸発流路61bは、仕切壁60bおよび側面44に沿って天地方向上側に延びるように形成されている。
 蒸発流路61a、61bは、第2流路形成部としての仕切壁60a、60b、側面43、44等によって構成されている。
 本実施形態の蒸発流路61a、61bにおいて、ウィック(毛細管構造)を設けたり、熱交換フィンを内蔵してもよい。このことにより、冷媒および二次電池12a、12bの熱交換を促進することができるため、冷媒の蒸発を促進することができる。
 仕切壁60a、60bの間には、気液分離室62および液相冷媒供給室63が形成されている。仕切壁60cは、気液分離室62と液相冷媒供給室63とを区分けするように形成されている。
 気液分離室62は、仕切壁60cに対して重力方向上側に形成されている。気液分離室62は、後述するように、蒸発流路61a、61bから供給される冷媒を気相冷媒と液相冷媒とに気液分離する。液相冷媒供給室63は、仕切壁60cに対して重力方向下側に形成されている。
 本実施形態の蒸発器30aの液相冷媒供給室63のうち天地方向上側は、蒸発器30b~30mの液相冷媒供給室63のうち天地方向上側とともに、後述するように、1つの冷媒供給流路70を構成する。
 蒸発器30aの液相冷媒供給室63のうち天地方向下側は、冷媒供給流路70から下側に凹むように形成されて、冷媒供給流路70からの液相冷媒を貯める貯液部63aを構成する。
 仕切壁60aと下面42との間には、蒸発流路61aの入口64aが形成されている。入口64aは、貯液部63aに連通して貯液部63aからの液相冷媒が流入される。入口64aは、冷媒供給流路70に対して天地方向下側に位置する。換言すれば、入口64aは、連通開口部68に対して天地方向下側に位置する。入口64aは、貯液部63aに連通している。このことにより、入口64aは、貯液部63aを通して冷媒供給流路70に連通している。
 仕切壁60bと下面42との間には、蒸発流路61bの入口64bが形成されている。入口64bは、貯液部63aに連通して貯液部63aからの液相冷媒が流入される。入口64bは、冷媒供給流路70に対して天地方向下側に位置する。換言すれば、入口64bは、連通開口部68に対して天地方向下側に位置する。入口64bは、貯液部63aに連通している。このことにより、入口64bは、貯液部63aを通して冷媒供給流路70に連通している。
 仕切壁60aと上面41との間には、蒸発流路61aと気液分離室62との間を連通して、蒸発流路61aから気液分離室62に冷媒を供給する連通路65aが形成されている。
 仕切壁60bと上面41との間には、蒸発流路61bと気液分離室62との間を連通して、蒸発流路61bから気液分離室62に冷媒を供給する連通路65bが形成されている。
 仕切壁60cには、気液分離室62と液相冷媒供給室63との間を連通する冷媒戻し流路66が形成されている。冷媒戻し流路66は、気液分離室62内の液相冷媒を液相冷媒供給室63に戻す。
 背面45のうち仕切壁60cに対して重力方向上側には、蒸発器30bの気液分離室62に連通する連通孔67が形成されている。蒸発器30bは、蒸発器30aに対して車両進行方向後側に配置されている。
 つまり、隣り合う2つの蒸発器30a、30bは、気液分離室62同士が連通孔67を通して連通されている。
 背面45のうち仕切壁60cに対して重力方向下側には、車両進行方向に貫通する連通開口部68が設けられている。つまり、蒸発器30aの連通開口部68は、蒸発器30aの液相冷媒供給室63および蒸発器30bの液相冷媒供給室63の間を連通している。
 背面45において連通開口部68は、五角形に形成されている。このため、背面45において連通開口部68のうち下側を形成する下側縁部68aは、車両幅方向中央部から車両幅方向右側に進むほど天地方向上側に位置し、かつ車両幅方向中央部から車両幅方向左側に進むほど天地方向上側に位置するV字状に形成されている。
 背面45のうち連通開口部68に対して重力方向下側に、液相冷媒を堰き止める堰として機能する背面壁69が形成されている。このため、蒸発器30aの背面壁69は、隣接する2つの蒸発器30a、30bのそれぞれの貯液部63aを仕切る壁である。蒸発器30aの貯液部63aは、下面42、仕切壁60a、60b、背面壁69、および蓋部50によって仕切られている。
 本実施形態の蓋部50、および仕切壁60a、60b、60cは、アルミニウム等の金属材料によって構成されている。
 本実施形態の蒸発器30b~30mは、ケース40、および仕切壁60a、60b、60cを備える。
 蒸発器30aにおけるケース40と蒸発器30b~30mにおけるケース40とは同一である。
 蒸発器30aにおける仕切壁60a、60b、60cと蒸発器30b~30mにおける仕切壁60a、60b、60cとは同一である。
 但し、蒸発器30a~30mのうち最も車両進行方向後側に位置する蒸発器30mにおいてケース40の背面45は、連通孔67、連通開口部68が廃止されて塞がれている(図8(a)(b)参照)。
 蒸発器30a~30mのうち隣り合う2つの蒸発器のうち車両進行方向後側の蒸発器のケース40の開口部は、車両進行方向一方側の蒸発器のケース40の背面45によって塞がれている。
 例えば、隣り合う2つの蒸発器30a、30bのうち車両進行方向後側の蒸発器30bのケース40の開口部は、車両進行方向一方側の蒸発器30aのケース40の背面45によって塞がれている。
 このため、蒸発器30aと同様に、蒸発器30b~30mは、それぞれ、気液分離室62、液相冷媒供給室63、および貯液部63aを蒸発器毎に備える。蒸発器30b~30mのそれぞれの気液分離室62は、蒸発流路61a、61bから供給される冷媒を気相冷媒と液相冷媒とに分離する。
 ここで、蒸発器30a~30mのうち隣り合う2つの蒸発器の気液分離室62同士が連通孔67を通して連通している。蒸発器30a~30mのそれぞれの気液分離室62は、蒸発器毎の連通孔67とともに、気液分離室62内の気相冷媒を出口14bに導く1つの気相冷媒流路71(図9参照)を形成する。
 気相冷媒流路71は、第3流路形成部としての仕切壁60a、60b、および背面45によって形成されている。
 本実施形態の蒸発器30a~30mのそれぞれの気液分離室62のうち気相冷媒流路71に対して重力方向下側は、気液分離された液相冷媒を貯める機能を果たす。
 蒸発器30b~30mのそれぞれの貯液部63aは、下面42、仕切壁60a、60b、および2つの背面壁69によって蒸発器毎に仕切られている。2つの背面壁69とは、蒸発器30b~30mのうち隣接する2つの蒸発器のそれぞれの背面壁69である。
 例えば、蒸発器30bの貯液部63aは、蒸発器30aの背面壁69と蒸発器30bの背面壁69との間に形成されている。蒸発器30cの貯液部63aは、蒸発器30bの背面壁69と蒸発器30cの背面壁69との間に形成されている。
 蒸発器30a~30mのうち隣り合う2つの蒸発器の液相冷媒供給室63同士が連通開口部68を通して連通されている。
 本実施形態の蒸発器30a~30mのそれぞれの液相冷媒供給室63のうち天地方向上側は、蒸発器30a~30kのそれぞれの連通開口部68を通して連通して、1つの冷媒供給流路70を構成する。
 つまり、蒸発器30b~30mのそれぞれの貯液部63aは、液相冷媒供給室63のうち連通開口部68よりも下側に形成されている。
 本実施形態の冷媒供給流路70は、第1流路構成部としての仕切壁60a、60b、60c等によって構成されている。
 このように構成される蒸発器30a~30mでは、蒸発流路61a、61b、気液分離室62および液相冷媒供給室63が蒸発器毎に設けられている。これに加えて、蒸発器30a~30mでは、凝縮器16から入口14aを通して流入される液相冷媒を蒸発器毎の貯液部63aに供給する1つの冷媒供給流路70が構成されている。蒸発器30a~30mのそれぞれ蒸発流路61a(或いは、61b)は、冷媒供給流路70の冷媒流れ方向に並べられている。
 本実施形態の蒸発流路61aの流路断面積は、冷媒供給流路70の流路断面積よりも小さくなっている。蒸発流路61bの流路断面積は、冷媒供給流路70の流路断面積よりも小さくなっている。
 ここで、蒸発流路61aの流路断面積は、蒸発流路61aのうち冷媒流れ方向に対して直交する方向に切断した断面の面積である。蒸発流路61bの流路断面積は、蒸発流路61bのうち冷媒流れ方向に対して直交する方向に切断した断面の面積である。
 冷媒供給流路70の流路断面積は、冷媒供給流路70のうち冷媒流れ方向に対して直交する方向に切断した断面の面積である。本実施形態の冷媒供給流路70の流路断面積は、連通開口部68の開口面積に一致する。
 本実施形態の蒸発器30aの蒸発流路61aのうち天地方向下側は、熱伝導材40aを挟んで二次電池12aのうち天地方向下側に対向している。蒸発器30aの蒸発流路61bのうち天地方向下側は、熱伝導材40bを挟んで二次電池12bのうち天地方向下側に対向している。
 同様に、蒸発器30b~30mのそれぞれ蒸発流路61aのうち天地方向下側は、熱伝導材40aを挟んで二次電池12aのうち天地方向下側に対向している。蒸発器30b~30mのそれぞれの蒸発流路61bのうち天地方向下側は、熱伝導材40bを挟んで二次電池12bのうち天地方向下側に対向している。
 次に、本実施形態の電池冷却ユニット10の作動について説明する。
 まず、二次電池12a、12bの温度が蒸発器30a~30m内の液相冷媒の温度と同一であるとき、二次電池12a、12bおよび蒸発器30a~30mの内部の液相冷媒の間の熱交換が停止される。
 ここで、車両幅方向が水平方向に一致し、かつ車両進行方向が水平方向に一致したときに、電池冷却ユニット10は、予め決められた姿勢(以下、基準姿勢という)になる。
 この際に、蒸発器30a~30mの蒸発流路61a、61b内部に液相冷媒が満たされた状態となるようにサーモサイフォン回路26内には冷媒が封入充填されている。
 このとき、蒸発器30a~30mの蒸発流路61a、61bおよび貯液部63a内に液相冷媒の液面haが位置する。
 その後、二次電池12a、12bが発熱して、二次電池12a、12bの温度が高くなる。すると、二次電池12aから熱伝導材40aを通して蒸発器30a~30mのケース40の側面43へ熱が伝わる。二次電池12bから熱伝導材40bを通して矢印Nbの如く蒸発器30a~30mのケース40の側面44へ熱が伝わる。
 このように、二次電池12a、12bから熱伝導材40a、40bを通して蒸発器30a~30mに伝わる熱によって蒸発器30a~30m内の蒸発流路61a、61b内の液相冷媒が沸騰する。
 このことにより、蒸発器30a~30m内の蒸発流路61a、61b内の液相冷媒の内部から冷媒が蒸発することになる。このため、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。
 この際に、蒸発流路61a、61bにおいて、気泡を含む液相冷媒の体積は、熱交換の停止時における気泡を含まない液相冷媒の体積に比べて、大きくなる。このため、蒸発流路61a、61b内の液相冷媒の液面(図5中ha参照)が車両停止時の液相冷媒の液面よりも上昇する。
 つまり、蒸発流路61a、61bでは、気泡を含む液相冷媒が気泡混合流として上昇する気泡ポンプ効果により、蒸発流路61a、61b内の液相冷媒の液面は、上昇することになる。
 この際、蒸発流路61a、61b内のうち天地方向の上側にまで液相冷媒が供給され、二次電池12a、12bの熱を奪って蒸発して気相冷媒となる。
 このとき、蒸発流路61a内の液相冷媒の液面が連通路65a迄まで到達すると、連通路65a内の気泡混合流が、重力により、気液分離室62に流入する。
 蒸発流路61b内の液相冷媒の液面が連通路65b迄まで到達すると、連通路65b内の気泡混合流が、重力により、気液分離室62に流入する。
 つまり、連通路65a、65b内の気泡混合流が、気液分離室62で合流する。この際に、気相冷媒流路71内にて気泡混合流が気相冷媒と液相冷媒とに分離される。気相冷媒が、図9中の矢印Ka如く気相冷媒流路71を通して出口14bに流れる。液相冷媒は、気液分離室62のうち天地方向下側に貯まる。そして、気液分離室62内の液相冷媒は、冷媒戻し流路66aを通して、液相冷媒供給室63に戻る。
 このことにより、蒸発流路61a、61b内における気泡混合流の総量を減らすことができるので、液相冷媒の液面が出口14bよりも重力方向の上側に移動することが抑えられる。
 すなわち、液相冷媒の液面が蒸発器30a~30mよりも重力方向の上側に移動することが抑えられる。したがって、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、蒸発流路61a、61b内の液相冷媒が沸騰する際に液相冷媒が気液分離室62に貯められるので、蒸発流路61a、61b内の気泡を含んだ液相冷媒が少なくなる。このため、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 一方、気相冷媒が出口14bから復路配管20の復路流通路20aを通して凝縮器16に移動する。
 このとき、二次電池12a、12bの温度が凝縮器16の温度よりも高くなるか、凝縮器16の温度が二次電池12a、12bの温度よりも低くなると、凝縮器16内では、液相冷媒の凝縮が始まる。この際に、凝縮器16内では、気相冷媒が受熱流体へ放熱して気相冷媒が凝縮する。この凝縮した液相冷媒は、重力により、往路配管18の往路流通路18aを通して冷却器14の入口14aに流れる。
 すると、液相冷媒は、冷媒供給流路70を通して蒸発器30a~30mのそれぞれの貯液部63aに流れる。
