JP2011142298A - 沸騰冷却装置 - Google Patents

沸騰冷却装置 Download PDF

Info

Publication number
JP2011142298A
JP2011142298A JP2010204173A JP2010204173A JP2011142298A JP 2011142298 A JP2011142298 A JP 2011142298A JP 2010204173 A JP2010204173 A JP 2010204173A JP 2010204173 A JP2010204173 A JP 2010204173A JP 2011142298 A JP2011142298 A JP 2011142298A
Authority
JP
Japan
Prior art keywords
refrigerant
header
liquid
vapor
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010204173A
Other languages
English (en)
Inventor
Wakana Nogami
若菜 野上
Yasuki Fujii
泰樹 藤井
Hiroyuki Kondo
広幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010204173A priority Critical patent/JP2011142298A/ja
Publication of JP2011142298A publication Critical patent/JP2011142298A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Abstract

【課題】冷媒循環を効率化して冷却能力を向上し、かつ設置の自由度を向上できる小型の沸騰冷却装置を得ることを目的としている。
【解決手段】冷媒槽4と放熱器6と冷媒蒸気管7と冷媒液管8を各々備え、冷媒槽4は第1蒸気ヘッダ9、第1液ヘッダ10、第1冷媒流路11を備え、発熱体2を冷媒槽4の第1冷媒流路11に当たる部分の側面に取り付けることにより、冷媒3循環が対向することを無くすことができるので、冷媒循環を向上し、冷却能力を向上するとともに、冷媒槽4と放熱器6との位置関係の自由度を向上できる小型の沸騰冷却装置を得ることができる。
【選択図】図1

