WO2020255883A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2020255883A1
WO2020255883A1 PCT/JP2020/023246 JP2020023246W WO2020255883A1 WO 2020255883 A1 WO2020255883 A1 WO 2020255883A1 JP 2020023246 W JP2020023246 W JP 2020023246W WO 2020255883 A1 WO2020255883 A1 WO 2020255883A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
flow path
opening
path forming
condensing
Prior art date
Application number
PCT/JP2020/023246
Other languages
English (en)
French (fr)
Inventor
康光 大見
義則 毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020255883A1 publication Critical patent/WO2020255883A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This disclosure relates to a cooling device that cools the target device.
  • thermosiphon as a device temperature control device for adjusting the temperature of an electric device such as a power storage device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle has been studied.
  • thermosiphon in which a working fluid circulates in the order of a temperature control unit as an evaporator, a gas phase flow path, a heat medium cooling unit as a condenser, and a liquid phase flow path.
  • thermosiphon as a single-tube thermosiphon in which the refrigerant moves between the evaporator and the condenser that cool the battery cell 81 to be cooled by one pipe 80. Be done. However, in this case, the following problems occur.
  • the gas refrigerant that has flowed into the pipe 80 from the evaporator due to heat exchange with the battery cell 81 becomes bubbles and tries to rise in the pipe 80.
  • the liquid refrigerant flowing out of the condenser tends to flow from the upper side to the lower side of the gas refrigerant in the pipe 80. That is, the liquid refrigerant flowing out of the heat exchange section and the gas refrigerant flowing out of the evaporator are countercurrent.
  • An object of the present disclosure is to improve the cooling capacity with a simple structure.
  • the cooling device It cools the target equipment by heat transfer accompanying the phase change of the liquid phase and gas phase of the working fluid.
  • An evaporative unit that allows heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled.
  • a condensing section that is located above the evaporating section in the vertical direction and condenses the working fluid evaporated by the evaporating section.
  • a tubular piping section that allows the working fluid condensed by the condensing section to flow to the evaporation section side and the working fluid evaporated by the evaporating section to the condensing section side.
  • a partition that is arranged in the piping and divides the inside of the piping into a space on the condensing part side and a space on the evaporating part side, and a first opening that is formed in the partition and introduces the working fluid condensed by the condensing part downward in the vertical direction.
  • the cooling device is It cools the target equipment by heat transfer accompanying the phase change of the liquid phase and gas phase of the working fluid.
  • An evaporative unit that allows heat exchange between the target device and the working fluid so that the working fluid evaporates when the target device is cooled.
  • a condensing section that is located above the evaporating section in the vertical direction and condenses the working fluid evaporated by the evaporating section. The working fluid condensed by the condensing part and the space where the working fluid evaporated by the evaporating part flows are divided into the space on the condensing part side and the space on the evaporating part side, and the working fluid formed in the partition part and condensed by the condensing part is moved up and down.
  • the flow of the working fluid that evaporates by the evaporating portion by the first opening, the second opening, and the tubular flow path forming portion formed in the partition portion and heads toward the condensing portion is caused by the condensing portion. It is not obstructed by the flow of the working fluid that condenses and moves toward the evaporation part. Therefore, the cooling capacity can be improved with a simple configuration.
  • the reference reference numerals in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
  • FIG. 6 is a sectional view taken along line VV in FIG. It is the schematic sectional drawing of the cooling apparatus of 2nd Embodiment. It is an external view of the flow path forming member of the cooling device of 2nd Embodiment. It is a figure which showed the flow of the working fluid of the flow path forming member of the cooling device of 2nd Embodiment.
  • FIG. 6 is a sectional view taken along line VV in FIG. It is the schematic sectional drawing of the cooling apparatus of 2nd Embodiment. It is an external view of the flow path forming member of the cooling device of 2nd Embodiment. It is a figure which showed the flow of the working fluid of the flow path forming member of the cooling device of 2nd Embodiment.
  • FIG. 10 is a sectional view taken along line IX-IX in FIG. It is the schematic sectional drawing of the flow path forming member of the cooling apparatus of 3rd Embodiment. It is an external view of the flow path forming member of the cooling device of 3rd Embodiment. It is the schematic sectional drawing of the flow path forming member of the cooling apparatus of 4th Embodiment. It is an exploded view of the flow path forming member of the cooling device of 4th Embodiment. It is a figure which showed the whole structure of the cooling apparatus of 5th Embodiment. It is a figure which showed the whole structure of the cooling apparatus of 6th Embodiment.
  • FIG. 5 is a cross-sectional view taken along the line XVI-XVI in FIG. It is a figure for demonstrating an issue.
  • the cooling device 10 cools the assembled battery BP mounted on the vehicle as a target device.
  • the assembled battery BP has a plurality of battery cells BC having a rectangular parallelepiped shape.
  • the assembled battery BP is composed of a laminated body in which the plurality of battery cells BC are laminated and arranged.
  • the plurality of battery cells BC are arranged in a laminated manner in the substantially horizontal direction.
  • a plurality of battery cells BC constituting the assembled battery BP are electrically connected in series.
  • Each battery cell BC constituting the assembled battery BP is composed of a rechargeable secondary battery (for example, a lithium ion battery or a lead storage battery).
  • the battery cell BC is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape. Further, the assembled battery BP may be configured to include a battery cell BC electrically connected in parallel.
  • the assembled battery BP self-heats when power is supplied while the vehicle is running. Further, if the assembled battery BP is left in a high temperature environment, the deterioration of the assembled battery BP progresses. Therefore, it is necessary to cool it by the cooling device 10.
  • the cooling device 10 includes an airtightly configured airtight container 101, a heat of vaporization diffusion plate 102, and a heat of condensation diffusion plate 103.
  • the cooling device 10 is configured as a thermosiphon that transfers heat according to a phase change between the liquid phase and the gas phase of the working fluid sealed in the closed container 101. Then, the cooling device 10 cools the assembled battery BP by heat transfer in the thermosiphon.
  • thermosiphon is a kind of heat pipe
  • the working fluid of the liquid phase condensed in the condensing part 16 of the closed container 101 is returned to the evaporation part 14 of the closed container 101 by using gravity.
  • the flow of the working fluid in the gas phase in the closed container 101 is indicated by the broken arrow AG
  • the flow of the working fluid in the liquid phase is indicated by the solid arrow AL.
  • the condensing part 16 of the closed container 101 and the evaporation part 14 of the closed container 101 are connected by a piping part 15. Further, the closed container 101, the heat of vaporization diffusion plate 102, and the condensation heat diffusion plate 103 are all made of a material having high thermal conductivity (for example, a metal material such as aluminum, copper, or an aluminum alloy).
  • the closed container 101 is composed of a tubular member.
  • the number of tubular members constituting the closed container 101 is one.
  • a material for the tubular member for example, a seamless tube is adopted.
  • the tubular member is formed by bending a straight pipe, which is a material, at a plurality of places.
  • the closed container 101 is filled with a working fluid, and the inside of the closed container 101 is filled with a working fluid.
  • a working fluid for example, refrigerants such as R134a, R1234yf, and R32 used in a vapor compression refrigeration cycle, and water are adopted.
  • the working fluid is filled in the closed container 101 with a predetermined filling amount.
  • the predetermined filling amount is such that the liquid level SF of the working fluid of the liquid phase when the thermosiphon is not operating in the vehicle-mounted state of the cooling device 10 is located above the evaporation unit 14 and below the condensing unit 16. It is said to be the filling amount.
  • the non-operating state of the thermosiphon means a state in which the working fluid is not evaporated and condensed in the closed container 101.
  • the thermosiphon when the thermosiphon is operating, it means that the working fluid is evaporated and condensed in the closed container 101.
  • the closed container 101 includes an evaporation unit 14, a condensing unit 16, and a piping unit 15.
  • the evaporation portion 14, the condensing portion 16, and the piping portion 15 are configured as a part of a tubular member.
  • the evaporation unit 14 is arranged below the liquid level SF of the working fluid of the liquid phase when the thermosiphon is not operating, and the condensing part 16 is the liquid of the working fluid of the liquid phase when the thermosiphon is not operating. It is arranged above the surface SF in the vertical direction.
  • the evaporation unit 14 is configured such that the assembled battery BP and the working fluid can exchange heat so that the working fluid evaporates when the assembled battery BP is cooled.
  • the evaporation unit 14 evaporates the working fluid by absorbing heat from the assembled battery BP to the working fluid in the evaporation unit 14. Therefore, the evaporation unit 14 is joined to the flat plate-shaped evaporation heat diffusion plate 102 by, for example, brazing.
  • a method other than brazing may be adopted as long as the thermal conductivity between the two can be obtained well.
  • the heat of vaporization diffusion plate 102 is thermally conductively connected to the assembled battery BP on the other surface on the opposite side to the one surface to which the evaporation portion 14 is joined.
  • the evaporation unit 14 is fixed to the assembly battery BP in a state of being heat conductive to the assembly battery BP via the evaporation heat diffusion plate 102.
  • the heat of vaporization diffusion plate 102 is held in a pressed state against the battery BP so that the thermal conductivity between the heat of vaporization diffusion plate 102 and the assembled battery BP is well maintained.
  • the heat of vaporization diffusion plate 102 and the assembled battery BP may be in direct contact with each other, but for example, a heat conductive sheet material or grease is sandwiched between the heat of vaporization diffusion plate 102 and the assembled battery BP. It is desirable that the thermal conductivity of is enhanced.
  • the evaporation unit 14 is arranged so as to extend at an angle with respect to the horizontal direction of the vehicle. Specifically, the evaporation unit 14 extends slightly inclined with respect to the horizontal direction of the vehicle so that the upper end 14a of the evaporation unit 14 is located above the lower end 14b of the evaporation unit 14.
  • the working fluid of the gas phase evaporated in the evaporation section 14 flows not to the lower end 14b side but to the upper end 14a side of the evaporation section 14, and flows from the upper end 14a to the condensing section 16 through the piping section 15. That is, the working fluid of the gas phase that has become bubbles in the evaporation unit 14 easily flows out from the evaporation unit 14 to the condensing unit 16, and the working fluid of the liquid phase easily returns from the condensing unit 16 to the evaporating unit 14. ..
  • the condensing unit 16 is arranged above the evaporating unit 14 in the vertical direction and condenses the working fluid evaporated by the evaporating unit 14.
