WO2018070116A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2018070116A1
WO2018070116A1 PCT/JP2017/030423 JP2017030423W WO2018070116A1 WO 2018070116 A1 WO2018070116 A1 WO 2018070116A1 JP 2017030423 W JP2017030423 W JP 2017030423W WO 2018070116 A1 WO2018070116 A1 WO 2018070116A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
refrigerant
phase refrigerant
liquid storage
return
Prior art date
Application number
PCT/JP2017/030423
Other languages
English (en)
French (fr)
Inventor
康光 大見
義則 毅
竹内 雅之
功嗣 三浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018544694A priority Critical patent/JP6662465B2/ja
Publication of WO2018070116A1 publication Critical patent/WO2018070116A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a cooling device that cools an object to be cooled.
  • an evaporator for cooling a battery and a condenser provided on the upper side of the evaporator are annularly connected by two pipes, and a refrigerant is enclosed therein.
  • a refrigerant is enclosed therein.
  • One of the two pipes forms an outward flow passage through which liquid refrigerant flows from the condenser to the evaporator.
  • the other of the two pipes other than the one of the pipes forms a return flow passage through which the gas-phase refrigerant flows from the evaporator to the condenser.
  • the liquid phase refrigerant in the evaporator absorbs heat from the battery and boils, and the battery is cooled by the latent heat of evaporation at that time.
  • the gas phase refrigerant generated in the evaporator flows into the condenser through the return flow passage.
  • the gas-phase refrigerant is cooled by the condenser and condensed.
  • the liquid-phase refrigerant generated by the condenser flows into the evaporator through the forward flow path by gravity. By such natural convection of the refrigerant, the refrigerant circulates between the evaporator and the condenser to cool the battery.
  • a cooling device that circulates a refrigerant and cools an object to be cooled by a phase change between a liquid phase and a gas phase of the refrigerant moves heat from the object to be cooled to the liquid phase refrigerant.
  • An evaporator that boiles the liquid-phase refrigerant a condenser that is disposed above the evaporator in the direction of gravity and that condenses the gas-phase refrigerant by releasing heat from the gas-phase refrigerant, and from the condenser to the evaporator
  • the liquid storage portion that stores the liquid phase refrigerant that flows in from the return passage portion, and the liquid phase refrigerant in the storage portion that passes through the return flow passage and evaporates Liquid phase return that flows to any of the flow path and the forward flow path It comprises a part, a.
  • the liquid storage part can store the liquid phase refrigerant flowing in from the return path part, the “region where the liquid phase refrigerant containing bubbles”, which is a source of abnormal noise, is reduced in the return path passage. Therefore, it is possible to reduce the noise generated with the boiling of the refrigerant.
  • liquid-phase refrigerant containing bubbles can be reduced in the return passage, vibrations caused by fluctuations in the liquid-phase refrigerant containing bubbles can be suppressed.
  • the cooling device for circulating the refrigerant and cooling the object to be cooled (12) by the phase change between the liquid phase and the gas phase of the refrigerant transfers heat from the object to be cooled to the liquid phase refrigerant.
  • a reciprocating passage that forms a reciprocating flow passage, and circulates the liquid phase refrigerant from the condensing portion to the evaporating portion along the forming portion of the reciprocating flow passage.
  • Liquid storage part that stores liquid-phase refrigerant that has flowed in from the reciprocating path when raising Comprises a liquid-phase refrigerant reciprocating flow path in the reservoir, or a liquid phase return portion to flow to the evaporation portion.
  • the liquid storage part can store the liquid phase refrigerant flowing in from the reciprocating path part, it is possible to reduce the “region where the liquid phase refrigerant containing bubbles” is present in the reciprocating flow path. Therefore, it is possible to reduce the noise generated with the boiling of the refrigerant.
  • the liquid phase refrigerant containing bubbles can be reduced in the reciprocating flow passage, vibrations caused by fluctuations in the liquid phase refrigerant containing bubbles can be suppressed.
  • FIG. 27A It is a perspective view which shows the whole structure which decomposed
  • (First embodiment) 1 and 2A is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle. And in this embodiment, the cooling device 10 cools the secondary battery 12 mounted in the electric vehicle.
  • the object to be cooled that is cooled by the cooling device 10 is the secondary battery 12.
  • a power storage device in other words, a battery pack
  • the secondary battery 12 self-heats when power is output to the motor via the inverter.
  • a cooling device for maintaining the secondary battery 12 at a predetermined temperature or less is required.
  • the battery temperature rises not only when the vehicle is running but also during parking in summer.
  • the power storage device is often arranged under the floor of a vehicle or under a trunk room, and although the amount of heat per unit time given to the secondary battery 12 is small, the battery temperature gradually rises when left for a long time. If the secondary battery 12 is left in a high temperature state, the life of the secondary battery 12 is significantly reduced. Therefore, it is desired to maintain the battery temperature at a low temperature, for example, by cooling the secondary battery 12 while the vehicle is left.
  • the secondary battery 12 is configured as an assembled battery including a plurality of battery cells 121.
  • the temperature of each battery cell 121 varies, the deterioration of the battery cell 121 is biased, and the performance of the power storage device is reduced. It will decline. This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 121 that is most deteriorated. For this reason, in order for the power storage device to exhibit desired performance over a long period of time, temperature equalization that reduces temperature variations among the plurality of battery cells 121 is important.
  • a blower blower an air cooling using a refrigeration cycle, a water cooling, or a direct refrigerant cooling method has been generally used. Since only air is blown, the cooling capacity of the blower is low.
  • the secondary battery 12 is cooled by the sensible heat of the air by the blower, the temperature difference between the upstream and downstream of the air flow becomes large, and the temperature variation between the battery cells 121 cannot be sufficiently suppressed.
  • the cooling capacity is high in the refrigeration cycle method, since the heat exchanging portion with the battery cell 121 is sensible heat cooling by either air cooling or water cooling, similarly, the temperature variation between the battery cells 121 cannot be sufficiently suppressed.
  • the cooling device 10 of the present embodiment employs a thermosiphon system that cools the secondary battery 12 by natural convection of a refrigerant without using a compressor.
  • the cooling device 10 includes an evaporator 14, a condenser 16, an outward piping 18 as an outward path, a return piping 20 as a return path, and a liquid storage unit 22.
  • the condenser 16, the forward piping 18, the evaporator 14, and the return piping 20 are connected in a ring shape to constitute a thermosiphon circuit 26 in which the refrigerant as the refrigerant of the cooling device 10 circulates.
  • thermosiphon circuit 26 constitutes a thermosiphon that performs heat transfer by evaporation and condensation of the refrigerant.
  • the thermosiphon circuit 26 is configured to be a loop-type thermosiphon (in other words, a refrigerant circulation circuit) in which the flow path through which the gas-phase refrigerant flows and the flow path through which the liquid-phase refrigerant flow are separated. .
  • the cooling device 10 indicates the direction of gravity when the cooling device 10 is mounted on the vehicle.
  • the up arrow indicates the upper side of the vehicle gravity direction DR1
  • the down arrow indicates the gravity direction DR1 of the vehicle. Shows the underside.
  • thermosiphon circuit 26 is filled with refrigerant.
  • the thermosiphon circuit 26 is filled with the refrigerant.
  • the refrigerant circulates in the thermosiphon circuit 26 by natural convection, and the cooling device 10 adjusts the temperature of the secondary battery 12 by the phase change between the liquid phase and the gas phase of the refrigerant. Specifically, the secondary battery 12 is cooled by the phase change of the refrigerant.
  • the refrigerant filled in the thermosiphon circuit 26 is, for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a. Or you may use various working fluids other than Freon-type refrigerant
  • the evaporator 14 is a heat exchanger that cools the secondary battery 12 by exchanging heat between the secondary battery 12 and the refrigerant and transferring heat from the secondary battery 12 to the refrigerant.
  • the evaporator 14 is made of, for example, a metal having high thermal conductivity.
  • the charging amount of the refrigerant into the thermosiphon circuit 26 is such that the heat exchange between the secondary battery 12 and the refrigerant is stopped and the evaporator 14 is in the state where the front-rear direction of the vehicle coincides with the horizontal direction.
  • the amount filled with the liquid phase refrigerant is such that the heat exchange between the secondary battery 12 and the refrigerant is stopped and the evaporator 14 is in the state where the front-rear direction of the vehicle coincides with the horizontal direction.
  • the liquid level of the liquid phase refrigerant (hereinafter referred to as the liquid level ha when stopped) in a state where the heat exchange between the secondary battery 12 and the refrigerant is stopped and the front-rear direction of the vehicle coincides with the horizontal direction is the forward piping. 18 and the return pipe 20, and located above the evaporator 14 in the gravity direction DR 1.
  • a plurality of battery cells 121 are arranged side by side on the upper surface 141 of the evaporator 14. Each of the plurality of battery cells 121 is connected to the upper surface 141 so as to be able to conduct heat with the upper surface 141 of the evaporator 14.
  • the upper surface 141 of the evaporator 14 functions as a battery cooling surface for cooling the secondary battery 12.
  • the evaporator 14 has an inlet 14b and an outlet 14c.
  • the inlet 14 b communicates the forward flow passage 18 a formed inside the forward piping 18 into the evaporator 14. Accordingly, when the refrigerant circulates through the thermosiphon circuit 26, the refrigerant in the forward flow passage 18a flows into the evaporator 14 through the inlet 14b.
  • the forward flow passage 18 a is a refrigerant flow path through which the refrigerant flows from the condenser 16 to the evaporator 14.
  • the inlet 14b of the evaporator 14 is provided at one end of the evaporator 14 in the battery stacking direction DRb.
  • the outlet 14 c of the evaporator 14 communicates the return flow passage 20 a formed in the return pipe 20 into the evaporator 14. Accordingly, when the refrigerant circulates through the thermosiphon circuit 26, the refrigerant in the evaporator 14 goes out to the return flow passage 20a through the outlet 14c.
  • the return flow passage 20 a is a refrigerant flow path for flowing the refrigerant from the evaporator 14 to the condenser 16.
  • the outlet 14c of the evaporator 14 is provided at the other end of the evaporator 14 in the battery stacking direction DRb.
  • the evaporator 14 has a structure (not shown) that allows the gas-phase refrigerant to exit exclusively from the outlet 14c of the inlet 14b and the outlet 14c.
  • the condenser 16 is a heat exchanger that exchanges heat between the refrigerant in the condenser 16 and the heat receiving fluid to dissipate heat from the refrigerant to the heat receiving fluid.
  • the condenser 16 corresponds to a condensing part. More specifically, the gas phase refrigerant flows into the condenser 16 from the return pipe 20, and the condenser 16 condenses the refrigerant by dissipating heat from the refrigerant to the heat receiving fluid.
  • the heat-receiving fluid that exchanges heat with the refrigerant in the condenser 16 is, for example, air (that is, air outside the passenger compartment) or water.
  • the condenser 16 is disposed above the evaporator 14 in the gravity direction DR1.
  • the forward piping 18 is connected to the lower portion of the condenser 16 in the gravity direction DR1
  • the backward piping 20 is connected to the upper portion of the condenser 16 in the gravity direction DR1.
  • the forward piping 18 is connected to the condenser 16 below the gravity direction DR1 with respect to the backward piping 20.
  • liquid-phase refrigerant condensed in the condenser 16 flows from the condenser 16 to the forward flow passage 18a by gravity.
  • the liquid storage part 22 is provided with an inlet opening 22a.
  • the inlet opening 22a is provided in a part (that is, a ceiling part) of the liquid storage part 22 that is arranged facing the upper side in the gravity direction DR1.
  • the inlet opening 22a is provided above the liquid storage part 22 in the gravity direction DR1.
  • the upper side of the liquid storage unit 22 in the gravity direction DR1 is the upper side of the liquid storage unit 22 above the center line in the gravity direction DR1.
  • the inlet opening 22 a of the liquid storage part 22 is connected to a liquid phase inlet 24 formed in the return pipe 20 via a liquid storage pipe 30.
  • the liquid phase inlet 24 is located on the upper side of the gravity direction DR1 with respect to the liquid level ha at the stop of the return pipe 20.
  • the pipe disposed on the upper side of the gravity direction DR1 with respect to the liquid storage unit 22 in the return pipe 20 (hereinafter referred to as the upper return pipe) is inclined with respect to the vertical direction (that is, the gravity direction DR1). And it is an inclined part formed so that it may go to the gravity direction DR1 upper side, so that it goes to the downstream of the flow direction of a gaseous-phase refrigerant
  • the liquid phase inlet 24 of the present embodiment is provided in a portion of the upper return pipe that is arranged facing the lower side in the gravity direction DR1.
  • the liquid phase inlet 24 is disposed on the lower side in the gravity direction DR1 in the inner wall 20e constituting the return flow passage 20a in the upper return pipe.
  • the lower side of the inner wall 20e in the gravity direction DR1 is the lower side of the gravity direction DR1 with respect to the center line of the gravity direction DR1 in the cross section obtained by cutting the upper return pipe in a direction orthogonal to the axial direction.
  • the center line in the gravity direction DR1 is an imaginary line that extends in the horizontal direction through the center point in the cross section of the upper return pipe.
  • the liquid storage part 22 is disposed below the liquid phase inlet 24 of the return pipe 20 in the gravity direction DR1.
  • the liquid storage part 22 is a tank that stores the liquid phase refrigerant that has flowed in through the liquid phase inlet 24, the liquid storage pipe 30, and the inlet opening 22a of the return pipe 20.
  • the outlet opening 22b is provided below the liquid storage part 22 in the gravity direction DR1.
  • the outlet opening 22 b of the liquid storage unit 22 is connected to a liquid phase refrigerant return port 27 formed in the return pipe 20 via a liquid return pipe 31. More specifically, the liquid phase refrigerant outlet of the liquid phase return pipe 31 is connected to the liquid phase refrigerant return port 27, and the liquid phase refrigerant inlet of the liquid phase return pipe 31 is connected to the outlet opening 22 b of the liquid storage unit 22. It is connected.