Description

本発明は、冷媒の沸騰および凝縮により発熱体を冷却する沸騰冷却装置に関する。
近年、電子部品の高性能化と制御基板に対する電子部品の高密度実装化が進み、制御基板からの発熱量は飛躍的に増加しているとともに、電子部品等の収納箱の小型化も進み、冷却機器の高性能化および小型化が求められている。
このため、構成部品が少なく、熱移動量が大きい冷却方式として冷媒の沸騰気化および凝縮液化を利用するヒートパイプを用いた冷却方式が知られている(例えば、特許文献1)。
しかしながらヒートパイプを用いた冷却方式では、沸騰気化して上昇する冷媒蒸気と凝縮液化されて降下する冷媒液が同じ管内を移動するため、互いに対向しあって冷媒循環が阻害され、熱輸送量の向上の妨げになるという問題がある。
またさらに、冷媒蒸気および冷媒液が異なる通路を移動する沸騰冷却装置として従来知られている方式では、冷媒蒸気および冷媒液が移動する通路をそれぞれ備えることで、放熱量の増加に伴い装置が大型化、複雑化するという問題がある(例えば、特許文献2)。
そこで、冷媒蒸気および冷媒液が移動する通路を区画する冷媒通路形成部材を備えることで、冷媒蒸気および冷媒液の対向を削減して冷媒循環を効率化し、熱輸送量を向上させる小型の沸騰冷却装置が知られている(例えば、特許文献3)。
以下、従来の沸騰冷却装置について、図11を参照しながら説明する。
図11に示すように、沸騰冷却装置101は、電気回路等で用いられ、駆動に伴い大量の熱を発生する発熱体102に取り付けられ、前記発熱体102の熱により沸騰気化する冷媒103が封入された冷媒槽104と、筒状をなし一端が前記冷媒槽104と連通し他端が閉塞され前記冷媒槽104から沸騰気化してきた前記冷媒103を凝縮液化させて前記冷媒槽104へと戻す放熱器105と、前記放熱器105に配置され前記放熱器105の上部の空間である上部空間106と、前記冷媒槽104からの前記冷媒103を前記上部空間106に導く冷媒蒸気通路107と、前記上部空間106の前記冷媒103を前記冷媒槽104に戻すとともに、その途中に液化した前記冷媒103により液溜まり部が形成される冷媒液通路108とを備え、前記上部空間106、前記冷媒蒸気通路107、前記冷媒液通路108をそれぞれ区画する冷媒通路形成部材109を備えている。
このような構成により、前記冷媒103が前記冷媒槽104の底面に取り付けられた前記発熱体102の熱を吸収して沸騰気化し、密度差により前記冷媒蒸気通路107を通って前記上部空間106へと移動し、環境空気と熱交換を行う前記放熱器105にて凝縮液化し、密度差により前記冷媒液通路108を通って前記冷媒槽104へと戻ることにより自然に循環し、前記発熱体102の熱を環境空気へと放熱させる沸騰冷却装置である。
このような沸騰冷却装置では、前記冷媒通路区画部材109により前記上部空間106と前記冷媒蒸気通路107と前記冷媒液通路108を区画することで、装置を大型化することなく冷媒蒸気と冷媒液の対向を防ぐことができるので、前記冷媒103の循環を効率良く行い前記発熱体102の冷却を促進していた。
特開平5−243438号公報 特開昭51−39442号公報 特開平8−78588号公報
しかしながらこのような従来の沸騰冷却装置では、発熱体が冷媒槽の底面に取り付けられているため、発熱体の熱により沸騰気化した冷媒が冷媒蒸気通路を通って放熱器へと移動する経路と、放熱器にて凝縮液化した冷媒が冷媒液通路を通って冷媒槽に移動する経路が冷媒槽の液相部分では分離しておらず、冷媒循環が妨げられ、冷却能力が低下するという課題があった。
また、冷媒通路形成部材により冷媒蒸気および冷媒液の通路を区画する従来の方式では、冷媒槽と放熱器を必ず上下に密接して設置する必要があり、例えば発熱体の位置と放熱箇所が離れている場合には対応できず、放熱器形状や設置の自由度が低くなるという課題があった。
また、放熱器内で冷媒蒸気通路の出口と冷媒液通路の入口が隣り合っているため、冷媒液が冷媒蒸気通路へと流入することを完全に防ぐことができないので、冷媒循環の妨げになり、冷却能力が低下するという課題があった。
また、冷媒液通路が冷媒蒸気通路や発熱体と隣接するため、冷媒液管と発熱体や冷媒蒸気管とが熱干渉して、すなわち冷媒液通路内で冷媒液が昇温し気泡が発生することで冷媒循環の妨げになり、冷却能力が低下するという課題があった。
本発明は、このような課題を解決するものであり、冷媒槽と放熱器と冷媒蒸気管と冷媒液管を各々備えることにより、冷媒蒸気と冷媒液の対向を防いで冷媒循環を促進し、発熱体が冷媒槽に取り付けられる箇所と放熱を行う箇所の位置関係や放熱器の形状に依存することなく沸騰冷却装置の設置の自由度を向上させ、また冷媒液管と発熱体や冷媒蒸気管との熱干渉を防止して冷媒循環を促進することにより、冷却能力を向上できる小型の沸騰冷却装置を得ることを目的としている。
そして、この目的を達成するために本発明は、屋内外に設置される駆動に伴い大量の熱を発生する発熱体を有する電気回路や制御基盤に取り付けられ、前記発熱体の熱を吸収し沸騰気化する冷媒が封入された冷媒槽と、環境空気と前記冷媒の熱交換を行う放熱器と、前記冷媒槽から前記放熱器へ前記冷媒を移送する冷媒蒸気管と、前記放熱器から前記冷媒槽へ前記冷媒を移送する冷媒液管とを備え、前記冷媒槽は第1蒸気ヘッダと第1液ヘッダと前記第1蒸気ヘッダおよび前記第1液ヘッダを連通させる第1冷媒流路とを備え、前記放熱器は第2蒸気ヘッダと第2液ヘッダと前記第2蒸気ヘッダおよび前記第2液ヘッダを連通させる第2冷媒流路とを備え、前記冷媒蒸気管は前記第1蒸気ヘッダおよび前記第2蒸気ヘッダを連通し、前記冷媒液管は前記第1液ヘッダおよび前記第2液ヘッダを連通させたものであって、前記冷媒槽の前記第1冷媒流路に当たる部分の側面に前記発熱体が取り付けられる。
このとき、液相の前記冷媒が前記発熱体の熱により前記第1冷媒流路にて沸騰気化し、密度差により前記第1蒸気ヘッダを経て前記冷媒蒸気管を通って前記放熱器へと移動し、前記放熱器にて気相の前記冷媒は、前記冷媒蒸気管と接続される前記第2蒸気ヘッダを経て前記第2冷媒流路へ入り、凝縮液化して密度差により前記第2液ヘッダを経て前記冷媒液管を通って前記第1液ヘッダへと移動することにより、前記冷媒槽と前記放熱器との間を相変化を伴いながら所定の流量だけ自然に循環し、前記発熱体の熱を前記放熱器にて放熱して前記発熱体の冷却を行う沸騰冷却装置である。
このような沸騰冷却装置において、前記冷媒槽の前記第1冷媒流路に当たる部分の側面に前記発熱体が取り付けられており、前記冷媒槽と前記放熱器と前記冷媒蒸気管と前記冷媒液管が各々独立に備え、前記冷媒槽が前記放熱器よりも下側に配置されるものである。
また、前記放熱器には伝熱を促進させるために、少なくとも1つの放熱フィンが備えられたものである。
本発明によれば、第1蒸気ヘッダおよび第1液ヘッダを備えた冷媒槽と、第2蒸気ヘッダおよび第2液ヘッダを備えた放熱器と、冷媒蒸気管と、冷媒液管が各々独立することにより、発熱体の熱により沸騰気化した冷媒が冷媒蒸気通路を通って放熱器へと移動する経路と、放熱器にて凝縮液化した冷媒が冷媒液通路を通って冷媒槽に移動する経路を分離することができるので、冷媒循環を促進し、冷却能力を向上することができる。
また、発熱体の設置箇所と放熱器が設置出来る箇所が離れていても設置が容易に可能となるので、設置の自由度が高くできる。
また第1蒸気ヘッダと第2蒸気ヘッダが冷媒蒸気管により接続され、第1液ヘッダと第2液ヘッダが冷媒液管により接続されることにより、冷媒蒸気および冷媒液の逆流を防止し、冷媒循環を促進し、沸騰冷却装置を安定して運転することができる。
また、冷媒液通路が冷媒蒸気通路や発熱体を離して配置することができるので、冷媒液管と発熱体や冷媒蒸気管との熱干渉を防止して、冷媒循環を促進し、冷却能力をさらに向上できる。
また冷媒逆流防止のための部材や冷媒流路を区画する部材が不要となり、またさらに放熱器にて凝縮液化した冷媒液が密度差により重力の作用のみで冷媒液管を通って冷媒槽へと移送することができるので、冷媒液管内に冷媒移動を促進する機構、例えば内溝や金網、多孔質体、が不要となるので、沸騰冷却装置を小型化できる。