  • the condensing unit 16 condenses the working fluid by dissipating heat from the working fluid vaporized by the evaporating unit 14 to the air. Therefore, the condensing portion 16 is joined to the flat plate-shaped condensing heat diffusion plate 103 by, for example, brazing.
  • a method other than brazing may be adopted as long as the thermal conductivity between the two can be obtained well.
  • the condensed heat diffusion plate 103 is provided with fins 904 for expanding the heat transfer area with the air blown from the fan 905.
  • the heat dissipation destination of the condensing unit 16 may be not only air but also a low temperature substance such as water.
  • the condensing unit 16 is arranged in the same posture as the evaporation unit 14 described above. That is, the condensing portion 16 is arranged so as to extend so as to be inclined with respect to the horizontal direction of the vehicle. Specifically, the condensing portion 16 extends slightly inclined with respect to the horizontal direction of the vehicle 90 so that the lower end 16b of the condensing portion 16 is located below the upper end 16a of the condensing portion 16.
  • the working fluid of the liquid phase condensed in the condensing portion 16 flows to the lower end 16b side of the condensing portion 16 instead of the upper end 16a side due to the action of gravity, and evaporates from the lower end 16b through the piping portion 15.
  • the working fluid of the gas phase such as air bubbles in the condensing part 16 rises and easily moves to the upper end 16a side, and the working fluid of the liquid phase in the condensing part 16 flows out from the lower end 16b of the condensing part 16 to the evaporation part 14. It is easier to do.
  • the cooling device 10 is provided with a height difference between the condensing unit 16 and the evaporating unit 14, the cooling unit 16 and the evaporating unit 14 can be cooled even if they are not arranged at an angle with respect to the horizontal direction. Can be activated.
  • the piping unit 15 is arranged between the condensing unit 16 and the evaporation unit 14.
  • the piping portion 15 has a linear straight portion 15a extending in the vertical direction and a bent portion 15b that is bent and connected to the lower end 16b of the condensing portion 16.
  • the piping unit 15 is configured as a single pipe in which the working fluid of the liquid phase condensed by the condensing unit 16 flows to the evaporation unit 14 side and the working fluid of the gas phase evaporated by the evaporation unit 14 flows to the condensing unit 16 side.
  • a flow path forming member 17 is arranged inside the piping portion 15.
  • the flow path forming member 17 is arranged in the piping portion 15 above the liquid level SF of the working fluid of the liquid phase when the target device is stopped cooling, that is, when the thermosiphon is not operating.
  • the flow path forming member 17 has a partition portion 170 that partitions the inside of the piping portion 15 into a space on the condensing portion 16 side and a space on the evaporation portion 14 side.
  • the space inside the piping section 15 is a space through which the working fluid condensed by the condensing section 16 and the working fluid evaporated by the evaporation section 14 flow.
  • the partition portion 170 partitions the space in which the working fluid condensed by the condensing unit 16 and the working fluid evaporated by the evaporation unit 14 flow into the space on the condensing part 16 side and the space on the evaporation part 14 side.
  • the partition portion 170 has a bottomed cylindrical shape. The partition portion 170 is arranged so as to open upward in the vertical direction.
  • a first opening 171 is formed to guide the working fluid of the liquid phase condensed by the condensing portion 16 downward in the vertical direction.
  • a second opening 172 is formed to guide the working fluid of the gas phase evaporated by the evaporation portion 14 upward in the vertical direction.
  • a tubular tubular flow path forming portion 173 extending vertically upward from the liquid level of the working fluid of the liquid phase when cooling of the target device is stopped is formed from the second opening 172. Has been done. Further, a gap is formed between the inner peripheral surface of the piping portion 15 and the tubular flow path forming portion 173.
  • the opening area of the second opening 172 through which the working fluid of the gas phase passes is sufficiently larger than the opening area of the first opening 171 through which the working fluid of the liquid phase passes.
  • the partition portion 170 collects the working fluid of the liquid phase condensed by the condensing part 16 and flows it from the first opening 171 to the evaporation part 14 side, and at the same time, the working fluid of the gas phase evaporated by the evaporation part 14 is passed through the second opening.
  • the fluid flows to the condensing portion 16 side via the 172 and the tubular flow path forming portion 173.
  • a plurality of locking claws 175 and flange portions 176 are formed on the outer peripheral surface of the partition portion 170.
  • the flange portion 176 corresponds to the first protruding portion
  • the locking claw 175 corresponds to the second protruding portion.
  • the plurality of locking claws 175 and the flange portion 176 project radially outward from the outer peripheral surface of the partition portion 170.
  • a convex portion 150 protruding from the inner peripheral surface toward the center of the piping portion is formed on the inner peripheral surface of the piping portion 15.
  • the outer diameter of the flange portion 176 is smaller than the inner diameter of the piping portion 15. Therefore, a gap t is formed between the inner peripheral surface of the piping portion 15 and the flange portion 176.
  • the gap t is formed between the inner peripheral surface of the piping portion 15 and the flange portion 176, the flow path forming member 17 can be smoothly inserted into the piping portion 15.
  • a tubular tubular flow path forming portion 174 connected to the first opening 171 is arranged inside the piping portion 15.
  • the tubular flow path forming portion 174 extends downward from the partition portion 170 in the vertical direction.
  • the tubular flow path forming portion 174 guides the working fluid introduced into the first opening 171 downward in the vertical direction with respect to the first opening 171.
  • a tubular liquid phase flow path portion 18 is connected to the tubular flow path forming portion 174.
  • the liquid phase flow path portion 18 is condensed by the condensing portion 16 and guides the working fluid introduced into the first opening 171 downward in the vertical direction with respect to the liquid level SF of the working fluid of the liquid phase.
  • the tubular flow path forming portion 174 and the liquid phase flow path portion 18 correspond to the liquid phase flow path forming portion.
  • the liquid phase flow path portion 18 can be made of a bellows-shaped resin, an elastic elastomer, or the like. When the liquid phase flow path portion 18 is inserted into the piping portion 15, the liquid phase flow path portion 18 is deformed according to the shape of the piping portion 15. It is also possible to bend the piping portion 15 after inserting it into the piping portion 15. Further, the tubular flow path forming portion 174 may be extended downward in the vertical direction from the liquid level SF of the working fluid of the liquid phase without providing the liquid phase flow path portion 18. It is also possible to form the tubular flow path forming portion 174 with a metal such as aluminum or copper and bend it after insertion.
  • the liquid phase flow path portion 18 is preferably formed of a heat insulating member in order to reduce the heat reception from the working fluid of the boiling liquid phase.
  • a heat insulating layer on the surface or the inner surface.
  • the working fluid of the gas phase that has reached the condensing portion 16 is radiated to the air and condensed, and the working fluid of the condensed liquid phase flows down by the action of gravity and is collected in the partition portion 170 of the flow path forming member 17. After that, it reaches the evaporation unit 14 through the first opening 171.
  • the flow path forming member 17 of the present embodiment is formed with a tubular tubular flow path forming portion 173 extending from the second opening 172 formed in the partition portion 170 to the condensing portion 16 side, that is, upward in the vertical direction. .. Therefore, the working fluid of the gas phase evaporated in the evaporating part 14 passes through the tubular flow path forming part 173 and smoothly reaches the condensing part 16 without being affected by the flow of the working fluid of the liquid phase flowing down from the condensing part 16. To reach. Therefore, the cooling capacity can be improved without reducing the flow rate of the refrigerant that should reach the condensing portion 16.
  • liquid phase working fluid collected in the partition portion 170 is formed in the partition portion 170 without being affected by the flow of the gas phase working fluid passing through the tubular flow path forming portion 173. It can reach the evaporation unit 14 through.
  • the temperature of the lower part of the battery cell BC is lower than the temperature of the upper part of the battery cell BC, and the temperature of the working fluid condensed by the condensing unit 16 is higher than the temperature of the upper part of the battery cell BC. If it is high, boiling occurs in the upper part of the battery cell BC, as shown in FIG.
  • the working fluid of the liquid phase near the liquid level of the working fluid of the liquid phase evaporates and rises, and the working fluid of the liquid phase condensed by the condensing unit 16 flows down only near the liquid level of the working fluid of the liquid phase. do not do. Therefore, the temperature of the lower portion of the battery cell BC remains low. That is, the temperature difference between the temperature of the lower portion of the battery cell BC and the temperature of the upper portion of the battery cell BC becomes large. In particular, the longer the pipe length of the pipe portion 15, the more uneven the temperature distribution.
  • the working fluid of the liquid phase condensed by the condensing portion 16 is moved downward in the vertical direction from the liquid level SF of the working fluid of the liquid phase from the first opening 171 of the flow path forming member 17.
  • the liquid phase flow path portion 18 for guiding is provided.
  • the liquid phase flow path portion 18 is preferably arranged so as to extend close to the lower end 14b of the evaporation portion 14 having few bubbles. In this way, by arranging the liquid phase flow path portion 18 so as to extend close to the lower end 14b of the evaporation portion 14 having few bubbles, the temperature of the portion below the battery cell BC and the portion above the battery cell BC The temperature difference can be reduced.
  • the cooling device 10 of the present embodiment cools the target device by heat transfer accompanying the phase change of the liquid phase and the gas phase of the working fluid.
  • the cooling device 10 of the present embodiment includes an evaporation unit 14 configured so that the target device and the working fluid can exchange heat so that the working fluid evaporates when the target device is cooled.
  • the cooling device 10 includes a condensing unit 16 which is arranged above the evaporating unit 14 in the vertical direction and condenses the working fluid evaporated by the evaporating unit 14.
  • the cooling device 10 includes a tubular piping unit 15 that allows the working fluid condensed by the condensing unit 16 to flow to the evaporation unit 14 side and the working fluid evaporated by the evaporation unit 14 to flow to the condensing unit 16 side.
  • the cooling device 10 includes a flow path forming member 17.
  • the flow path forming member 17 has a partition portion 170 that is arranged in the piping portion 15 and partitions the inside of the piping portion 15 into a space on the condensation portion 16 side and a space on the evaporation portion 14 side.
  • the flow path forming member 17 has a first opening 171 formed in the partition portion 170 and introducing the working fluid condensed by the condensing portion 16 downward in the vertical direction.