  • the lower side of the liquid storage part 22 in the gravity direction DR1 is the lower side of the liquid storage part 22 than the center line of the gravity direction DR1.
  • the liquid return pipe 31 is a liquid phase return part that returns the liquid-phase refrigerant in the liquid storage part 22 to the return pipe 20, and is disposed below the gravity direction DR1 with respect to the liquid storage part 22.
  • the liquid storage unit 22 of this embodiment is disposed at a position away from the plurality of battery cells 121.
  • the liquid storage unit 22 is connected in parallel to the return flow passage 20a. That is, the liquid reservoir 22 is disposed independently of the return flow passage 20a.
  • the liquid-phase refrigerant return port 27 is disposed below the gravity direction DR1 with respect to the liquid storage part 22 and the liquid-phase inlet 24 in the return pipe 20.
  • the liquid phase refrigerant return port 27 is located on the upstream side in the flow direction of the gas phase refrigerant in the return pipe 20 with respect to the liquid phase inlet 24.
  • thermosiphon circuit 26 is filled with a refrigerant so that the evaporator 14 is filled with the liquid phase refrigerant.
  • the liquid level of the liquid phase refrigerant is located in the return flow passage 20a and in the forward flow passage 18a. Further, the liquid storage part is in a state where the refrigerant amount of the liquid phase refrigerant in the liquid storage part 22, the refrigerant amount of the liquid phase refrigerant in the backward flow path 20a and the refrigerant quantity of the liquid phase refrigerant in the forward flow path 18a are balanced. The liquid level of the liquid-phase refrigerant exists in 22.
  • the volume of the liquid phase refrigerant containing bubbles becomes larger than the volume of the liquid phase refrigerant not containing bubbles when the heat exchange is stopped. For this reason, the liquid level of the liquid refrigerant in the return flow passage 20a of the return pipe 20 rises from the liquid level ha at the time of stoppage to the liquid level hb in FIG.
  • the liquid-phase refrigerant containing bubbles rises as a bubble mixed flow as indicated by an arrow Yb.
  • the liquid-phase refrigerant in the return flow path 20a is caused by gravity, as indicated by the arrow Yc, to the liquid-phase inlet 24 and the liquid storage pipe 30. Then, it flows into the liquid storage part 22 through the inlet opening 22a.
  • the liquid phase refrigerant in the liquid storage unit 22 flows to the return pipe 20 through the outlet opening 22b, the liquid return pipe 31, and the liquid phase refrigerant return port 27 as indicated by an arrow Ye.
  • the amount of liquid-phase refrigerant flowing into the liquid storage unit 22 from the return flow passage 20a and the amount of liquid-phase refrigerant flowing from the liquid storage unit 22 to the return pipe 20 are balanced, so that the inside of the liquid storage unit 22 The liquid phase refrigerant is stored, and there is a liquid level of the liquid phase refrigerant in the liquid storage unit 22.
  • the total amount of the bubble mixed flow in the return flow passage 20a can be reduced, so that the liquid level of the liquid phase refrigerant in the return flow passage 20a is in the gravitational direction DR1 more than the liquid phase inlet 24 of the return pipe 20. Moving upward is suppressed.
  • bubbles made of a gas phase refrigerant are generated from the inside of the liquid phase refrigerant as the liquid phase refrigerant boils.
  • the bubbles move from the inside of the evaporator 14 into the return flow passage 20a of the return pipe 20 through the outlet 14c. For this reason, the liquid level of the refrigerant in the return flow passage 20a rises.
  • the liquid level of the “liquid refrigerant including bubbles” is suppressed from moving above the liquid phase inlet 24 of the return pipe 20 in the gravity direction DR1.
  • the pressure of the refrigerant (that is, the bubble flow) in the return flow passage 200 increases, and the liquid level of the refrigerant in the return flow passage 200 increases and decreases.
  • the degree of intermittent change becomes intense.
  • the height (that is, the head) hx of the liquid level immediately before the descent increases.
  • the liquid level just before the descent means the liquid level just before the liquid level descends due to the burst of bubbles.
  • the falling distance L of the liquid refrigerant at the time of bubble burst becomes long, so that the bubble burst sound becomes large.
  • the gas phase refrigerant radiates heat to the heat receiving fluid, so that the gas phase refrigerant is condensed.
  • the condensed liquid phase refrigerant flows to the evaporator 14 through the forward flow passage 18a of the forward piping 18 by gravity as indicated by an arrow Ya.
  • these operations are performed by natural circulation of the refrigerant sealed in the thermosiphon circuit 26 without the need for a driving device such as a compressor.
  • Natural circulation is that the refrigerant circulates in the thermosiphon circuit 26 by natural convection caused by a temperature difference between the condenser 16 and the evaporator 14.
  • thermosiphon circuit 26 As described above, when the refrigerant in the evaporator 14 boils violently, the liquid phase refrigerant is stored in the liquid storage unit 22, and thus the liquid phase refrigerant in the thermosiphon circuit 26 is reduced.
  • the amount of the liquid phase refrigerant in the thermosiphon circuit 26 becomes a specified amount or more, and the inside of the evaporator 14 becomes a refrigerant. Filled with.
  • thermosiphon circuit 26 the amount of refrigerant in the thermosiphon circuit 26 is automatically adjusted according to the amount of heat of evaporation of the refrigerant in the thermosiphon circuit 26.
  • the inside of the evaporator 14 is filled with the refrigerant. Therefore, the liquid phase refrigerant can thermally contact the secondary battery 12 when the refrigerant is slightly boiled or before the boiling starts.
  • the cooling device 10 is disposed above the evaporator 14 in the gravity direction DR1 with respect to the evaporator 14 that boiles the refrigerant by transferring heat from the secondary battery 12 to the refrigerant,
  • a condenser 16 that condenses the refrigerant by releasing heat from the refrigerant, and an outward piping 18 that circulates the refrigerant from the condenser 16 to the evaporator 14 are provided.
  • the cooling device 10 includes a return pipe 20 that forms a return flow path 20 a through which the refrigerant flows from the evaporator 14 to the condenser 16.
  • the return line 20 is the stop line of the return line 20 when the liquid level refrigerant liquid level in the return path 20a is set to the stop level liquid level ha.
  • a liquid phase inlet 24 that is disposed above the liquid surface ha in the gravity direction DR1 and communicates with the return flow passage 20a is formed.
  • the cooling device 10 is configured so that the bubbles generated from the inside of the liquid phase refrigerant in the evaporator 14 with the boiling of the liquid phase refrigerant raise the refrigerant in the return flow passage 20a, and then enter the liquid phase inlet from the return flow passage 20a.
  • the liquid storage part 22 that stores the liquid-phase refrigerant that has flowed in through 24, and the liquid-phase refrigerant that is disposed below the liquid storage part 22 in the gravity direction DR1 and stored in the liquid storage part 22 is supplied to the return flow passage 20a.
  • a liquid return pipe 31 is provided.
  • thermosiphon circuit 26 if the refrigerant filling amount in the thermosiphon circuit 26 is reduced, an “absence of liquid-phase refrigerant containing bubbles” that becomes a sound source for generating abnormal noise ” Can be reduced.
  • the cooling device 10 if there is a gas phase refrigerant between the upper surface 141 and the liquid phase refrigerant in the evaporator 14, the liquid is passed from the secondary battery 12 through the upper surface 141. Since the amount of heat transmitted to the phase refrigerant is uneven, the plurality of battery cells 121 cannot be uniformly cooled.
  • the evaporator 14 is filled with the refrigerant, and the gas phase refrigerant is interposed between the upper surface 141 of the evaporator 14 and the liquid surface of the liquid phase refrigerant. Does not exist. For this reason, since the amount of heat transferred from the secondary battery 12 to the liquid refrigerant through the upper surface 141 is less likely to be uneven, the plurality of battery cells 121 can be uniformly cooled.
  • the maximum volume capable of storing the liquid-phase refrigerant in the liquid storage unit 22 is the maximum liquid storage volume
  • the liquid storage unit 22 having a marginal volume is formed in the liquid unit 22 so as to have a volume that is more than half of the maximum liquid storage volume above the liquid surface of the liquid phase refrigerant in the gravity direction DR1.
  • the liquid storage section 22 having a sufficient volume is configured. For this reason, by storing the refrigerant in the liquid storage unit 22, it is possible to absorb the error filling amount in the filling amount of the refrigerant actually filled in the thermosiphon circuit 26.
  • thermosiphon circuit 26 Furthermore, it is possible to store in the liquid storage unit 22 an extra refrigerant that is expected to overflow from the thermosiphon circuit 26 due to aging.
  • the downstream side in the flow direction of the refrigerant with respect to the liquid phase inlet 24 in the return flow passage 20a is provided independently of the liquid storage unit 22, and condenses the gas phase refrigerant flowing from the evaporator 14.
  • the return pipe 20 is configured to flow to the vessel 16. For this reason, the vapor phase refrigerant can be smoothly circulated to the condenser 16 through the return flow passage 20a while flowing the liquid phase refrigerant from the liquid phase inlet 24 to the liquid storage unit 22.
  • the refrigerant cross-sectional area of the liquid-phase refrigerant return port 27 is set to be smaller than the refrigerant cross-sectional area of the liquid-phase inlet 24. That is, the hole size of the liquid phase refrigerant return port 27 is set to be smaller than the hole size of the liquid phase inlet 24.
  • the pressure loss that occurs when the liquid phase refrigerant from the liquid storage unit 22 passes through the liquid phase refrigerant return port 27 is greater than the pressure loss that occurs when the liquid phase refrigerant in the return flow passage 20 a passes through the liquid phase inlet 24. Also grows.
  • liquid phase refrigerant easily enters the liquid storage part 22 from the return path passage 20a through the liquid phase inlet 24, and the liquid phase refrigerant from the liquid storage part 22 does not easily flow to the return flow path 20a through the liquid phase refrigerant return port 27.
  • a certain amount or more of liquid phase refrigerant can be easily stored in the liquid storage unit 22 when the liquid phase refrigerant boils.
  • the refrigerant cross-sectional area of the liquid-phase refrigerant return port 27 is set to be smaller than the refrigerant cross-sectional area of the return flow passage 20a. That is, the hole size of the liquid phase refrigerant return port 27 is set to be smaller than the hole size of the return flow passage 20a.
  • the liquid phase inlet 24 is a portion arranged toward the lower side in the gravitational direction DR1 in the upper outgoing line arranged on the upper side of the gravity direction DR1 with respect to the liquid storage unit 22 in the return pipe 20. Is provided. For this reason, the liquid-phase refrigerant from the return flow passage 20a of the outward pipe 18 is likely to flow into the liquid storage part 22 through the liquid-phase inlet 24 due to gravity.
  • the liquid return pipe 31 is disposed on the lower side in the gravity direction with respect to the liquid storage part 22. For this reason, the liquid phase refrigerant in the liquid storage unit 22 can be smoothly flowed into the return pipe 20.
  • liquid-phase refrigerant return port 27 of the present embodiment is disposed on the lower side in the gravity direction with respect to the liquid storage unit 22. For this reason, the liquid-phase refrigerant in the liquid storage part 22 can be smoothly flowed in the reciprocating flow passage 19a.
  • the liquid phase refrigerant return port 27 for returning the liquid phase refrigerant in the liquid storage unit 22 to the evaporator 14 side is formed in the forward piping 18. Therefore, when the boiling of the refrigerant stops, the liquid phase refrigerant flows from the outlet opening 22 b of the liquid storage unit 22 to the evaporator 14 through the liquid return pipe 31 and the forward pipe 18.
  • the inlet 14b and the outlet 14c are provided on one side of the evaporator 14 in the battery stacking direction DRb.
  • the liquid phase refrigerant in the liquid storage unit 22 flows to the evaporator 14 through the liquid return pipe 31. Therefore, the outlet 14c of the evaporator 14 includes a gas-phase refrigerant outlet through which the gas-phase refrigerant from the evaporator 14 flows out to the return pipe 20, and a refrigerant return port that returns the liquid-phase refrigerant in the liquid storage unit 22 to the evaporator 14. And play both roles. In this case, the liquid phase refrigerant outlet of the liquid phase return pipe 31 is connected to the refrigerant return port.
  • the outlet 14c of the evaporator 14 is disposed below the gravity direction DR1 with respect to the liquid storage unit 22. For this reason, the liquid-phase refrigerant in the liquid storage part 22 can flow smoothly to the evaporator 14.
  • the example in which the liquid return pipe 31 and the return pipe 20 are connected to the common outlet 14c of the evaporator 14 has been described, but instead, the liquid return pipe 31 is used. And the return pipe 20 may be connected to different openings in the evaporator 14.
  • liquid storage unit 22 In the first embodiment, the example in which the liquid storage unit 22 is connected to the return flow path 20a through the liquid storage pipe 30 and the liquid return pipe 31 has been described, but instead, as shown in FIG.
  • the liquid storage part 22 may be arranged in series with the pipe 20 so that the liquid storage part 22 constitutes a part of the return flow passage 20a.
  • the return pipe 20 is an upstream return path that forms an upstream return flow path 120a that allows the vapor-phase refrigerant and the liquid-phase refrigerant to flow between the outlet 14c of the evaporator 14 and the inlet opening 22a of the liquid storage unit 22.
  • a pipe 120 is provided.
  • the upstream return pipe 120 corresponds to the upstream return part.
  • the inlet opening 22 a is disposed on the side wall of the liquid storage unit 22.
  • the return pipe 20 is a downstream return pipe 122 that forms a downstream return path 122 a for allowing the gas-phase refrigerant and the liquid-phase refrigerant to flow between the outlet opening 22 c of the liquid storage unit 22 and the refrigerant inlet / outlet of the condenser 16.
  • the downstream return pipe 122 corresponds to the downstream return part.
  • the outlet opening 22c is disposed in a portion (that is, a ceiling portion) of the liquid storage portion 22 facing the upper side in the gravity direction DR1.