また、冷媒槽内に伝熱や沸騰を促進させる部材、例えばフィン、突起を備えることにより、発熱体の熱を吸収する冷媒液が不足して過熱状態となるドライアウトを防止し、冷却能力をさらに向上できる。
また、放熱器に伝熱促進のためのフィンを備えることにより、環境空気と冷媒の熱交換を促進し、冷却能力をさらに向上できる。
また、放熱フィンには複数の細溝および細孔を備えることにより、環境空気と冷媒の熱交換に有効な伝熱面積を増大し、冷却能力をさらに向上できる。
(a)本発明実施の形態1の沸騰冷却装置を示す正面概略図、(b)本発明実施の形態1の沸騰冷却装置を示すA−A´断面概略図 (a)本発明実施の形態2の沸騰冷却装置を示す側断面概略図、(b)本発明実施の形態2の沸騰冷却装置を示すB−B´断面概略図 本発明実施の形態3の沸騰冷却装置を示す側断面外略図 (a)本発明実施の形態4の沸騰冷却装置を示す正面概略図、(b)本発明実施の形態4の沸騰冷却装置を示すC−C´断面概略図 本発明実施の形態5の沸騰冷却装置を示す正面概略図 本発明実施の形態6の沸騰冷却装置を示す正面概略図 (a)本発明実施の形態7の沸騰冷却装置を示す正面概略図、(b)本発明実施の形態7の沸騰冷却装置を示すD−D´断面概略図 (a)本発明実施の形態8の沸騰冷却装置を示す正面概略図、(b)本発明実施の形態8の沸騰冷却装置を示すE−E´断面概略図 本発明実施の形態9の放熱フィンを示す概略図 本発明実施の形態10の沸騰冷却装置を示す概略図 従来の沸騰冷却装置を示す正面断面概略図
本発明の請求項1に記載の沸騰冷却装置は、屋内外に設置される駆動に伴い大量の熱を発生する発熱体を有する電気回路や制御基盤に取り付けられ、前記発熱体の熱を吸収し沸騰気化する冷媒が封入された冷媒槽と、環境空気と前記冷媒の熱交換を行う放熱器と、前記冷媒槽から前記放熱器へ前記冷媒を移送する冷媒蒸気管と、前記放熱器から前記冷媒槽へ前記冷媒を移送する冷媒液管とを備え、前記冷媒槽は第1蒸気ヘッダと第1液ヘッダと前記第1蒸気ヘッダおよび前記第1液ヘッダを連通させる第1冷媒流路とを備え、前記放熱器は第2蒸気ヘッダと第2液ヘッダと前記第2蒸気ヘッダおよび前記第2液ヘッダを連通させる第2冷媒流路とを備え、前記冷媒蒸気管は前記第1蒸気ヘッダおよび前記第2蒸気ヘッダを連通し、前記冷媒液管は前記第1液ヘッダおよび前記第2液ヘッダを連通させるものであって、前記冷媒槽の前記第1冷媒流路の部分の側面に前記発熱体が取り付けられるものであり、前記冷媒槽と、前記放熱器と、前記冷媒蒸気管と、前記冷媒液管が各々独立することにより、前記冷媒が前記発熱体の熱により前記第1冷媒流路にて沸騰気化し密度差により前記第1蒸気ヘッダを経て前記冷媒蒸気管を通って前記放熱器へと移動する経路と、前記放熱器にて前記冷媒が前記冷媒蒸気管と接続する前記第2蒸気ヘッダを経て前記第2冷媒流路へ入り凝縮液化して密度差により前記第2液ヘッダを経て前記冷媒液管を通って前記第1液ヘッダへと移動する経路が分離されるので、冷媒循環を促進し、冷却能力を向上できる。
また、前記発熱体の設置箇所と前記放熱器の設置箇所が離れていても取り付け可能なので、沸騰冷却装置の設置の自由度が高くできる。
また、前記冷媒液管を前記冷媒蒸気管や前記発熱体と離して配置することができるので、前記冷媒液管と前記冷媒蒸気管や前記発熱体の熱干渉を防止して、冷媒循環を促進し、冷却能力を向上できる。
また、請求項2に記載の沸騰冷却装置は、冷媒槽の上部に第1蒸気ヘッダと下部に第1液ヘッダとを備え、放熱器の上部に第2蒸気ヘッダと下部に第2液ヘッダとを備え、前記冷媒槽を前記放熱器よりも下部に配置したものであって、前記放熱器にて凝縮液化した前記冷媒が密度差により重力の作用のみで冷媒液管を通って前記冷媒槽へと移動することができ、前記冷媒液管内に冷媒移動を促進する機構が不要となるので簡単な構成で前記冷媒を循環させることができ、沸騰冷却装置を小型化できる。
また、前記冷媒槽と前記放熱器の上部同士を前記冷媒蒸気管により連通し、前記冷媒槽と前記放熱器の下部同士を前記冷媒液管により連通させることにより、冷媒蒸気および冷媒液の逆流が生じにくくなるので、沸騰冷却装置を安定して運転することができ、冷媒の逆流を防止するために追加の部材を必要としないので沸騰冷却装置を小型化できる。
また請求項3に記載の沸騰冷却装置は、冷媒蒸気管の流路断面積を冷媒液管の流路断面積よりも大きくしたものであって、冷媒の比体積は液相より気相の方が大きいので、所定の質量流量の前記冷媒が循環する上で、前記冷媒蒸気管内と前記冷媒液管内の圧力損失差を小さくすることができ、冷媒循環を促進し、冷却能力を向上できる。
また請求項4に記載の沸騰冷却装置は、第1冷媒流路を複数の孔により形成したものであって、冷媒槽内の冷媒へ発熱体の熱が伝熱する面積を大きくすることができ、熱交換効率を向上させ、また第1冷媒流路の加工を容易にできるので、沸騰冷却装置の製造を容易にできる。
また請求項5に記載の沸騰冷却装置は、第1冷媒流路内に少なくとも1つのフィンを備え、前記フィンにより前記第1冷媒流路が分割されるものであって、冷媒槽内の冷媒へ発熱体の熱が伝熱する面積を大きくすることができるので、熱交換効率を向上させることができる。
また請求項6に記載の沸騰冷却装置は、第1冷媒流路内に少なくとも1つの突起を備えるものであって、冷媒槽内の冷媒へ発熱体の熱が伝熱する面積を大きくすることができるので、熱交換効率を向上させることができる。
また、前記第1冷媒流路の水平方向で圧力損失および冷媒液面の偏りを小さくすることができるので、前記第1冷媒流路内の冷媒循環が不均一となることを防ぎ、沸騰冷却装置を安定して運転することができる。
また、突起が沸騰の切っ掛けとなり気泡の生成を促進して、また気泡を細分化することで、前記冷媒の沸騰気化を効率良く行い、冷媒循環を促進し、冷却能力を向上できる。
また、請求項7に記載の沸騰冷却装置は、第1冷媒流路の発熱体の取付部に多孔質体を備えたものであって、前記多孔質体の毛細管力により、冷媒液面の位置に因らず発熱体の取付部に冷媒液が常に保持され、前記発熱体の熱を吸収する冷媒液が不足して過熱状態となるドライアウトを防げるので、沸騰冷却装置を安定して運転することができる。
また、請求項8に記載の沸騰冷却装置は、冷媒蒸気管および冷媒液管をそれぞれ1本ずつ備え、前記冷媒蒸気管が接続する第1蒸気ヘッダの一端と、前記冷媒液管が接続する第1液ヘッダの一端を、冷媒槽において対角に配置したものであって、冷媒が前記冷媒液管から前記冷媒槽内に入り、前記第1液ヘッダから第1冷媒流路、前記第1蒸気ヘッダを通って前記冷媒蒸気管へと移動する際の圧力損失を前記冷媒槽内の水平方向で偏ることを防ぎ、冷媒循環を促進し、冷却能力を向上できる。
また、請求項9に記載の沸騰冷却装置は、冷媒蒸気管が接続する第2蒸気ヘッダの一端と、冷媒液管が接続する第2液ヘッダの一端を、冷媒槽において対角に配置したものであって、冷媒が前記冷媒蒸気管から前記放熱器内に入り、前記第2蒸気ヘッダから第2冷媒流路、前記第2液ヘッダを通って前記冷媒液管へと移動する際の圧力損失を前記放熱器内の水平方向で偏ることを防ぎ、冷媒循環を促進し、また環境空気と前記冷媒との熱交換を前記放熱器全体で均一に行わせることができるので冷却能力を向上できる。
また、請求項10に記載の沸騰冷却装置は、冷媒蒸気管2本と冷媒液管1本とをそれぞれ備え、前記冷媒蒸気管が第1蒸気ヘッダと第2蒸気ヘッダの両端同士を連通し、前記冷媒液管が第1液ヘッダと第2液ヘッダの中央同士を連通するものであって、冷媒が前記冷媒液管から冷媒槽内に入り、前記第1液ヘッダから第1冷媒流路、前記第1蒸気ヘッダを通って前記冷媒蒸気管へと移動する際の圧力損失が前記冷媒槽内の水平方向で偏ることを防ぎ、同様に前記冷媒が前記冷媒蒸気管から放熱器内に入り、前記第2蒸気ヘッダから第2冷媒流路、前記第2液ヘッダを通って前記冷媒液管へと移動する際の圧力損失が前記放熱器内の水平方向で偏ることを防ぎ、かつ前記冷媒液管と前記冷媒槽の接続位置を発熱体の取り付け位置に近くすることができるので、前記発熱体の熱を吸収する冷媒液が不足して過熱状態となるドライアウトを防ぎ、冷却能力を促進し、沸騰冷却装置を安定して運転することができる。