  • the flow path forming member 17 has a second opening 172 formed in the partition portion 170 and introducing the working fluid evaporated by the evaporation portion 14 in the vertical direction. Further, the flow path forming member 17 extends upward from the second opening 172 in the vertical direction above the liquid level of the working fluid of the liquid phase when cooling of the target device is stopped, and the working fluid introduced from the second opening is liquid. It has a tubular tubular flow path forming portion 173 that leads to the upper side in the vertical direction with respect to the surface.
  • the flow of the working fluid from the evaporation portion 14 to the condensing portion 16 side is caused by the first opening 171 and the second opening 172 and the tubular flow path forming portion 173 formed in the partition portion 170. , It is not obstructed by the flow of the working fluid from the condensing section 16 toward the evaporation section 14. Therefore, the cooling capacity can be improved with a simple configuration.
  • thermosiphon such as the cooling device 10 of the present embodiment
  • smooth circulation of a working fluid like a loop-type thermosiphon is possible.
  • the single pipe has a simpler configuration, so that it can be easily mounted and the cost can be reduced.
  • the cooling device of the present embodiment includes a tubular flow path forming portion 174 that guides the working fluid introduced into the first opening 171 downward in the vertical direction from the first opening 171.
  • the working fluid introduced into the first opening 171 can be guided to the lower side in the vertical direction with respect to the first opening 171 without being affected by the working fluid evaporated by the evaporation unit 14. Is.
  • the cooling device of the present embodiment includes a liquid phase flow path portion 18 that guides the working fluid introduced into the first opening downward in the vertical direction below the liquid level.
  • the working fluid introduced into the first opening is guided downward in the vertical direction from the liquid surface by the liquid phase flow path portion 18, so that the temperature distribution of the evaporation portion 14 can be made uniform.
  • the liquid phase flow path portion 18 can supply the working fluid from below the evaporation portion 14, the liquid refrigerant flows in the evaporation portion 14 without stagnation like a loop pipe even though it is a single pipe. Therefore, even under the condition that there is a portion below the evaporation portion 14 that is lower than the temperature above the evaporation portion 14 and lower than the concentration portion 16, the temperature is equalized by the flow of the liquid refrigerant. Therefore, the temperature difference between the temperature of the lower part of the target device and the temperature of the upper part of the target device can be reduced. That is, the temperature distribution of the target device can be made uniform.
  • the partition portion 170 has a flange portion 176 as a first protruding portion and a locking claw 175 as a second protruding portion that project radially outward from the outer peripheral surface of the partition portion 170. Further, a convex portion 150 is formed on the inner peripheral surface of the piping portion 15 so as to project from the inner peripheral surface toward the center of the piping portion 15. The partition portion 170 is fixed to the inside of the piping portion 15 by sandwiching both side surfaces of the convex portion 150 between the flange portion 176 and the locking claw 175. In this way, the flow path forming member 17 can be easily fixed inside the piping portion 15.
  • the partition portion 170 has a bottomed tubular shape and opens upward in the vertical direction, and the first opening 171 and the second opening 172 and the tubular flow path forming portion 173 form the bottom surface of the partition portion 170. Is formed in. In this way, the first opening 171 and the second opening 172 and the tubular flow path forming portion 173 can be formed on the bottom surface of the partition portion 170 having a bottomed tubular shape.
  • the opening area of the second opening 172 is larger than the opening area of the first opening 171. Therefore, it is possible to secure a sufficient passage area even if the working fluid of the liquid phase is vaporized.
  • the cooling device 10 according to the second embodiment will be described with reference to FIGS. 5 to 8.
  • the bottom surface of the partition portion 170 of the flow path forming member 17 is flat, but the cooling device 10 of the present embodiment has a flow as shown in FIGS. 5 and 7.
  • the partition 170 of the road forming member 17 has a funnel shape.
  • the cooling device 10 of the first embodiment has one tubular flow path forming portion 173, but the cooling device 10 of the present embodiment has four tubular flows as shown in FIG. It has a road forming portion 173.
  • the partition portion 170 of the flow path forming member 17 has a hollow truncated cone shape that shrinks in diameter as it advances downward in the vertical direction. Therefore, the working fluid of the liquid phase condensed in the condensing unit 16 is unlikely to accumulate in the partition portion 170, and the working fluid of the liquid phase can be quickly flowed down to the evaporation unit 14 side.
  • the cooling device 10 of the present embodiment has four tubular flow path forming portions 173. Further, the total opening area of the four second openings 172 is larger than the opening area of the first opening 171. Therefore, a large amount of gas phase working fluid can be smoothly guided to the condensing portion 16 side.
  • the same effect obtained from the configuration common to the first embodiment can be obtained in the same manner as in the first embodiment.
  • the partition portion 170 has a hollow truncated cone shape, and is arranged so that the diameter decreases as it advances downward in the vertical direction. Therefore, the working fluid of the liquid phase condensed in the condensing unit 16 can be quickly flowed down to the evaporation unit 14 side.
  • the flow path forming member 17 has four tubular flow path forming portions 173, whereas in the cooling device 10 of the present embodiment, the flow path forming member 17 is provided. It has two tubular flow path forming portions 173. Further, in the cooling device 10 of the second embodiment, the cross-sectional shape of the flow path formed by the tubular flow path forming portion 173 of the flow path forming member 17 is circular. On the other hand, in the cooling device 10 of the present embodiment, the cross-sectional shape of the flow path formed by the tubular flow path forming portion 173 of the flow path forming member 17 is substantially crescent-shaped.
  • the total opening area of the two second openings 172 is larger than the opening area of the first opening 171. Therefore, the working fluid of the gas phase can be efficiently guided to the condensing portion 16 side.
  • the same effect obtained from the configuration common to the first embodiment can be obtained in the same manner as in the first embodiment.
  • the cooling device 10 according to the fourth embodiment will be described with reference to FIGS. 12 to 13.
  • the tubular flow path forming portion 173 and the partition portion 170 are separately formed.
  • the tubular flow path forming portion 173 has three openings 1731.
  • the partition portion 170 has a funnel shape.
  • the partition 170 is formed with one first opening 171 and three second openings 172.
  • the three openings 1731 formed in the partition 170 are connected to the partition 170 with the three second openings 172, respectively, and the tubular flow path forming portion 173 is assembled to the partition 170.
  • the same effect obtained from the configuration common to the first embodiment can be obtained in the same manner as in the first embodiment.
  • the cooling device 10 according to the fifth embodiment will be described with reference to FIG. Although the flow path forming member 17 is schematically shown in FIG. 14, it has the same configuration as that shown in FIG.
  • the cooling device 10 of the present embodiment has two piping portions 15.
  • a condenser 19, a flow path forming member 17, and a liquid phase flow path portion 18 are arranged on one of the two piping portions 15.
  • the condenser 19 and the flow path forming member 17 are arranged above the liquid level SF of the working fluid of the liquid phase in the vertical direction.
  • the liquid phase flow path portion 18 is connected to the flow path forming member 17.
  • the liquid phase flow path portion 18 guides the working fluid of the liquid phase condensed by the condensing portion 16 downward in the vertical direction with respect to the liquid level SF of the working fluid of the liquid phase.
  • the liquid phase flow path portion 18 is arranged so as to extend from the flow path forming member 17 to the vicinity of the lower end 14b of the evaporation section 14.
  • One upper end of the two pipes 15 and the other upper end of the two pipes 15 are connected. Further, one lower end of the two pipes 15 and the other lower end of the two pipes 15 are connected.
  • Each of the two piping units 15 functions as a single pipe for flowing the working fluid of the liquid phase condensed by the condensing part 16 to the evaporation part 14 side and flowing the working fluid of the gas phase evaporated by the evaporation part 14 to the condensing part 16 side. To do. In this way, a plurality of piping portions 15 that function as a single pipe can be provided.
  • a flow path forming member 17 is arranged on one of the two piping portions 15.
  • a liquid phase flow path portion 18 is connected to the flow path forming member 17.
  • the liquid phase flow path portion 18 is arranged so as to extend close to the lower end of the evaporation portion 14 having few bubbles.
  • the liquid phase flow path portion 18 can guide the working fluid of the liquid phase condensed by the condensing portion 16 to near the lower end of the evaporation portion 14.
  • the liquid phase flow path portion 18 is near the lower end of the evaporation portion 14. It is also possible to guide the working fluid of the liquid phase guided to the lower end of the other of the two piping portions 15. Therefore, not only the temperature distribution of one of the two piping portions 15 but also the temperature distribution of the other of the two piping portions 15 can be made uniform.
  • the same effect obtained from the configuration common to the first embodiment can be obtained in the same manner as in the first embodiment.
  • the cooling device 10 according to the sixth embodiment will be described with reference to FIGS. 15 to 16.
  • the configuration of the evaporation unit 14 is different from that in the first embodiment.
  • the assembled battery BP is arranged as shown in FIG. In FIG. 15, the assembled battery BP is omitted.
  • the cooling device 10 of the present embodiment does not include the heat of vaporization diffusion plate 102.
  • the closed container 101 of the present embodiment has a condensing section 16, a piping section 15, and an evaporation section 14.
  • the evaporation unit 14 has a lower flow path portion 144, an upper flow path portion 145, and a plurality of evaporation pipes 143.
  • a plurality of evaporation pipes 143 extend in the vertical direction of the vehicle.
  • Each of the plurality of evaporation tubes 143 has a flat cross-sectional shape.
  • the assembled battery BP is connected to the flat surfaces 143a and 143b on both sides of the evaporation tube 143 in a state where the battery side surface BPb is pressed via the heat conductive sheet material 35, respectively.
  • the assembled battery BP is thermally conductively fixed to the plurality of evaporation tubes 143 of the evaporation section 14.
  • the lower end 143c of the plurality of evaporation pipes 143 is connected to the lower flow path portion 144, respectively, and the evaporation pipe 143 communicates with the lower flow path portion 144 at the lower end 143c thereof.
  • the upper end 143d of the plurality of evaporation pipes 143 is connected to the upper flow path portion 145, respectively, and the evaporation pipe 143 communicates with the upper flow path portion 145 at the upper end 143d thereof.
  • the lower flow path portion 144 is formed so as to extend in the stacking direction of the plurality of battery cells BC, and is connected to the lower end of the piping portion 15 in one of the plurality of stacking directions.
  • the lower flow path portion 144 is located below the assembled battery BP and the plurality of evaporation tubes 143, and is arranged at intervals with respect to the assembled battery BP and the heat conductive sheet material 35.