  • the liquid storage part 22 is arrange
  • the liquid storage unit 22 forms the return flow passage 20 a together with the return pipe 20.
  • thermosiphon circuit 26 is filled with a refrigerant so that the liquid level refrigerant liquid ha exists in the evaporator 14.
  • bubbles containing the gas-phase refrigerant are generated from the inside of the liquid-phase refrigerant as the liquid-phase refrigerant boils. Bubbles rise from the inside of the evaporator 14 through the outlet 14c in the liquid refrigerant in the upstream return flow passage 120a of the return pipe 20.
  • the bubbles raise the liquid level of the liquid-phase refrigerant in the upstream backward flow passage 120a from the liquid level ha when stopped. That is, in the upstream return flow passage 120a, the liquid-phase refrigerant containing bubbles rises as a bubble mixed flow.
  • the liquid phase refrigerant is stored in the liquid storage unit 22. Further, the liquid phase refrigerant inside the liquid storage unit 22 returns into the evaporator 14 through the outlet opening 22b, the liquid return pipe 31, the liquid phase refrigerant return port 27, and the return flow passage 20a.
  • the amount of liquid phase refrigerant flowing into the liquid storage unit 22 from the upstream return flow passage 120a and the amount of liquid phase refrigerant flowing from the liquid storage unit 22 into the upstream return pipe 120 are balanced,
  • the liquid phase refrigerant in the liquid storage unit 22 is stored.
  • the total amount of the bubble mixed flow in the return flow passage 20a is adjusted, and the liquid level of the liquid-phase refrigerant in the return flow passage 20a is prevented from moving above the liquid storage portion 22 in the gravity direction DR1. .
  • the gas phase refrigerant radiates heat to the heat receiving fluid, so that the gas phase refrigerant is condensed.
  • the condensed liquid phase refrigerant flows into the liquid storage part 22 through the return flow passage 20a in the return pipe 20 due to gravity.
  • the return pipe 20 distributes the gas phase refrigerant and the liquid phase refrigerant between the outlet 14 c of the evaporator 14 and the inlet opening 22 a of the liquid storage unit 22. And an upstream return pipe 120 that forms an upstream return path 120a.
  • the return pipe 20 is a downstream return pipe 122 that forms a downstream return path 122 a for allowing the gas-phase refrigerant and the liquid-phase refrigerant to flow between the outlet opening 22 c of the liquid storage unit 22 and the refrigerant inlet / outlet of the condenser 16. Is provided.
  • the cooling device 10 is configured so that when the bubbles generated from the inside of the liquid-phase refrigerant in the evaporator 14 as the liquid-phase refrigerant boils raise the refrigerant in the upstream-side return flow passage 120a, the upstream-side return flow passage 120a. It is possible to store the liquid phase refrigerant flowing in from the liquid storage unit 22.
  • the liquid phase refrigerant in the return flow passage 20a is stored in the liquid storage unit 22 as the liquid phase refrigerant boils, so that the liquid phase refrigerant containing bubbles in the return flow passage 20a Less. For this reason, the fluctuation
  • the liquid phase refrigerant return port 27 communicates between the liquid return pipe 31 and the forward flow path of the forward pipe 18. For this reason, the liquid phase refrigerant in the liquid storage unit 22 flows to the evaporator 14 through the liquid return pipe 31 and the forward pipe 18.
  • the inlet opening 22a is disposed on the upper side in the gravity direction DR1 on the side wall of the liquid storage unit 22.
  • the outlet opening 22b of the liquid storage unit 22 is connected to the liquid-phase refrigerant return port 27 of the return pipe 20 via the liquid return pipe 31 as in the first embodiment.
  • the liquid phase refrigerant in the liquid storage unit 22 is returned to the return pipe 20 through the liquid return pipe 31.
  • the outlet opening 22 b of the liquid storage unit 22 is connected to the liquid phase refrigerant return port 27 of the forward path 18 via the liquid return line 31.
  • FIG. 10 shows the configuration of the cooling device 10 of the present embodiment.
  • the same reference numerals as those in FIG. 10 are identical reference numerals as those in FIG. 10
  • the cooling device 10 includes a round trip pipe 19 instead of the forward pipe 18 and the return pipe 20.
  • One inlet / outlet of the round-trip pipe 19 is connected to the inlet / outlet 16 a of the condenser 16, and the other inlet / outlet of the round-trip pipe 19 is connected to the inlet / outlet 14 k of the evaporator 14.
  • the round trip pipe 19 corresponds to a round trip section.
  • the inlet / outlet port 16a of the condenser 16 is disposed below the condenser 16 in the gravity direction DR1.
  • the inlet / outlet port 14 k of the evaporator 14 is disposed on the side wall of the evaporator 14.
  • the reciprocating pipe 19 constitutes a reciprocating flow passage 19 a for allowing the liquid phase refrigerant to flow from the condenser 16 to the evaporator 14 and for allowing the vapor phase refrigerant to flow from the evaporator 14 to the condenser 16.
  • a pipe (hereinafter referred to as an upper round-trip pipe) disposed on the upper side of the gravity direction DR1 with respect to the liquid storage part 22 in the round-trip pipe 19 is inclined with respect to the vertical direction and is in the flow direction of the gas-phase refrigerant. It is an inclined portion formed so as to go to the upper side in the gravity direction DR1 as it goes downstream.
  • the liquid phase inlet 24 of the present embodiment is provided at a portion of the upper round-trip pipe 19 of the round-trip pipe 19 that is disposed toward the lower side in the gravity direction DR1.
  • the inlet opening 22 a of the liquid storage part 22 is connected to the liquid phase inlet 24 of the upper reciprocating pipe of the reciprocating pipe 19 through the liquid storage pipe 30.
  • the liquid phase inlet 24 is located on the upper side of the gravity direction DR1 with respect to the liquid level ha at the stop of the return pipe 20.
  • the outlet opening 22 b of the liquid storage part 22 is connected to the liquid phase refrigerant return port 27 of the reciprocating pipe 19 through a liquid return pipe 31.
  • the liquid return pipe 31 is a liquid phase return part that returns the liquid-phase refrigerant in the liquid storage part 22 to the reciprocating pipe 19, and is disposed below the liquid storage part 22 in the gravity direction DR1.
  • the liquid storage part 22 is connected in parallel to the reciprocating flow passage 19a. That is, the liquid reservoir 22 is disposed independently in the reciprocating flow passage 19a.
  • the liquid refrigerant return port 27 is arranged below the gravity storage direction DR1 with respect to the liquid storage part 22 in the reciprocating pipe 19.
  • thermosiphon is filled with a refrigerant so that the evaporator 14 is filled with the liquid phase refrigerant.
  • the liquid level refrigerant level exists in the reciprocating flow passage 19a.
  • the refrigerant evaporates from the inside of the liquid phase refrigerant in the evaporator 14 and the bubbles rise from the inside of the evaporator 14 and move into the reciprocating flow passage 19a of the reciprocating pipe 19 through the outlet 14d.
  • the bubbles raise the liquid level of the liquid-phase refrigerant (see hb in FIG. 1) in the reciprocating flow passage 19a of the reciprocating pipe 19 from the liquid level ha at the stop time. That is, in the reciprocating flow passage 19a of the reciprocating piping 19, the liquid-phase refrigerant containing bubbles increases and rises as a bubble mixed flow as indicated by the arrow Yb.
  • the liquid phase refrigerant inside the liquid storage part 22 flows to the reciprocating pipe 19 through the outlet opening 22b, the liquid return pipe 31, and the liquid phase refrigerant return port 27 as indicated by an arrow Ye.
  • the total amount of the bubble mixed flow in the reciprocating flow passage 19a can be reduced. Therefore, the liquid level of the liquid phase refrigerant in the reciprocating flow passage 19a is greater than the liquid phase inlet 24 of the reciprocating piping 19 in the gravity direction DR1. It is possible to suppress the movement to the upper side.
  • the gas phase refrigerant radiates heat to the heat receiving fluid, so that the gas phase refrigerant is condensed.
  • the condensed liquid phase refrigerant passes through the reciprocating flow passage 19a of the reciprocating passage pipe 19 by gravity as indicated by an arrow Ya.
  • This liquid phase refrigerant further flows from the reciprocating flow passage 19a to the liquid storage part 22 through the liquid phase inlet 24, the liquid storage pipe 30, and the inlet opening 22a as indicated by an arrow Yc.
  • the liquid phase refrigerant in the liquid storage unit 22 flows to the evaporator 14 through the outlet opening 22b, the liquid return pipe 31, the liquid phase refrigerant return port 27, and the reciprocating flow passage 19a as indicated by an arrow Ye.
  • the liquid-phase refrigerant flows from the condenser 16 to the liquid storage part 22 through the liquid-phase inlet 24 along the inner surface 19e constituting the reciprocating flow passage 19a of the reciprocating pipe 19.
  • the gas phase refrigerant flows from the evaporator 14 toward the condenser 16 inward with respect to the liquid phase refrigerant.
  • the liquid-phase refrigerant and the gas-phase refrigerant circulate in the reciprocating passage 19a in the reciprocating pipe 19.
  • the liquid phase refrigerant in the reciprocating pipe 19 is reduced.
  • the amount of the liquid-phase refrigerant in the reciprocating pipe 19 becomes a specified amount or more, and the inside of the evaporator 14 becomes a refrigerant. Filled with.
  • the amount of refrigerant in the reciprocating pipe 19 is automatically adjusted according to the amount of heat of evaporation of the refrigerant.
  • the cooling device 10 includes the reciprocating pipe 19 having the inner surface 19e that forms the reciprocating flow passage 19a through which the refrigerant flows between the condenser 16 and the evaporator 14.
  • the reciprocating line pipe 19 distributes the liquid phase refrigerant from the condenser 16 along the inner surface 19e in the form of a water film to the liquid storage part 22, and the evaporator inside the reciprocating path 19a with respect to the liquid phase refrigerant.
  • the gas-phase refrigerant from 14 is circulated to the condenser 16.
  • a liquid phase inlet 24 communicating with the reciprocating flow passage 19a is formed on the upper side of the gravity direction DR1 with respect to the liquid level ha at the time of stopping in the reciprocating pipe 19.
  • the cooling device 10 stores the liquid-phase refrigerant that has flowed in from the liquid-phase inlet 24 of the reciprocating flow passage 19a when bubbles generated from the liquid-phase refrigerant as the liquid-phase refrigerant boils raises the refrigerant in the reciprocating flow passage 19a.
  • a liquid storage section 22 and a liquid phase return pipe that is disposed below the liquid storage section 22 in the gravity direction DR1 and returns the liquid phase refrigerant stored in the liquid storage section 22 to the reciprocating flow passage 19a or the evaporator 14. 31.
  • the liquid phase refrigerant in the reciprocating flow passage 19a is stored in the liquid storage part 22 as the liquid phase refrigerant boils, the liquid phase refrigerant containing bubbles in the reciprocating flow passage 19a is Less. For this reason, the fluctuation
  • the liquid return pipe 31 is disposed below the liquid storage part 22 in the direction of gravity, the liquid phase refrigerant in the liquid storage part 22 is smoothly flown as in the first embodiment. It is possible to flow in the return pipe 20.
  • the downstream side in the flow direction of the gas-phase refrigerant with respect to the liquid phase inlet 24 in the reciprocating flow passage 19a is provided independently of the liquid storage unit 22.
  • the downstream side in the flow direction of the gas-phase refrigerant with respect to the liquid phase inlet 24 is the liquid phase refrigerant from the condenser 16 along the inner surface 19e that forms the reciprocating flow passage 19a of the reciprocating piping 19.
  • the reciprocating pipe 19 is provided so that the gas-phase refrigerant from the evaporator 14 is circulated to the condenser 16 inside the liquid phase refrigerant in the reciprocating flow passage 19a. It is configured.
  • downstream side of the reciprocal flow passage 19a in the flow direction of the gas-phase refrigerant with respect to the liquid-phase inlet 24 flows the liquid-phase refrigerant from the condenser 16 through the liquid-phase inlet 24 to the liquid storage unit 22, Can be smoothly circulated to the condenser 16.
  • the liquid-phase refrigerant from the reciprocating pipe 19 can flow smoothly to the liquid storage unit 22.
  • the upper side of the liquid storage unit 22 in the gravity direction DR1 is the upper side of the liquid storage unit 22 above the center line in the gravity direction DR1.
  • the liquid phase inlet 24 is provided at a portion of the upper round-trip piping arranged toward the lower side in the gravity direction DR1 as in the first embodiment. For this reason, the liquid refrigerant from the reciprocating flow passage 19a easily flows into the liquid storage part 22 through the liquid phase inlet 24 due to gravity.
  • the liquid-phase refrigerant return port 27 of the present embodiment is disposed on the lower side in the gravity direction with respect to the liquid storage part 22 as in the first embodiment. For this reason, the liquid-phase refrigerant in the liquid storage part 22 can be smoothly flowed in the reciprocating flow passage 19a.
  • the refrigerant cross-sectional area of the liquid phase refrigerant return port 27 of the present embodiment is smaller than the refrigerant cross-sectional area of the liquid phase inlet 24.
  • liquid phase refrigerant can be easily stored in the liquid storage unit 22 when the liquid phase refrigerant boils.
  • the refrigerant cross-sectional area of the liquid-phase refrigerant return port 27 of the present embodiment is smaller than the refrigerant cross-sectional area of the reciprocating flow passage 19a.
  • the liquid refrigerant in the liquid storage part 22 can flow to the evaporator 14 through the outlet opening 22b, the liquid return pipe 31, and the liquid phase inlet 14e.
  • liquid return pipe 31 is disposed between the outlet opening 22b of the liquid storage unit 22 and the liquid refrigerant return port 27 of the evaporator 14 has been described.
  • a liquid return pipe 31 may be disposed between the liquid phase refrigerant return port 27 of the reciprocating pipe 19 and the outlet opening 22b of the liquid storage unit 22 as shown in FIG.