また、請求項11に記載の沸騰冷却装置は、冷媒液管と第1液ヘッダの接続部に、前記冷媒液管は少なくとも1つの曲がり部を備え、前記曲がり部の最下端が前記第1液ヘッダの最下端よりも下側に配置したものであって、前記冷媒液管と前記第1液ヘッダとの接続部を液封することができるため、冷媒蒸気が前記冷媒液管へと侵入することを防ぎ、冷媒循環を促進し、冷却能力を向上できる。
また、請求項12に記載の沸騰冷却装置は、冷媒液管と冷媒槽の接続部において、前記冷媒液管の冷媒液面が到達する最下端と最上端の間を曲面で形成したものであって、冷媒が凍結した際に前記冷媒の体積膨張によって生じる圧力を分散しやすくでき、前記冷媒液管が破壊しにくくすることができるので、沸騰冷却装置を安全に運転することができる。
また、請求項13に記載の沸騰冷却装置は、冷媒液管と冷媒槽の接続部において、前記冷媒液管内の冷媒液面が到達する最下端と最上端の間を螺旋形状としたものであって、前記冷媒液管の冷媒液面が到達する最下端と最上端の間を曲面で形成することで、冷媒が凍結した際に前記冷媒の体積膨張によって前記冷媒液管が破壊しにくくすることができる。
また、螺旋形状が沸騰冷却装置の振動や外因による衝撃を吸収できるので、沸騰冷却装置の機密性維持が容易になる。
また、請求項14に記載の沸騰冷却装置は、冷媒槽が周囲にフランジが付いた2部材から成るものであり、フランジを接合し、溶接加工やカール成形することで機密性の高い冷媒槽を容易に製造することができる。
また、請求項15に記載の沸騰冷却装置は、第1冷媒流路の水平断面積が発熱体取付部の中心で最も大きくなるものであり、冷媒槽内において前記発熱体の取り付けられる部分の容積を最も大きくすることで、冷媒液面の鉛直位置の変動が小さくなり、前記発熱体の熱を吸収する冷媒液が不足して過熱状態となるドライアウトしにくくなるので、沸騰冷却装置を安定して運転することができる。
また、請求項16に記載の沸騰冷却装置は、放熱器に伝熱を促進させるフィンを備えるものであり、環境空気と前記放熱器との伝熱面積を増大し、前記環境空気と冷媒との熱交換効率を向上して冷却能力を向上させることができる。
また、請求項17に記載の沸騰冷却装置は、放熱フィンに複数の細溝を備えるものであり、放熱フィンと環境空気との熱交換に寄与する表面積を増大させ、また細溝により放熱フィン上での環境空気の速度境界層の発達を促進または抑制することで放熱器の熱交換能力を向上させて、冷却能力をさらに向上させることができる。
また、請求項18に記載の沸騰冷却装置は、放熱フィンに複数の細孔を備えるものであり、環境空気が細孔を通り、放熱フィンと垂直な方向に流れる対流を生じさせることで放熱器の熱交換能力を向上させて、冷却能力をさらに向上させることができる。
また、請求項19に記載の沸騰冷却装置は、冷媒蒸気管に温度を検知して動作する弁を備えるものであり、発熱体温度または環境空気温度を検知して弁の開閉を行うことで、冷媒の循環する質量流量を制御し、冷却能力を任意に可変させることで、発熱体の駆動を安定して行うことができる。
以下、本発明の実施の形態について図面を参照しながら説明する。
(実施の形態1)
図1(a)に本実施の形態1の沸騰冷却装置の正面概略図を示し、図1(b)にA−A´断面概略図を示す。
図1に示すように、沸騰冷却装置1は、駆動に伴い大量の熱を発生する発熱体2を有する電気回路や制御基盤に取り付けられ、発熱体2の熱を吸収し沸騰気化する冷媒3が封入された金属製、例えば銅、アルミ、鋳鉄、ステンレス、の冷媒槽4と、冷媒槽4よりも上部に位置し環境空気5と冷媒3の熱交換を行う金属製、例えば銅、アルミ、鋳鉄、ステンレス、の放熱器6と、冷媒槽4から放熱器6へ冷媒3を移送する冷媒蒸気管7と、放熱器6から冷媒槽4へ冷媒3を移送する冷媒液管8とをそれぞれ1つずつ備える。
冷媒槽4は直方体形状で、上部に第1蒸気ヘッダ9と下部に第1液ヘッダ10を備え、第1蒸気ヘッダ9と第1液ヘッダ10の間に第1蒸気ヘッダ9および第1液ヘッダ10を連通させる第1冷媒流路11とを備え、第1蒸気ヘッダ9および第1液ヘッダ10は互いに平行で断面形状が円形の長孔であり、直方体形状の冷媒槽4における最も広い側面の第1冷媒流路11に当たる部分に発熱体2が取り付けられている。
第1冷媒流路11は、流路長さが取り付けられる発熱体2よりも長く、複数の、例えば孔やフィンにより分割して形成されており、発熱体2の熱が冷媒3へ伝熱する面積を大きくしている。
放熱器6は上部に第2蒸気ヘッダ12と下部に第2液ヘッダ13を備え、第2蒸気ヘッダ12と第2液ヘッダ13の間に第2蒸気ヘッダ12および第2液ヘッダ13を連通させる第2冷媒流路14とを備え、第2蒸気ヘッダ12および第2液ヘッダ13は互いに平行で断面形状が円形の中空管である。
第2冷媒流路14は複数の、例えば中空管や角管、扁平管、多孔扁平管、を並行に並べる、または連結させることにより形成し、冷媒3の熱を環境空気5へ伝熱する面積を大きくしている。
また、第2冷媒流路14は、第2蒸気ヘッダ12および第2液ヘッダ13に対し、例えば圧入や溶接、ロー付け、半田付けにより気密に接続している。
第2冷媒流路14の周囲には環境空気5との伝熱面積をさらに大きくするために金属製、例えば銅、アルミ、鋳鉄、ステンレスの放熱フィン15、例えば平板、波板、ルーバーフィン、コルゲートフィン形状であり、さらには突起が取り付けられても良く、放熱フィン15の間隔は環境空気5が自然対流により放熱を行うために望ましくは5〜10mmである。
冷媒蒸気管7は第1蒸気ヘッダ9の一端と第2蒸気ヘッダ12の一端を連通し、冷媒蒸気管7は金属製、例えば銅、アルミ、鋳鉄、ステンレスの中空管であって、第1蒸気ヘッダ9および第2蒸気ヘッダ12に対し、例えば圧入、溶接、ロー付け、半田付けにより気密に接続している。同様に、冷媒液管8は第1液ヘッダ10の一端および第2液ヘッダ13の一端を連通し、冷媒液管8は金属製、例えば銅、アルミ、鋳鉄、ステンレスの中空管であって、第1液ヘッダ10および第2液ヘッダ13に対し、例えば圧入、溶接、ロー付け、半田付けにより気密に接続している。
冷媒蒸気管7が接続される第1蒸気ヘッダ9の一端と、冷媒液管8が接続される第1液ヘッダ10の一端は、冷媒槽4の対角に配置され、同様に冷媒蒸気管7が接続され第2蒸気ヘッダ12の一端と、冷媒液管8が接続される第2液ヘッダ13の一端は、放熱器6の対角に配置される。
また、冷媒液管8と第1液ヘッダ10の接続部に、冷媒液管8は曲がり部16を備え、曲がり部16は最下端が第1液ヘッダ10の最下端よりも下部になるように配置される。
また冷媒蒸気管7の流路断面積は、冷媒液管8の流路断面積よりも大きく、例えば冷媒液管8がφ5の中空管の場合、冷媒蒸気管7はφ8の中空管を用いる。
次いで、上記の沸騰冷却装置の動作について説明する。
冷媒槽4内の液相の冷媒3は、発熱体2の熱により第1冷媒流路11にて沸騰気化し、密度差により第1蒸気ヘッダ9を経て冷媒蒸気管7を通って放熱器6へと移動する。このとき、冷媒3は沸騰気化潜熱を発熱体2から吸熱する。
続いて気相の冷媒3は放熱器6にて、冷媒蒸気管7と接続される第2蒸気ヘッダ12を経て第2冷媒流路14へ入り、第2冷媒流路14にて放熱フィン15を介して環境空気5と熱交換を行い、凝縮液化して密度差により第2液ヘッダ13を経て冷媒液管8を通って第1液ヘッダ10へと移動する。このとき、冷媒3は凝縮液化潜熱を環境空気5に放熱する。
上記のように、冷媒3は液相から気相へ、または気相から液相への相変化を伴いながら冷媒槽4→冷媒蒸気管7→放熱器6→冷媒液管8→冷媒槽4の順に所定の質量流量で自然循環し、発熱体2の熱を放熱器6にて環境空気5へ放熱することにより発熱体2の冷却を行うのである。
また、循環する冷媒3の質量流量は、沸騰冷却装置の熱ロスも含めた放熱量と冷媒の潜熱により決定され、(放熱量)=(循環する冷媒の質量流量)*(冷媒の潜熱)で与えられる。