 具体的には、液相冷媒は、蒸発器30aの貯液部63a→蒸発器30bの貯液部63a→蒸発器30cの貯液部63a→蒸発器30dの貯液部63a→・・・・・→蒸発器30mの貯液部63aの順に流れる。
 すなわち、蒸発器毎に貯液部63aを液相冷媒で満たしながら、車両進行方向前側の蒸発器に貯液部63aから車両進行方向後側の蒸発器に貯液部63aに順次液相冷媒が流れる。
 蒸発器30a~30mにおいて、貯液部63aから液相冷媒は、蒸発流路61a、61bに流れる。
 このように、本実施形態の電池冷却ユニット10では、これらの作動がコンプレッサ等の駆動装置を必要とせずに、サーモサイフォン回路26に封入された冷媒の自然循環により行われる。自然循環は、凝縮器16と蒸発器30a~30mとの温度差によって生じる自然対流により、サーモサイフォン回路26内を冷媒が循環することである。
 例えば、車両が上り坂を登っている時などでは、車両進行方向が水平方向に対して斜めになり、電池冷却ユニット10のうち車両進行方向前側が車両進行方向後側よりも天地方向上側になる。
 或いは、車両が下り坂を下っている時などでは、電池冷却ユニット10のうち車両進行方向後側が車両進行方向前側よりも天地方向上側になる。
 車両が走行する道路によっては、車両幅方向が水平方向に対して斜めになり、電池冷却ユニット10のうち車両幅方向右側が車両幅方向左側よりも天地方向上側になる。
 或いは、車両が走行する道路によっては、電池冷却ユニット10のうち車両幅方向左側が車両幅方向右側よりも天地方向上側になる場合がある。
 さらに、車両が停車した路面が傾斜していると、車両進行方向(或いは、車両幅方向)が水平方向に対して斜めになる場合もある。
 このように車両進行方向(或いは、車両幅方向)が水平方向に対して斜めになると、電池冷却ユニット10が上述した基準姿勢よりも傾くことになる。
 ここで、蒸発器30a~30mのそれぞれの貯液部63aは、上述の如く、仕切壁60a、60bおよび2つの背面壁69によって蒸発器毎に囲まれている。
 このため、電池冷却ユニット10が上述した基準姿勢よりも傾いた状態になっても、蒸発器毎の貯液部63a内の液相冷媒は、貯液部63a内に保持される。つまり、電池冷却ユニット10が上述した基準姿勢よりも傾いたときに、貯液部63aから液相冷媒が連通開口部68を通して流れ出ることが抑制される。
 さらに、本実施形態では、蒸発流路61aの入口64aは、冷媒供給流路70のうち天地方向中央よりも天地方向下側に位置する。
 但し、冷媒供給流路70のうち最も天地方向上側の位置を最上部位とし、冷媒供給流路70のうち最も天地方向下側の位置を最下部位とすると、冷媒供給流路70のうち天地方向中央とは、最上部位と最下部位との間の真ん中である。
 より詳細には、蒸発流路61aの入口64aは、貯液部63aのうち天地方向下側に連通している。蒸発流路61bの入口64bは、貯液部63aのうち天地方向下側に連通している。
 このため、電池冷却ユニット10が上述した基準姿勢よりも傾いて、冷媒供給流路70から蒸発器毎の貯液部63aに供給される液相冷媒の供給量が少なくなっても、蒸発流路61a(或いは、61b)の入口64a(或いは、64b)よりも天地方向上側に液相冷媒の液面が位置し易くなる。
 換言すれば、電池冷却ユニット10が上述した基準姿勢よりも傾いて、蒸発器毎の貯液部63aに供給される液相冷媒の供給量が少なくなっても、蒸発流路61a(或いは、61b)の入口64aは、蒸発器毎の貯液部53a内の液相冷媒の液面と同一高さ、或いは、蒸発器毎の貯液部53a内の液相冷媒の液面よりも下側に位置する。
 したがって、蒸発器毎に貯液部63aから蒸発流路61a、61bへ供給される液相冷媒の供給量は、安定化される。
 以上説明した本実施形態によれば、冷却器14は、冷媒供給流路70の各区間毎(すなわち、蒸発器毎)に連通開口部68を持つが、この連通開口部68の下端より低い位置に背面壁69(すなわち、堰)、貯液部63aを構成する。
 貯液部63aは、車両の傾斜時も液相冷媒を留めることができ、傾斜時の上流から供給された液相冷媒が、上流の貯液部63aを満たすと、下流側の貯液部63aへ液相冷媒が流出し、次々と下流の貯液部63aを満たしていく。
 蒸発器毎の貯液部63aのうち、傾斜時の液面と同一高さ、或いは液面より低い位置に、蒸発流路61a、61bの冷媒入口64a、64bが連通している。このため、冷媒入口64a、64bから液相冷媒が蒸発流路61a、61bの下方へ供給される。
 貯液部63a毎(すなわち、区間毎)の蒸発流路61a、61b下方で液相冷媒は、二次電池12a、12b(すなわち、被冷却対象)の熱を受けて熱を奪い、蒸発が始まる。すると、蒸発流路61a、61b下方の液相冷媒は、発生した気泡の浮力と液の粘性により気泡流となって、蒸発流路61a、61b内の下方から61a、61bの上方へ気泡ポンプ効果で液面を押し上げる。
 これによりさらに、蒸発流路61a、61b下方の液相冷媒が蒸発流路61a、61b上方に供給され、二次電池12a、12bから熱を奪う面積が増加し、冷却効果も大きくなる。
 蒸発流路61a、61b内で液相冷媒が蒸発して上昇した気泡流から分離した気相冷媒は、復路配管20を経由して凝縮器16に戻り、凝縮されて、再び液相冷媒として下方の冷却器14へ重力の力で供給される。
 このように液相冷媒よりも凝縮器16の温度が低い状況が生じている間は、液相冷媒が冷却器14に供給され続けるが、液相冷媒を傾斜時の上流から下流に向かって、各蒸発器毎(すなわち、区間毎)に、蒸発器30a~30mへ液相冷媒を安定して供給し続けることが可能となる。
 車両が傾斜していても、冷却器14の温度が低下して、冷却器14および凝縮器16の温度差が小さくなれば、冷媒循環量が少なくなり、あるいは、冷媒循環が停止し、再び、部分的なドライな部分が発生する。電池セル13の発熱は概ね均等なので、再び、高温部が生じるころには、液に浸されている部分からの蒸発で、冷媒循環が始まり、蒸発器30a~30mへ冷媒が供給されるようになる。
 以上により、電池冷却ユニット10は、気相冷媒を凝縮して液相冷媒を排出する凝縮器16と、凝縮器16とともに冷媒を循環させるサーモサイフォンを構成する冷却器14とを備える。冷却器14は、凝縮器16からの液相冷媒が流れる1つの冷媒供給流路70を構成するとともに、冷媒供給流路70に連通する冷媒入口64a、64bを有する蒸発流路61a、61bを蒸発器毎に形成する。
 蒸発流路61a、61bは、冷媒供給流路70から冷媒入口64a、64bを通して流入した液相冷媒と二次電池12a、12bとの間の熱交換により液相冷媒を蒸発して気相冷媒を凝縮器16に向けて流通させる。
 蒸発毎の貯液部63aは、蒸発器毎の蒸発流路61a、61bのうち対応する蒸発器の蒸発流路61a、61bの入口64a、64bに連通している。冷媒入口64a、64bは、冷媒供給流路70のうち天地方向の中央部に対して下側に位置する。
 したがって、冷却器14が予め決められた基準姿勢よりも傾いて、凝縮器16から冷却器14への液相冷媒の供給量が少なくなっても、冷媒入口64a、64bが冷媒供給流路70のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒供給流路70よりも上側に液相冷媒の液面を配置させる上で有利となる。
 これにより、冷媒供給流路70から蒸発流路61a、61bに液相冷媒を安定して供給することができる。このため、二次電池12a、12bの冷却を安定化させることができる。
 また、サーモサイフォンの冷却器14A(図13(a)参照)を大型の二次電池の冷却に用いると、冷却器14Aのうち液相冷媒の液面より上側にドライな部分が生じることがある。車両の走行による、二次電池の発熱で、二次電池と凝縮器との間に温度差が生じるようになると、凝縮器が液相冷媒を供給しはじめ、液相冷媒が下降し始める。
 液相冷媒が冷却器14A内に滴下してきても、冷却器14Aに、蒸発器毎の貯液部が設けられていないと、車両が登坂を登っているときなどで冷却器14A(図13(b)参照)が基準姿勢に対して傾いていると、液相冷媒は重力方向で下側に偏る。このため、上方に延びる蒸発流路に上手く液相冷媒が供給できず、ドライ部分は冷却不足となることがある。
 一方、二次電池の温度制限は、最高温度の電池セルの温度が上限閾値を超えないように制御しているので、この冷却不足となった二次電池の温度が上限目標値に達してしまうと、他の電池セルの温度が低くても、最高温度のセル温度が上限温度を超えないように電池パック(組電池)としての出力を制限、あるいは停止してしまう。
 これに対して、本実施形態の冷却器14には、蒸発器毎に貯液部63aが設けられている。このため、冷却器14Aが基準姿勢から傾いても、冷却器14のうち最も下側の部分に集まることを抑制することができる。これに伴い、蒸発器毎に液相冷媒供給室63から蒸発流路61a、61bへの液相冷媒の供給を安定化させることができる。このため、蒸発流路61a、61b内の液相冷媒と二次電池12A、12Bとの間の熱交換を蒸発器毎に安定化させることができる。このため、電池パックの出力制限や停止を未然に避けることができる。
 以上により、二次電池12A、12Bにおいて部分的に高温部が発生して電池パックから電動モータに電力の出力制限がかかり、電動モータの出力低下・走行不能が生じることを未然に防ぐことができる。
 これに加えて、本実施形態では、冷却器14に大量の液相冷媒を充填する必要がなくなる。このため、冷媒の気液分離の低下、冷媒循環の低下、二次電池の冷却性能の低下、重量の増加・コスト増加等が生じることを未然に防ぐことができる。
 本実施形態の蒸発流路61a、61bの流路断面積は、冷媒供給流路70の流路断面積よりも小さくなっている。
 ここで、蒸発流路61a、61bの流路断面積が大きすぎると、蒸発流路61a、61b内にて気泡が液相冷媒から分離し易くなり、液相冷媒の液面が蒸発流路61a、61b内に上昇し難くなる。このため、貯液部63aから蒸発流路61a、61bへの液相冷媒の供給量も減る。
 これに対して、本実施形態の蒸発流路61a、61bの流路断面積は、上述の如く、冷媒供給流路70の流路断面積よりも小さくなっている。このため、蒸発流路61a、61b内にて気泡が液相冷媒から分離し難くなる。このため、液相冷媒の液面が蒸発流路61a、61b内に上昇して、貯液部63aから蒸発流路61a、61bへの液相冷媒の供給量も増大する。
 本実施形態の背面45において連通開口部68のうち下側を形成する下側縁部68aは、V字状に形成されている。このため、車両幅方向が水平方向に対して傾いた状態になっても、隣接する2つの蒸発器の貯液部63aの間で連通開口部68を通して液相冷媒が移動することを未然に防ぐことができる。
 (第2実施形態)
 本第2実施形態では、上記第1実施形態の冷却器14を2つ直列に接続して電池冷却ユニット10を構成した例について図15~図18を参照して説明する。
 本実施形態と上記第1実施形態とは、冷却器14を用いて二次電池12a、12bを冷却する電池冷却構造が相違している。このため、以下、電池冷却ユニット10のうち電池冷却構造について説明し、その他の構成の説明を省略する。
 本実施形態の電池冷却ユニット10は、電池冷却構造として、2つの冷却器14および2対の二次電池12a、12bを備える。
 2つの冷却器14は、それぞれ、上記第1実施形態の冷却器14と同様に構成されている。2つの冷却器14は、車両進行方向に並べられている。以下、説明の便宜上、2つの冷却器14のうち車両進行方向前側に位置する冷却器14Mとし、2つの冷却器14のうち車両進行方向後側に位置する冷却器14Uとする。
 冷却器14M、14Uは、それぞれ、蒸発器30a~30mの積層方向が車両幅方向に一致するように配置されている。つまり、冷却器14M、14Uは、それぞれ、冷媒供給流路70が車両幅方向に延びることになる。車両幅方向は、車両進行方向に交差する方向すなわち交差方向である。
 冷却器14Mのうち車両幅方向一方側に入口14aと出口14bが設けられている。冷却器14Mのうち車両幅方向他方側には、冷媒出口14cが設けられている。冷媒出口14cは、冷却器14Mの冷媒供給流路70に連通している。
 冷却器14Uのうち車両幅方向一方側に出口14bが設けられている。冷却器14Uのうち車両幅方向他方側に入口14aが設けられている。
 冷却器14Mの出口14cと冷却器14Uの入口14aとは、冷媒配管80によって接続されている。冷媒配管80は、冷却器14Mの出口14cからの液相冷媒を冷却器14Uの入口14aに導く冷媒流路を構成する。
 冷却器14Mは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Mを挟んで車両進行方向に並べられている。
 冷却器14Uは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Uを挟んで車両進行方向に並べられている。
 本実施形態の2対の二次電池12a、12bは、それぞれ、電池セル13の積層方向が車両幅方向に一致している。
 このように構成された本実施形態では、凝縮器16から冷却器14Mの入口14aに液相冷媒が冷媒供給流路70に流入する。このため、冷却器14Mの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 この後、冷媒供給流路70から出口14cを通して排出される液相冷媒は、冷媒配管80を通して冷却器14Uの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Uの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 このように、車両進行方向に並べられて直列接続されている冷却器14M、14Uのそれぞれの蒸発器毎の貯液部63aに順次に液相冷媒が供給される。このため、冷却器14M、14Uのそれぞれの蒸発器30a~30nは、上記第1実施形態と同様に作動する。このため、冷却器14M、14Uによって2対の二次電池12a、12bを冷却することができる。