  • the liquid-phase refrigerant return port 27 of the reciprocating pipe 19 is a hole that communicates between the reciprocating passage 19 a and the liquid return pipe 31.
  • the liquid phase refrigerant in the liquid storage part 22 can flow to the outlet 14c of the evaporator 14 through the liquid return pipe 31 and the reciprocating pipe 19.
  • the outlet 14 c functions as both a refrigerant return port for flowing the liquid-phase refrigerant in the liquid storage unit 22 to the evaporator 14 and a refrigerant outlet for flowing the gas-phase refrigerant from the evaporator 14 to the reciprocating pipe 19.
  • the exit 14c of the evaporator 14 is arrange
  • FIG. 13 shows the configuration of the cooling device 10 of the present embodiment.
  • the reciprocating line pipe 19 is an upstream reciprocating path that forms an upstream reciprocating flow path that allows the gaseous refrigerant to flow from the outlet 14 c of the evaporator 14 to the inlet opening 22 a of the liquid storage unit 22.
  • a pipe 190 and a downstream-side reciprocating pipe 191 that forms a downstream-side reciprocating flow path through which the gas-phase refrigerant flows from the liquid storage unit 22 to the condenser 16 are provided.
  • the upstream round trip pipe 190 corresponds to the upstream round trip section
  • the downstream round trip pipe 191 corresponds to the downstream round trip section.
  • the liquid storage part 22 constitutes a reciprocating flow passage together with the upstream reciprocating flow passage and the downstream reciprocating flow passage.
  • the reciprocating flow path is a flow path through which the gas-phase refrigerant and the liquid-phase refrigerant flow between the evaporator 14 and the condenser 16.
  • thermosiphon is filled with refrigerant so that the liquid level ha of the liquid phase refrigerant exists inside the evaporator 14.
  • bubbles containing the gas-phase refrigerant are generated from the inside of the liquid-phase refrigerant as the liquid-phase refrigerant boils.
  • the bubbles rise inside the liquid phase refrigerant in the evaporator 14.
  • the volume of the liquid phase refrigerant containing bubbles increases, and the liquid level of the liquid phase refrigerant extends from the liquid level ha when stopped in the evaporator 14 to the upstream reciprocating flow passage of the upstream side reciprocating pipe 190. To rise.
  • the liquid-phase refrigerant containing bubbles rises as a bubble mixed flow.
  • the liquid phase refrigerant inside the liquid storage unit 22 flows to the evaporator 14 through the outlet opening 22b, the liquid return pipe 31, and the liquid phase inlet 14e.
  • the liquid storage unit 22 When the amount of liquid phase refrigerant flowing from the upstream side reciprocating pipe 190 to the liquid storage unit 22 and the amount of liquid phase refrigerant flowing from the liquid storage unit 22 through the liquid return pipe 31 to the evaporator 14 are balanced, the liquid storage unit The liquid phase refrigerant in 22 is stored.
  • the total amount of the bubble mixed flow in the reciprocating flow passage 19a is adjusted, and the liquid level of the liquid-phase refrigerant moves in the reciprocating flow passage 19a to the upper side in the gravity direction DR1 from the liquid storage section 22. It can be suppressed.
  • the gas phase refrigerant radiates heat to the heat receiving fluid, so that the gas phase refrigerant is condensed.
  • the condensed liquid phase refrigerant flows into the liquid storage part 22 in the form of a water film along the inner surface 19e forming the reciprocating flow passage 19a in the downstream reciprocating pipe 191 due to gravity.
  • the gas-phase refrigerant flows from the evaporator 14 to the condenser 16 through the reciprocating passage 19a of the reciprocating pipe 19 from the liquid storage part 22, the gas-phase refrigerant is the liquid-phase refrigerant in the reciprocating passage 19a. Circulate inside.
  • the gas-phase refrigerant and the liquid-phase refrigerant naturally circulate between the evaporator 14 and the condenser 16 through the reciprocating pipe 19.
  • the refrigerant inlet / outlet on one side of the upstream reciprocating pipe 190 is connected to the outlet 14 c of the evaporator 14, and the refrigerant on the other side of the upstream reciprocating pipe 190.
  • the inlet / outlet is connected to the inlet opening 22 a of the liquid reservoir 22.
  • the refrigerant inlet / outlet on one side of the downstream side reciprocating pipe 191 is connected to the inlet / outlet opening 22 c of the liquid storage part 22, and the refrigerant inlet / outlet of the downstream side reciprocating pipe 191 is connected to the inlet / outlet 16 a of the condenser 16.
  • the volume of the liquid phase refrigerant containing bubbles generated from the inside of the liquid phase refrigerant increases with the boiling of the liquid phase refrigerant, and the liquid phase refrigerant is raised.
  • FIG. 15 is an exploded view of the liquid storage unit-integrated evaporator 14A of the present embodiment.
  • the liquid storage unit-integrated evaporator 14A of the present embodiment includes plates 140a and 140b.
  • the plates 140a and 140b are plate members made of a metal material such as aluminum.
  • the plates 140a and 140b are aligned with each other in the thickness direction DR2, and the annular edge 150a of the other surface of the plate 140a in the thickness direction DR2 and the annular edge of the surface of the plate 140b on one side in the thickness direction DR2 The part 150b is joined.
  • the evaporator 40, the liquid storage unit 22, and the liquid return pipe 31 are configured in a region surrounded by the annular edges 150a and 150b between the plates 140a and 140b.
  • An inlet 14b is arranged on one side of the plate 140a in the thickness direction DR2 on one side in the battery stacking direction DRb and below the gravity direction DR1.
  • the outlet of the condenser is connected to the inlet 14b through an outward piping.
  • Outlet 14f is arranged on the other side of battery stacking direction DRb and on the upper side of gravity direction DR1 on one side of plate 140a in thickness direction DR2.
  • the outlet of the condenser is connected to the outlet 14f via a return pipe.
  • the liquid storage unit-integrated evaporator 14A configured as described above has the inlet 14b disposed below the outlet 14f in the gravity direction DR1, so that only the outlet 14f out of the inlet 14b and the outlet 14f has an air flow.
  • a structure for discharging the phase refrigerant is configured.
  • liquid storage unit-integrated evaporator 14A the forward piping, the return piping, and the condenser constitute the loop-type thermosiphon circuit 26 of the first embodiment.
  • a convex portion 151a that is convex on one side in the thickness direction DR2 is provided across the battery stacking direction DRb on the lower side of the gravity direction DR1 in the plate 140a.
  • a concave portion (hereinafter referred to as a lower concave portion) that is recessed on one side in the thickness direction DR2 is provided across the battery stacking direction DRb.
  • a concave portion 151b that is recessed on the other side in the thickness direction DR2 is provided across the battery stacking direction DRb.
  • the coolant channel 151 is formed by the combination of the lower recess of the plate 140a and the recess 151b of the plate 140b.
  • the liquid phase refrigerant introduced from the inlet 14b flows through the refrigerant flow path 151.
  • a side wall 152 in contact with the plurality of battery cells 121 is formed on the plate 140a on one side in the thickness direction DR2 and above the convex portion 151a in the gravity direction DR1.
  • An inner wall surface 153 extending in the battery stacking direction DRb is formed on the plate 140b on the upper side in the gravity direction DR1 with respect to the recess 151b and on one side in the thickness direction DR2.
  • the inner wall surface 153 is formed with a plurality of protrusions 153a, specifically, nine in the drawing, that protrude toward one side in the thickness direction DR2 over the gravity direction DR1.
  • the plurality of convex portions 153a are arranged in the battery stacking direction DRb at intervals.
  • the plurality of convex portions 153a are joined to the other side surface in the thickness direction DR2 of the side wall 152 of the plate 140a.
  • a plurality of heat exchange passages 153b are formed between two adjacent convex portions 153a among the plurality of convex portions 153a between the plates 140a and 140b.
  • a convex portion 156 is formed on the upper side of the gravitational direction DR1 with respect to the side wall 152 of the plate 140a so as to be convex from the other side of the thickness direction DR2.
  • a concave portion (hereinafter referred to as an upper concave portion) that is recessed on one side in the thickness direction DR2 is formed.
  • the convex portion 156 of the plate 140a is provided with a concave portion 157 that is recessed on the other side in the thickness direction DR2 across the battery stacking direction DRb.
  • the recessed portion 157 constitutes a heat insulating portion using air as a heat insulating material between the secondary battery 12 and the liquid storage portion 22.
  • a concave portion 154 that is recessed on the other side in the thickness direction DR2 is formed on the upper side in the gravity direction DR1 with respect to the inner wall surface 153 among the one side surfaces in the thickness direction DR2 of the plate 140b.
  • a convex portion 155 that is convex on one side in the thickness direction DR2 is formed across the battery stacking direction DRb.
  • One side of the projecting portion 155 in the battery stacking direction DRb is bent in an L shape so that the tip end portion faces the upper side in the gravity direction DR1.
  • a discharge passage 14h is formed between one side of the convex portion 155 in the battery stacking direction DRb and the annular edge portions 150a and 150b.
  • the convex portion 155 of the plate 140b is joined to the other side of the thickness direction DR2 with respect to the concave portion 157 of the plate 140a.
  • a refrigerant passage 154a that guides the refrigerant that has passed through the plurality of heat exchange passages 153b to the discharge passage 14h is located below the convex portion 155 between the upper concave portion of the plate 140a and the concave portion 154 of the plate 140b. It is configured.
  • the liquid storage portion 22 is disposed on the upper side in the gravity direction DR1 with respect to the convex portion 155 and on the other side in the battery stacking direction DRb with respect to the discharge flow path 14h.
  • a liquid phase inlet 24 is formed between the discharge channel 14h and the liquid storage unit 22.
  • the liquid phase inlet 24 communicates between the liquid storage unit 22 and the discharge flow path 14h.
  • the liquid phase inlet 24 is disposed on the upper side in the gravity direction DR1 with respect to the liquid level ha at the time of stop.
  • the discharge channel 14h communicates with the outlet 14f. *
  • the inlet 14b, the refrigerant channel 151, the side wall 152, the inner wall surface 153, the refrigerant channel 154a, the discharge channel 14h, and the outlet 14f constitute the evaporator 14. .
  • a convex portion 158a that is convex on one side in the thickness direction DR2 is formed on the other side of the plate 140a in the battery stacking direction DRb.
  • a concave portion (hereinafter referred to as a lateral concave portion) that is recessed on one side in the thickness direction DR2 is formed on the other side of the thickness direction DR2 in the convex portion 158a.
  • a recess 158b is formed that is recessed on the other side in the thickness direction DR2.
  • the side recess of the plate 140a and the recess 158b of the plate 140b are combined to constitute the liquid return pipe 31.
  • the heat siphon is filled with the refrigerant so that the liquid level ha of the liquid phase refrigerant exists inside the evaporator 14.
  • bubbles containing the gas-phase refrigerant are generated from the inside of the liquid-phase refrigerant as the liquid-phase refrigerant boils.
  • the bubbles move in the liquid phase refrigerant through the plurality of heat exchange passages 153b, the refrigerant passage 154a, and the discharge passage 14h.
  • the bubbles raise the discharge flow path 14h from the liquid level ha when the liquid level of the liquid-phase refrigerant in the evaporator 14 stops. That is, the liquid-phase refrigerant containing bubbles rises in the discharge channel 14h from the heat exchange passage 153b as a bubble mixed flow.
  • the liquid phase refrigerant containing bubbles in the discharge flow path 14 h flows into the liquid storage part 22 through the liquid phase inlet 24. To do. For this reason, the liquid phase refrigerant is stored in the liquid storage unit 22.
  • liquid phase refrigerant in the liquid storage unit 22 returns to the refrigerant flow path 151 through the liquid return pipe 31.
  • liquid phase refrigerant flowing from the discharge flow path 14h through the liquid phase inlet 24 to the liquid storage section 22 and the liquid phase refrigerant flowing from the liquid storage section 22 through the liquid return pipe 31 to the refrigerant flow path 151 are balanced.
  • the liquid refrigerant inside 22 is stored.
  • the total amount of the bubble mixed flow in the evaporator 14 is adjusted, and the liquid level of the liquid phase refrigerant in the discharge flow path 14h is higher than the liquid storage part 22 (that is, the liquid phase inlet 24) in the gravity direction DR1. It is possible to suppress the movement to the upper side.
  • liquid phase refrigerant in the discharge flow path 14h is stored in the liquid storage unit 22 when the liquid phase refrigerant boils, fluctuations in the liquid level of the refrigerant are reduced. Therefore, the vibration generated with the boiling of the liquid-phase refrigerant is reduced.
  • the gas phase refrigerant contained in the bubbles moves to the inlet of the condenser 16 through the forward piping 18.
  • the gas phase refrigerant radiates heat to the heat receiving fluid, so that the gas phase refrigerant is condensed.
  • the condensed liquid phase refrigerant flows to the evaporator 14 through the round trip pipe due to gravity.
  • the gas-phase refrigerant and the liquid-phase refrigerant are naturally circulated between the evaporator 14 and the condenser 16.
  • the liquid phase inlet 24 is disposed on the upper side in the gravity direction DR1 with respect to the liquid level ha at the time of stop. At this time, when the bubbles raise the liquid level refrigerant level in the evaporator 14 from the liquid level ha at the stop time, the liquid phase refrigerant is stored in the liquid storage unit 22.
  • liquid phase refrigerant in the discharge flow path 14h is stored in the liquid storage unit 22 when the liquid phase refrigerant boils, fluctuations in the liquid level of the refrigerant are reduced. Therefore, the vibration generated with the boiling of the liquid-phase refrigerant is reduced.
  • the recess 157 formed in the plate 140a of the present embodiment constitutes a heat insulating part using air as a heat insulating material between the secondary battery 12 and the liquid storage part 22. For this reason, the heat generated from the secondary battery 12 is suppressed from being transmitted to the liquid phase refrigerant in the liquid storage unit 22. Therefore, the liquid phase refrigerant in the liquid storage unit 22 is suppressed from being adversely affected by heat.