このような沸騰冷却装置において、冷媒槽4に第1蒸気ヘッダ9と第1液ヘッダ10と第1冷媒流路11を備え、冷媒槽4における最も広い側面の第1冷媒流路11に当たる部分に発熱体2が取り付けられることにより、第1冷媒流路11にて冷媒3が沸騰気化し、第1蒸気ヘッダ9を経て放熱器6へと移動し、また第1液ヘッダ10を経て第1冷媒流路11へと戻ってくるので、冷媒3が発熱体2の熱により第1冷媒流路11にて沸騰気化し、密度差により第1蒸気ヘッダ9を経て冷媒蒸気管7を通って放熱器6へと移動する経路と、放熱器6にて冷媒3が冷媒蒸気管7と接続する第2蒸気ヘッダ12を経て第2冷媒流路14へ入り凝縮液化して密度差により第2液ヘッダ13を経て冷媒液管8を通って第1液ヘッダ10へと移動する経路が分離されるので、冷媒3の循環が気相、液相ともに近接して対向する部分を無くすことができ、冷媒循環を促進し、冷却能力を向上できる。
また、冷媒液管8を冷媒蒸気管7や発熱体2と離して配置することができるので、冷媒液管8と発熱体2や冷媒蒸気管7との熱干渉を防止して、すなわち冷媒液管8が発熱体2や冷媒蒸気管7が熱交換し冷媒液管8内で気泡が発生することを防止して冷媒循環を促進し、冷却能力をさらに向上できる。
また、放熱器6にて凝縮液化した冷媒3が密度差により重力の作用のみで冷媒液管8を通って冷媒槽4へと移動させることができ、冷媒液管8内に冷媒移動を促進する機構が不要となるので簡単な構成で冷媒3を循環させることができ、沸騰冷却装置を小型化できる。
また、冷媒槽4と放熱器6の上部同士を冷媒蒸気管7により連通し、冷媒槽4と放熱器6の下部同士を冷媒液管8により連通させることにより、冷媒蒸気および冷媒液の逆流が生じにくくなるので、沸騰冷却装置1を安定して運転することができ、冷媒3の逆流を防止するために追加の部材を必要とせず沸騰冷却装置1を小型化できる。
また、冷媒3の比体積は液相より気相の方が大きいので、冷媒3が所定の質量流量で循環する上で、冷媒蒸気管7の流路断面積を冷媒液管8の流路断面積よりも大きくすることより、冷媒蒸気管7内と冷媒液管8内の圧力損失差を小さくすることができるので、冷媒循環を促進し、冷却能力をさらに向上できる。
また、第1冷媒流路11を複数の孔やフィンにより分割して形成することにより、冷媒槽4内の冷媒3へ発熱体2の熱が伝熱する面積を、容易な加工により大きくすることができるので、熱交換効率を向上でき、かつ沸騰冷却装置の製造を容易にできる。
また、冷媒蒸気管7が接続される第1蒸気ヘッダ9の一端と、冷媒液管8が接続される第1液ヘッダ10の一端は、冷媒槽4の対角に配置することにより、冷媒3が第1液ヘッダ10の一端から第1冷媒流路11を経由して第1蒸気ヘッダ9の一端へと通過する流路の長さを各々等しくすることで、すなわち圧力損失差を均一にすることができるので、冷媒循環を促進し、冷却能力をさらに向上できる。
また同様に冷媒蒸気管7が接続する第2蒸気ヘッダ12の一端と、冷媒液管8が接続される第2液ヘッダ13の一端は、放熱器6の対角に配置することにより、冷媒3が第2蒸気ヘッダ12の一端から第2液ヘッダ13の一端へと通過する流路の長さを等しくすることで、すなわち圧力損失差を均一にすることができるので、冷媒循環を促進し、冷却能力をさらに向上できる。
また、曲がり部16の最下端が第1液ヘッダ10の最下端よりも下側になるように配置されており、冷媒液管8と第1液ヘッダ10との接続部を液封することができるため、冷媒3が冷媒液管8へと侵入することを防ぎ、冷媒循環を促進し、冷却能力をさらに向上できる。
また、放熱フィン15により、環境空気5と冷媒3との熱交換効率を向上し、冷却能力をさらに向上できる。
また、放熱フィン15の表面には環境空気5の流れ方向と平行するように細溝17を備えており、細溝17の間隔は放熱フィン15の間隔と同等以下が望ましく、10mm以下である。これにより、放熱フィン15と環境空気5との熱交換に寄与する表面積を増大させ、また細溝17に沿って環境空気5が流れることで、放熱フィン15の表面と環境空気5の熱交換を行う自然対流を促進するので、放熱器6の熱交換能力を増大させ、冷却能力をさらに向上できる。
なお、放熱フィン15の表面に備える細溝17は、環境空気5の流れに垂直な方向に備えても良く、これにより、放熱フィン15の表面上で生じる環境空気5との熱交換を行う自然対流に伴う速度境界層を乱し、放熱器6の熱交換能力を向上することができる。
なお、第1冷媒流路11に複数の突起を備えても良く、これにより突起が冷媒槽4内の伝熱面積を増大させ、また突起が沸騰の切っ掛けとなり気泡の生成を促進し、また気泡を細分化することで、冷媒3の沸騰気化を効率良く行い、冷媒循環を促進し、冷却能力をさらに向上できる。
なお、沸騰冷却装置1は、冷媒槽4の発熱体2の取り付け面側に0°〜85°の範囲で傾斜させて取り付けても動作可能であり、これにより発熱体2への取り付け姿勢の自由度をさらに向上できる。
なお、放熱フィン15を第2冷媒流路14の周囲に取り付けるために、第2冷媒流路14を拡管にしても良く、これにより放熱フィン15の間隔を容易に均一にして製造を行うことが容易となる。
なお、放熱フィン15を第2冷媒流路14の周囲に半田付けにより取り付けても良く、これにより放熱フィン15と第2冷媒流路14との接触熱抵抗を小さくでき、冷媒3と環境空気5との熱交換効率を向上し、冷却能力を向上できる。
なお、冷媒槽4、放熱器6、冷媒蒸気管7、冷媒液管8の材質は、冷媒3により腐食されない材料である必要があり、例えば冷媒3が純水のときは銅材が好ましく、冷媒3がフロン系のときはアルミ材が好ましい。
なお、発熱体2と冷媒槽4の間は、例えば高熱伝導性のグリースやシートにより密着されることが望ましく、発熱体2と冷媒槽4との接触熱抵抗を小さくでき、発熱体2の熱を効率良く冷媒3に伝え、熱交換効率を向上できる。
なお、沸騰冷却装置は、沸騰冷却装置全体を保持し、また放熱器6へ環境空気5を導入させるエアガイダを備えても良く、エアガイダは放熱器6に取り付けられる。これにより、環境空気5が放熱器6に対し流出入する方向や流路断面積を限定することで、放熱器6と環境空気5との温度差により生じる空気の対流を促進できるので、沸騰冷却装置1の自然放熱を促進できる。
なお、エアガイダは材質が一般的な板金材、例えば表面をメッキや塗装処理された亜鉛鋼板やステンレス鋼板であることが好ましく、これにより、屋外に設置されたとしても、風雨や日射の影響を遮り、沸騰冷却装置を安全に運転することができる。
なお、冷媒槽4、冷媒蒸気管7、冷媒液管8は表面と環境空気5との熱交換を防止するために、表面が断熱されていることが好ましく、これにより、沸騰冷却装置1の熱交換効率をさらに向上できる。
(実施の形態2)
本発明の実施の形態2は、実施の形態1と同一部分については同一符号を付し、詳細な説明は省略する。
図2(a)に本実施の形態2の側断面概略図を示し、図2(b)にB−B´断面概略図を示す。
図2に示すように、沸騰冷却装置1は、第1冷媒流路11内に少なくとも1つの突起18を備え、突起18は例えば正方形断面の直方体形状である。
このような沸騰冷却装置により、第1冷媒流路11内の冷媒3へ発熱体2の熱が伝熱する面積を大きくすることができるので、熱交換効率を向上させることができる。
またこのとき、図2(b)に破線で冷媒3の経路を示すように、冷媒3は第1冷媒流路11内で鉛直・水平の双方向に移動が可能となり、例えば発熱体2の発熱が冷媒槽4の取り付け面において一様で無く冷媒3の沸騰気化が第1冷媒流路11内で局所的に発生したとしても、冷媒3の第1冷媒流路11内での水平方向の圧力損失および沸騰気化の液面の鉛直方向の位置的偏りを小さくすることができるので、第1冷媒流路11内の冷媒循環が不均一となることを防ぎ、沸騰冷却装置を安定して運転することができる。
また、突起18が沸騰の切っ掛けとなり沸騰気化に伴う気泡の生成を促進し、また気泡を細分化することで、冷媒3の沸騰気化を効率良く行い、冷媒循環を促進し、冷却能力をさらに向上できる。
なお、突起18は、矩形断面の直方体形状や四角錐形状、円形断面の円柱形状や円錐形状でも良い。
(実施の形態3)
本発明の実施の形態3は、実施の形態1または2と同一部分については同一符号を付し、詳細な説明は省略する。