  • the upper flow path portion 145 is formed so as to extend in the stacking direction of the plurality of battery cells BC, and is located above the lower flow path portion 144, the assembled battery BP, and the plurality of evaporation tubes 143. Further, the upper flow path portion 145 is connected to a portion of the piping portion 15 below the flow path forming member 17 in one of the stacking directions of the battery cells BC.
  • the working fluid of the liquid phase in the evaporation pipe 143 is the assembled battery BP. Evaporates due to the heat of. As a result, the assembled battery BP is deprived of heat and cooled.
  • the working fluid of the gas phase evaporated in the evaporation pipe 143 rises and flows into the upper flow path portion 145, and flows from the upper flow path portion 145 to the piping portion 15. Then, it is guided to the condensing portion 16 through the flow path forming member 17 arranged in the piping portion 15.
  • the working fluid of the liquid phase flowing down from the condensing portion 16 flows down to the lower flow path portion 144 of the evaporation portion 14 through the flow path forming member 17 and the liquid phase flow path portion 18.
  • the working fluid of the liquid phase flowing down passes through the flow path forming member 17 and the liquid phase flow path portion 18, the gas phase that rises from the upper flow path portion 145 in the piping portion 15 in the vertical direction upward. It reaches the evaporation part 14 without being affected by the flow of the working fluid of.
  • the working fluid of the liquid phase flowing into the lower flow path portion 144 is distributed from the lower flow path portion 144 to each of the plurality of evaporation pipes 143.
  • the assembled battery BP is cooled.
  • the same effect obtained from the configuration common to the first embodiment can be obtained in the same manner as in the first embodiment.
  • the piping portion 15 having a circular flow path cross section is provided, but the flow path cross section of the piping portion 15 is not limited to a circular shape, and is, for example, a polygonal shape or an elliptical shape. You can also do it.
  • the cooling device 10 may be configured such that the flow path forming member 17 functions as the piping portion 15.
  • the partition portion 170 is fixed to the inner peripheral surface of the piping portion 15, but a seal member may be arranged between the inner peripheral surface of the piping portion 15 and the partition portion 170.
  • the tubular liquid phase flow path portion 18 is arranged, but a through hole is formed in the middle of the liquid phase flow path portion 18, and the working fluid is transferred from the through hole to the evaporation portion 14. You may try to bring back a part.
  • the flow path forming member 17 is arranged in the piping portion 15 above the liquid level SF of the working fluid of the liquid phase when the target device is stopped cooling.
  • the opening on the upper side of the tubular flow path forming part 173 is located in the piping part 15 on the upper side of the liquid level SF of the working fluid of the liquid phase when the cooling of the target device is stopped.
  • the flow path forming member 17 may be arranged.
  • the flow path forming member 17 and the liquid phase flow path portion 18 are separately formed, but the flow path forming member 17 and the liquid phase flow path portion 18 may be integrally formed.
  • cooling is performed to cool not only in-vehicle parts but also, for example, household and equipment members. It can also be used as a device.
  • the flow path forming member 17 may be fixed inside the piping portion 15 , but for example, it may be configured to fluctuate due to fluctuations in the liquid level of the working fluid.
  • the flow path forming member 17 may have buoyancy with respect to the working fluid of the liquid phase, and the flow path forming member 17 may be suspended in the vicinity of the liquid surface.
  • liquid phase flow path portion 18 formed in a bellows shape is shown, but for example, the liquid phase flow path portion 18 can be configured by a hose.
  • the opening area of the second opening 172 through which the working fluid of the gas phase passes is made sufficiently larger than the opening area of the first opening 171 through which the working fluid of the liquid phase passes. Since gas has a lower density than liquid, the opening area of the second opening 172 through which the working fluid of the gas phase passes must be at least twice the opening area of the first opening 171 through which the working fluid of the liquid phase passes. There is.
  • a piping portion 15 having a linear straight portion 15a extending in the vertical direction and a bent portion 15b that is bent and connected to the lower end 16b of the condensing portion 16 is provided.
  • the straight straight portion 15a can be arranged at an oblique angle.
  • the cooling device includes an evaporation part, a condensing part, a piping part, and a flow path forming member.
  • the flow path forming member is arranged in the piping portion and has a partition portion that partitions the inside of the piping portion into a space on the condensing portion side and a space on the evaporation portion side.
  • the flow path forming member has a first opening for introducing the working fluid formed in the partition portion and condensed by the condensing portion downward in the vertical direction.
  • the flow path forming member has a second opening for introducing the working fluid formed in the partition portion and evaporated by the evaporation portion in the vertical direction.
  • the flow path forming member has a tubular tubular flow path forming portion extending vertically upward from the liquid surface of the working fluid of the liquid phase when cooling of the target device is stopped from the second opening.
  • the cooling device includes a tubular flow path forming portion that guides the working fluid introduced into the first opening to the lower side in the vertical direction from the first opening.