  • a net 155 a having a plurality of fine holes is disposed between the discharge flow path 14 h and the liquid storage part 22. This prevents bubbles from moving from the discharge flow path 14h to the liquid storage part 22.
  • the liquid storage unit 22 is disposed on the other side of the battery stacking direction DRb and the upper side of the gravity direction DR1 in the liquid storage unit-integrated evaporator 14A has been described. As shown in FIGS. 20 and 21, the liquid storage unit 22 may be disposed on one side of the battery stacking direction DRb and on the upper side of the gravity direction DR1 in the liquid storage unit-integrated evaporator 14A.
  • the cooling device 10 of the present embodiment includes a laminated heat exchanger 160 that replaces the liquid storage unit-integrated evaporator 14A in FIG. 15, heat conductive materials 170a and 170b, and FIG. Secondary batteries 12 a and 12 b are provided in place of the secondary battery 12.
  • the configuration other than the laminated heat exchanger 160, the heat conductive materials 170a and 170b, and the secondary batteries 12a and 12b is the same. Therefore, hereinafter, the laminated heat exchanger 160, the heat conducting materials 170a and 170b, and the plurality of secondary batteries 12a and 12b will be described, and the laminated heat exchanger 160, the heat conducting materials 170a and 170b, and the plurality of secondary batteries will be described. The description of the configuration other than 12a and 12b is simplified.
  • the stacked heat exchanger 160 includes liquid storage / evaporators 180a, 180b, 180c, 180d, 180e,... 180k, 180m that are stacked in a predetermined direction, and the secondary batteries 12a, 12b. It is a heat exchanger that cools.
  • the liquid storage / evaporators 180a to 180m are configured for each battery cell 121 of the secondary batteries 12a and 12b.
  • the direction in which the liquid storage / evaporators 180a, 180b, 180c, 180d,... 180k, 180m are stacked is defined as the Sa direction, and is orthogonal to the Sa direction and orthogonal to the gravity direction DR1.
  • the direction to perform is Sb direction.
  • the secondary battery 12a is arranged on one side in the Sb direction with respect to the laminated heat exchanger 160.
  • the secondary battery 12a includes a plurality of battery cells 121 stacked in the Sa direction. That is, the plurality of battery cells 121 are stacked in the same direction as the stacking direction of the liquid storage / evaporators 180a to 180m.
  • the secondary battery 12b is disposed on the other side in the Sb direction with respect to the laminated heat exchanger 160.
  • the secondary battery 12b includes a plurality of battery cells 121 stacked in the Sa direction.
  • secondary batteries 12a and 12b are the same secondary batteries although the reference numerals different from each other are given for convenience of explanation.
  • the heat conductive materials 170a and 170b are each formed in a thin plate shape from a material having electrical insulation and high thermal conductivity.
  • the heat conductive material 170a is disposed between the laminated heat exchanger 160 and the secondary battery 12a.
  • the heat conductive material 170b is disposed between the laminated heat exchanger 160 and the secondary battery 12b.
  • Each of the liquid storage / evaporators 180a to 180m of the present embodiment has a block shape in which the dimension in the gravity direction DR1 is larger than the dimension in the Sa direction, and the dimension in the gravity direction DR1 is larger than the dimension in the Sb direction. Is formed.
  • the liquid storage / evaporators 180a to 180m include a liquid storage / evaporator 180a, a liquid storage / evaporator 180b, a liquid storage / evaporator 180c,..., A liquid storage / evaporator 180m in this order from one side in the Sa direction to the other in the Sa direction. It is lined up on the side.
  • liquid storage / evaporator 180a Next, the structure of the liquid storage / evaporator 180a will be described with the liquid storage / evaporator 180a as a representative of the liquid storage / evaporators 180a to 180m of the laminated heat exchanger 160 of the present embodiment.
  • the liquid storage / evaporator 180a includes a case 181a and a lid 182 that are formed in a rectangular parallelepiped.
  • the case 181a forms an opening that opens to one side in the Sa direction.
  • the case 181a includes an upper surface 183, a lower surface 184, side surfaces 185 and 186, and a back surface 187, as shown in FIGS. 26A and 26B.
  • the upper surface 183 forms an opening together with the lower surface 184 and the side surfaces 185 and 186.
  • the rear surface 187 is disposed on the other side in the Sa direction with respect to the upper surface 183, the lower surface 184, and the side surfaces 185 and 186.
  • the lid 182 in FIG. 23 closes the opening of the case 181a.
  • the lid portion 182 is provided with an inlet 14b and an outlet 14c penetrating in the Sa direction. That is, the inlet 14b and the outlet 14c are arranged on one side in the Sb direction with respect to the stacked heat exchanger 160.
  • the outlet of the condenser 16 is connected to the inlet 14b through the outward piping 18.
  • the outlet 14c communicates with a region on the upper side in the gravity direction in the gas-liquid separation chamber 201 of the liquid storage / evaporator 180a.
  • the outlet 14 c is connected to the inlet of the condenser 16 through the return pipe 20.
  • partition walls 190a, 190b, and 190c are provided.
  • Each of the partition walls 190a and 190b is formed in a plate shape extending in the gravity direction DR1.
  • the partition walls 190a and 190b are arranged in the Sb direction.
  • the partition wall 190a forms an evaporation unit 200a that exchanges heat between the refrigerant and the secondary battery 12a between the side wall 185 and the side wall 185.
  • the partition wall 190b forms an evaporation unit 200b that exchanges heat between the refrigerant and the secondary battery 12b, between the side wall 186 and the side wall 186.
  • a wick that is, a capillary structure
  • a heat exchange fin may be incorporated.
  • a gas-liquid separation chamber 201 and a liquid refrigerant supply chamber 203 are formed between the partition walls 190a and 190b.
  • the liquid refrigerant supply chamber 203 corresponds to a refrigerant supply unit.
  • the partition wall 190c is formed so as to separate the gas-liquid separation chamber 201 and the liquid refrigerant supply chamber 203 from each other.
  • the partition wall 190c corresponds to the separation wall.
  • the gas-liquid separation chamber 201 corresponds to a gas-liquid separation unit.
  • the gas-liquid separation chamber 201 is formed above the partition wall 190c in the gravity direction DR1. As will be described later, the gas-liquid separation chamber 201 separates the refrigerant supplied from the evaporation units 200a and 200b into a gas-phase refrigerant and a liquid-phase refrigerant.
  • the liquid refrigerant supply chamber 203 is formed below the partition wall 190c in the gravity direction DR1.
  • the partition wall 190a and the lower surface 184 communicate with each other between the liquid refrigerant supply chamber 203 and the evaporation unit 200a, and a communication passage 204a that supplies the liquid refrigerant from the liquid refrigerant supply chamber 203 to the evaporation unit 200a (FIG. 26A). , See FIG. 26B).
  • the partition wall 190b and the lower surface 184 communicate with each other between the liquid refrigerant supply chamber 203 and the evaporation unit 200b, and a communication passage 204b that supplies the liquid refrigerant from the liquid refrigerant supply chamber 203 to the evaporation unit 200b (FIG. 26A). Reference) is formed.
  • the partition wall 190a and the upper surface 183 communicate with each other between the evaporation unit 200a and the gas-liquid separation chamber 201, and a communication passage 205a that supplies the refrigerant from the evaporation unit 200a to the gas-liquid separation chamber 201 (FIG. 26A, 26B) is formed.
  • the communication path 205a corresponds to the introduction part.
  • the partition wall 190b and the upper surface 183 communicate with each other between the evaporation unit 200b and the gas-liquid separation chamber 201, and a communication passage 205b that supplies the refrigerant from the evaporation unit 200b to the gas-liquid separation chamber 201 (see FIG. 26A). ) Is formed.
  • the communication path 205b corresponds to the introduction part.
  • the partition wall 190c is formed with a refrigerant return channel 191a that communicates between the liquid storage part 201b and the liquid refrigerant supply chamber 203.
  • the refrigerant return channel 191 a returns the liquid phase refrigerant in the liquid storage unit 201 b to the liquid refrigerant supply chamber 203.
  • the flow path cross-sectional area of the refrigerant return flow path 191a of the present embodiment is smaller than the flow path cross-sectional area of the evaporation unit 200a or 200b.
  • the pressure loss that occurs when the refrigerant flows through the refrigerant return channel 191a is larger than the pressure loss that occurs when the refrigerant flows through the evaporator 200a or 200b.
  • a communication passage 207 communicating with the gas-liquid separation chamber 201 of the liquid storage / evaporator 180b is formed on the rear surface 187 above the partition wall 190c in the gravity direction DR1.
  • the liquid storage / evaporator 180b is disposed on the other side in the Sa direction with respect to the liquid storage / evaporator 180a.
  • the two adjacent liquid storage / evaporators 180 a and 180 b are communicated with each other through the communication path 207 between the gas-liquid separation chambers 201.
  • a partition wall 206a for separating the liquid storage part 201b of the liquid storage / evaporator 180a and the liquid storage part 201b of the liquid storage / evaporator 180b is formed between the partition wall 190c and the communication path 207 in the back surface 187. Yes.
  • the partition wall 206a is provided with a communication hole 206 that allows communication between the liquid storage part 201b of the liquid storage / evaporator 180a and the liquid storage part 201b of the liquid storage / evaporator 180b.
  • the communication hole 206 corresponds to a communication part.
  • a communication hole 208 penetrating in the Sa direction is provided in the rear surface 187 below the partition wall 190c in the gravity direction DR1. That is, the communication hole 208 of the liquid storage / evaporator 180a communicates between the liquid refrigerant supply chamber 203 of the liquid storage / evaporator 180a and the liquid refrigerant supply chamber 203 of the liquid storage / evaporator 180b.
  • the lid 182 and the partition walls 190a, 190b, and 190c are made of a metal material such as aluminum.
  • the liquid storage / evaporator 180b to 180m of this embodiment includes a case 181a and partition walls 190a, 190b, and 190c.
  • the case 181a in the liquid storage / evaporator 180a is the same as the case 181a in the liquid storage / evaporator 180b to 180m.
  • the partition walls 190a, 190b and 190c in the liquid storage / evaporator 180a are the same as the partition walls 190a, 190b and 190c in the liquid storage / evaporator 180b to 180m.
  • the opening of the evaporator case 181a on the other side in the Sa direction is blocked by the back surface 187 of the evaporator case 181a on the one side in the Sa direction. ing.
  • the opening of the case 181a of the liquid storage / evaporator 180b on the other side in the Sa direction of the two adjacent liquid storage / evaporators 180a and 180b is formed on the case 181a of the liquid storage / evaporator 180a on the one side in the Sa direction. It is blocked by the back surface 187.
  • the liquid storage / evaporators 180b to 180m include a gas-liquid separation chamber 201 and a liquid refrigerant supply chamber 203, respectively.
  • the gas-liquid separation chamber 201 of each of the liquid storage / evaporators 180b to 180m separates the refrigerant supplied from the evaporation units 200a and 200b into a gas phase refrigerant and a liquid phase refrigerant.
  • the gas-liquid separation chambers 201 of two adjacent evaporators among the liquid storage / evaporators 180a to 180m communicate with each other through the communication path 207.
  • the gas-liquid separation chamber 201 of the liquid storage / evaporators 180a to 180m forms one gas-phase refrigerant flow path 201a that guides the gas-phase refrigerant in the gas-liquid separation chamber 201 to the outlet 14c.
  • the lower side in the gravity direction DR1 forms a liquid storage part 201b for storing the liquid-phase refrigerant that has been subjected to gas-liquid separation.
  • the liquid storage parts 201b of the liquid storage / evaporators 180a to 180m are separated by a partition wall 206a.
  • the partition wall 206a is configured by a back surface 187 of the case 181a.
  • the liquid refrigerant supply chambers 203 of two adjacent liquid storage / evaporators communicate with each other through a communication hole 208 serving as a communication path.
  • a heat insulating pipe 210 is passed through the communication hole 208 which is a communication path of the liquid storage / evaporators 180a to 180k.
  • the refrigerant inlet on one side in the Sa direction of the heat insulating pipe 210 is connected to the inlet 14b.
  • the heat insulation pipe 210 is formed with a liquid refrigerant supply channel 211 that allows liquid phase refrigerant entering from the inlet 14b to flow to one side in the Sa direction.
  • the heat insulation pipe 210 is provided with a plurality of communication holes 212 that supply the liquid refrigerant supply flow path 211 to the liquid refrigerant supply chamber 203 of the liquid storage / evaporators 180a to 180m.
  • the heat insulating pipe 210 suppresses heat from being transferred from the secondary batteries 12a and 12b to the liquid phase refrigerant entering from the inlet 14b.
  • the heat insulating pipe 210 of the present embodiment is made of a resin material having heat insulating properties.
  • the liquid storage / evaporators 180a to 180m are joined by brazing or the like.
  • the evaporation units 200a and 200b, the gas-liquid separation chamber 201, and the liquid refrigerant supply chamber 203 are provided for each liquid storage / evaporator, and each liquid storage / evaporator is provided.
  • One gas-phase refrigerant flow path 201a for discharging the gas-phase refrigerant from the evaporation units 200a and 200b is provided.
  • tube 210 is abbreviate
  • illustration of the partition walls 190a and 190b is omitted.
  • FIG. 27A the operation of the cooling device 10 of the present embodiment will be described with reference to FIGS. 27A, 27B, and 28.
  • FIG. 27A the operation of the cooling device 10 of the present embodiment will be described with reference to FIGS. 27A, 27B, and 28.
  • thermosiphon circuit 26 is filled with a refrigerant so that the liquid phase refrigerant is filled in the evaporation units 200a and 200b of the liquid storage / evaporators 180a to 180m.
  • the liquid level ha (see FIG. 28) of the liquid phase refrigerant is located in the evaporation units 200a and 200b and the liquid storage unit 201b of the liquid storage / evaporators 180a to 180m.