 蒸発器30a~30nにおいて、背面45において連通開口部68のうち下側を形成する下側縁部68aは、車両進行方向中央部から車両進行方向前側に進むほど天地方向上側に位置し、かつ車両進行方向中央部から車両進行方向後側に進むほど天地方向上側に位置するV字状に形成されている(図17参照)。
 したがって、車両進行方向が水平方向に対して傾斜した状態になっても、蒸発器毎の貯液部63aから連通開口部68を通して液相冷媒が流れ出ることを防ぐことができる。
 (第3実施形態)
 上記第2実施形態では、2つの冷却器14を車両進行方向に並べた例について説明したが、これに代えて、3つの冷却器14を車両進行方向に並べた本第3実施形態について図18A、図18B、図19A、図19Bを参照して説明する。3つの冷却器14のち2つの冷却器において進行方向前側に位置する冷却器は第1冷却器に対応し進行方向前側に位置する冷却器は第2冷却器に対応する。第1冷却器に対応する冷却器14の入口14aが第1冷媒入口に対応し、第2冷却器に対応する冷却器14の入口14aが第2冷媒入口に対応する。
 本実施形態と上記第2実施形態とは、冷却器14を用いて二次電池12a、12bを冷却する電池冷却構造が相違している。このため、以下、電池冷却ユニット10のうち電池冷却構造について説明し、その他の構成の説明を省略する。
 本実施形態の電池冷却ユニット10は、電池冷却構造として、3つの冷却器14および3対の二次電池12a、12bを備える。
 3つの冷却器14は、それぞれ、車両進行方向に並べられている。3つの冷却器14は、上記第1実施形態の冷却器14と同様に構成されている。
 3つの冷却器14は、それぞれ、蒸発器30a~30mの積層方向が車両進行方向に一致するように配置されている。つまり、冷却器14M、14Uは、それぞれ、冷媒供給流路70が車両進行方向に延びることになる。
 以下、説明の便宜上、3つの冷却器14のうち車両進行方向前側に位置する冷却器を冷却器14Mとし、2つの冷却器14のうち車両進行方向後側に位置する冷却器を冷却器14Uとし、冷却器14M、14Uの間に配置されている冷却器を冷却器14Nとする。
 冷却器14M、14N、14Uは、それぞれの入口14aが車両進行方向前側に設けられている。冷却器14M、14N、14Uは、それぞれの出口14cが車両進行方向後側に設けられている。
 冷媒出口14cは、冷却器14M、14N、14Uのそれぞれの冷媒供給流路70に連通している。
 冷却器14Mの出口14cと冷却器14Nの入口14aとは、冷媒配管81によって接続されている。冷媒配管81は、冷却器14Mの出口14cからの液相冷媒を冷却器14Nの入口14aに導く冷媒流路を構成する。
 冷却器14Nの出口14cと冷却器14Uの入口14aとは、冷媒配管82によって接続されている。冷媒配管82は、冷却器14Nの出口14cからの液相冷媒を冷却器14Uの入口14aに導く冷媒流路を構成する。
 冷却器14Mは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Mを挟んで車両幅方向に並べられている。冷却器14Mの入口14aと冷却器14Nの入口14aとの間は、冷却器14Mの冷媒供給流路70を迂回してバイパス配管83によって接続されている。
 バイパス配管83は、凝縮器16からの液相冷媒を冷却器14Mの冷媒供給流路70を迂回して冷却器14Nの入口14aに導く冷媒流路を構成する。
 バイパス配管83には、開閉弁90が設けられている。開閉弁90は、車両(すなわち、冷却器14M、14N、14U)の傾きに応じて、バイパス配管83の冷媒流路を開閉する。
 冷却器14Nは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Nを挟んで車両幅方向に並べられている。冷却器14Nの入口14aと冷却器14Uの入口14aとの間は、冷却器14Nの冷媒供給流路70を迂回してバイパス配管84によって接続されている。
 バイパス配管84は、凝縮器16からバイパス配管83を通して流入した液相冷媒を冷却器14Nの冷媒供給流路70を迂回して冷却器14Uの入口14aに導く冷媒流路を構成する。
 バイパス配管84には、開閉弁91が設けられている。開閉弁91は、車両(すなわち、冷却器14M、14N、14U)の傾きに応じて、バイパス配管84の冷媒流路を開閉する。
 本実施形態の開閉弁90、91は、それぞれ、図20に示すように、弁ケース92と、弁ケース92内に収納されている弁体93とを備える。
 弁ケース92内には、凝縮器16の冷媒出口および冷却器14N(或いは、冷却器14U)の入口14aの間の冷媒流路を構成する流路開口部92a、92bが形成されている。
 流路開口部92aは、流路開口部92bに対して、車両進行方向前側に配置されている。弁体93は、球状に形成されて、車両の傾きに応じて流路開口部92a、92bのうち一方を閉じる。このことにより、開閉弁90、91は、車両の傾きに応じて、凝縮器16の冷媒出口および冷却器14N(或いは、冷却器14U)の入口14aの間の冷媒流路を開閉する。
 次に、本実施形態の電池冷却ユニット10の作動について説明する。
 まず、車両の車両進行方向や車両幅方向が水平方向に一致して、冷却器14M、14N、14Uが基準姿勢になっているときには、開閉弁90、91において、流路開口部92a、92bの間に弁体93が位置する。このため、流路開口部92a、92bが弁体93によって開口されている。よって、開閉弁90、91はそれぞれ開弁状態となる(図18A、図19A参照)。
 この場合、凝縮器16からの液相冷媒のうち一部は、冷却器14Mの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Mの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 凝縮器16からの液相冷媒のうち冷却器14Mに流入された一部の液相冷媒以外の残りの液相冷媒は、バイパス配管83および開閉弁90を通過する。この通過した液相冷媒のうち一部は、冷却器14Nの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Nの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 バイパス配管83および開閉弁90を通過した液相冷媒のうち冷却器14Nに流れた液相冷媒以外の残りの液相冷媒は、バイパス配管84および開閉弁91を通過して冷却器14Uに流れる。このため、冷却器14Uの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 このため、冷却器14M、14N、14Uのそれぞれの蒸発器30a~30nは、上記第1実施形態と同様に作動する。このため、冷却器14M、14N、14Uによって3対の二次電池12a、12bを冷却することができる。
 また、車両が上坂を登っているときなどで、車両進行方向が水平方向に対して傾いているとき、冷却器14M、14N、14Uが基準姿勢に対して傾く。この場合、開閉弁90、91において、流路開口部92a、92bのうち流路開口部が弁体93によって閉じられる。このため、開閉弁90、91はそれぞれ閉弁状態となる(図18B、図19B参照)。
 この場合、凝縮器16からの液相冷媒は、冷却器14Mの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Mの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 冷却器14Mの冷媒供給流路70を通過した液相冷媒は、冷媒配管81を通して冷却器14Nの入口14aに流れる。このため、液相冷媒は、冷却器14Nの冷媒供給流路70に流れる。このため、冷却器14Nの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 冷却器14Nの冷媒供給流路70を通過した液相冷媒は、冷媒配管82を通して冷却器14Uの入口14aに流れる。このため、液相冷媒は、冷却器14Uの冷媒供給流路70に流れる。このため、冷却器14Uの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 このため、冷却器14M、14N、14Uのそれぞれの蒸発器30a~30nは、上記第1実施形態と同様に作動する。このため、冷却器14M、14N、14Uによって3対の二次電池12a、12bを冷却することができる。
 以上説明した本実施形態によれば、冷却器14M、14N、14Uが基準姿勢になっているときには、開閉弁90、91はそれぞれ開弁状態となる。このため、往路配管18に対して冷却器14M、14N、14Uの冷媒供給流路70が並列に接続される。したがって、凝縮器16から多くの液相冷媒を冷却器14M、14N、14Uに供給することができる。
 ここで、冷却器14M、14N、14Uが基準姿勢に対して傾いたとき、冷却器14M、14N、14Uのうち最も下側に位置する冷却器に多くの液相冷媒が流れる。このため、冷却器14M、14N、14Uへ供給される液相冷媒の冷媒量に偏りが生じる。したがって、冷却器14M、14N、14Uにおいて液相冷媒が不足したドライ部が生じる恐れがある。
 そこで、本実施形態では、冷却器14M、14N、14Uが基準姿勢に対して傾いたとき、開閉弁90、91が閉弁状態となる(図20(b)参照)。このため、往路配管18に対して冷却器14M、14N、14Uの冷媒供給流路70が直列に接続される。したがって、凝縮器16から冷却器14M、14N、14Uに供給される液相冷媒の供給量の偏りを小さくすることができる。このため、冷却器14M、14N、14Uにおいて液相冷媒が不足したドライ部が発生し難くなる。
 なお、冷却器14M、14N、14Uが基準姿勢に対して傾いたとき、往路配管18に対して冷却器14M、14N、14Uの冷媒供給流路70が直列に接続される。このため、冷却器14M、14N、14Uの冷媒供給流路70が並列に接続される場合に比べて、凝縮器16から冷却器14M、14N、14Uに供給される液相冷媒の供給量が減る。
 そこで、本実施形態において、後述する第5実施形態の電子制御装置200の冷媒制御処理を実施して、凝縮器16の凝縮能力を増大させて、凝縮器16から冷却器14M、14N、14Uに供給される液相冷媒の供給量の減少を補填してもよい。
 (第4実施形態)
 上記第3実施形態では、3つの冷却器14を用いて電池冷却ユニット10を構成した例について説明したが、これに代えて、4つの冷却器14を用いて電池冷却ユニット10を構成した本第4実施形態について図20を参照して説明する。
 本実施形態と上記第3実施形態とは、冷却器14を用いて二次電池12a、12bを冷却する電池冷却構造が相違している。このため、以下、電池冷却ユニット10のうち電池冷却構造について説明し、その他の構成の説明を省略する。
 本実施形態の電池冷却ユニット10は、電池冷却構造として、4つの冷却器14および4対の二次電池12a、12bを備える。
 4つの冷却器14は、それぞれ、上記第1実施形態の冷却器14と同様に構成されている。4つの冷却器14は、車両進行方向に並べられている。以下、説明の便宜上、4つの冷却器14のうち最も車両進行方向前側に位置する冷却器を冷却器14Mとし、4つの冷却器14のうち最も車両進行方向後側に位置する冷却器を冷却器14Uとする。
 冷却器14M、14Uは、それぞれ、蒸発器30a~30mの積層方向が車両幅方向に一致するように配置されている。
 つまり、冷却器14M、14Uは、それぞれ、冷媒供給流路70が車両幅方向(すなわち、車両進行方向に交差する方向)に延びることになる。
 4つの冷却器14のうち冷却器14M、14Uの間に配置されている冷却器を冷却器14Nとし、4つの冷却器14のうち冷却器14N、14Uの間に配置されている冷却器を冷却器14Qとする。
 冷却器14M、14Qは、それぞれの入口14aが冷媒供給流路70の車両幅方向一方側に設けられている。冷却器14M、14Qは、それぞれの出口14cが冷媒供給流路70の車両幅方向他方側に設けられている。
 冷却器14N、14Uは、それぞれの入口14aが冷媒供給流路70の車両幅方向他方側に設けられている。冷却器14M、14Qは、それぞれの出入口14dが冷媒供給流路70の車両幅方向一方側に設けられている。出入口14dは、冷媒供給流路70の冷媒入口と冷媒出口とを兼ねた出入口である。
 冷却器14Mの出口14cと冷却器14Nの入口14aとは、連通流路形成部としての冷媒配管100によって接続されている。冷媒配管100は、冷却器14Mの出口14cからの液相冷媒を冷却器14Nの入口14aに導く冷媒流路を構成する。
 冷却器14Mは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Mを挟んで車両進行方向に並べられている。
 冷却器14Mの入口14aと冷却器14Nの出入口14dとは、バイパス流路形成部としてのバイパス配管101によって冷却器14M、14Nをバイパスして接続されている。バイパス配管101は、凝縮器16からの液相冷媒を冷却器14M、14Nをバイパスして冷却器14Nの出入口14dに供給する冷媒流路を構成する。バイパス配管101には、バイパス配管101の冷媒流路を開閉する開閉弁90が設けられている。
 冷却器14Nは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Nを挟んで車両進行方向に並べられている。