  • the cooling device includes a liquid phase flow path forming portion that guides the working fluid introduced into the first opening downward in the vertical direction from the liquid surface.
  • the working fluid introduced into the first opening is guided downward in the vertical direction from the liquid surface by the liquid phase flow path forming portion, so that the temperature distribution of the evaporating portion can be made uniform.
  • the partition portion has a first protruding portion and a second protruding portion that project radially outward from the outer peripheral surface of the partition portion. Further, on the inner peripheral surface of the piping portion, a convex portion is formed so as to project from the inner peripheral surface toward the center of the piping portion. Then, the partition portion is fixed to the inside of the piping portion by sandwiching both side surfaces of the convex portion between the first protruding portion and the second protruding portion. In this way, the flow path forming member can be easily fixed inside the piping portion.
  • the partition portion has a bottomed tubular shape and opens upward in the vertical direction. Further, the first opening, the second opening and the tubular flow path forming portion are formed on the bottom surface of the partition portion. In this way, the first opening, the second opening, and the tubular flow path forming portion can be formed on the bottom surface of the partition portion having a bottomed tubular shape.
  • the partition portion has a hollow truncated cone shape and is arranged so that the diameter decreases as it advances downward in the vertical direction. Therefore, the working fluid of the liquid phase condensed in the condensing portion can be quickly flowed down to the evaporation portion side.
  • the opening area of the second opening is larger than the opening area of the first opening. Therefore, it is possible to secure a sufficient passage area even if the working fluid of the liquid phase is vaporized.
  • the cooling device includes an evaporation part, a condensing part, and a flow path forming member.
  • the flow path forming member has a partition portion that partitions the working fluid condensed by the condensing portion and the space through which the working fluid evaporated by the evaporating portion flows into a space on the condensing portion side and a space on the evaporation portion side.
  • the flow path forming member has a first opening for introducing the working fluid formed in the partition portion and condensed by the condensing portion downward in the vertical direction.
  • the flow path forming member has a second opening for introducing the working fluid formed in the partition portion and evaporated by the evaporation portion in the vertical direction.
  • the flow path forming member has a tubular tubular flow path forming portion extending vertically upward from the liquid surface of the working fluid of the liquid phase when cooling of the target device is stopped from the second opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

冷却装置(10)は、蒸発部(14)と、凝縮部(16)と、配管部(15)と、流路形成部材(17)と、を備える。流路形成部材は、配管部内に配置され配管部内を凝縮部側の空間と蒸発部側の空間に仕切る仕切部(170)を有する。流路形成部材は、仕切部に形成され凝縮部により凝縮した作動流体を上下方向下側に導入する第1開口部(171)と、仕切部に形成され蒸発部により蒸発した作動流体を上下方向上側に導入する第2開口部(172)と、を有する。流路形成部材は、第2開口部から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びるとともに第2開口部から導入された作動流体を液面よりも上下方向上側へと導く筒状の筒状流路形成部(173)を有する。

Description

冷却装置 関連出願への相互参照
 本出願は、2019年6月17日に出願された日本特許出願番号2019-112014号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、対象機器を冷却する冷却装置に関するものである。
 近年、電気自動車またはハイブリッド自動車などの電動車両に搭載される蓄電装置などの電気機器の温度を調整するための機器温調装置としてサーモサイフォンを使用した技術が検討されている。
 特許文献1に記載の温度調節装置は、電池の冷却時に、温度調節部の内側の作動流体が電池から吸熱して蒸発し、気相流路を通って熱媒体冷却部に流入する。熱媒体冷却部で凝縮した液相の作動流体は、液相流路を通り温度調節部に流入する。この温度調節装置は、蒸発器としての温度調節部、気相流路、凝縮器としての熱媒体冷却部、液相流路の順に作動流体が循環するループ型サーモサイフォンとして構成されている。
特開2015-41418号公報
 上記特許文献1に記載されたものは、気相流路と液相流路が別々に設けられているので、構成が複雑で各流路を構成する配管の体格も大きくなってしまう。
 そこで、図17に示すように、冷却対象としての電池セル81を冷却する蒸発器と凝縮器との間の冷媒の移動を1本の配管80で行う単管型サーモサイフォンとして構成することが考えられる。しかしながら、この場合、以下のような問題が生じる。
 電池セル81との熱交換によって蒸発器から配管80内に流入したガス冷媒は気泡となって配管80内を上昇しようとする。一方、凝縮器から流出した液冷媒は配管80内でガス冷媒の上側から下方に流れようとする。すなわち、熱交換部から流出した液冷媒と蒸発器から流出したガス冷媒は対向流となる。
 このため、蒸発器から流出した気泡が上昇しにくくなり、凝縮器に到達すべき気相の冷媒の流量が減少する。そして、熱輸送能力が低下し冷却能力が低下するといった問題がある。
 
 本開示は、簡素な構成で、かつ、冷却能力を向上することを目的とする。
 本開示の1つの観点によれば、冷却装置は、
 作動流体の液相と気相の相変化に伴う熱移動により対象機器を冷却するものであって、
 対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成された蒸発部と、
 蒸発部より上下方向上側に配置され蒸発部により蒸発した作動流体を凝縮させる凝縮部と、
 凝縮部により凝縮した作動流体を蒸発部側へ流すとともに蒸発部により蒸発した作動流体を凝縮部側へ流す筒状の配管部と、
 配管部内に配置され配管部内を凝縮部側の空間と蒸発部側の空間に仕切る仕切部と、仕切部に形成され凝縮部により凝縮した作動流体を上下方向下側に導入する第1開口部と、仕切部に形成され蒸発部により蒸発した作動流体を上下方向上側に導入する第2開口部と、第2開口部から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びるとともに第2開口部から導入された作動流体を液面よりも上下方向上側へと導く筒状の筒状流路形成部と、を有する流路形成部材と、を備えている。
 本開示の別の観点によれば、冷却装置は、
 作動流体の液相と気相の相変化に伴う熱移動により対象機器を冷却するものであって、
 対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成された蒸発部と、
 蒸発部より上下方向上側に配置され蒸発部により蒸発した作動流体を凝縮させる凝縮部と、
 凝縮部により凝縮した作動流体および蒸発部により蒸発した作動流体が流れる空間を凝縮部側の空間と蒸発部側の空間に仕切る仕切部と、仕切部に形成され凝縮部により凝縮した作動流体を上下方向下側に導入する第1開口部と、仕切部に形成され蒸発部により蒸発した作動流体を上下方向上側に導入する第2開口部と、第2開口部から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びるとともに第2開口部から導入された作動流体を液面よりも上下方向上側へと導く筒状の筒状流路形成部と、を有する流路形成部材と、を備えている。
 このような構成によれば、仕切部に形成された第1開口部、第2開口部および筒状流路形成部によって蒸発部により蒸発して凝縮部側へ向かう作動流体の流れが凝縮部により凝縮して蒸発部側へ向かう作動流体の流れにより阻害されなくなる。したがって、簡素な構成で、かつ、冷却能力を向上することができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態の冷却装置の全体構成を示した図である。 第1実施形態の冷却装置の流路形成部材の概略断面図である。 第1実施形態の冷却装置の流路形成部材の外観図である。 温度分布の発生について説明するための図である。 図6におけるV-V断面図である。 第2実施形態の冷却装置の概略断面図である。 第2実施形態の冷却装置の流路形成部材の外観図である。 第2実施形態の冷却装置の流路形成部材の作動流体の流れを示した図である。 図10におけるIX-IX断面図である。 第3実施形態の冷却装置の流路形成部材の概略断面図である。 第3実施形態の冷却装置の流路形成部材の外観図である。 第4実施形態の冷却装置の流路形成部材の概略断面図である。 第4実施形態の冷却装置の流路形成部材の分解図である。 第5実施形態の冷却装置の全体構成を示した図である。 第6実施形態の冷却装置の全体構成を示した図である。 図15中のXVI-XVI断面図である。 課題について説明するための図である。
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
 (第1実施形態)
 第1実施形態に係る冷却装置について図1~図4を用いて説明する。図1に示すように、冷却装置10は、車両に搭載された組電池BPを対象機器として冷却する。組電池BPは、直方体形状の複数の電池セルBCを有している。そして、組電池BPは、その複数の電池セルBCを積層配置した積層体で構成されている。複数の電池セルBCは、概ね水平方向に積層配置されている。