  • the secondary batteries 12a and 12b generate heat, and the temperature of the secondary batteries 12a and 12b increases. Then, heat is transferred from the secondary battery 12a to the side surface 185 of the case 181a of the liquid storage / evaporator 180a to 180m, and heat is transferred from the secondary battery 12b to the side surface 186 of the case 181a of the liquid storage / evaporator 180a to 180m.
  • the liquid phase refrigerant in the evaporation units 200a and 200b in the liquid storage / evaporators 180a to 180m boils due to the heat transferred from the secondary batteries 12a and 12b to the liquid storage / evaporators 180a to 180m.
  • the refrigerant evaporates from the inside of the liquid phase refrigerant in the evaporation units 200a and 200b in the liquid storage / evaporators 180a to 180m.
  • occur
  • the volume of the liquid-phase refrigerant containing bubbles becomes larger than the volume of the liquid-phase refrigerant not containing bubbles when the heat exchange is stopped. Therefore, the liquid level refrigerant level (see hb in FIG. 28) in the evaporation units 200a and 200b rises higher than the stop level liquid level ha.
  • the liquid-phase refrigerant containing bubbles rises as a bubble mixed flow.
  • the bubble mixed flow in the communication path 205b flows into the gas-liquid separation chamber 201 by gravity.
  • the bubble mixed flow is separated into the gas-phase refrigerant and the liquid-phase refrigerant in the gas-phase refrigerant channel 201a.
  • the gas-phase refrigerant flows to the outlet 14c through the gas-phase refrigerant channel 201a as indicated by an arrow Ka in FIG.
  • the liquid phase refrigerant flows and accumulates in the liquid storage unit 201b. Then, the liquid phase refrigerant in the liquid storage unit 201b returns to the liquid refrigerant supply chamber 203 through the refrigerant return channel 191a.
  • the liquid phase refrigerant is stored in the liquid storage unit 201b when the liquid phase refrigerant in the evaporation units 200a and 200b boils, the liquid phase refrigerant including bubbles in the evaporation units 200a and 200b decreases. . For this reason, the fluctuation
  • the gas-phase refrigerant moves from the outlet 14c to the condenser 16 through the return flow passage 20a of the return pipe 20.
  • the gas phase refrigerant radiates heat to the heat receiving fluid, so that the gas phase refrigerant is condensed.
  • the condensed liquid phase refrigerant flows to the inlet 14b of the stacked heat exchanger 160 through the forward flow passage 18a of the forward piping 18 due to gravity.
  • the liquid phase refrigerant flows through the liquid refrigerant supply channel 211 of the heat insulating pipe 210. Then, the liquid-phase refrigerant flows from the liquid refrigerant supply channel 211 to the respective liquid refrigerant supply chambers 203 of the liquid storage / evaporators 180a to 180m through the plurality of communication holes 212.
  • the liquid phase refrigerant flows from the liquid refrigerant supply chamber 203 to the evaporation units 200a and 200b.
  • these operations are performed by natural circulation of the refrigerant sealed in the thermosiphon circuit 26 without the need for a driving device such as a compressor.
  • the natural circulation is that the refrigerant circulates in the thermosiphon circuit 26 by natural convection caused by a temperature difference between the condenser 16 and the liquid storage / evaporators 180a to 180m.
  • the liquid phase refrigerant in the evaporation units 200a and 200b boils violently, the liquid phase refrigerant is stored in the liquid storage unit 201b, so that the liquid phase refrigerant in the evaporation units 200a and 200b decreases.
  • the amount of the liquid-phase refrigerant in the evaporation units 200a and 200b becomes equal to or more than a specified amount, and the evaporation unit 200a , 200b is filled with the refrigerant.
  • the amount of refrigerant in the evaporation units 200a and 200b is automatically adjusted according to the amount of heat of evaporation of the refrigerant in the evaporation units 200a and 200b.
  • the liquid level of the liquid phase refrigerant in the evaporation units 200a and 200b is lowered, and the liquid phase refrigerant in the liquid storage unit 201b is stored in the liquid storage unit 201b.
  • the liquid phase refrigerant returns to the liquid refrigerant supply chamber 203 through the refrigerant return channel 191a.
  • the liquid level of the liquid phase refrigerant in the liquid storage part 201b is lowered. Therefore, the evaporation parts 200a and 200b are filled with the refrigerant. Therefore, the liquid phase refrigerant can thermally contact the secondary battery 12 when the refrigerant is slightly boiled or before the boiling starts.
  • bubbles generated from the inside of the liquid phase refrigerant accompanying the boiling of the liquid phase refrigerant in the evaporation units 200a and 200b are liquid.
  • a gas-liquid separation chamber 201 is provided for gas-liquid separation of the bubble mixed flow that has flowed from the evaporation units 200a and 200b through the communication passages 205a and 205b when the phase refrigerant is raised.
  • the gas-liquid separation chamber 201 constitutes a gas phase refrigerant flow path 201a for allowing the gas phase refrigerant to flow to the outlet 14c, and constitutes a liquid storage part 201b for storing the liquid phase refrigerant.
  • the liquid phase refrigerant in the evaporation units 200a and 200b is stored in the liquid storage unit 201b with the boiling of the liquid phase refrigerant, so that the change in the liquid level of the refrigerant in the evaporation units 200a and 200b may occur. Get smaller. Therefore, the vibration generated with the boiling of the liquid-phase refrigerant is reduced.
  • the liquid storage part 201b is configured between the evaporation parts 200a and 200b.
  • the distance from the evaporation units 200a and 200b to the gas-liquid separation chamber 201 is shorter than the case where the liquid storage unit 201b is disposed outside the liquid storage / evaporators 180a to 180m, and the pressure loss caused in the refrigerant flow Becomes smaller.
  • the circulation of the refrigerant can be improved. Therefore, it is possible to suppress the generation of noise due to the blowing of the bubble mixed flow and to increase the cooling performance.
  • a partition wall 206a is disposed between the liquid storage portions 201b of two adjacent evaporators among the liquid storage / evaporators 180a to 180m of the present embodiment. For this reason, when the laminated heat exchanger 160 is shaken, the liquid phase refrigerant from the liquid storage / evaporator on one side of the Sa direction among the liquid storage / evaporators 180a to 180m is stored and evaporated on the other side of the Sa direction.
  • the partition wall 206a for each evaporator can be suppressed from flowing into the vessel.
  • the partition wall 206a for each evaporator can prevent the liquid refrigerant from flowing from the liquid storage / evaporator on the other side in the Sa direction to the liquid storage / evaporator on the one side in the Sa direction. Therefore, it is possible to prevent the generation of noise due to the liquid-phase refrigerant flowing in the Sa direction in the liquid storage / evaporators 180a to 180m.
  • the partition wall 206a of the present embodiment is provided with a communication hole 206 that allows communication between the liquid storage portions 201b of two adjacent liquid storage / evaporators among the liquid storage / evaporators 180a to 180m. For this reason, the liquid-phase refrigerant is distributed to the liquid storage parts 201b of the liquid storage / evaporators 180a to 180m through the communication holes 206. Accordingly, it is possible to prevent the liquid phase refrigerant from being excessive or insufficient in the liquid storage part 201b of any one of the liquid storage / evaporators 180a to 180m.
  • the gas-liquid separation chamber 201 is disposed on the opposite side of the secondary battery 12a with respect to the evaporation unit 200a (or the evaporation unit 200b). Therefore, the dimensions of the liquid storage / evaporators 180a to 180m in the gravity direction DR1 can be reduced.
  • the gas-liquid separation chamber 201 is disposed on the opposite side of the secondary battery 12a with respect to the evaporation units 200a and 200b as described above. For this reason, the liquid-phase refrigerant stored in the liquid storage part 201b formed below the gravity direction DR1 in the gas-liquid separation chamber 201 is less likely to boil than the liquid-phase refrigerant in the evaporation parts 200a and 200b. Become.
  • the gas-liquid separation chamber 201 can also serve as a liquid storage part 201b that prevents the liquid level of the liquid-phase refrigerant from rising together with gas-liquid separation.
  • the gas-phase refrigerant flow path 201a can be secured with a sufficient size above the gravity direction in the gas-liquid separation chamber 201. Thereby, the discharge
  • the pressure loss that occurs when the refrigerant flows through the refrigerant return channel 191a is larger than the pressure loss that occurs when the refrigerant flows through the evaporating section 200a or 200b. For this reason, when the refrigerant is boiling rapidly in the evaporation units 200a and 200b, the gas-phase refrigerant from the evaporation units 200a and 200b flows to the liquid storage unit 201b through the liquid refrigerant supply chamber 203 and the refrigerant return channel 191a. It can be suppressed in advance.
  • the liquid storage / evaporators 180a to 180m are configured for each battery cell 121 of the secondary batteries 12a and 12b. For this reason, it is possible to suppress the dry out of the refrigerant in a part of the Sa direction in the laminated heat exchanger 160, and to cause the cooling variation and the temperature variation for each battery cell of the secondary batteries 12a and 12b. Can be suppressed.
  • setting the refrigerant storage surface 201b so as to straddle the refrigerant liquid level when the refrigerant is charged is effective for absorbing refrigerant leakage and filling tolerance when the refrigerant is charged.
  • coolant filling can be made small compared with the case where there is no liquid storage part 201b.
  • the wall that separates the evaporation unit 200a and the liquid refrigerant supply chamber 203 is deleted.
  • the wall that separates the evaporation section 200b and the liquid refrigerant supply chamber 203 is omitted.
  • the lower side in the gravity direction DR1 of the evaporation unit 200a and the liquid refrigerant supply chamber 203 are directly connected, and the lower side of the evaporation unit 200b in the gravity direction DR1 and the liquid refrigerant supply chamber 203 are directly connected.
  • the liquid phase refrigerant from the liquid refrigerant supply chamber 203 can easily flow to the evaporation units 200a and 200b, and thus the circulation of the refrigerant can be improved, so that the cooling performance is also increased. be able to.
  • the configuration other than the partition walls 190a and 190b is the same as that in the seventh embodiment, and the description thereof is omitted.
  • the heat insulating pipe 210 may be omitted.
  • liquid refrigerant flowing from the inlet 14b sequentially flows into the liquid refrigerant supply chamber 203 of the liquid storage / evaporators 180a to 180m as follows.
  • the liquid refrigerant is the liquid refrigerant supply chamber 203 of the liquid storage / evaporator 180a, the communication hole 208, the liquid refrigerant supply chamber 203 of the liquid storage / evaporator 180b, the communication hole 208, and the liquid refrigerant of the liquid storage / evaporator 180c. It flows in the order of the supply chamber 203, the communication hole 208,..., The liquid refrigerant supply chamber 203 of the liquid storage / evaporator 180k, the communication hole 208, and the liquid refrigerant supply chamber 203 of the liquid storage / evaporator 180m.
  • the liquid phase refrigerant is supplied from the liquid refrigerant supply chamber 203 to the evaporation units 200a and 200b for each liquid storage / evaporator.
  • the cooling device 10 of the present embodiment is obtained by changing the structure of the liquid storage unit 22, the liquid return pipe 31, and the return pipe 20 with respect to the cooling device 10 of the first embodiment.
  • the liquid storage part 22 is arranged in series with the return pipe 20 and the liquid storage part 22 constitutes a part of the return flow path 20a.
  • the return pipe 20 of this embodiment includes an upstream return pipe 120 and a downstream return pipe 122 that are not directly connected to each other.
  • the upstream return piping 120 forms an upstream return flow passage 120a through which the gas-phase refrigerant and the liquid-phase refrigerant circulate between the outlet 14c of the evaporator 14 and the inlet opening 22a of the liquid storage unit 22.
  • the inlet opening 22a is disposed at the center in the gravity direction DR1 and at the center in the horizontal direction of the liquid storage unit 22.
  • the downstream return pipe 122 forms a downstream return path 122 a that allows the gas-phase refrigerant and the liquid-phase refrigerant to flow between the outlet opening 22 c of the liquid storage unit 22 and the refrigerant inlet / outlet of the condenser 16.
  • the outlet opening 22c is above the gravity direction DR1 than the inlet opening 22a.
  • the outlet opening 22c is disposed in a portion (that is, a ceiling portion) of the liquid storage portion 22 facing the upper side in the gravity direction DR1.
  • the liquid storage part 22 is arrange
  • the liquid reservoir that is the internal space of the liquid reservoir 22 is divided into an enlarged part 22p, a body part 22q, and a reduced part 22r in order from the lower side in the gravity direction DR1.
  • the enlarged portion 22p has a larger horizontal dimension from the lower side to the upper side in the gravity direction DR1.
  • the trunk portion 22q has a smaller absolute value of the change in the width in the horizontal direction from the lower side to the upper side in the gravity direction DR1 than the reducing portion 22r.
  • the reduction part 22r has a smaller horizontal dimension from the lower side to the upper side in the gravity direction DR1.
  • the upper end of the enlarged portion 22p is directly connected to the lower end of the trunk portion 22q.
  • the upper end of the trunk portion 22q is directly connected to the lower end of the reduction portion 22r.
  • the upper end of the upstream return pipe 120 is a protruding portion 120 x that protrudes from the bottom surface of the liquid storage portion 22 toward the liquid reservoir portion of the liquid storage portion 22.
  • the protruding portion 120x extends upward from the enlarged portion 22p, and further extends upward from the body portion 22q.
  • the uppermost end of the protruding part 120x may be located on the body part 22q or may be located on the enlarged part 22p.
  • the uppermost end of the protruding part 120 x is also an inlet opening 22 a of the liquid storage part 22.
  • a plurality of liquid return passages 31x are formed at the lower end of the projecting portion 120x. Each of the plurality of liquid return passages 31x corresponds to a liquid phase return portion.
  • the upstream return flow passage 120a and the enlarged portion 22p communicate with each other through the plurality of liquid return passages 31x.