図3に本実施の形態3の側断面概略図を示す。
図3に示すように、沸騰冷却装置1は、第1冷媒流路11の発熱体2の取付部に多孔質体19、例えば複数の溝や金網、金属焼結体、を備えたものである。
このような沸騰冷却装置により、多孔質体19の毛細管力により、冷媒3の液面の鉛直方向位置に因らず発熱体2の取付部に冷媒3が常に保持されやすくなることで、発熱体2の熱を吸収する冷媒3が不足して過熱状態となるドライアウトを防げるので、沸騰冷却装置1を安定して運転することができる。
(実施の形態4)
本発明の実施の形態4は、実施の形態1乃至3と同一部分については同一符号を付し、詳細な説明は省略する。
図4(a)に本実施の形態4の正面概略図を示し、図4(b)にC−C´断面概略図を示す。
図4に示すように、沸騰冷却装置1は、冷媒蒸気管7を2本と冷媒液管8を1本とをそれぞれ備え、冷媒蒸気管7が第1蒸気ヘッダ9と第2蒸気ヘッダ12の両端同士を連通し、冷媒液管8が第1液ヘッダ10と第2液ヘッダ13の中央同士を連通するものである。
このような沸騰冷却装置において、冷媒3が冷媒液管8から冷媒槽4内に入り、第1液ヘッダ10から第1冷媒流路11、第1蒸気ヘッダ9を通って冷媒蒸気管7へと通過する際の圧力損失が冷媒槽4内の水平方向で偏ることを防ぎ、同様に冷媒3が冷媒蒸気管7から放熱器6内に入り、第2蒸気ヘッダ12から第2冷媒流路14、第2液ヘッダ13を通って冷媒液管8へと通過する際の圧力損失が放熱器6内の水平方向で偏ることを防ぐことができるので、冷媒循環を促進し、冷却能力を向上できる。
また、冷媒液管8と冷媒槽4の接続位置が発熱体2の取り付け位置の中央直下にすることができるので、冷媒槽4に循環してきた冷媒3が発熱体2の背面へ到達するまでの距離を短くできるので、発熱体2の熱を吸収する冷媒3が不足して過熱状態となるドライアウトを防ぎ、冷却能力を促進し、沸騰冷却装置1を安定して運転させることができる。
(実施の形態5)
本発明の実施の形態5は、実施の形態1乃至4と同一部分については同一符号を付し、詳細な説明は省略する。
図5に本実施の形態5の正面概略図を示す。
図5に示すように、沸騰冷却装置1は、冷媒液管8と冷媒槽4の接続部において、冷媒液管8内で、冷媒3が凍結するような場合に、周囲環境の温度により封入された冷媒3の物性が変化したとしても、冷媒3の液面が到達するのは下端aと上端bの間に管理するものとして、下端aと上端bの間を曲面で形成したものである。
このような沸騰冷却装置において、冷媒3が凍結するような場合、例えば沸騰冷却装置1が運転していない時に周囲環境の温度がマイナス以下になる場合や沸騰冷却装置1を寒い地域や航空便で輸送する場合に、冷媒3が凍結により体積が膨張したとしても、冷媒液管8内の冷媒3が到達する下端aと上端bの間が曲面で形成されているため、冷媒液管8の管壁にかかる応力を分散し、冷媒液管8の破損を防ぐことができるので、沸騰冷却装置1を安全に運転することができる。
(実施の形態6)
本発明の実施の形態6は、実施の形態1乃至5と同一部分については同一符号を付し、詳細な説明は省略する。
図6に本実施の形態6の正面概略図を示す。
図6に示すように、冷媒液管8と冷媒槽4の接続部において、冷媒液管8内で冷媒3が凍結するような場合に、周囲環境の温度により封入された冷媒3の物性が変化したとしても、冷媒3の液面が到達するのは下端aと上端bの間に管理するものとして、下端aと上端bの間を螺旋形状としたものである。
このような沸騰冷却装置において、冷媒3が凍結するような場合、例えば沸騰冷却装置1が運転していない時に周囲環境の温度がマイナス以下になる場合や沸騰冷却装置1を寒い地域や航空便で輸送する場合に、冷媒3が凍結により体積が膨張したとしても、冷媒液管8内の冷媒3が到達する下端aと上端bの間が螺旋形状であるため、冷媒液管8の管壁にかかる応力を分散し、また螺旋形状が沸騰冷却装置の振動や外因による衝撃を吸収することができるので、冷媒液管8の破損を防ぎ、沸騰冷却装置1の機密性の維持が容易になり、沸騰冷却装置1を安全に運転することができる。
(実施の形態7)
本発明の実施の形態7は、実施の形態1乃至6と同一部分については同一符号を付し、詳細な説明は省略する。
図7(a)に本実施の形態7の正面概略図を示し、図7(b)にD−D´断面概略図を示す。
図7に示すように、沸騰冷却装置1は、冷媒槽4が周囲にフランジが付いた2部材から成るものである。
このような沸騰冷却装置において、フランジを整合し、溶接加工やカール成形することで機密性の高い冷媒槽4を容易に製造することができる。
また、冷媒槽4を2部材により形成することで、冷媒槽4内の加工の自由度が向上し、冷媒槽4内にフィンや突起を付けることが容易となるので、冷媒槽4内の冷媒3へ発熱体2の熱が伝熱する面積を、容易な加工により大きくでき、熱交換効率を向上できる沸騰冷却装置1の製造を容易にできる。
(実施の形態8)
本発明の実施の形態8は、実施の形態1乃至7と同一部分については同一符号を付し、詳細な説明は省略する。
図8(a)に本実施の形態8の正面概略図を示し、図8(b)にE−E´断面概略図を示す。
図8に示すように、沸騰冷却装置1は、第1冷媒流路11の水平断面積が発熱体2の取付部の中心で最も大きくなるものであり、冷媒槽4内において発熱体2の取り付けられる部分の容積を最も大きくすることで、冷媒3の液面の鉛直位置の変動が小さくなり、発熱体2の熱を吸収する冷媒3が不足して過熱状態となるドライアウトが生じにくくなるので、沸騰冷却装置1を安定して運転することができる。
(実施の形態9)
本発明の実施の形態9は、実施の形態1乃至8と同一部分については同一符号を付し、詳細な説明は省略する。
図9に本実施の形態9の放熱フィン15の概略図を示す。
図9に示すように、沸騰冷却装置1は、複数の細孔20を有する金属製、例えば銅、アルミ、鋳鉄、ステンレス、の放熱フィン15を備えており、細孔20の直径は放熱フィン15の間隔と同等以下が望ましく、10mm以下である。これにより、環境空気5が細孔を通り、放熱フィン15と垂直な方向に流れる対流を生じさせることで放熱器6の熱交換能力をさらに増大させることができる。
なお、放熱フィンの開口率は20%〜50%程度が望ましく、これにより、放熱フィン自体の強度を保ちつつ、軽量化と熱交換能力の向上を同時に実現できる。
(実施の形態10)
本発明の実施の形態10は、実施の形態1乃至9と同一部分については同一符号を付し、詳細な説明は省略する。
図10に本実施の形態10の沸騰冷却装置1の概略図を示す。
図10に示すように、沸騰冷却装置1は、冷媒蒸気管7に環境空気5の温度を検知する環境空気温度検知部21、または発熱体2の温度を検知する発熱体温度検知部22の検出値により動作する弁23、例えば電動弁、電磁弁、調整弁を備えるものである。
環境空気5の温度が10℃以下では、密閉筐体内で発熱する発熱体2との温度差が大きくなり、冷却能力が過剰になることで発熱体2の駆動に支障を与えることがあるため、環境空気5の温度を環境空気温度検知部21により検知し、弁23を絞り、冷媒3の循環する質量流量を小さくすることで冷却能力を制限し、発熱体2の駆動を安定して行うことができる。
なお、弁23を緊急時には手動で操作可能にすることで、沸騰冷却装置1に異常が発生した場合に緊急停止させることができる。
本発明の沸騰冷却装置は、簡易な構成で大きな冷却能力が得られ、設置の自由度も大きいので、屋内外の高所や狭所においても設置でき、また自然放熱でも冷却可能なのでメンテレスであり、冷媒が凍結するような極低温環境下でも破損しにくいので幅広い温度域に対応できる沸騰冷却装置として有用である。
1 沸騰冷却装置
2 発熱体
3 冷媒
4 冷媒槽
5 環境空気
6 放熱器
7 冷媒蒸気管
8 冷媒液管
9 第1蒸気ヘッダ
10 第1液ヘッダ
11 第1冷媒流路
12 第2蒸気ヘッダ
13 第2液ヘッダ
14 第2冷媒流路
15 放熱フィン
16 曲がり部
17 細溝
18 突起
19 多孔質体
20 細孔
21 環境空気温度検知部
22 発熱体温度検知部
23 弁