 冷却器14Nの出入口14dと冷却器14Qの入口14aとは、連通流路形成部としての冷媒配管102によって接続されている。冷媒配管102は、バイパス配管101や冷却器14Nの出入口14dからの液相冷媒を冷却器14Qの入口14aに導く冷媒流路を構成する。
 冷却器14Qは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Qを挟んで車両進行方向に並べられている。
 冷却器14Qの出口14cと冷却器14Uの入口14aとは、連通流路形成部としての冷媒配管103によって接続されている。冷媒配管103は、冷却器14Qの出口14cからの液相冷媒を冷却器14Uの入口14aに導く冷媒流路を構成する。
 冷却器14Qの入口14aと冷却器14Uの出入口14dとは、バイパス流路形成部としてのバイパス配管104によって接続されている。バイパス配管104は、冷媒配管102からの液相冷媒を冷却器14Q、14Uをバイパスして冷却器14Nの出入口14dに導く冷媒流路を構成する。
 バイパス配管104には、バイパス配管104の冷媒流路を開閉する開閉弁91が設けられている。
 冷却器14Uは、1対の二次電池12a、12bの間に配置されている。1対の二次電池12a、12bは冷却器14Uを挟んで車両進行方向に並べられている。
 本実施形態の開閉弁90、91は、上記第3実施形態の開閉弁90、91と同様に構成されている。
 次に、本実施形態の電池冷却ユニット10の作動について説明する。
 まず、車両の車両進行方向や車両幅方向が水平方向に一致して、冷却器14M、14N、14Q、14Uが基準姿勢になっているときには、開閉弁90、91がそれぞれ開弁状態となる(図20(a)参照)。
 この場合、凝縮器16からの液相冷媒のうち一部は、冷却器14Mの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Mの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 凝縮器16からの液相冷媒のうち冷却器14Mに流入された一部の液相冷媒以外の液相冷媒は、バイパス配管101および開閉弁90を通過する。この通過した液相冷媒のうち一部は、冷却器14Nの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Nの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 バイパス配管83および開閉弁90を通過した液相冷媒のうち冷却器14Nに流れた液相冷媒以外の残りの液相冷媒は、冷媒配管102を通過する。冷媒配管102を通過した液相冷媒のうち一部は、冷却器14Qの入口14aに流れる。このため、冷却器14Qの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 冷媒配管102を通過した液相冷媒のうち冷却器14Qに流れた一部の冷媒以外の残りの液相冷媒は、冷却器14Uの出入口14dに流れる。このため、冷却器14Uの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 このため、冷却器14M、14N、14Q、14Uのそれぞれの蒸発器30a~30nは、上記第1実施形態と同様に作動する。このため、冷却器14M、14N、14Q、14Uによって4対の二次電池12a、12bを冷却することができる。
 また、車両が上坂を登っているときなどで、車両進行方向が水平方向に対して傾いているとき、冷却器14M、14N、14Q、14Uが基準姿勢に対して傾く。この場合、開閉弁90、91はそれぞれ閉弁状態となる。
 この場合、凝縮器16からの液相冷媒は、冷却器14Mの入口14aを通して冷媒供給流路70に流れる。このため、冷却器14Mの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 冷却器14Mの冷媒供給流路70を通過した液相冷媒は、冷媒配管100を通して冷却器14Nの入口14aに流れる。このため、液相冷媒は、冷却器14Nの冷媒供給流路70に流れる。このため、冷却器14Nの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 冷却器14Nの冷媒供給流路70を通過した液相冷媒は、冷媒配管102を通して冷却器14Qの入口14aに流れる。このため、液相冷媒は、冷却器14Qの冷媒供給流路70に流れる。このため、冷却器14Qの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 その後、冷却器14Qの冷媒供給流路70を通過した液相冷媒は、冷媒配管103を通して冷却器14Uの入口14aに流れる。このため、液相冷媒は、冷却器14Uの冷媒供給流路70に流れる。このため、冷却器14Uの蒸発器30a~30nのそれぞれの貯液部63aに順次に液相冷媒が供給される。
 このため、冷却器14M、14N、14Q、14Uのそれぞれの蒸発器30a~30nは、上記第1実施形態と同様に作動する。このため、冷却器14M、14N、14Q、14Uによって3対の二次電池12a、12bを冷却することができる。
 以上説明した本実施形態によれば、冷却器14M、14N、14Q、14Uが基準姿勢になっているときには、開閉弁90、91はそれぞれ開弁状態となる。このため、往路配管18に対して冷却器14M、14N、14Uの冷媒供給流路70が並列に接続される。
 冷却器14M、14N、14Uが基準姿勢に対して傾いたとき、開閉弁90、91が閉弁状態となる。このため、往路配管18に対して冷却器14M、14N、14Uの冷媒供給流路70が直列に接続される。
 したがって、上記第3実施形態と同様に、凝縮器16から冷却器14M、14N、14Uに供給される液相冷媒の供給量の偏りを小さくすることができる。このため、冷却器14M、14N、14Uにおいて液相冷媒が不足したドライ部が発生し難くなる。
 (第5実施形態)
 本第5実施形態では、上記第1実施形態の電池冷却ユニット10において、車両の傾き等に応じて、凝縮器16から冷却器14への液相冷媒の供給量を増加させる制御を実施させる例について説明する。
 図21に本実施形態の電池冷却ユニット10の全体構成を示す。
 本実施形態の電池冷却ユニット10は、上記第1実施形態の電池冷却ユニット10に電子制御装置200、電動ファン215、電流センサ213、および傾斜センサ214が追加されたものである。
 電子制御装置200は、マイクロコンピュータ、メモリ等から構成され、メモリに予め記憶されたコンピュータプログラムにしたがって、冷媒制御処理を実行する。電子制御装置200は、冷媒制御処理の実行に伴って、電流センサ213の検出値、および傾斜センサ214の検出値に応じて、電動ファン215を制御する。メモリは、非遷移的実体的記憶媒体である。
 電流センサ213は、二次電池12a、12bからインバータ回路(すなわち、電動モータ)に流れる電流を検出する。傾斜センサ214は、水平方向に対する車両幅方向の傾き角度や、水平方向に対する車両進行方向の傾き角度を検出する。電動ファン215は、凝縮器16を通過する受熱流体としての空気流の流れを発生させる。
 次に、本実施形態の電子制御装置200における冷媒制御処理について説明する。
 電子制御装置200は、図22のフローチャートにしたがって、冷媒制御処理を実行する。電子制御装置200は、冷媒制御処理を繰り返し実行する。
 まず、電子制御装置200は、ステップ100(すなわち、判定部)において、傾斜センサ214の検出値に応じて、車両が傾いているか否かを判定する。車両幅方向が水平方向に対して傾いているとき、或いは、車両進行方向が水平方向に対して傾いているとき、冷却器14が基準姿勢に対して傾いているとして、ステップ100においてYESと判定する。
 次に、電子制御装置200は、ステップ110において、電流センサ213の検出値に応じて、二次電池12a、12bが発熱しているか否かを判定する。
 二次電池12a、12bからインバータ回路に流れる電流を閾値以上であるとき、電子制御装置200は、二次電池12a、12bが発熱しているとしてステップ110においてYESと判定する。
 この場合、電子制御装置200は、ステップ120において、冷媒増加部として、電動ファン215を制御して凝縮器16を通過する空気流の風量を増大させることにより、凝縮器16において気相冷媒を凝縮させる冷却性能を向上させる。
 これに伴い、凝縮器16内の気相冷媒から空気流に放熱される熱量が増加する。したがって、凝縮器16で凝縮される冷媒量が増大する。これにより、凝縮器16から冷却器14に供給される液相冷媒の供給量が増大する。
 その後、ステップ100に戻り、電子制御装置200は、車両が傾斜しているとしてYESと判定すると、ステップ110に移行する。このとき、二次電池12a、12bからインバータ回路に流れる電流を閾値未満であるとき、二次電池12a、12bが発熱していないとしてステップ110においてNOと判定する。
 この場合、電子制御装置200は、ステップ130において、電動ファン215を制御して凝縮器16を通過する空気流の風量を減少させる。このため、凝縮器16内の気相冷媒から空気流に放熱される熱量が減少する。したがって、凝縮器16で凝縮される冷媒量が減少する。これに伴い、凝縮器16から冷却器14に供給される液相冷媒の供給量が減少する。
 また、電子制御装置200は、ステップ100において、車両幅方向が水平方向に一致し、かつ車両進行方向が水平方向に一致しているとき、冷却器14が基準姿勢になっているとして、NOと判定する。この場合、ステップ100の傾き判定を繰り返すことになる。
 以上説明した本実施形態によれば、電子制御装置200は、冷却器14が基準姿勢に対して傾いていると判定し、かつ二次電池12a、12bが発熱していると判定したとき、電動ファン215を制御して凝縮器16を通過する空気流の風量を増大させる。
 したがって、凝縮器16から冷却器14に供給される液相冷媒の供給量を増大させることができる。
 ここで、冷媒制御処理を実行しない従来の電池冷却ユニット10においては、冷却器14の蒸発器30a~30mに対して液相冷媒の供給を上流から下流に向かって流し続ければ、蒸発器毎の蒸発流路61a、61bにてドライになる部位は発生し難い。
 しかし、被冷却対象としての二次電池12a、12bの温度が高く、液晶冷媒の供給が少ない場合には、貯液部63aの設定によっては、上流の貯液部63aと下流の貯液部63aの中央部の貯液部63aには液相冷媒が供給されないこともある。
 或いは、上流の蒸発器ばかりが液相冷媒を消費してしまうことで、下流の蒸発器がドライアウトしてしまう場合も想定される。
 これに対し、本実施形態では、車両の傾斜や二次電池(冷却対象の負荷(温度))12a、12bを検知して冷却器14への液相冷媒の供給量を増やすことで、傾斜時には、液相冷媒の供給が増え、下流の蒸発器の液相冷媒の供給不足を回避することができ、下流の蒸発器に高温部を発生させることを避けることができる。
 以上により、二次電池12a、12bから液相冷媒に放熱される放熱量を増大させることができる。これに伴い、二次電池12a、12bを良好に冷却することができる。
 (第6実施形態)
 上記第1実施形態では、冷却器14において蒸発器30a~30mによって冷媒供給流路70と気相冷媒流路71とを構成した例について説明したが、これに代えて、冷却器14において、2つの冷媒配管によって冷媒供給流路70と気相冷媒流路71とを構成した本第6実施形態について図23、図24A、図24B、図24Cを参照して説明する。
 本実施形態と上記第1実施形態とは冷却器14の構造が相違するため、以下、本実施形態の冷却器14について説明し、冷却器14以外の説明を省略する。
 本実施形態の冷却器14は、複数の押し出し配管110、冷媒供給配管70A、および気相冷媒配管71Aを備える。
 複数の押し出し配管110は、それぞれ、車両進行方向に並べられている。複数の押し出し配管110は、複数の細管110aから構成されている複合流路である。複数の細管110aは、それぞれ、車両進行方向に並べられて、かつ天地方向に延出するように形成されている。細管110aは細流路に対応する。
 複数の細管110aのそれぞれは、冷媒供給配管70Aからの液相冷媒と二次電池12aとの間の熱交換により液相冷媒を蒸発させる上記第1実施形態の蒸発流路61aを構成する。
 本実施形態の複数の細管110aのそれぞれの流路断面積は、冷媒供給流路70の流路断面積よりも小さくなっている。
 冷媒供給配管70Aは、凝縮器16からの液相冷媒を複数の押し出し配管110に供給する冷媒供給流路70を構成する。冷媒供給配管70Aは、車両進行方向に延びるように形成されている。冷媒供給配管70Aは、複数の押し出し配管110に対して天地方向下側に配置されている。
 冷媒供給配管70Aには、天地方向上側に開口されて、車両進行方向に並べられている複数の貫通孔72aが設けられている。冷媒供給配管70Aの複数の貫通孔72aには、複数の押し出し配管110のうち対応する押し出し配管110の下側が差し込まれている。
 本実施形態では、複数の細管110aのそれぞれの冷媒入口64aは、冷媒供給流路70のうち天地方向中央よりも下側に配置されている。
 但し、冷媒供給流路70のうち最も天地方向上側の位置を最上部位とし、冷媒供給流路70のうち最も天地方向下側の位置を最下部位とすると、冷媒供給流路70のうち天地方向中央とは、最上部位と最下部位との間の真ん中である。