  • the plurality of liquid return passages 31x communicate with the lowermost portion of the enlarged portion 22p in the gravity direction DR1.
  • the liquid refrigerant in the enlarged portion 22p is caused by gravity to move to the plurality of liquid return passages 31x. And then return to the upstream return flow passage 120a. Further, even when the liquid level of the refrigerant in the upstream return flow passage 120a is above the liquid return passage 31x in the gravity direction DR1, the liquid refrigerant in the enlarged portion 22p is separated from the plurality of liquid return passages by gravity. It is possible to return to the upstream return flow path 120a through 31x.
  • the operation of the cooling device 10 of this embodiment will be described. First, when the temperature of the secondary battery 12 is the same as the temperature of the liquid refrigerant in the evaporator 14, the heat exchange between the secondary battery 12 and the liquid refrigerant in the evaporator 14 is stopped.
  • thermosiphon circuit 26 is filled with a refrigerant so that the liquid level refrigerant liquid ha exists in the evaporator 14.
  • the liquid level ha is below the gravity direction DR1 with respect to the liquid return passage 31x.
  • bubbles containing the gas-phase refrigerant are generated from the inside of the liquid-phase refrigerant as the liquid-phase refrigerant boils. Bubbles rise from the inside of the evaporator 14 through the outlet 14c in the liquid refrigerant in the upstream return flow passage 120a of the return pipe 20.
  • the bubbles raise the liquid level of the liquid-phase refrigerant in the upstream backward flow passage 120a from the liquid level ha when stopped. That is, in the upstream return flow passage 120a, the liquid-phase refrigerant containing bubbles rises as a bubble mixed flow.
  • the liquid level moves from below the liquid return path 31x in the gravity direction DR1 to above the liquid return path 31x and above the gravity direction DR1.
  • the portion located at the same height as the liquid return passage 31x and the flow passage cross-sectional area of the refrigerant in the vicinity thereof are more than the sum of the flow passage cross-sectional areas of the plurality of liquid return passages 31x. Big enough.
  • the amount of liquid refrigerant flowing from the upstream return flow passage 120a through the liquid return passage 31x into the enlarged portion 22p is equal to the amount of liquid refrigerant above the liquid return passage 31x in the upstream return flow passage 120a. Compared to very small.
  • the liquid phase refrigerant is stored in the liquid storage part of the liquid storage part 22.
  • the upstream return flow passage 120a passes through the inlet opening 22a.
  • the amount of refrigerant flowing into the liquid reservoir of the liquid reservoir 22 is overwhelmingly large.
  • the liquid refrigerant in the liquid reservoir portion is upstream of the upstream return flow passage through the liquid return passage 31x, even when the liquid level of the refrigerant in the upstream return flow passage 120a is lower or higher than the liquid return passage 31x. Return to 120a.
  • the liquid level of the refrigerant in the upstream return flow passage 120a is higher than the liquid return passage 31x, the liquid refrigerant returns to the upstream return flow passage 120a through the liquid return passage 31x because of the bubble content of the refrigerant in the liquid reservoir. This is because the bubble content in the upstream return flow passage 120a is less.
  • the rise of the liquid level is suppressed to be equal to or less than the height of the inlet opening 22a, so that the height of the liquid level immediately before the drop (that is, the head) becomes lower than, for example, the example of FIG. 2B. . Then, the drop distance L1 when the bubbles burst and the liquid refrigerant falls becomes shorter. Therefore, bubble burst noise can be suppressed.
  • the height of the refrigerant level in the liquid reservoir also fluctuates.
  • the liquid reservoir part that is, the enlarged part 22p, the body part 22q, and the reduced part 22r
  • the fluctuation amount L2 of the height of the surface is smaller than the fall distance L1.
  • a cooling device in which the protruding portion 120x is eliminated from the cooling device 10 of the present embodiment may be used as in the comparative example shown in FIG.
  • the liquid storage part 22 is a part of the return pipe 20 and there is no liquid phase return part.
  • the protruding portion 120x is disposed in the liquid reservoir portion of the liquid storage portion 22, the enlarged portion 22p protrudes as a partition that separates the upstream return flow passage 120a. Part 120x does yesterday. Therefore, in this embodiment, the pressure fluctuation of the refrigerant accompanying the rise and fall of the liquid level is suppressed, and consequently the generation of abnormal noise is suppressed.
  • stop-time liquid level ha is formed in the forward pipe 18 and the return pipe 20, but instead, the stop-time liquid level ha is You may comprise so that it may be formed in the evaporator 14.
  • FIG. 1 the stop-time liquid level ha is formed in the forward pipe 18 and the return pipe 20, but instead, the stop-time liquid level ha is You may comprise so that it may be formed in the evaporator 14.
  • the liquid return pipe 31 is curved in an S shape, and only a part of the liquid return pipe 31 is disposed above the liquid storage unit 22 in the gravity direction DR1 and other than the part of the liquid return pipe 31. The remaining portion may be disposed below the liquid storage part 22 in the gravity direction DR1.
  • the liquid level ha at the time of stop may be formed in the pipe 18 and the return pipe 20.
  • the liquid level ha at the time of stop is formed in the evaporator 14.
  • the liquid level ha at the time of stop may be formed in the reciprocating pipe 19 without being limited thereto.
  • the cooling device 10 is applied to an automobile.
  • the cooling device 10 is applied to a moving body such as a train, a train, and an airplane other than the automobile.
  • the cooling device 10 may be applied to an installation type device.
  • the condenser 16 has been described with respect to the example in which the refrigerant is cooled using air or water as the heat receiving fluid.
  • the refrigerant may be cooled using a compression refrigeration cycle.
  • thermosiphon circuit 26 is configured by the liquid storage unit-integrated evaporator 14A. It may be as follows.
  • the liquid storage unit integrated evaporator 14A may be applied to a thermosiphon circuit in which the condenser 16 and the evaporator 14 are connected by the reciprocating pipe 19 in the fourth embodiment.
  • thermosiphon circuit in the first and second modifications of the fourth embodiment.
  • the inlet 14b is sealed, one refrigerant inlet / outlet of the reciprocating pipe 19 is connected to the outlet 14c, and the other refrigerant inlet / outlet of the reciprocating pipe 19 is connected to the inlet / outlet of the condenser 16.
  • the liquid phase refrigerant supplied from the condenser 16 through the reciprocating pipe 19 enters the inside of the evaporator 14 of the liquid storage unit integrated evaporator 14A from the outlet 14c.
  • the liquid-phase refrigerant flows in the order of the outlet 14c, the discharge channel 14h, the refrigerant channel 154a, the plurality of heat exchange channels 153b, and the refrigerant channel 151.
  • bubbles that is, gas phase refrigerant generated by boiling of the liquid refrigerant inside the evaporator 14 are a plurality of heat exchange passages 153b, refrigerant passages 154a, discharge passages 14h, outlets 14c, reciprocating pipes 19, It flows in the order of the condenser 16.
  • the liquid level ha at the time of stop exists in the evaporator 14 has been described. It may be present at the liquid level ha when stopped. Alternatively, the liquid level ha at the time of stop may exist in the liquid storage unit 22.
  • liquid storage / evaporators 180a to 180m are configured for each battery cell 121 in the stacked heat exchanger 160 .
  • the liquid storage / evaporators 180 a to 180 m need only be formed for each section in the Sa direction, and the liquid storage / evaporators 180 a to 180 m do not need to be configured for each battery cell 121.
  • the laminated heat exchanger 160 has been described with the example in which the inlet 14b and the outlet 14c are provided on one side in the Sa direction, but instead, the other side in the Sa direction. An inlet 14b and an outlet 14c may be provided.
  • the inlet 14b and the outlet 14c may be provided on the other side in the Sa direction.
  • the inlet 14b may be provided on the other side in the Sa direction, and the outlet 14c may be provided on the one side in the Sa direction.
  • the inlet 14b may be provided on one side in the Sa direction, and the outlet 14c may be provided on the other side in the Sa direction.
  • the laminated heat exchanger 160 has been described with respect to the example in which the evaporation units 200a and 200b are partitioned for each liquid storage / evaporator. You may comprise so that the evaporation part 200a of one liquid storage / evaporator and the evaporation part 200b of another liquid storage / evaporator may communicate with each other between two adjacent liquid storage / evaporators.
  • liquid storage / evaporators such as the liquid storage / evaporators 180a to 180m are provided.
  • the number of liquid storage / evaporators is 12 The number is not limited to one, and may be any number, one, or a number other than twelve.
  • liquid storage / evaporators 180a to 180m may be configured as follows.
  • the maximum volume capable of storing the refrigerant in the liquid storage units of the liquid storage / evaporators 180a to 180m is set as the maximum liquid storage volume, and when the transfer of heat from the object to be cooled to the refrigerant is stopped, When the liquid level of the refrigerant is located in the liquid part, when the movement of heat from the object to be cooled to the refrigerant stops, the maximum liquid storage volume above the liquid level of the refrigerant in the liquid storage part above the liquid level in the liquid storage part.
  • the liquid storage / evaporators 180a to 180m are configured to have a volume of more than half of the above.
  • the refrigerant circulates and the phases of the liquid phase and the gas phase of the refrigerant
  • a cooling device that cools an object to be cooled by a change, and is arranged above an evaporating part that boils the liquid phase refrigerant by transferring heat from the object to be cooled to the liquid phase refrigerant and above the evaporating part in the direction of gravity.
  • the liquid storage unit is configured so that the bubbles generated from the inside of the liquid phase refrigerant in the evaporation unit with the boiling of the liquid phase refrigerant raise the liquid phase refrigerant in the return flow passage. Stores the inflowing liquid phase refrigerant.
  • the liquid phase return part is disposed below the liquid storage part in the direction of gravity. Therefore, the liquid phase refrigerant in the liquid storage part can be easily flowed to any one of the backward flow path, the evaporation part, and the forward flow path.
  • the liquid level of the liquid-phase refrigerant when the movement of heat from the object to be cooled to the refrigerant stops is the liquid level at the time of stop
  • gravity is applied to the liquid level at the time of stop in the return path portion.
  • a liquid phase inlet communicating with the return flow passage is formed, and the liquid storage portion is used when bubbles generated from the inside of the liquid phase refrigerant in the evaporation portion raise the liquid phase refrigerant in the return flow passage.
  • the liquid phase refrigerant flowing in from the liquid phase inlet of the return path portion is stored. Thereby, a liquid phase refrigerant can be easily flowed to a liquid storage part from a return way flow way.
  • the downstream side in the flow direction of the gas-phase refrigerant with respect to the liquid-phase inlet in the return flow passage is provided independently of the liquid storage section, and the gas-phase refrigerant flowing from the evaporation section is The return path is configured to flow to the condenser.
  • the liquid storage part is formed with an inlet opening into which liquid refrigerant flowing from the liquid phase inlet of the return flow passage enters, and the inlet opening is in the gravity direction of the liquid storage part. It is provided in the site
  • the return path section includes an inclined portion that is inclined with respect to the vertical direction so that the return path flow path goes to the upper side in the direction of gravity as the gas flow refrigerant flows downstream.
  • the phase inlet is provided in a portion of the inclined portion that is disposed toward the lower side in the gravity direction.
  • the liquid-phase refrigerant outlet of the liquid-phase return unit is connected to the refrigerant return port formed in any one member of the return path unit, the evaporation unit, and the forward path unit, and is stored.
  • the liquid phase refrigerant inlet of the liquid phase return part is connected to the liquid phase refrigerant outlet of the liquid part, and the liquid phase refrigerant in the liquid storage part flows to one member through the liquid phase return part.
  • the refrigerant return port is arranged on the lower side in the gravity direction with respect to the liquid storage part.
  • the refrigerant cross-sectional area of the refrigerant return port is smaller than the refrigerant cross-sectional area of the refrigerant at the liquid phase inlet.
  • the pressure loss when the liquid phase refrigerant passes through the refrigerant return port becomes larger than the pressure loss when the liquid phase refrigerant passes through the liquid phase inlet.
  • the liquid phase refrigerant easily enters the liquid storage part from the return path passage through the liquid phase inlet, and the liquid phase refrigerant from the liquid storage part passes through the refrigerant return port and is one of the return path part, the evaporation part, and the forward path part. It becomes difficult to flow to the member. Therefore, the liquid phase refrigerant can be easily stored in the liquid storage section when the liquid phase refrigerant boils.
  • the refrigerant cross-sectional area of the refrigerant return port is smaller than the refrigerant cross-sectional area of the return flow passage.
  • the liquid storage part is formed with an inlet opening for receiving the refrigerant flowing in from the backward flow passage and an outlet opening for discharging the gas-phase refrigerant from the liquid storage part.
  • Part forms an upstream return passage that forms an upstream return flow passage that allows the vapor phase refrigerant to flow from the evaporation portion to the storage portion, and a downstream return passage that allows the vapor phase refrigerant to flow from the storage portion to the condensation portion.
  • a downstream return path section, and the liquid storage section stores the liquid phase refrigerant flowing from the upstream return path passage by bubbles generated from the inside of the liquid phase refrigerant in the evaporation section.
  • the liquid storage part can store the liquid-phase refrigerant that has flowed in from the upstream return flow passage.
  • the liquid storage part flows from the evaporation part when bubbles generated from the inside of the liquid phase refrigerant in the evaporation part raise the liquid phase refrigerant in the evaporation part as the liquid phase refrigerant boils. Store the liquid phase refrigerant.
  • the gas phase refrigerant and the liquid phase refrigerant are arranged on the opposite side of the object to be cooled with respect to the evaporation part, and the bubbles and the liquid phase refrigerant that have flowed in from the evaporation part as the liquid phase refrigerant boils.
  • at least one gas-liquid separator that constitutes a gas-phase refrigerant flow path for discharging the separated gas-phase refrigerant to the return flow passage and a liquid storage section for storing the separated liquid-phase refrigerant.