Claims (19)

  1. 駆動に伴い大量の熱を発生する発熱体を有する電気回路や制御基盤に取り付けられ、前記発熱体の熱を吸収し沸騰気化する冷媒が封入された冷媒槽と、
    環境空気と前記冷媒の熱交換を行う放熱器と、
    前記冷媒槽から前記放熱器へ前記冷媒を移送する冷媒蒸気管と、
    前記放熱器から前記冷媒槽へ前記冷媒を移送する冷媒液管とを備え、
    前記冷媒槽は第1蒸気ヘッダと第1液ヘッダと前記第1蒸気ヘッダおよび前記第1液ヘッダを連通させる第1冷媒流路とを備え、
    前記放熱器は第2蒸気ヘッダと第2液ヘッダと前記第2蒸気ヘッダおよび前記第2液ヘッダを連通させる第2冷媒流路とを備え、
    前記冷媒蒸気管は前記第1蒸気ヘッダおよび前記第2蒸気ヘッダを連通し、
    前記冷媒液管は前記第1液ヘッダおよび前記第2液ヘッダを連通させたものであって、
    前記冷媒槽の前記第1冷媒流路の部分の側面に前記発熱体が取り付けられることを特徴とする沸騰冷却装置。
  2. 冷媒槽は上部に第1蒸気ヘッダと下部に第1液ヘッダとを備え、放熱器は上部に第2蒸気ヘッダと下部に第2液ヘッダとを備え、前記冷媒槽が前記放熱器よりも下部に配置されることを特徴とする請求項1に記載の沸騰冷却装置。
  3. 冷媒蒸気管の流路断面積が冷媒液管の流路断面積よりも大きいことを特徴とする請求項1または2に記載の沸騰冷却装置。
  4. 第1冷媒流路が複数の孔により形成されることを特徴とする請求項1乃至3のいずれかに記載の沸騰冷却装置。
  5. 第1冷媒流路内に少なくとも1つのフィンを備え、前記フィンにより前記第1冷媒流路が分割されることを特徴とする請求項1乃至3のいずれかに記載の沸騰冷却装置。
  6. 第1冷媒流路内に少なくとも1つの突起を備えることを特徴とする請求項1乃至5のいずれかに記載の沸騰冷却装置。
  7. 第1冷媒流路の発熱体取付部に多孔質体を備えることを特徴とする請求項1乃至6のいずれかに記載の沸騰冷却装置。
  8. 冷媒蒸気管および冷媒液管をそれぞれ1本ずつ備え、前記冷媒蒸気管が接続する第1蒸気ヘッダの一端と、前記冷媒液管が接続する第1液ヘッダの一端を、冷媒槽において対角に配置することを特徴とする請求項1乃至7のいずれかに記載の沸騰冷却装置。
  9. 冷媒蒸気管が接続する第2蒸気ヘッダの一端と、冷媒液管が接続する第2液ヘッダの一端を、冷媒槽において対角に配置することを特徴とする請求項8に記載の沸騰冷却装置。
  10. 冷媒蒸気管2本と冷媒液管1本とをそれぞれ備え、前記冷媒蒸気管が第1蒸気ヘッダと第2蒸気ヘッダの両端同士を連通し、前記冷媒液管が第1液ヘッダと第2液ヘッダの中央同士を連通することを特徴とする請求項1乃至8のいずれかに記載の沸騰冷却装置。
  11. 冷媒液管と第1液ヘッダの接続部に、前記冷媒液管は少なくとも1つの曲がり部を備え、前記曲がり部の最下端が前記第1液ヘッダの最下端よりも下側に位置することを特徴とする請求項1乃至10のいずれかに記載の沸騰冷却装置。
  12. 冷媒液管と冷媒槽の接続部において、前記冷媒液管内の冷媒液面が到達する最下端と最上端の間が曲面で形成されることを特徴とする請求項1乃至10のいずれかに記載の沸騰冷却装置。
  13. 冷媒液管と冷媒槽の接続部において、前記冷媒液管内の冷媒液面が到達する最下端と最上端の間が螺旋形状であることを特徴とする請求項1乃至11のいずれかに記載の沸騰冷却装置。
  14. 冷媒槽が周囲にフランジが付いた2部材から成ることを特徴とする請求項1乃至13のいずれかに記載の沸騰冷却装置。
  15. 第1冷媒流路の水平断面積が発熱体取付部の中心で最も大きくなることを特徴とする請求項1乃至14のいずれかに記載の沸騰冷却装置。
  16. 放熱器に伝熱を促進させるフィンを備えることを特徴とする請求項1乃至15のいずれかに記載の沸騰冷却装置。
  17. 放熱フィンに複数の細溝を備えることを特徴とする請求項1乃至16のいずれかに記載の沸騰冷却装置。
  18. 放熱フィンに複数の細孔を備えることを特徴とする請求項1乃至16のいずれかに記載の沸騰冷却装置。
  19. 冷媒蒸気管に発熱体の温度を感知して動作する弁を備えることを特徴とする請求項1乃至18のいずれかに記載の沸騰冷却装置。
JP2010204173A 2009-12-11 2010-09-13 沸騰冷却装置 Pending JP2011142298A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204173A JP2011142298A (ja) 2009-12-11 2010-09-13 沸騰冷却装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009281274 2009-12-11
JP2009281274 2009-12-11
JP2010204173A JP2011142298A (ja) 2009-12-11 2010-09-13 沸騰冷却装置