 気相冷媒配管71Aは、複数の押し出し配管110からの気相冷媒を集めて凝縮器16に流す気相冷媒流路71を構成する。気相冷媒配管71Aは、車両進行方向に延びるように形成されている。気相冷媒配管71Aは、複数の押し出し配管110に対して天地方向上側に配置されている。
 気相冷媒配管71Aには、天地方向下側に開口されて、車両進行方向に並べられている複数の貫通孔72bが設けられている。気相冷媒配管71Aの複数の貫通孔72bには、複数の押し出し配管110のうち対応する押し出し配管110の上側が差し込まれている。
 本実施形態の複数の押し出し配管110のそれぞれには、二次電池12aの複数の電池セル13のうち対応する電池セル13が接触されている。
 次に、本実施形態の冷却器14の作動について説明する。
 まず、冷媒供給配管70Aの冷媒供給流路70には、凝縮器16からの液相冷媒が流れる。そして、押し出し配管110毎の複数の細管110aには、冷媒供給流路70からの液相冷媒が入る。
 二次電池12a、12bが発熱して、二次電池12aから複数の押し出し配管110へ熱が伝わる。
 すると、押し出し配管110毎の複数の細管110a内の液相冷媒が沸騰する。
 このことにより、押し出し配管110毎の複数の細管110a内の液相冷媒が蒸発することになる。このため、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。
 この際に、押し出し配管110の複数の細管110aにおいて、気泡を含む液相冷媒の体積は、熱交換の停止時における気泡を含まない液相冷媒の体積に比べて、大きくなる。このため、複数の細管110a内の液相冷媒の液面が車両停止時の液相冷媒の液面よりも上昇する。
 つまり、複数の細管110a内では、気泡を含む液相冷媒が気泡混合流として上昇する気泡ポンプ効果により、蒸発流路61a、61b内の液相冷媒の液面は、上昇することになる。
 この際、複数の細管110a内内のうち天地方向の上側にまで液相冷媒が供給され、二次電池12a、12bの熱を奪って蒸発して気相冷媒となる。この気相冷媒は、気相冷媒配管71Aを通して凝縮器16に流れる。
 以上説明した本実施形態では、冷却器14は、蒸発器を構成する複数の押し出し配管110を備え、複数の細管110aのそれぞれの入口64aは、冷媒供給流路70のうち天地方向中央よりも下側に配置されている。
 したがって、冷却器14が予め決められた基準姿勢よりも傾いて、凝縮器16から冷却器14への液相冷媒の供給量が少なくなっても、冷媒入口64aが冷媒供給流路70のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒供給流路70よりも上側に液相冷媒の液面を配置させる上で有利となる。
 このため、冷媒供給流路70から液相冷媒を複数の押し出し配管110に安定して供給することができる。これにより、液相冷媒によって二次電池12aを安定して冷却することができる。
 (第7実施形態)
 本第7実施形態では、上記第6実施形態の冷却器14の冷媒供給配管70Aにおいて、押し出し配管110毎に貯液部63aを設けた例について図25A、図25B、図25Cを参照して説明する。
 本実施形態の冷媒供給配管70Aには、天地方向下側に凸となる突起部120が押し出し配管110毎に設けられている。押し出し配管110毎の突起部120は、冷媒供給配管70Aから天地方向下側に凹む貯液部63aを形成している。
 このことにより、冷媒供給配管70Aには、押し出し配管110毎に貯液部63aが形成されていることになる。
 本実施形態の複数の細管110aのそれぞれの冷媒入口64aは、冷媒供給流路70のうち天地方向中央よりも下側において、貯液部63a内に配置されている。このため、凝縮器16から冷却器14への液相冷媒の供給量が少なくなっても、冷媒入口64aが冷媒供給流路70のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒供給流路70よりも上側に液相冷媒の液面を配置させる上でより一層有利となる。
 (第8実施形態)
 上記第7実施形態では、冷媒供給配管70Aのうち天地方向下側の突起部120に貯液部63aを形成した例について説明したが、これに代えて、冷媒供給配管70Aのうち天地方向下側にて堰部130を押し出し配管110毎に設けて貯液部63aを構成した本第8実施形態について図26A、図26B、図26Cを参照して説明する。
 堰部130は、冷媒供給配管70Aのうち天地方向上側に突起するよう形成されている。堰部130は、押し出し配管110毎に押し出し配管110に対して冷媒流れ下流側に配置されている。このため、冷媒供給配管70Aには、複数の堰部130が間隔を開けて冷媒流れ方向に並べられている。
 複数の堰部130のうち隣接する2つの堰部130の間は、冷媒供給流路70から天地方向下側に凹む貯液部63aを構成する。
 本実施形態の複数の細管110aのそれぞれの冷媒入口64aは、冷媒供給流路70のうち天地方向中央よりも下側において、貯液部63a内に配置されている。このため、上記第7実施形態と同様に、冷媒入口64aが冷媒供給流路70のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒供給流路70よりも上側に液相冷媒の液面を配置させる上でより一層有利となる。
 (他の実施形態)
 (1)上記第1~8実施形態では、被冷却対象を二次電池12とした例について説明したが、これに限らず、二次電池12以外の他の各種機器、半導体素子、空気等の気体を被冷却対象としてもよい。
 (2)第1~第8実施形態では、本開示の冷却器を電池冷却ユニット10に適用した例について説明したが、これに限らず、自動車以外の各種の移動体(電車、飛行機、電動バイク等)に本開示の冷却器を適用してもよい。
 また、電池にサーモサイフォンを組み合わせた搬出可能であるポータブル型の冷却機能付き電池に本開示のサーモサイフォンを適用してもよい。
 (3)第1~第8実施形態では、蒸発器30a~30mのそれぞれの背面45において連通開口部68のうち下側を形成する下側縁部68aを、V字状に形成した例について説明したが、これに代えて、背面45の連通開口部68は、どのような形状でもよく、円形でもよく、四角形でもよい。
 (4)第1~第8実施形態では、前後左右の4方向の傾きに対応するように、下面42、仕切壁60a、60b、背面壁69によって蒸発器毎の貯液部63aを形成したが、これに代えて、少なくとも1方向の傾きに対応するのであれば、蒸発器毎の貯液部63aをどのような形状にしてもよい。
 (5)第1~第8実施形態では、貯液部63aのうち天地方向下側に蒸発流路61a(或いは、61b)の入口64a(或いは、64b)を連通した例について説明したが、これに限らず、次のようにしてもよい。
 すなわち、蒸発流路61a、61bの入口64a、64bは、冷媒供給流路70のうち天地方向中央よりも天地方向下側に位置するならば、貯液部63aのうち蒸発流路61a、61bの入口64a、64bが連通する箇所は、何処でもよい。例えば、貯液部63aのうち天地方向中央に蒸発流路61a、61bの入口64a、64bが連通するようにしてもよい。
 (6)上記第5実施形態では、空気流によって凝縮器16内の気相冷媒を冷却した例について説明したが、これに代えて、空気流以外の熱媒体(例えば、水、フロン、二酸化炭素)で凝縮器16内の気相冷媒を冷却してもよい。
 (7)上記第5実施形態では、凝縮器16を通過する風量を増加させて凝縮器16の気相冷媒の冷却性能を向上した例について説明したが、これに代えて、次の(7a)(7b)(7c)ようにしてもよい。(7a)凝縮器16を通過する空気流の温度を低下させて凝縮器16の気相冷媒の冷却性能を向上する。(7b)凝縮器16内の気相冷媒を空気流以外の熱媒体(例えば、水、フロン、二酸化炭素)で冷却する場合には、凝縮器16を通過する熱媒体の流量を増やしたり、凝縮器16を通過する熱媒体の温度を低下させる。(7c)ペルチェ素子等の冷却素子で凝縮器16内の気相冷媒を冷却して凝縮器16の気相冷媒の冷却性能を向上する。
 (8)上記第5実施形態では、ステップ120において、凝縮器16の気相冷媒の冷却性能を向上して凝縮器16から冷却器14への液相冷媒の供給量を増大させた例について説明したが、これに代えて、次の(8a)(8b)ようにしてもよい。(8a)二次電池12a、12bの発熱量を増加させて冷却器14の冷媒の蒸発量を増大させることにより、凝縮器16から冷却器14への液相冷媒の供給量を増大させてもよい。具体的には、二次電池12a、12bからインバータ回路に流す電流を増大させることにより、二次電池12a、12bの発熱量を増加させる。(8b)液相冷媒をヒータやペルチェ素子により加熱することにより、凝縮器16から冷却器14へ供給される液相冷媒の供給量を増加させる。
 (9)上記第5実施形態では、電子制御装置200は、ステップ110において、電流センサ213の検出値に応じて、二次電池12a、12bが発熱しているか否かを判定した例について説明したが、これに代えて、次の(9a)(9b)のようにしてもよい。(9a)電子制御装置200は、二次電池12a、12bの温度を検出する温度センサの検出値に応じて、二次電池12a、12bが発熱しているか否かを判定してもよい。(9b)電子制御装置200は、二次電池12a、12bの温度分布を検出し、この温度分布に応じて、二次電池12a、12bが発熱しているか否かを判定してもよい。
 (10)上記第5実施形態では、電子制御装置200は、ステップ100において、傾斜センサ214の検出値に応じて、冷却器14が傾いているか否かを判定した例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、電子制御装置200は、二次電池12a、12bの温度分布を検出し、この温度分布に応じて、冷却器14が傾いているか否かを判定してもよい。
 (11)上記第1実施形態では、積層熱交換器160および二次電池12aの間に熱伝導材170a、170bを配置した例について説明したが、これに限らず、二次電池12aが電気絶縁性を有するのであれば、積層熱交換器160および二次電池12a、12bの間に熱伝導材170a、170bを配置する必要がない。
 (12)上記第1実施形態では、冷却器14において、蒸発器30a~30mが電池セル121毎に構成されている例について説明したが、これに限らず、ある区間毎に蒸発器30a~30mが形成されていればよく、蒸発器30a~30mがそれぞれ電池セル121毎に構成される必要がない。
 (13)上記第1実施形態では、冷却器14において、蒸発器30a~30mのそれぞれに2つの蒸発流路61a、61bを設けた例について説明したが、これに代えて、蒸発器30a~30mのそれぞれに1つの蒸発流路、或いは3つ以上の蒸発流路を設けてもよい。
 (14)上記第1実施形態では、蒸発器30a~30mといった12個の貯液・蒸発器を設けた例について説明したが、蒸発器の個数は、12個に限定されず、幾つでもよく、1つ、或いは、12以外の複数個であってもよい。
 (15)上記第1~第8実施形態のうち組み合わせ可能である2つ以上の実施形態を組み合わせて電池冷却ユニット10を構成してもよい。例えば、次の(15a)~(15d)のように2つ以上の実施形態を組み合わせて電池冷却ユニット10を構成してもよい。(15a)上記第2~4実施形態のうちいずれか1つの実施形態の電池冷却ユニット10に上記第5実施形態の電子制御装置200の冷媒制御処理を組み合わせて電池冷却ユニット10を構成してもよい。(15b)上記第1~第5実施形態のうちいずれか1つの実施形態において上記第6実施形態の冷却器14を採用して電池冷却ユニット10を構成してもよい。(15c)上記第1~第5実施形態のうちいずれか1つの実施形態において上記第7実施形態の冷却器14を採用して電池冷却ユニット10を構成してもよい。(15d)上記第1~第5実施形態のうちいずれか1つの実施形態において上記第8実施形態の冷却器14を採用して電池冷却ユニット10を構成してもよい。
 (16)上記第1実施形態では、蒸発器30a~30mを車両進行方向に並べた例について説明したが、これに限らず、蒸発器30a~30mを車両進行方向に交差する方向に並べてもよい。
 (17)上記第2実施形態では、冷却器14M、14Uを車両進行方向に並べた例について説明したが、これに限らず、冷却器14M、14Uを車両進行方向に交差する方向に並べてもよい。
 (18)上記第2実施形態では、蒸発器30a~30mを車両幅方向に並べた例について説明したが、これに限らず、蒸発器30a~30mを車両幅方向に交差する方向に並べてもよい。
 (19)上記第3実施形態では、冷却器14M、14N、14Uを車両進行方向に並べた例について説明したが、これに限らず、冷却器14M、14N、14Uを車両進行方向に交差する方向に並べてもよい。
 (20)上記第3実施形態では、蒸発器30a~30mを車両進行方向に並べた例について説明したが、これに限らず、蒸発器30a~30mを車両進行方向に交差する方向に並べてもよい。
 (21)上記第3実施形態では、3つの冷却器を並べた例について説明したが、これに限らず、2つの冷却器、或いは、4つ以上の冷却器を並べてもよい。
 (22)上記第4実施形態では、冷却器14M、14N、14Q、14Uを車両進行方向に並べた例について説明したが、これに限らず、冷却器14M、14N、14Q、14Uを車両進行方向に交差する方向に並べてもよい。
 (23)上記第4実施形態では、蒸発器30a~30mを車両幅方向に並べた例について説明したが、これに限らず、蒸発器30a~30mを車両幅方向に交差する方向に並べてもよい。
 (24)上記第4実施形態では、4つの冷却器を並べた例について説明したが、これに限らず、2つの冷却器、3つの冷却器、或いは、5つ以上の冷却器を並べてもよい。