 組電池BPを構成する複数の電池セルBCは、電気的に直列に接続されている。組電池BPを構成する各電池セルBCは、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)で構成されている。なお、電池セルBCは、直方体形状に限らず、円筒形状等の他の形状を有していてもよい。また、組電池BPは、電気的に並列に接続された電池セルBCを含んで構成されていてもよい。
 組電池BPは車両の走行中の電力供給等を行うと自己発熱する。また、組電池BPは高温環境下で放置されると、組電池BPの劣化が進行する。そのため、冷却装置10によって冷却する必要がある。
 冷却装置10は、気密に構成された密閉容器101と、蒸発熱拡散板102と、凝縮熱拡散板103とを備えている。冷却装置10は、密閉容器101内に封入された作動流体の液相と気相との相変化に伴う熱移動を行うサーモサイフォンとして構成されている。そして、冷却装置10は、そのサーモサイフォンでの熱移動により組電池BPを冷却する。
 ここで、サーモサイフォンとは、ヒートパイプの一種であり、密閉容器101の凝縮部16で凝縮した液相の作動流体を重力を利用して密閉容器101の蒸発部14へ還流させるものである。図1では、密閉容器101における気相の作動流体の流れは破線矢印AGで示され、液相の作動流体の流れは実線矢印ALで示されている。
 密閉容器101の凝縮部16と密閉容器101の蒸発部14の間は配管部15によって接続されている。また、密閉容器101と蒸発熱拡散板102と凝縮熱拡散板103は何れも、高い熱伝導性を有する材料(例えば、アルミニウム、銅、アルミニウム合金などの金属材料)で構成されている。
 密閉容器101は管状部材で構成されている。本実施形態では、密閉容器101を構成する管状部材は1本である。管状部材の材料として、例えば継目のない管が採用される。その管状部材は、材料である直管が複数箇所で曲げられることにより形成されている。
 密閉容器101内には作動流体が充填されており、密閉容器101内は作動流体で満たされている。その作動流体としては、例えば、蒸気圧縮式の冷凍サイクルで利用されるR134a、R1234yf、R32などの冷媒や、水が採用される。
 具体的に、その作動流体は、所定の充填量で密閉容器101に充填される。その所定の充填量は、冷却装置10の車両搭載状態でサーモサイフォンの非作動時における液相の作動流体の液面SFが蒸発部14よりも上方であり且つ凝縮部16よりも下方に位置する充填量とされている。なお、そのサーモサイフォンの非作動時とは、密閉容器101内で作動流体の蒸発および凝縮が行われていない状態をいう。これに対し、サーモサイフォンの作動時とは、密閉容器101内で作動流体の蒸発および凝縮が行われている状態をいう。
 密閉容器101は、その密閉容器101の機能面に着目すると、蒸発部14と凝縮部16と配管部15とを備えている。その蒸発部14と凝縮部16と配管部15は管状部材の一部として構成されている。蒸発部14は、サーモサイフォンの非作動時における液相の作動流体の液面SFよりも上下方向下側に配置され、凝縮部16は、サーモサイフォンの非作動時における液相の作動流体の液面SFよりも上下方向上側に配置されている。
 蒸発部14は、組電池BPの冷却時に作動流体が蒸発するように組電池BPと作動流体とが熱交換可能に構成されている。蒸発部14は、組電池BPから蒸発部14内の作動流体に吸熱させることにより、その作動流体を蒸発させる。そのために、蒸発部14は、平板形状の蒸発熱拡散板102に例えばロウ付け等によって接合されている。その蒸発部14と蒸発熱拡散板102との連結には、両者間の熱伝導性を良好に得られれば、ロウ付け以外の方法が採用されてもよい。
 そして、蒸発熱拡散板102は、蒸発部14が接合された一面とは反対側の他面にて、組電池BPに対し熱伝導可能に連結されている。これにより、蒸発部14は、蒸発熱拡散板102を介して、組電池BPに対し熱伝導可能な状態で組電池BPに固定されている。蒸発熱拡散板102と組電池BPとの間の熱伝導性が良好に維持されるように、蒸発熱拡散板102は、組電池BPに対し押し付けられた状態で保持されている。また、蒸発熱拡散板102と組電池BPは直接接触してもよいが、例えば、蒸発熱拡散板102と組電池BPとの間には熱伝導シート材またはグリスが挟まれることにより、両者間の熱伝導性が高められてることが望ましい。
 蒸発部14は、車両の水平方向に対し傾斜して延びるように配置されている。具体的には、蒸発部14の下端14bよりも蒸発部14の上端14aが上方に位置するように、蒸発部14は、車両の水平方向に対し僅かに傾斜して延びている。
 これにより、蒸発部14内で蒸発した気相の作動流体は、下端14b側ではなく蒸発部14の上端14a側へ流れ、その上端14aから配管部15を通って凝縮部16へ流れる。すなわち、蒸発部14内で気泡となった気相の作動流体は蒸発部14から凝縮部16へ流出しやすく、且つ、液相の作動流体は凝縮部16から蒸発部14へ戻りやすくなっている。
 凝縮部16は、蒸発部14より上下方向上側に配置され蒸発部14により蒸発した作動流体を凝縮させる。凝縮部16は、蒸発部14で気化した作動流体から空気へ放熱させることにより、その作動流体を凝縮させる。そのために、凝縮部16は、平板形状の凝縮熱拡散板103に例えばロウ付け等によって接合されている。その凝縮部16と凝縮熱拡散板103との連結には、両者間の熱伝導性を良好に得られれば、ロウ付け以外の方法が採用されてもよい。凝縮熱拡散板103には、ファン905からの送風空気との伝熱面積が拡大させるフィン904が設けられている。なお、凝縮部16の放熱先は、空気だけでなく、水などの低温物としてもよい。
 凝縮部16は、上述した蒸発部14と同様の姿勢で配置されている。すなわち、凝縮部16は、車両の水平方向に対し傾斜して延びるように配置されている。具体的には、凝縮部16の上端16aよりも凝縮部16の下端16bが下方に位置するように、凝縮部16は、車両90の水平方向に対し僅かに傾斜して延びている。
 これにより、凝縮部16内で凝縮した液相の作動流体は、重力の作用により、上端16a側ではなく凝縮部16の下端16b側へ流れ、その下端16bから配管部15を通って蒸発部14へ流れる。すなわち、凝縮部16内の気泡など気相の作動流体は上昇し上端16a側へ移動しやすく、且つ、凝縮部16内の液相の作動流体は凝縮部16の下端16bから蒸発部14へ流出しやすくなっている。
 なお、冷却装置10は、凝縮部16と蒸発部14との間に高低差が設けられていれば、凝縮部16および蒸発部14は水平方向に対して傾斜して配置されていなくても冷却作動することができる。
 配管部15は、凝縮部16と蒸発部14の間に配置されている。配管部15は、上下方向に延びる直線状の直線部15aと、屈曲して凝縮部16の下端16bと接続される屈曲部15bを有している。配管部15は、凝縮部16により凝縮した液相の作動流体を蒸発部14側へ流すとともに蒸発部14により蒸発した気相の作動流体を凝縮部16側へ流す単管として構成されている。
 図1~図2に示すように、配管部15の内部には、流路形成部材17が配置されている。流路形成部材17は、対象機器の冷却停止時、すなわち、サーモサイフォンの非作動時における液相の作動流体の液面SFよりも上下方向上側の配管部15内に配置されている。
 図2~図3に示すように、流路形成部材17は、配管部15内を凝縮部16側の空間と蒸発部14側の空間に仕切る仕切部170を有している。配管部15の内側の空間は、凝縮部16により凝縮した作動流体および蒸発部14により蒸発した作動流体が流れる空間である。そして、仕切部170は、凝縮部16により凝縮した作動流体および蒸発部14により蒸発した作動流体が流れる空間を凝縮部16側の空間と蒸発部14側の空間に仕切っている。仕切部170は、有底円筒形状を成している。仕切部170は、上下方向上側に開口するよう配置されている。
 仕切部170の底部には、凝縮部16により凝縮した液相の作動流体を上下方向下側に導く第1開口部171が形成されている。また、仕切部170の底部には、蒸発部14により蒸発した気相の作動流体を上下方向上側に導く第2開口部172が形成されている。また、仕切部170の底部には、第2開口部172から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びる筒状の筒状流路形成部173が形成されている。また、配管部15の内周面と筒状流路形成部173との間には隙間が形成されている。
 凝縮部16により凝縮した液相の作動流体の多くは、配管部15の内周面に沿って流下する。本実施形態の冷却装置は、配管部15の内周面と筒状流路形成部173との間には隙間が形成されているので、凝縮部16により凝縮した液相の作動流体の筒状流路形成部173への侵入が抑制される。また、上昇しようとする気相の作動流体と流下しようとする液相の作動流体がぶつかりにくくすることもできる。
 ところで、液相の作動流体が気化すると、その体積は20倍以上になる。このため、気相の作動流体が通る第2開口部172の開口面積は、液相の作動流体が通る第1開口部171の開口面積よりも十分大きくなっている。
 また、仕切部170は、凝縮部16により凝縮した液相の作動流体を集めて第1開口部171から蒸発部14側へ流すとともに蒸発部14により蒸発した気相の作動流体を第2開口部172および筒状流路形成部173を介して凝縮部16側へ流す。
 仕切部170の外周面には、複数の係止爪175およびフランジ部176が形成されている。フランジ部176は第1突出部に相当し、係止爪175は第2突出部に相当する。複数の係止爪175およびフランジ部176は、仕切部170の外周面から径方向外側に突出している。一方、配管部15の内周面には、該内周面から配管部の中心に向かって突出する凸部150が形成されている。
 配管部15の内径よりもフランジ部176の外形が小さくなっている。このため、配管部15の内周面とフランジ部176との間に隙間tが形成されるようになっている。
 配管部15の内部に流路形成部材17が挿入されると、複数の係止爪175が弾性変形して、フランジ部176と複数の係止爪175が凸部150を挟み込む。このようにして、仕切部170が配管部15の内部に固定されている。
 また、配管部15の内周面とフランジ部176との間に隙間tが形成されるようになっているので、配管部15の内部に流路形成部材17をスムーズに挿入することができる。
 また、配管部15の内部には、第1開口部171に接続された筒状の筒状流路形成部174が配置されている。筒状流路形成部174は、仕切部170から上下方向下側に向かって延びている。筒状流路形成部174は、第1開口部171に導入された作動流体を、第1開口部171よりも上下方向下側へと導く。
 筒状流路形成部174には、管状を成す液相流路部18が接続されている。液相流路部18は、凝縮部16により凝縮し、第1開口部171に導入された作動流体を、液相の作動流体の液面SFよりも上下方向下側に導く。なお、筒状流路形成部174および液相流路部18は、液相流路形成部に相当する。
 液相流路部18は、蛇腹状に形成された樹脂や伸縮性のあるエラストマー等により構成することができる。液相流路部18を配管部15の内部に挿入する際に、配管部15の形状に合わせて液相流路部18が変形するようになっている。なお、配管部15へ挿入後に配管部15を曲げ加工することも可能である。また、液相流路部18を備えることなく、筒状流路形成部174を液相の作動流体の液面SFより上下方向下側に向けて伸びるようにしてもよい。なお、アルミニウム、銅等の金属により筒状流路形成部174を構成して、挿入後に曲げ加工することもできる。
 ただし、液相流路部18は、沸騰する液相の作動流体からの受熱を低減するため、断熱部材により構成するのが好ましい。なお、金属筒状流路の場合は、表面あるいは内面に断熱層を設けるのが好ましい。
 次に、冷却装置10が組電池BPを冷却する場合の作動について説明する。図1に示すように、冷却装置10において蒸発部14が組電池BPから受熱すると、蒸発部14内の液相の作動流体は、その組電池BPの熱により蒸発する。これにより、組電池BPは熱を奪われ冷却される。蒸発部14で蒸発した気相の作動流体は密閉容器101内で上昇する。そして、気相の作動流体は液相の作動流体の液面より上下方向上側に達すると、流路形成部材17の筒状流路形成部173を通って凝縮部16へと導入される。
 また、凝縮部16に到達した気相の作動流体は空気へ放熱して凝縮し、その凝縮した液相の作動流体は、重力の作用により流下して流路形成部材17の仕切部170に集められた後、第1開口部171を通って蒸発部14へ到達する。
 本実施形態の流路形成部材17には仕切部170に形成された第2開口部172から凝縮部16側、すなわち上下方向上側に延びる筒状の筒状流路形成部173が形成されている。このため、蒸発部14で蒸発した気相の作動流体は、凝縮部16から流下する液相の作動流体の流れの影響を受けることなく筒状流路形成部173を通って凝縮部16にスムーズに到達する。したがって、凝縮部16に到達すべき冷媒の流量を減少させることがなく、冷却能力を向上することができる。
 また、仕切部170に集められた液相の作動流体は、筒状流路形成部173を通る気相の作動流体の流れの影響を受けることなく仕切部170に形成された第1開口部171を通って蒸発部14へ到達することができる。
 ところで、電池セルBCの下方の部位の温度が電池セルBCの上方の部位の温度よりも低く、かつ、凝縮部16によって凝縮された作動流体の温度が電池セルBCの上方の部位の温度よりも高い場合、図4に示すように、電池セルBCの上方の部位で沸騰が生じる。
 この場合、液相の作動流体の液面近くの液相の作動流体が蒸発して上昇し、凝縮部16によって凝縮された液相の作動流体は液相の作動流体の液面近くまでしか流下しない。したがって、電池セルBCの下方の部位の温度は低いままとなる。すなわち、電池セルBCの下方の部位の温度と電池セルBCの上方の部位の温度差が大きくなる。特に、配管部15の配管長が長いほど温度分布は不均一となる。
 しかしながら、本実施形態の冷却装置は、流路形成部材17の第1開口部171から液相の作動流体の液面SFよりも上下方向下側に凝縮部16により凝縮した液相の作動流体を導く液相流路部18を備えている。