Publications (1)

Publication Number Publication Date
JP2011142298A true JP2011142298A (ja) 2011-07-21

Family

ID=44457917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204173A Pending JP2011142298A (ja) 2009-12-11 2010-09-13 沸騰冷却装置

Country Status (1)

Country Link
JP (1) JP2011142298A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102974A1 (ja) * 2012-01-04 2013-07-11 日本電気株式会社 冷却装置
JP2013182439A (ja) * 2012-03-02 2013-09-12 Hitachi Ltd 電子機器の冷却システム
WO2014038179A1 (ja) * 2012-09-05 2014-03-13 パナソニック株式会社 冷却装置、これを搭載した電気自動車、および電子機器
JP2014074568A (ja) * 2012-10-05 2014-04-24 Fujitsu Ltd ループ型サーモサイフォン及び電子機器
JP2015194304A (ja) * 2014-03-31 2015-11-05 高砂熱学工業株式会社 外気処理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102974A1 (ja) * 2012-01-04 2013-07-11 日本電気株式会社 冷却装置
CN104040279A (zh) * 2012-01-04 2014-09-10 日本电气株式会社 冷却装置
JPWO2013102974A1 (ja) * 2012-01-04 2015-05-11 日本電気株式会社 冷却装置
EP2801781A4 (en) * 2012-01-04 2015-11-25 Nec Corp COOLING SYSTEM
JP2013182439A (ja) * 2012-03-02 2013-09-12 Hitachi Ltd 電子機器の冷却システム
WO2014038179A1 (ja) * 2012-09-05 2014-03-13 パナソニック株式会社 冷却装置、これを搭載した電気自動車、および電子機器
CN104487794A (zh) * 2012-09-05 2015-04-01 松下知识产权经营株式会社 冷却装置、装载有该冷却装置的电动汽车和电子设备
CN104487794B (zh) * 2012-09-05 2017-03-08 松下知识产权经营株式会社 冷却装置、装载有该冷却装置的电动汽车和电子设备
JP2014074568A (ja) * 2012-10-05 2014-04-24 Fujitsu Ltd ループ型サーモサイフォン及び電子機器
JP2015194304A (ja) * 2014-03-31 2015-11-05 高砂熱学工業株式会社 外気処理装置

Similar Documents

Publication Publication Date Title
JP4578552B2 (ja) 冷却装置および電力変換装置
JP2020136335A (ja) 冷却装置、冷却システム及び冷却方法
EP1387139A2 (en) Heat pipe unit and heat pipe type heat exchanger
US20140165638A1 (en) Cooling device and electronic device made therewith
TWI778292B (zh) 冷卻裝置及使用冷卻裝置之冷卻系統
US20110000649A1 (en) Heat sink device
WO2015087530A1 (ja) 冷媒分配装置および冷却装置
JPH0420788A (ja) 冷却装置および温度制御装置
JPWO2012059975A1 (ja) ループ型ヒートパイプ及びこれを用いた電子機器
US9958213B2 (en) Heat exchanger
KR20180097661A (ko) 열교환기 및 공조 시스템
JP2011142298A (ja) 沸騰冷却装置
WO2017170153A1 (ja) 相変化冷却器、及び電子機器
JP5621225B2 (ja) 沸騰冷却装置
JP6678235B2 (ja) 熱交換器
CN112584671A (zh) 用于冷却电子构件的均温板
JP6825615B2 (ja) 冷却システムと冷却器および冷却方法
JP7444704B2 (ja) 伝熱部材および伝熱部材を有する冷却デバイス
CN111818756B (zh) 带有集成的两相散热器的热交换器
WO2020255883A1 (ja) 冷却装置
CN113758324A (zh) 用于低压驱动器的回路式热管
JP6197651B2 (ja) 冷却装置
JP5387523B2 (ja) 冷却装置
KR100605484B1 (ko) 응축부가 수용된 티디-피씨엠 축냉 모듈을 구비한 루프형히트파이프 및 이를 이용한 냉각장치
JP5860728B2 (ja) 電子機器の冷却システム