 (25)上記第3、第4実施形態では、重力により移動する弁体93を利用して開弁、閉弁する開閉弁90、91を用いた例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、電磁弁、或いは電動弁を用いて開閉弁90、91を構成する。車両(すなわち、冷却器)の傾斜を検出する傾斜センサの検出値に応じて、電子制御装置が開閉弁90、91を開弁、閉弁する。
 (26)上記第1、第2、第3、第4実施形態では、冷却器14(14M、14N、14U)で2つの二次電池12a、12bを冷却器毎に冷却した例について説明したが、これに代えて、冷却器14(14M、14N、14U)によって1つの二次電池を冷却器毎に冷却する構成にしてもよい。
 (27)上記第1~第8実施形態では、凝縮器16を冷却器14(14M、14N、14U)に対して車両進行方向前側に配置した例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、車両が傾斜しているときに、凝縮器16が冷却器14(14M、14N、14U)よりも天地方向上側に配置されるのであれば、凝縮器16を冷却器14(14M、14N、14U)に対して車両進行方向後側に配置してもよい。
 (28)上記第1~第5実施形態では、蒸発器30a~30mを直列に接続した例について説明したが、これに限らず、蒸発器30a~30mのうち一部の蒸発器を並列に接続してもよい。
 ここで、並列に接続した各蒸発器の個数が少なければ、並列に接続した各蒸発器への液相冷媒の分配を良好に行うことができるため、二次電池12a、12bに生じる温度分布を良好になる。
 (29)上記第5実施形態では、電子制御装置200は、車両幅方向が水平方向に一致し、かつ車両進行方向が水平方向に一致しているとき、冷却器14が基準姿勢になっていると判定した例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、電子制御装置200は、水平方向と車両幅方向との間に形成される角度が第1閾値未満であり、かつ水平方向と車両進行方向との間に形成される角度が第2閾値未満であるとき、冷却器14が基準姿勢になっていると判定する。
 電子制御装置200は、水平方向と車両幅方向との間に形成される角度が第1閾値以上であるとき、および水平方向と車両進行方向との間に形成される角度が第2閾値以上であるときのうちいずれか一方のときに、冷却器14が基準姿勢に対して傾いていると判定する。
 このように、傾斜角度の判定に若干の誤差を考慮して、冷却器14が基準姿勢になっているか否かを判定してもよい。
 上記第3、4実施形態において、電子制御装置は、冷却器の傾斜を検出する傾斜センサの検出値に基づき、傾斜角度に若干の誤差を考慮して、冷却器14が基準姿勢になっているか否かを判定する。
 電子制御装置は、冷却器14が基準姿勢になっていると判定したとき、開閉弁90、91を開弁する。電子制御装置は、冷却器14が基準姿勢から傾いていると判定したとき、開閉弁90、91を閉弁する。
 (30)上記第1~第8実施形態では、冷却器14(14M、14N、14Q、14U)において車両進行方向前側から車両進行方向後側に液相冷媒を流すようにしたが、これに限らず、冷却器14(14M、14N、14Q、14U)において車両進行方向後側から車両進行方向前側に液相冷媒を流すようにしてもよい。
 (31)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (まとめ)
 上記第1~第8実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、気相冷媒を凝縮して液相冷媒を排出する凝縮器とともに、冷媒を循環させるサーモサイフォンを構成する冷却器であって、凝縮器からの液相冷媒が流れる供給流路を形成する第1流路形成部と、供給流路に連通する冷媒入口を有し、冷媒入口から上側に延びるように形成され、供給流路から冷媒入口を通して流入した液相冷媒と被冷却対象との間の熱交換により液相冷媒を蒸発させて気相冷媒を発生させる蒸発流路を形成する第2流路形成部と、蒸発流路からの気相冷媒が凝縮器に向けて流れる排出流路を形成する第3流路形成部とを、備え、冷媒入口は、供給流路のうち天地方向の中央部に対して下側に位置する。
 第2の観点によれば、冷媒入口は、供給流路に対して下側に配置されている。
 したがって、凝縮器から冷却器への液相冷媒の供給量が少なくなっても、冷媒入口が供給流路のうち天地方向の中央部に対して上側に位置する場合に比べて、冷媒入口よりも上側に液相冷媒の液面を配置させる上でより一層有利となる。
 第3の観点によれば、供給流路から下側に凹むように形成されて、供給流路からの液相冷媒を貯める1つ以上の貯液部を備える。
 したがって、蒸発流路への液相冷媒の供給を安定化させることできる。
 第4の観点によれば、気相冷媒を凝縮して液相冷媒を排出する凝縮器とともに、冷媒を循環させるサーモサイフォンを構成する冷却器であって、凝縮器からの液相冷媒が流れる供給流路を形成する第1流路形成部と、供給流路からの液相冷媒が入る冷媒入口を有し、冷媒入口を通して流入した液相冷媒と被冷却対象との間の熱交換により液相冷媒を蒸発して気相冷媒を凝縮器に向けて流通させる蒸発流路を形成する第2流路形成部と、蒸発流路からの気相冷媒が凝縮器に向けて流れる排出流路を形成する第3流路形成部とを、備え、
 供給流路から下側に凹むように形成されて、供給流路からの液相冷媒を貯める1つ以上の貯液部と、を備え、冷媒入口は、貯液部に連通し、かつ貯液部内の液相冷媒の液面と同一高さ、或いは液面よりも下側に位置する。
 第5の観点によれば、供給流路の冷媒流れ方向に並べられている複数の蒸発流路を備え、1つ以上の貯液部は、供給流路の冷媒流れ方向に並べられている複数の貯液部であり、複数の貯液部は、それぞれ、複数の蒸発流路のうち対応する蒸発流路の冷媒入口に連通している。
 第6の観点によれば、蒸発流路の流路断面積は、供給流路の流路断面積よりも小さくなっている。
 したがって、蒸発流路内の液相冷媒の液面を上昇させることができるので、蒸発流路への液相冷媒の供給を増やすことができる。
 第7の観点によれば、蒸発流路は、供給流路の流路断面積よりも小さい流路断面積を有する複数の細流路を有している。
 第8の観点によれば、移動体に適用されて、気相冷媒を凝縮して液相冷媒を排出する凝縮器と、凝縮器からの液相冷媒を蒸発させる複数の冷却器と、を備え、凝縮器と複数の冷却器との間で冷媒を循環させるサーモサイフォンであって、
 複数の冷却器は、凝縮器からの液相冷媒が流れる供給流路を形成する第1流路形成部と、
 供給流路からの液相冷媒と被冷却対象との間の熱交換により液相冷媒を蒸発させて気相冷媒を発生させる蒸発流路を形成する第2流路形成部と、蒸発流路からの気相冷媒が凝縮器に向けて流れる排出流路を形成する第3流路形成部と、をそれぞれ有し、複数の冷却器は、移動体の進行方向に並べられて、かつそれぞれの供給流路が直列に接続されることにより、複数の冷却器のそれぞれの供給流路には液相冷媒が順次供給される。
 したがって、移動体の進行方向が水平方向に対して傾いているとき、複数の冷却器において進行方向一方側の冷却器が進行方向他方側の冷却器よりも高い位置になる。よって、複数の冷却器のそれぞれの供給流路に液相冷媒を良好に供給することができる。
 第9の観点によれば、複数の冷却器のそれぞれの供給流路は、移動体の進行方向に延びるように形成されている。
 第10の観点によれば、バイパス流路を形成するバイパス流路形成部と、バイパス流路を開閉する開閉弁と、を備え、複数の冷却器のうち2つの冷却器において進行方向前側に位置する冷却器を第1冷却器とし、2つの冷却器のうち第1冷却器に対して進行方向後側に位置する冷却器を第2冷却器とし、第1冷却器は、その供給流路へ液相冷媒を流入させる第1冷媒入口を有し、第2冷却器は、その供給流路へ液相冷媒を流入させる第2冷媒入口を有し、バイパス流路は、第1冷却器の第1冷媒入口と第2冷却器の第2冷媒入口との間を第1冷却器をバイパスして連通し、複数の冷却器が予め決められた姿勢になった場合には、開閉弁がバイパス流路を開け、凝縮器からの液相冷媒のうち一部の液相冷媒が第1冷媒入口を通して第1冷却器の供給流路に供給され、かつ凝縮器からの液相冷媒のうち一部の液相冷媒以外の液相冷媒のうち一部の液相冷媒がバイパス流路、開閉弁、および第2冷媒入口を通して第2冷却器の供給流路に供給され、複数の冷却器がそれぞれ予め決められた姿勢に対して傾いた場合には、開閉弁がバイパス流路を閉じ、凝縮器からの液相冷媒が、第1冷媒入口、第1冷却器の供給流路、第2冷媒入口、および第2冷却器の供給流路の順に供給される。
 第11の観点によれば、複数の冷却器のそれぞれの供給流路は、移動体の進行方向に対する交差方向に延びるように形成されている。
 第12の観点によれば、バイパス流路を形成するバイパス流路形成部と、連通流路を形成する連通流路形成部と、バイパス流路を開閉する開閉弁と、を備え、
 複数の冷却器のうち2つの冷却器において進行方向前側に位置する冷却器を第1冷却器とし、2つの冷却器のうち第1冷却器に対して進行方向後側に位置する冷却器を第2冷却器とし、第1冷却器は、その供給流路へ液相冷媒を流入させる冷媒入口と、当該供給流路から液相冷媒を排出させる冷媒出口とを有し、第2冷却器は、その供給流路へ液相冷媒を流入させる第1冷媒入口および第2冷媒入口を有し、連通流路は、第1冷却器の冷媒出口と第2冷却器の第1冷媒入口との間を連通し、バイパス流路は、第1冷却器の冷媒入口と第2冷却器の第2冷媒入口との間を第1冷却器および第2冷却器をバイパスして連通し、
 複数の冷却器が予め決められた姿勢になった場合には、開閉弁がバイパス流路を開け、凝縮器からの液相冷媒のうち一部の液相冷媒が冷媒入口を通して第1冷却器の供給流路に供給され、かつ凝縮器からの液相冷媒のうち一部の液相冷媒以外の液相冷媒のうち一部の液相冷媒がバイパス流路、開閉弁を通して第2冷却器の供給流路に供給され、
 複数の冷却器がそれぞれ予め決められた姿勢に対して傾いた場合には、開閉弁がバイパス流路を閉じ、凝縮器からの液相冷媒が、冷媒入口、第1冷却器の供給流路、連通流路、および第2冷却器の供給流路の順に供給される。
 第13の観点によれば、複数の冷却器のそれぞれの蒸発流路は、供給流路に連通する冷媒入口を有し、冷媒入口は、供給流路のうち天地方向の中央部に対して下側に位置する。
 第14の観点によれば、冷媒入口は、供給流路に対して下側に配置されている。
 第15の観点によれば、複数の冷却器のそれぞれの蒸発流路は、供給流路に連通する冷媒入口を有し、複数の冷却器は、それぞれ、供給流路から下側に凹むように形成されて、供給流路からの液相冷媒を貯める貯液部を備え、複数の冷却器のそれぞれの蒸発流路の冷媒入口は、複数の冷却器のそれぞれの貯液部に連通し、かつ複数の冷却器のそれぞれの貯液部内の液相冷媒の液面と同一高さ、或いは液面よりも下側に位置する。
 第16の観点によれば、複数の冷却器が予め決められた姿勢に対して傾いているか否か判定する判定部と、複数の冷却器が予め決められた姿勢に対して傾いていると判定部が判定したときには、冷却器が予め決められた姿勢に対して傾いていないと判定部が判定したときに比べて、凝縮器から冷却器に供給する液相冷媒の冷媒量を増加させる冷媒増加部と、を備せる。
 第17の観点によれば、複数の冷却器のそれぞれの蒸発流路の流路断面積は、供給流路の流路断面積よりも小さくなっている。
 第18の観点によれば、複数の冷却器のそれぞれの蒸発流路は、供給流路の流路断面積よりも小さい流路断面積を有する複数の細流路を有している。
 第19の観点によれば、気相冷媒を凝縮して液相冷媒を排出する凝縮器と、
 凝縮器から流入した液相冷媒と被冷却対象との間の熱交換により液相冷媒を蒸発して気相冷媒を凝縮器に排出する冷却器と、を備え、凝縮器および冷却器の間で冷媒を循環させるサーモサイフォンであって、
 冷却器が予め決められた姿勢に対して傾いているか否か判定する判定部と、
 冷却器が予め決められた姿勢に対して傾いていると判定部が判定したときには、冷却器が予め決められた姿勢に対して傾いていないと判定部が判定したときに比べて、凝縮器から冷却器に供給する液相冷媒の冷媒量を増加させる冷媒増加部と、を備せる。
 第20の観点によれば、冷却器は、凝縮器からの液相冷媒が流れる供給流路を形成する第1流路形成部と、供給流路に連通する冷媒入口を有し、供給流路から冷媒入口を通して流入した液相冷媒と被冷却対象との間の熱交換により液相冷媒を蒸発させて気相冷媒を発生させる蒸発流路を形成する第2流路形成部と、蒸発流路からの気相冷媒が凝縮器に向けて流れる排出流路を形成する第3流路形成部とを、備える。
 第21の観点によれば、冷媒入口は、供給流路のうち天地方向の中央部に対して下側に位置する。
 第22の観点によれば、冷媒入口は、供給流路に対して下側に位置する。
 第23の観点によれば、冷却器は、供給流路から下側に凹むように形成されて、供給流路からの液相冷媒を貯める1つ以上の貯液部(63a)を備える。
 第24の観点によれば、冷媒入口は、貯液部に連通し、かつ貯液部内の液相冷媒の液面と同一高さ、或いは液面よりも下側に位置する。
 第25の観点によれば、1つ以上の貯液部は、供給流路の冷媒流れ方向に並べられている複数の貯液部であり、冷却器は、供給流路の冷媒流れ方向に並べられている複数の蒸発流路を形成し、複数の貯液部は、それぞれ、複数の蒸発流路のうち対応する蒸発流路の冷媒入口に連通している。
 第26の観点によれば、蒸発流路の流路断面積は、供給流路の流路断面積よりも小さくなっている。
 第27の観点によれば、蒸発流路は、供給流路の流路断面積よりも小さい流路断面積を有する複数の細流路を有している。