 したがって、凝縮部16により凝縮した液相の作動流体が液相流路部18を通って液相の作動流体の液面SFよりも上下方向下側に導かれるので、対象機器の温度分布の均一化が可能である。なお、液相流路部18は、気泡の少ない蒸発部14の下端14bの近くまで伸びるように配置するのが好ましい。このように、液相流路部18を、気泡の少ない蒸発部14の下端14bの近くまで伸びるように配置することにより、電池セルBCの下方の部位の温度と電池セルBCの上方の部位の温度差を小さくすることができる。
 以上、説明したように、本実施形態の冷却装置10は、作動流体の液相と気相の相変化に伴う熱移動により対象機器を冷却する。本実施形態の冷却装置10は、対象機器の冷却時に作動流体が蒸発するように対象機器と作動流体とが熱交換可能に構成された蒸発部14を備えている。また、冷却装置10は、蒸発部14より上下方向上側に配置され蒸発部14により蒸発した作動流体を凝縮させる凝縮部16を備えている。また、冷却装置10は、凝縮部16により凝縮した作動流体を蒸発部14側へ流すとともに蒸発部14により蒸発した作動流体を凝縮部16側へ流す筒状の配管部15を備えている。また、冷却装置10は、流路形成部材17を備えている。そして、流路形成部材17は、配管部15内に配置され配管部15内を凝縮部16側の空間と蒸発部14側の空間に仕切る仕切部170を有している。また、流路形成部材17は、仕切部170に形成され凝縮部16により凝縮した作動流体を上下方向下側に導入する第1開口部171を有している。また、流路形成部材17は、仕切部170に形成され蒸発部14により蒸発した作動流体を上下方向上側に導入する第2開口部172を有している。また、流路形成部材17は、第2開口部172から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びるとともに第2開口部から導入された作動流体を液面よりも上下方向上側へと導く筒状の筒状流路形成部173を有している。
 このような構成によれば、仕切部170に形成された第1開口部171、第2開口部172および筒状流路形成部173により蒸発部14から凝縮部16側へ向かう作動流体の流れが、凝縮部16から蒸発部14側へ向かう作動流体の流れにより阻害されなくなる。したがって、簡素な構成で、かつ、冷却能力を向上することができる。
 本実施形態の冷却装置10のような単管型のサーモサイフォンであっても、ループ型サーモサイフォンのようなスムーズな作動流体の循環が可能である。
 また、ループ管に対して多少管径を大きくしても、単管の方が構成が簡易であるため、搭載性も良好であり、コストを低減することも可能である。
 また、本実施形態の冷却装置は、第1開口部171に導入された作動流体を、第1開口部171よりも上下方向下側へと導く筒状流路形成部174を備えている。
 これによれば、蒸発部14により蒸発した作動流体の影響を受けることなく、第1開口部171に導入された作動流体を、第1開口部171よりも上下方向下側へと導くことが可能である。
 また、本実施形態の冷却装置は、第1開口部に導入された作動流体を、液面より上下方向下側に導く液相流路部18を備えている。
 したがって、液相流路部18により、第1開口部に導入された作動流体は、液面より上下方向下側に導かれるので、蒸発部14の温度分布を均一化することが可能である。
 液相流路部18が作動流体を蒸発部14の下方から供給することができるので、単管でありながら、ループ管のように液冷媒が蒸発部14内をよどみなく流れる。したがって、蒸発部14の下方に蒸発部14上方より低温、かつ、凝縮部16より低温な部位があるような条件になっても、液冷媒が流れることで均温化される。したがって、対象機器の下方の部位の温度と対象機器の上方の部位の温度差を小さくすることができる。すなわち、対象機器の温度分布を均一化することができる。
 仕切部170は、該仕切部170の外周面から径方向外側に突出する第1突出部としてのフランジ部176および第2突出部としての係止爪175を有している。また、配管部15の内周面には、該内周面から配管部15の中心に向かって突出する凸部150が形成されている。そして、凸部150の両側面がフランジ部176および係止爪175に挟まれることによって仕切部170が配管部15の内部に固定されている。このように、配管部15の内部に流路形成部材17を容易に固定することができる。
 また、仕切部170は、有底筒形状を成し、上下方向上側に開口しており、第1開口部171、第2開口部172および筒状流路形成部173は、仕切部170の底面に形成されている。このように、有底筒形状を成す仕切部170の底面に第1開口部171、第2開口部172および筒状流路形成部173を形成することができる。
 また、第2開口部172の開口面積は、第1開口部171の開口面積よりも大きくなっている。したがって、液相の作動流体が気化しても十分な通路面積を確保することが可能である。
 (第2実施形態)
 第2実施形態に係る冷却装置10について図5~図8を用いて説明する。上記第1実施形態の冷却装置10は、流路形成部材17の仕切部170の底面が平坦となっているが、本実施形態の冷却装置10は、図5、図7に示すように、流路形成部材17の仕切部170が漏斗形状を成している。また、上記第1実施形態の冷却装置10は、1つの筒状流路形成部173を有しているが、本実施形態の冷却装置10は、図6に示すように、4つの筒状流路形成部173を有している。
 図5、図7に示すように、流路形成部材17の仕切部170は、上下方向下側に進むにつれて縮径する中空の円錐台形状を成している。このため、凝縮部16で凝縮された液相の作動流体が仕切部170に溜まりにくく、液相の作動流体を速やかに蒸発部14側に流下させることができる。
 また、本実施形態の冷却装置10は、4つの筒状流路形成部173を有している。また、4つの第2開口部172の開口面積の合計は、第1開口部171の開口面積よりも大きくなっている。したがって、大量の気相の作動流体を凝縮部16側にスムーズに導くことができる。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 また、仕切部170は、中空の円錐台形状を成し、上下方向下側に進むにつれて縮径するよう配置されている。したがって、凝縮部16で凝縮された液相の作動流体を蒸発部14側に速やかに流下させることができる。
 (第3実施形態)
 第3実施形態に係る冷却装置10について図9~図11を用いて説明する。上記第2実施形態の冷却装置10は、流路形成部材17が4つの筒状流路形成部173を有しているのに対し、本実施形態の冷却装置10は、流路形成部材17が2つの筒状流路形成部173を有している。また、上記第2実施形態の冷却装置10は、流路形成部材17の筒状流路形成部173により形成される流路の断面形状が円形を成している。これに対し、本実施形態の冷却装置10は、流路形成部材17の筒状流路形成部173により形成される流路の断面形状が略三日月状を成している。
 また、2つの第2開口部172の開口面積の合計は、第1開口部171の開口面積よりも大きくなっている。したがって、気相の作動流体を効率的に凝縮部16側に導くことができる。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (第4実施形態)
 第4実施形態に係る冷却装置10について図12~図13を用いて説明する。本実施形態の流路形成部材17は、筒状流路形成部173と仕切部170とが別体で構成されている。筒状流路形成部173は、3つの開口部1731を有している。また、仕切部170は、漏斗形状を成している。仕切部170には、1つの第1開口部171と、3つの第2開口部172が形成されている。
 そして、仕切部170に形成された3つの開口部1731が、それぞれ仕切部170に3つの第2開口部172と連結して、筒状流路形成部173が仕切部170に組み付けられている。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (第5実施形態)
 第5実施形態に係る冷却装置10について図14を用いて説明する。なお、図14中では、流路形成部材17を模式的に示してあるが、図13に示したものと同様の構成をしている。
 本実施形態の冷却装置10は、2つの配管部15を有している。2つの配管部15の一方には、凝縮器19と流路形成部材17と液相流路部18が配置されている。凝縮器19および流路形成部材17は、液相の作動流体の液面SFより上下方向上側に配置されている。また、液相流路部18は、流路形成部材17に接続されている。液相流路部18は、凝縮部16により凝縮した液相の作動流体を、液相の作動流体の液面SFよりも上下方向下側に導く。液相流路部18は、流路形成部材17から、蒸発部14の下端14bの近くまで伸びるように配置されている。
 2つの配管部15の一方の上側の端部と2つの配管部15の他方の上側の端部は接続されている。また、2つの配管部15の一方の下側の端部と2つの配管部15の他方の下側の端部は接続されている。
 2つの配管部15は、いずれも凝縮部16により凝縮した液相の作動流体を蒸発部14側へ流すとともに蒸発部14により蒸発した気相の作動流体を凝縮部16側へ流す単管として機能する。このように、単管として機能する配管部15を複数備えるようにすることもできる。
 また、2つの配管部15の一方には、流路形成部材17が配置されている。この流路形成部材17には、液相流路部18が接続されている。そして、液相流路部18は、気泡の少ない蒸発部14の下端の近くまで伸びるように配置されている。
 したがって、液相流路部18により、凝縮部16によって凝縮した液相の作動流体を蒸発部14の下端の近くまで導くことができる。
 また、2つの配管部15の一方の下側の端部と2つの配管部15の他方の下側の端部は接続されているので、液相流路部18により蒸発部14の下端の近くまで導かれた液相の作動流体を2つの配管部15の他方の下側の端部に導くこともできる。したがって、2つの配管部15の一方の温度分布だけでなく、2つの配管部15の他方の温度分布を均一化することができる。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (第6実施形態)
 第6実施形態に係る冷却装置10について図15~図16を用いて説明する。本実施形態では蒸発部14の構成が第1実施形態と異なっている。また、本実施形態では、図16に示すように組電池BPが配置されている。なお、図15では、組電池BPを省略してある。
 また、本実施形態の冷却装置10は蒸発熱拡散板102を備えていない。その一方で、本実施形態の密閉容器101は、凝縮部16と配管部15と蒸発部14とを有している。
 また、蒸発部14は、下方流路部144と、上方流路部145と、複数の蒸発管143とを有している。
 複数の蒸発管143は車両上下方向に延びている。複数の蒸発管143はそれぞれ、扁平断面形状を成している。そして、蒸発管143の両側の扁平面143a、143bにそれぞれ、電池側面BPbが熱伝導シート材35を介して押し付けられた状態で組電池BPが連結されている。これにより、組電池BPは、蒸発部14のうち複数の蒸発管143に対して熱伝導可能に固定されている。
 また、複数の蒸発管143の下端143cは下方流路部144へそれぞれ連結し、その下端143cにて蒸発管143は下方流路部144へ連通している。また、複数の蒸発管143の上端143dは上方流路部145へそれぞれ連結し、その上端143dにて蒸発管143は上方流路部145へ連通している。
 下方流路部144は複数の電池セルBCの積層方向へ延びるように形成され、その複数の積層方向の一方にて配管部15の下端へつながっている。下方流路部144は組電池BPおよび複数の蒸発管143よりも下方に位置し、組電池BPおよび熱伝導シート材35に対して間隔を空けて配置されている。
 上方流路部145は複数の電池セルBCの積層方向へ延びるように形成され、下方流路部144、組電池BP、および複数の蒸発管143よりも上方に位置している。また、上方流路部145は電池セルBCの積層方向の一方にて、配管部15のうちの流路形成部材17に対する下方の部位に接続されている。
 このように構成された本実施形態の冷却装置10では、図15に示すように、蒸発管143が組電池BPから受熱すると、その蒸発管143内の液相の作動流体は、その組電池BPの熱により蒸発する。これにより、組電池BPは熱を奪われ冷却される。蒸発管143で蒸発した気相の作動流体は上昇して上方流路部145へ流入し、上方流路部145から配管部15へと流れる。そして、配管部15内に配置された流路形成部材17を通って凝縮部16へと導かれる。
 また、凝縮部16から流下する液相の作動流体は、流路形成部材17および液相流路部18を通って蒸発部14の下方流路部144へ流下する。ここで、その流下する液相の作動流体は、流路形成部材17および液相流路部18を通るので、上方流路部145から配管部15内を上下方向上側に向かって上昇する気相の作動流体の流れの影響を受けることなく蒸発部14に到達する。
 そして、下方流路部144へ流入した液相の作動流体は、下方流路部144から複数の蒸発管143のそれぞれへ分配される。このように作動流体の液相と気相との相変化が密閉容器101内で繰り返されることにより、組電池BPは冷却される。
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。
 (他の実施形態)
 (1)上記各実施形態では、流路断面が円形となった配管部15を備えたが、配管部15の流路断面は円形に限られるものではなく、例えば、多角形や楕円形状とすることもできる。また、冷却装置10は、流路形成部材17が配管部15として機能するように構成されていてもよい。
 (2)上記各実施形態では、配管部15の内周面に仕切部170を固定したが、配管部15の内周面と仕切部170の間にシール部材を配置するようにしてもよい。
 (3)上記各実施形態では、管状を成す液相流路部18を配置したが、この液相流路部18の途中に貫通孔を形成し、この貫通孔から蒸発部14に作動流体の一部を戻すようにしてもよい。