Claims (27)

  1.  気相冷媒を凝縮して液相冷媒を排出する凝縮器(16)とともに、冷媒を循環させるサーモサイフォンを構成する冷却器であって、
     前記凝縮器からの前記液相冷媒が流れる供給流路(70)を形成する第1流路形成部(60a、60b、60c)と、
     前記供給流路に連通する冷媒入口(64a、64b)を有し、前記冷媒入口から上側に延びるように形成され、前記供給流路から冷媒入口を通して流入した前記液相冷媒と被冷却対象(12a、12b)との間の熱交換により前記液相冷媒を蒸発させて前記気相冷媒を発生させる蒸発流路(61a、61b)を形成する第2流路形成部(60a、43、60b、44)と、
     前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路(71)を形成する第3流路形成部(60a、60b、45)とを、備え、
     前記冷媒入口は、前記供給流路のうち天地方向の中央部に対して下側に位置する冷却器。
  2.  前記冷媒入口は、前記供給流路に対して下側に配置されている請求項1に記載の冷却器。
  3.  前記供給流路から下側に凹むように形成されて、前記供給流路からの液相冷媒を貯める1つ以上の貯液部(63a)を備える請求項1または2に記載の冷却器。
  4.  気相冷媒を凝縮して液相冷媒を排出する凝縮器(16)とともに、冷媒を循環させるサーモサイフォンを構成する冷却器であって、
     前記凝縮器からの前記液相冷媒が流れる供給流路(70)を形成する第1流路形成部(60a、60b、60c)と、
     前記供給流路からの液相冷媒が入る冷媒入口(64a、64b)を有し、前記冷媒入口を通して流入した前記液相冷媒と被冷却対象(12a、12b)との間の熱交換により前記液相冷媒を蒸発して前記気相冷媒を前記凝縮器に向けて流通させる蒸発流路(61a、61b)を形成する第2流路形成部(60a、43、60b、44)と、
     前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路(71)を形成する第3流路形成部(60a、60b、45)とを、備え、
     前記供給流路から下側に凹むように形成されて、前記供給流路からの液相冷媒を貯める1つ以上の貯液部(63a)と、を備え、
     前記冷媒入口は、前記貯液部に連通し、かつ前記貯液部内の液相冷媒の液面と同一高さ、或いは前記液面よりも下側に位置する冷却器。
  5.  前記供給流路の冷媒流れ方向に並べられている複数の前記蒸発流路を備え、
     前記1つ以上の貯液部は、前記供給流路の冷媒流れ方向に並べられている複数の貯液部であり、
     前記複数の貯液部は、それぞれ、前記複数の蒸発流路のうち対応する蒸発流路の冷媒入口に連通している請求項1ないし4のいずれか1つに記載の冷却器。
  6.  前記蒸発流路の流路断面積は、前記供給流路の流路断面積よりも小さくなっている請求項1ないし5のいずれか1つに記載の冷却器。
  7.  前記蒸発流路は、前記供給流路の流路断面積よりも小さい流路断面積を有する複数の細流路(110a)を有している請求項1ないし6のいずれか1つに記載の冷却器。
  8.  移動体に適用されて、
     気相冷媒を凝縮して液相冷媒を排出する凝縮器(16)と、
     前記凝縮器からの液相冷媒を蒸発させる複数の冷却器(14M、14N、14U)と、を備え、前記凝縮器と前記複数の冷却器との間で冷媒を循環させるサーモサイフォンであって、
     前記複数の冷却器は、
     前記凝縮器からの前記液相冷媒が流れる供給流路(70)を形成する第1流路形成部(60a、60b、60c)と、
     前記供給流路からの前記液相冷媒と被冷却対象(12a、12b)との間の熱交換により前記液相冷媒を蒸発させて前記気相冷媒を発生させる蒸発流路(61a、61b)を形成する第2流路形成部(60a、43、60b、44)と、
     前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路(71)を形成する第3流路形成部(60a、60b、45)と、をそれぞれを有し、
     前記複数の冷却器は、前記移動体の進行方向に並べられて、かつ前記それぞれの前記供給流路が直列に接続されることにより、前記複数の冷却器のそれぞれの前記供給流路には前記液相冷媒が順次供給されるサーモサイフォン。
  9.  前記複数の冷却器のそれぞれの前記供給流路は、前記移動体の進行方向に延びるように形成されている請求項8に記載のサーモサイフォン。
  10.  バイパス流路を形成するバイパス流路形成部(83、84)と、
     前記バイパス流路を開閉する開閉弁(90、91)と、を備え、
     前記複数の冷却器のうち2つの冷却器において進行方向前側に位置する冷却器を第1冷却器とし、
     前記2つの冷却器のうち前記第1冷却器に対して進行方向後側に位置する冷却器を第2冷却器とし、
     前記第1冷却器は、その前記供給流路へ前記液相冷媒を流入させる第1冷媒入口(14a)を有し、
     前記第2冷却器は、その前記供給流路へ前記液相冷媒を流入させる第2冷媒入口(14a)を有し、
     前記バイパス流路は、前記第1冷却器の前記第1冷媒入口と前記第2冷却器の前記第2冷媒入口との間を前記第1冷却器をバイパスして連通し、
     前記複数の冷却器が予め決められた姿勢になった場合には、前記開閉弁が前記バイパス流路を開け、前記凝縮器からの液相冷媒のうち一部の液相冷媒が前記第1冷媒入口を通して前記第1冷却器の前記供給流路に供給され、かつ前記凝縮器からの液相冷媒のうち前記一部の液相冷媒以外の液相冷媒のうち一部の液相冷媒が前記バイパス流路、前記開閉弁、および前記第2冷媒入口を通して前記第2冷却器の前記供給流路に供給され、
     前記複数の冷却器がそれぞれ予め決められた姿勢に対して傾いた場合には、前記開閉弁が前記バイパス流路を閉じ、前記凝縮器からの液相冷媒が、前記第1冷媒入口、前記第1冷却器の前記供給流路、前記第2冷媒入口、および前記第2冷却器の前記供給流路の順に供給される請求項8または9に記載のサーモサイフォン。
  11.  前記複数の冷却器の前記それぞれの前記供給流路は、前記移動体の進行方向に対する交差方向に延びるように形成されている請求項8に記載のサーモサイフォン。
  12.  バイパス流路を形成するバイパス流路形成部(101、104)と、
     連通流路を形成する連通流路形成部(100、103)と、
     前記バイパス流路を開閉する開閉弁(90、91)と、を備え、
     前記複数の冷却器のうち2つの冷却器において進行方向前側に位置する冷却器を第1冷却器とし、
     前記2つの冷却器のうち前記第1冷却器に対して進行方向後側に位置する冷却器を第2冷却器とし、
     前記第1冷却器は、その前記供給流路へ前記液相冷媒を流入させる冷媒入口(14a)と、当該供給流路から前記液相冷媒を排出させる冷媒出口(14c)とを有し、
     前記第2冷却器は、その前記供給流路へ前記液相冷媒を流入させる第1冷媒入口(14a)および第2冷媒入口(14d)を有し、
     前記連通流路は、前記第1冷却器の前記冷媒出口と前記第2冷却器の前記第1冷媒入口との間を連通し、
     前記バイパス流路は、前記第1冷却器の前記冷媒入口と前記第2冷却器の前記第2冷媒入口との間を前記第1冷却器および前記第2冷却器をバイパスして連通し、
     前記複数の冷却器が予め決められた姿勢になった場合には、前記開閉弁が前記バイパス流路を開け、前記凝縮器からの液相冷媒のうち一部の液相冷媒が前記冷媒入口を通して前記第1冷却器の前記供給流路に供給され、かつ前記凝縮器からの液相冷媒のうち一部の液相冷媒以外の液相冷媒のうち一部の液相冷媒が前記バイパス流路、前記開閉弁を通して前記第2冷却器の前記供給流路に供給され、
     前記複数の冷却器がそれぞれ予め決められた姿勢に対して傾いた場合には、前記開閉弁が前記バイパス流路を閉じ、前記凝縮器からの液相冷媒が、前記冷媒入口、前記第1冷却器の前記供給流路、前記連通流路、および前記第2冷却器の前記供給流路の順に供給される請求項8または9に記載のサーモサイフォン。
  13.  前記複数の冷却器の前記それぞれの前記蒸発流路は、前記供給流路に連通する冷媒入口(64a、64b)を有し、
     前記冷媒入口は、前記供給流路のうち天地方向の中央部に対して下側に位置する請求項8ないし12のいずれか1つに記載のサーモサイフォン。
  14.  前記冷媒入口は、前記供給流路に対して下側に配置されている請求項13に記載のサーモサイフォン。
  15.  前記複数の冷却器の前記それぞれの前記蒸発流路は、前記供給流路に連通する冷媒入口(64a、64b)を有し、
     前記複数の冷却器は、それぞれ、前記供給流路から下側に凹むように形成されて、前記供給流路からの液相冷媒を貯める貯液部(63a)を備え、
     前記複数の冷却器の前記それぞれの前記蒸発流路の前記冷媒入口は、前記複数の冷却器のそれぞれの貯液部に連通し、かつ前記複数の冷却器のそれぞれの貯液部内の液相冷媒の液面と同一高さ、或いは前記液面よりも下側に位置する請求項8または12のいずれか1つに記載のサーモサイフォン。
  16.  前記複数の冷却器が予め決められた姿勢に対して傾いているか否か判定する判定部(S100)と、
     前記複数の冷却器が予め決められた姿勢に対して傾いていると前記判定部が判定したときには、前記冷却器が予め決められた姿勢に対して傾いていないと前記判定部が判定したときに比べて、前記凝縮器から前記冷却器に供給する液相冷媒の冷媒量を増加させる冷媒増加部(S120)と、
     を備せる請求項8ないし15のいずれか1つに記載のサーモサイフォン。
  17.  前記複数の冷却器の前記それぞれの前記蒸発流路の流路断面積は、前記供給流路の流路断面積よりも小さくなっている請求項8ないし16のいずれか1つに記載のサーモサイフォン。
  18.  前記複数の冷却器の前記それぞれの前記蒸発流路は、前記供給流路の流路断面積よりも小さい流路断面積を有する複数の細流路(110a)を有している請求項8ないし15のいずれか1つに記載のサーモサイフォン。
  19.  気相冷媒を凝縮して液相冷媒を排出する凝縮器(16)と、
     前記凝縮器から流入した前記液相冷媒と被冷却対象(12a、12b)との間の熱交換により前記液相冷媒を蒸発して前記気相冷媒を前記凝縮器に排出する冷却器(14)と、を備え、前記凝縮器および前記冷却器の間で冷媒を循環させるサーモサイフォンであって、
     前記冷却器が予め決められた姿勢に対して傾いているか否か判定する判定部(S100)と、
     前記冷却器が予め決められた姿勢に対して傾いていると前記判定部が判定したときには、前記冷却器が予め決められた姿勢に対して傾いていないと前記判定部が判定したときに比べて、前記凝縮器から前記冷却器に供給する液相冷媒の冷媒量を増加させる冷媒増加部(S120)と、
     を備せるサーモサイフォン。
  20.  前記冷却器は、
     前記凝縮器からの前記液相冷媒が流れる供給流路(70)を形成する第1流路形成部(60a、60b、60c)と、
     前記供給流路に連通する冷媒入口(64a、64b)を有し、前記供給流路から冷媒入口を通して流入した前記液相冷媒と被冷却対象(12a、12b)との間の熱交換により前記液相冷媒を蒸発させて前記気相冷媒を発生させる蒸発流路(61a、61b)を形成する第2流路形成部(60a、43、60b、44)と、
     前記蒸発流路からの前記気相冷媒が前記凝縮器に向けて流れる排出流路(71)を形成する第3流路形成部(60a、60b、45)とを、備える請求項19に記載のサーモサイフォン。
  21.  前記冷媒入口は、前記供給流路のうち天地方向の中央部に対して下側に位置する請求項20に記載のサーモサイフォン。
  22.  前記冷媒入口は、前記供給流路に対して下側に位置する請求項20または21に記載のサーモサイフォン。
  23.  前記冷却器は、前記供給流路から下側に凹むように形成されて、前記供給流路からの液相冷媒を貯める1つ以上の貯液部(63a)を備える請求項20に記載のサーモサイフォン。
  24.  前記冷媒入口は、前記貯液部に連通し、かつ前記貯液部内の液相冷媒の液面と同一高さ、或いは前記液面よりも下側に位置する請求項23に記載のサーモサイフォン。
  25.  前記1つ以上の貯液部は、前記供給流路の冷媒流れ方向に並べられている複数の貯液部であり、
     前記冷却器は、前記供給流路の冷媒流れ方向に並べられている複数の前記蒸発流路を形成し、
     前記複数の貯液部は、それぞれ、前記複数の蒸発流路のうち対応する蒸発流路の冷媒入口に連通している請求項20に記載のサーモサイフォン。
  26.  前記蒸発流路の流路断面積は、前記供給流路の流路断面積よりも小さくなっている請求項19ないし25のいずれか1つに記載のサーモサイフォン。
  27.  前記蒸発流路は、前記供給流路の流路断面積よりも小さい流路断面積を有する複数の細流路(110a)を有している請求項19ないし25のいずれか1つに記載のサーモサイフォン。
PCT/JP2018/020960 2017-06-16 2018-05-31 冷却器、およびサーモサイフォン WO2018230349A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018003046.6T DE112018003046T5 (de) 2017-06-16 2018-05-31 Kühler- und Thermosiphon
CN201880039896.0A CN110753822B (zh) 2017-06-16 2018-05-31 热虹吸器
US16/692,800 US20200088471A1 (en) 2017-06-16 2019-11-22 Thermosyphon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-118870 2017-06-16
JP2017118870A JP6737241B2 (ja) 2017-06-16 2017-06-16 サーモサイフォン

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/692,800 Continuation US20200088471A1 (en) 2017-06-16 2019-11-22 Thermosyphon

Publications (1)

Publication Number Publication Date
WO2018230349A1 true WO2018230349A1 (ja) 2018-12-20

Family

ID=64660268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020960 WO2018230349A1 (ja) 2017-06-16 2018-05-31 冷却器、およびサーモサイフォン

Country Status (5)

Country Link
US (1) US20200088471A1 (ja)
JP (1) JP6737241B2 (ja)
CN (1) CN110753822B (ja)
DE (1) DE112018003046T5 (ja)
WO (1) WO2018230349A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138082A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 蒸発器及びループ型ヒートパイプ
DE102019205432A1 (de) * 2019-04-15 2020-10-15 Volkswagen Aktiengesellschaft Batteriemodul und Kraftfahrzeug
WO2021025128A1 (ja) * 2019-08-08 2021-02-11 株式会社デンソー 温度調整装置
FR3100660A1 (fr) * 2019-09-10 2021-03-12 Valeo Systemes Thermiques Dispositif de régulation de température d’un élément électrique à l’aide d’un fluide diélectrique
EP3904811A4 (en) * 2018-12-27 2022-09-14 Kawasaki Jukogyo Kabushiki Kaisha HEAT TRANSPORT SYSTEM AND CONVEYING DEVICE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165586A (ja) * 2019-03-29 2020-10-08 株式会社デンソー 車両用サーモサイフォン式冷却装置
CN111540977B (zh) * 2020-04-21 2022-04-22 华南理工大学 一种动力电池液冷型热管理系统及吹胀型铝质均热板
US20230402682A1 (en) * 2021-01-20 2023-12-14 Raval A.C.S. Ltd. Two-phase control valve for electrical power system
CN114302608B (zh) * 2021-03-31 2024-01-30 华为数字能源技术有限公司 热交换器、机柜及通信基站
US20230387502A1 (en) * 2022-05-31 2023-11-30 Kidde Technologies, Inc. Combined thermal management and fire mitigation for large scale battery packages

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114603A (ja) * 2004-10-13 2006-04-27 Toshiba Corp 車両用半導体冷却装置
JP2008062875A (ja) * 2006-09-11 2008-03-21 Calsonic Kansei Corp 車両用バッテリ冷却システム
JP2010196999A (ja) * 2009-02-26 2010-09-09 Toyota Industries Corp 移動体における沸騰冷却装置の支持構造
JP2013023186A (ja) * 2011-07-26 2013-02-04 Toyota Motor Corp 冷却装置
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
US20150020999A1 (en) * 2012-01-12 2015-01-22 Econotherm Uk Limited Heat exchanger
JP2017083078A (ja) * 2015-10-28 2017-05-18 パナソニックIpマネジメント株式会社 冷却装置およびこれを搭載した電子機器
WO2018070116A1 (ja) * 2016-10-12 2018-04-19 株式会社デンソー 冷却装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041194A1 (de) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Kühlung einer supraleitenden Maschine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114603A (ja) * 2004-10-13 2006-04-27 Toshiba Corp 車両用半導体冷却装置
JP2008062875A (ja) * 2006-09-11 2008-03-21 Calsonic Kansei Corp 車両用バッテリ冷却システム
JP2010196999A (ja) * 2009-02-26 2010-09-09 Toyota Industries Corp 移動体における沸騰冷却装置の支持構造
JP2013023186A (ja) * 2011-07-26 2013-02-04 Toyota Motor Corp 冷却装置
US20150020999A1 (en) * 2012-01-12 2015-01-22 Econotherm Uk Limited Heat exchanger
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
JP2017083078A (ja) * 2015-10-28 2017-05-18 パナソニックIpマネジメント株式会社 冷却装置およびこれを搭載した電子機器
WO2018070116A1 (ja) * 2016-10-12 2018-04-19 株式会社デンソー 冷却装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138082A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 蒸発器及びループ型ヒートパイプ
JP2020106210A (ja) * 2018-12-27 2020-07-09 川崎重工業株式会社 蒸発器及びループ型ヒートパイプ
EP3904814A4 (en) * 2018-12-27 2022-09-14 Kawasaki Jukogyo Kabushiki Kaisha EVAPORATOR AND LOOP HEAT TUBE
EP3904811A4 (en) * 2018-12-27 2022-09-14 Kawasaki Jukogyo Kabushiki Kaisha HEAT TRANSPORT SYSTEM AND CONVEYING DEVICE
DE102019205432A1 (de) * 2019-04-15 2020-10-15 Volkswagen Aktiengesellschaft Batteriemodul und Kraftfahrzeug
DE102019205432B4 (de) 2019-04-15 2022-11-17 Volkswagen Aktiengesellschaft Batteriemodul und Kraftfahrzeug
WO2021025128A1 (ja) * 2019-08-08 2021-02-11 株式会社デンソー 温度調整装置
FR3100660A1 (fr) * 2019-09-10 2021-03-12 Valeo Systemes Thermiques Dispositif de régulation de température d’un élément électrique à l’aide d’un fluide diélectrique
WO2021048492A1 (fr) * 2019-09-10 2021-03-18 Valeo Systemes Thermiques Dispositif de régulation de température d'un élément électrique à l'aide d'un fluide diélectrique
CN114391195A (zh) * 2019-09-10 2022-04-22 法雷奥热系统公司 借助介电流体调节电气元件的温度的装置

Also Published As

Publication number Publication date
DE112018003046T5 (de) 2020-03-05
CN110753822A (zh) 2020-02-04
US20200088471A1 (en) 2020-03-19
JP2019002642A (ja) 2019-01-10
CN110753822B (zh) 2021-06-08
JP6737241B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2018230349A1 (ja) 冷却器、およびサーモサイフォン
US10996002B2 (en) Evaporator
JP6662465B2 (ja) 冷却装置
JP6579276B2 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
WO2018047533A1 (ja) 機器温調装置
US20200338963A1 (en) Cooling device
WO2019150751A1 (ja) 温度調整装置
WO2018066206A1 (ja) 機器温調装置
JP6662462B2 (ja) 機器温調装置
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
JP2020106209A (ja) 蒸発器及びループ型ヒートパイプ
WO2019093230A1 (ja) 機器温調装置
WO2019123881A1 (ja) 機器温調装置
JP6733630B2 (ja) サーモサイフォン
JP2019113301A (ja) 機器温調装置
WO2019054076A1 (ja) 機器温調装置
WO2020255883A1 (ja) 冷却装置
WO2020246248A1 (ja) 沸騰冷却装置
WO2020129645A1 (ja) 機器温調装置
WO2019087574A1 (ja) サーモサイフォン式温調装置
JP2019086275A (ja) 機器温調装置
JP2020149818A (ja) 電池モジュールの冷却装置
JP2020067226A (ja) 温度調整装置
JP2020008270A (ja) 機器温調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816650

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18816650

Country of ref document: EP

Kind code of ref document: A1