 (4)上記各実施形態では、対象機器の冷却停止時における液相の作動流体の液面SFよりも上下方向上側の配管部15内に流路形成部材17を配置した。これに対し、対象機器の冷却停止時における液相の作動流体の液面SFよりも上下方向上側の配管部15内に筒状流路形成部173の上下方向上側の開口部が位置するように流路形成部材17を配置してもよい。
 (5)上記各実施形態では、流路形成部材17と液相流路部18を別体で構成したが、流路形成部材17と液相流路部18を一体で構成してもよい。
 (6)図14に示した凝縮器19には外周面にフィンが設けられていないが、凝縮器19の外周面にフィンを備えるようにしてもよい。
 (7)上記各実施形態では、車両に搭載された組電池BPを対象機器として冷却する例を示したが、組電池BPだけでなく、例えば、電子機器、発熱機器を冷却する冷却装置として使用することもできる。
 (8)上記各実施形態では、車両に搭載された組電池BPを対象機器として冷却する例を示したが、車載用の部品だけでなく、例えば、家庭用、設備用の部材を冷却する冷却装置として使用することもできる。
 (9)上記各実施形態では、配管部15の内部に流路形成部材17を固定した例を示したが、例えば、作動流体の液面変動により変動する構成としてもよい。具体的には、流路形成部材17が液相の作動流体に対し浮力を有し、液面近傍に流路形成部材17が浮遊するよう構成することもできる。
 (10)上記各実施形態では、蛇腹状に形成された液相流路部18を備えた例を示したが、例えば、ホースによって液相流路部18を構成することもできる。
 (11)上記各実施形態では、気相の作動流体が通る第2開口部172の開口面積が、液相の作動流体が通る第1開口部171の開口面積よりも十分大きくなるようにした。気体は液体よりも密度が小さいため、気相の作動流体が通る第2開口部172の開口面積は、少なくとも液相の作動流体が通る第1開口部171の開口面積の2倍以上とする必要がある。
 (12)上記各実施形態では、上下方向に延びる直線状の直線部15aと屈曲して凝縮部16の下端16bと接続される屈曲部15bを有する配管部15を備えた。これに対し、直線状の直線部15aを斜めに傾斜して配置することもできる。
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、冷却装置は、蒸発部、凝縮部、配管部、流路形成部材を備えている。そして、流路形成部材は、配管部内に配置され配管部内を凝縮部側の空間と蒸発部側の空間に仕切る仕切部を有している。また、流路形成部材は、仕切部に形成され凝縮部により凝縮した作動流体を上下方向下側に導入する第1開口部を有している。また、流路形成部材は、仕切部に形成され蒸発部により蒸発した作動流体を上下方向上側に導入する第2開口部を有している。また、流路形成部材は、第2開口部から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びる筒状の筒状流路形成部を有している。
 また、第2の観点によれば、冷却装置は、第1開口部に導入された作動流体を、第1開口部よりも上下方向下側へと導く筒状流路形成部を備えている。
 これによれば、蒸発部により蒸発した作動流体の影響を受けることなく、第1開口部に導入された作動流体を、第1開口部よりも上下方向下側へと導くことが可能である。
 また、第3の観点によれば、冷却装置は、第1開口部に導入された作動流体を、液面より上下方向下側に導く液相流路形成部を備えている。
 したがって、液相流路形成部により、第1開口部に導入された作動流体は、液面より上下方向下側に導かれるので、蒸発部の温度分布を均一化することが可能である。
 また、第4の観点によれば、仕切部は、該仕切部の外周面から径方向外側に突出する第1突出部および第2突出部を有している。また、配管部の内周面には、該内周面から配管部の中心に向かって突出する凸部が形成されている。そして、凸部の両側面が第1突出部および第2突出部に挟まれることによって仕切部が配管部の内部に固定されている。このように、配管部の内部に流路形成部材を容易に固定することができる。
 また、第5の観点によれば、仕切部は、有底筒形状を成し、上下方向上側に開口している。また、第1開口部、第2開口部および筒状流路形成部は、仕切部の底面に形成されている。このように、有底筒形状を成す仕切部の底面に第1開口部、第2開口部および筒状流路形成部を形成することができる。
 また、第6の観点によれば、仕切部は、中空の円錐台形状を成し、上下方向下側に進むにつれて縮径するよう配置されている。したがって、凝縮部で凝縮された液相の作動流体を蒸発部側に速やかに流下させることができる。
 また、第7の観点によれば、第2開口部の開口面積は、第1開口部の開口面積よりも大きくなっている。したがって、液相の作動流体が気化しても十分な通路面積を確保することが可能である。
 また、第8の観点によれば、冷却装置は、蒸発部、凝縮部、流路形成部材を備えている。流路形成部材は、凝縮部により凝縮した作動流体および蒸発部により蒸発した作動流体が流れる空間を凝縮部側の空間と蒸発部側の空間に仕切る仕切部を有している。また、流路形成部材は、仕切部に形成され凝縮部により凝縮した作動流体を上下方向下側に導入する第1開口部を有している。また、流路形成部材は、仕切部に形成され蒸発部により蒸発した作動流体を上下方向上側に導入する第2開口部を有している。また、流路形成部材は、第2開口部から対象機器の冷却停止時における液相の作動流体の液面よりも上下方向上側に延びる筒状の筒状流路形成部を有している。

Claims (8)

  1.  作動流体の液相と気相の相変化に伴う熱移動により対象機器を冷却する冷却装置であって、
     前記対象機器の冷却時に前記作動流体が蒸発するように前記対象機器と前記作動流体とが熱交換可能に構成された蒸発部(14)と、
     前記蒸発部より上下方向上側に配置され前記蒸発部により蒸発した前記作動流体を凝縮させる凝縮部(16)と、
     前記凝縮部により凝縮した前記作動流体を前記蒸発部側へ流すとともに前記蒸発部により蒸発した前記作動流体を前記凝縮部側へ流す筒状の配管部(15)と、
     前記配管部内に配置され前記配管部内を前記凝縮部側の空間と前記蒸発部側の空間に仕切る仕切部(170)と、前記仕切部に形成され前記凝縮部により凝縮した前記作動流体を上下方向下側に導入する第1開口部(171)と、前記仕切部に形成され前記蒸発部により蒸発した前記作動流体を前記上下方向上側に導入する第2開口部(172)と、前記第2開口部から前記対象機器の冷却停止時における前記液相の前記作動流体の液面よりも前記上下方向上側に延びるとともに前記第2開口部から導入された前記作動流体を前記液面よりも前記上下方向上側へと導く筒状の筒状流路形成部(173)と、を有する流路形成部材(17)と、を備えた冷却装置。
  2.  前記第1開口部に導入された前記作動流体を、前記第1開口部よりも上下方向下側へと導く筒状流路形成部(174)を備えた請求項1に記載の冷却装置。
  3.  前記第1開口部に導入された前記作動流体を、前記液面より上下方向下側に導く液相流路形成部(174、18)を備えた請求項1または2に記載の冷却装置。
  4.  前記仕切部は、該仕切部の外周面から径方向外側に突出する第1突出部(176)および第2突出部(175)を有し、
     前記配管部の内周面には、該内周面から前記配管部の中心に向かって突出する凸部(150)が形成されており、
     前記凸部の両側面が前記第1突出部および前記第2突出部に挟まれることによって前記仕切部が前記配管部の内部に固定されている請求項1ないし3のいずれか1つに記載の冷却装置。
  5.  前記仕切部は、有底筒形状を成し、前記上下方向上側に開口しており、
     前記第1開口部、前記第2開口部および前記筒状流路形成部は、前記仕切部の底面に形成されている請求項1ないし4のいずれか1つに記載の冷却装置。
  6.  前記仕切部は、中空の円錐台形状を成し、前記上下方向下側に進むにつれて縮径するよう配置されている請求項1ないし4のいずれか1つに記載の冷却装置。
  7.  前記第2開口部の開口面積は、前記第1開口部の開口面積よりも大きくなっている請求項1ないし6のいずれか1つに記載の冷却装置。
  8.  作動流体の液相と気相の相変化に伴う熱移動により対象機器を冷却する冷却装置であって、
     前記対象機器の冷却時に前記作動流体が蒸発するように前記対象機器と前記作動流体とが熱交換可能に構成された蒸発部(14)と、
     前記蒸発部より上下方向上側に配置され前記蒸発部により蒸発した前記作動流体を凝縮させる凝縮部(16)と、
     前記凝縮部により凝縮した前記作動流体および前記蒸発部により蒸発した前記作動流体が流れる空間を前記凝縮部側の空間と前記蒸発部側の空間に仕切る仕切部(170)と、前記仕切部に形成され前記凝縮部により凝縮した前記作動流体を上下方向下側に導入する第1開口部(171)と、前記仕切部に形成され前記蒸発部により蒸発した前記作動流体を前記上下方向上側に導入する第2開口部(172)と、前記第2開口部から前記対象機器の冷却停止時における前記液相の前記作動流体の液面よりも前記上下方向上側に延びるとともに前記第2開口部から導入された前記作動流体を前記液面よりも前記上下方向上側へと導く筒状の筒状流路形成部(173)と、を有する流路形成部材(17)と、を備えた冷却装置。
PCT/JP2020/023246 2019-06-17 2020-06-12 冷却装置 WO2020255883A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019112014A JP2020204429A (ja) 2019-06-17 2019-06-17 冷却装置
JP2019-112014 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255883A1 true WO2020255883A1 (ja) 2020-12-24

Family

ID=73838524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023246 WO2020255883A1 (ja) 2019-06-17 2020-06-12 冷却装置

Country Status (2)

Country Link
JP (1) JP2020204429A (ja)
WO (1) WO2020255883A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117355909A (zh) * 2021-06-11 2024-01-05 株式会社藤仓 供电电缆以及带连接器的供电电缆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985650A (ja) * 1972-12-22 1974-08-16
JPS58150795A (ja) * 1982-03-03 1983-09-07 Mitsubishi Heavy Ind Ltd ヒ−トパイプ
JPH03294786A (ja) * 1990-04-10 1991-12-25 Tetsuya Kondo 二重管型熱サイフォン
JP2019074301A (ja) * 2017-10-17 2019-05-16 株式会社デンソー 冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985650A (ja) * 1972-12-22 1974-08-16
JPS58150795A (ja) * 1982-03-03 1983-09-07 Mitsubishi Heavy Ind Ltd ヒ−トパイプ
JPH03294786A (ja) * 1990-04-10 1991-12-25 Tetsuya Kondo 二重管型熱サイフォン
JP2019074301A (ja) * 2017-10-17 2019-05-16 株式会社デンソー 冷却装置

Also Published As

Publication number Publication date
JP2020204429A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
US10996002B2 (en) Evaporator
CN105452025B (zh) 用于电池的温度控制器
JP6749398B2 (ja) 熱交換器および空調システム
WO2018047533A1 (ja) 機器温調装置
CN111247384B (zh) 冷却装置
WO2018047531A1 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
JPWO2018070116A1 (ja) 冷却装置
CN212658104U (zh) 热管换热器及散热装置
JP6662462B2 (ja) 機器温調装置
WO2020255883A1 (ja) 冷却装置
WO2020017414A1 (ja) サーモサイフォン式熱交換装置
WO2019077902A1 (ja) 冷却装置
JP2011142298A (ja) 沸騰冷却装置
JP7099144B2 (ja) サーモサイフォン式温調装置
WO2020235475A1 (ja) 機器温調装置
JP3893651B2 (ja) 沸騰冷却装置及びそれを用いた筐体冷却装置
WO2018070182A1 (ja) 機器温調装置
CN219760404U (zh) 换热装置、电气设备
CN114152126A (zh) 热管换热器及散热装置
WO2020217919A1 (ja) 機器温調装置
JP2021028545A (ja) サーモサイフォン式冷却装置
JP2017172866A (ja) 凝縮器
CN111656121A (zh) 车辆用热虹吸式冷却装置
JP2006269694A (ja) 電力機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827490

Country of ref document: EP

Kind code of ref document: A1