  • the distance from the evaporation section to the gas-liquid separation section from the evaporation section to the liquid storage section is short, and the pressure loss generated in the refrigerant flow is reduced. For this reason, the circulation of the refrigerant can be improved. Therefore, it is possible to suppress the generation of abnormal noise associated with the rise of the liquid phase refrigerant and to increase the cooling performance.
  • a plurality of at least one gas-liquid separation unit are arranged, and a partition is provided between the liquid storage units of two adjacent gas-liquid separation units among the plurality of gas-liquid separation units.
  • the partition wall prevents the liquid phase refrigerant from flowing between the liquid storage portions of the plurality of gas-liquid separation portions, so that the generation of abnormal noise can be suppressed in advance.
  • the partition wall is provided with a communication portion that communicates between the liquid storage portions of the two adjacent gas-liquid separation portions.
  • the liquid refrigerant is distributed to the plurality of liquid storage parts through the communication part. Accordingly, it is possible to prevent the liquid phase refrigerant from being excessive or insufficient in any one of the plurality of liquid storage units.
  • an introduction part that is arranged on the upper side in the gravitational direction with respect to the evaporation part and the gas-liquid separation part and guides the bubbles and the liquid-phase refrigerant flowing from the evaporation part to the gas-liquid separation part.
  • a liquid refrigerant supply unit that is disposed on the lower side in the gravity direction with respect to the gas-liquid separation unit and supplies the liquid-phase refrigerant flowing from the forward flow passage to the evaporation unit, the gas-liquid separation unit, and the liquid
  • a liquid separation unit disposed between the refrigerant supply units, and the liquid phase return unit is provided on the separation wall and allows the liquid phase refrigerant in the liquid storage unit to flow through the liquid refrigerant supply unit to the evaporation unit.
  • a liquid storage / evaporator including a liquid storage part and an evaporation part is provided.
  • the liquid storage / evaporator is disposed between two objects to be cooled
  • the liquid storage / evaporator includes a first evaporation unit as an evaporation unit that boiles the liquid refrigerant by heat transferred from one of the two objects to be cooled, A second evaporation unit that boiles the liquid-phase refrigerant by heat transferred from the other object to be cooled out of the two objects to be cooled, and at least one gas-liquid separation unit includes: A gas-phase refrigerant flow path for separating bubbles and liquid-phase refrigerant flowing in from the first evaporation section and the second evaporation section into gas-phase refrigerant and liquid-phase refrigerant and discharging the separated gas-phase refrigerant to the return flow passage And a liquid storage unit for storing the separated liquid phase refrigerant.
  • the cooling device circulates the refrigerant and cools the object to be cooled by the phase change between the liquid phase and the gas phase of the refrigerant, and moves heat from the object to be cooled to the liquid phase refrigerant.
  • the gas phase refrigerant from the evaporating part flows inside the reciprocating path part to the condensing part and the bubbles generated from the inside of the liquid phase refrigerant with the boiling of the liquid phase refrigerant raise the liquid phase refrigerant in the reciprocating flow passage
  • the liquid phase return part is arranged below the liquid storage part in the direction of gravity.
  • liquid phase refrigerant in the liquid storage part can be easily flowed to the reciprocating flow passage or the evaporation part.
  • a liquid phase inlet communicating with the reciprocating flow passage is formed on the upper side in the direction of gravity, and the liquid storage section is configured to reciprocate when bubbles generated from the liquid phase refrigerant raise the liquid phase refrigerant in the reciprocating flow passage.
  • the liquid phase refrigerant flowing in from the liquid phase inlet of the unit is stored.
  • liquid phase refrigerant can easily flow from the reciprocating flow passage to the liquid storage part.
  • the downstream side in the flow direction of the gas-phase refrigerant with respect to the liquid phase inlet is provided independently of the liquid storage portion, and from the condensation portion along the inner surface.
  • the reciprocating path part is configured so that the liquid phase refrigerant flows through the liquid storage part, and the vapor phase refrigerant from the evaporation part flows through the condensing part inside the liquid phase refrigerant in the reciprocating flow path.
  • the liquid storage part is formed with an inlet opening into which liquid refrigerant flowing from the liquid phase inlet of the reciprocating path part enters, and the inlet opening is in the gravity direction of the liquid storage part. It is provided in the site
  • the liquid refrigerant from the reciprocating path part can be easily flowed to the liquid storage part.
  • the reciprocating path portion includes an inclined portion that is inclined with respect to the vertical direction so that the reciprocating flow passage is directed to the upper side in the direction of gravity as the reciprocating flow passage proceeds downstream in the flow direction of the gas phase refrigerant.
  • the entrance is provided at a portion of the inclined portion that is disposed toward the lower side in the gravity direction.
  • the liquid refrigerant can easily flow from the reciprocating flow passage to the liquid storage part.
  • the liquid phase refrigerant outlet of the liquid phase return portion is connected to the refrigerant return port formed in any one member of the reciprocating path portion and the evaporation portion, and the liquid storage portion
  • the liquid-phase refrigerant inlet of the liquid-phase return part is connected to the liquid-phase refrigerant outlet, and the liquid-phase refrigerant in the liquid storage part flows to one member through the liquid-phase return part.
  • the refrigerant return port is disposed on the lower side in the gravity direction with respect to the liquid storage part. Therefore, the liquid phase refrigerant of the liquid storage part can easily flow to the reciprocating path part or the evaporation part.
  • the refrigerant passage sectional area of the refrigerant return port is smaller than the refrigerant passage sectional area of the liquid phase inlet.
  • the pressure loss when the liquid phase refrigerant passes through the refrigerant return port becomes larger than the pressure loss when the liquid phase refrigerant passes through the liquid phase inlet.
  • the liquid phase refrigerant easily enters the liquid storage part through the liquid phase inlet from the reciprocating flow passage, and the liquid phase refrigerant hardly flows from the liquid storage part through the refrigerant return port to the reciprocating path part or the evaporation part. Therefore, the liquid phase refrigerant can be easily stored in the liquid storage section when the liquid phase refrigerant boils.
  • the refrigerant cross-sectional area of the refrigerant return port is smaller than the refrigerant cross-sectional area of the reciprocating flow path.
  • the liquid storage part is formed with an inlet opening for receiving the refrigerant flowing in from the reciprocating flow passage and an outlet opening for discharging the gas-phase refrigerant from the liquid storage part.
  • the passage includes an upstream reciprocating passage that forms an upstream reciprocating passage that allows the gas-phase refrigerant to flow from the evaporation portion to the liquid storage portion, and a downstream reciprocating flow passage that allows the gas-phase refrigerant to flow from the storage portion to the condensing portion.
  • a downstream reciprocating path portion that forms a liquid-phase refrigerant that stores the liquid-phase refrigerant that has flowed in from the upstream-side reciprocating passage by bubbles generated from the inside of the liquid-phase refrigerant in the evaporation portion.
  • the liquid storage part can store the liquid-phase refrigerant flowing in from the upstream side reciprocating flow passage.
  • a heat insulating part that suppresses heat transfer between the liquid storage part and the object to be cooled is disposed between the liquid storage part and the object to be cooled.
  • the maximum volume in which the refrigerant can be stored in the liquid storage unit is set as the maximum liquid storage volume, and when the movement of heat from the object to be cooled to the refrigerant stops, the refrigerant is stored in the liquid storage unit.
  • the volume of the maximum liquid storage volume is more than half of the maximum liquid storage volume above the liquid level of the refrigerant in the liquid storage part when the movement of heat from the object to be cooled stops.
  • the liquid storage part is configured to have Therefore, a large amount of liquid phase refrigerant can be stored in the liquid storage section when the liquid phase refrigerant boils.

Abstract

冷媒が循環し、冷媒の液相と気相との相変化によって被冷却対象(12)を冷却する冷却装置は、前記被冷却対象から液相冷媒へ熱を移動させることにより液相冷媒を沸騰させる蒸発部(14)と、前記蒸発部に対して重力方向の上側に配置され、気相冷媒から熱を放出させることにより気相冷媒を凝縮させる凝縮部(16)と、前記凝縮部から前記蒸発部へ液相冷媒を流通させる往路流通路(18a)を形成する往路部(18)と、前記蒸発部から前記凝縮部へ気相冷媒を流通させる復路流通路(20a)を形成する復路部(20)と、液相冷媒の沸騰に伴って前記蒸発部内の液相冷媒の内部から発生する気泡が液相冷媒を上昇させる際に、この上昇された液相冷媒を貯める貯液部(22、201b)と、前記貯液部内の液相冷媒を前記復路流通路、前記蒸発部、および前記往路流通路のうちのいずれかに流す液相戻し部(31、191a)と、を備える。

Description

冷却装置 関連出願への相互参照
 本出願は、2016年10月12日に出願された日本特許出願番号2016-201131号と、2017年4月19日に出願された日本特許出願番号2017-82918号とに基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、被冷却対象を冷却する冷却装置に関するものである。
 従来、冷却装置では、電池を冷却するための蒸発器と、その蒸発器の上側に設けられた凝縮器とが2本の配管により環状に接続され、その中に冷媒が封入されたものがある(例えば、特許文献1参照)。
 2本の配管のうち一方の配管は、凝縮器から蒸発器へ液相冷媒を流通させる往路流通路を形成する。2本の配管のうち一方の配管以外の他方の配管は、蒸発器から凝縮器へ気相冷媒を流通させる復路流通路を形成する。
 この冷却装置は、電池が発熱すると、蒸発器内の液相冷媒は電池から吸熱して沸騰し、そのときの蒸発潜熱により電池が冷却される。蒸発器で生成された気相冷媒は、復路流通路を通して凝縮器に流入する。凝縮器では、気相冷媒が凝縮器で冷却されて凝縮する。凝縮器で生成された液相冷媒は、重力によって、往路流通路を通して蒸発器に流入する。このような冷媒の自然対流によって蒸発器および凝縮器の間で冷媒が循環して電池の冷却が行われる。
特開2015-41418号公報
 上記特許文献1の冷却装置1では、蒸発器2内の液相冷媒が電池から発生する熱により沸騰する際に、冷媒の沸騰に伴って蒸発器2内の液相冷媒の内部から気泡が発生し、この気泡が復路流通路4内の液相冷媒を上昇する(図36参照)。この際、気泡を含んだ液相冷媒の体積が増加して復路流通路4内の冷媒の液面hbが上昇する。発明者の検討によれば、このとき、復路流通路3内における液相冷媒の内部にて気泡が破裂すると異音が発生するため、使用者に違和感を与える。本開示は、冷媒の沸騰に伴って発生する異音を低減することを抑制するようにした冷却装置を提供することを目的とする。
 本開示の1つの観点によれば、冷媒が循環し、冷媒の液相と気相との相変化によって被冷却対象を冷却する冷却装置は、被冷却対象から液相冷媒へ熱を移動させることにより液相冷媒を沸騰させる蒸発部と、蒸発部に対して重力方向の上側に配置され、気相冷媒から熱を放出させることにより気相冷媒を凝縮させる凝縮部と、凝縮部から蒸発部へ液相冷媒を流通させる往路流通路を形成する往路部と、蒸発部から凝縮部へ気相冷媒を流通させる復路流通路を形成する復路部と、液相冷媒の沸騰に伴って蒸発部内の液相冷媒の内部から発生する気泡が復路流通路における液相冷媒を上昇させる際に、復路部から流入した液相冷媒を貯める貯液部と、貯液部内の液相冷媒を復路流通路、蒸発部、および往路流通路のうちのいずれかに流す液相戻し部と、を備える。
 したがって、貯液部が復路部から流入した液相冷媒を貯めることができるので、復路流通路において、異音の発生源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができるので、冷媒の沸騰に伴って発生する異音を低減することができる。
 これに加えて、復路流通路において、気泡を含んだ液相冷媒を少なくすることができるので、気泡を含んだ液相冷媒の変動によって生じる振動を抑制することができる。
 別の観点によれば、冷媒が循環し、冷媒の液相と気相との相変化によって被冷却対象(12)を冷却する冷却装置は、被冷却対象から液相冷媒へ熱を移動させることにより液相冷媒を沸騰させる蒸発部と、蒸発部に対して重力方向の上側に配置され、気相冷媒から熱を放出させることにより気相冷媒を凝縮させる凝縮部と、凝縮部および蒸発部の間に往復流通路を構成する通路形成部を有し、往復流通路のうち通路形成部に沿って凝縮部からの液相の冷媒を蒸発部側に流通させ、また往復流通路のうち液相冷媒に対して内側に蒸発部からの気相冷媒を凝縮部に流通させる往復路部と、液相冷媒の沸騰に伴って液相冷媒の内部から発生する気泡が往復流通路における液相冷媒を上昇させる際に、往復路部から流入した液相冷媒を貯める貯液部と、貯液部内の液相冷媒を往復流通路、或いは蒸発部に流す液相戻し部と、を備える。
 したがって、貯液部が往復路部から流入した液相冷媒を貯めることができるので、往復流通路において、異音の発生源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができるので、冷媒の沸騰に伴って発生する異音を低減することができる。これに加えて、往復流通路において、気泡を含んだ液相冷媒を少なくすることができるので、気泡を含んだ液相冷媒の変動によって生じる振動を抑制することができる。
第1実施形態における冷却装置の全体構成を示す図である。 図1において復路流通路から貯液部へ液相冷媒の流れを示す図である。 従来の液面変動を示す図である。 第1実施形態の第1変形例における冷却装置の構成を示す模式図である。 第2実施形態における冷却装置のうち復路流通路から貯液部へ液相冷媒の流れを示す図である。 第2実施形態の第1変形例における冷却装置の構成を示す模式図である。 第3実施形態における冷却装置のうち復路流通路から貯液部へ液相冷媒の流れを示す図である。 第3実施形態の第1変形例における冷却装置の構成を示す模式図である。 第3実施形態の第2変形例における冷却装置のうち復路流通路から貯液部へ液相冷媒の流れを示す図である。 第3実施形態の第3変形例における冷却装置の構成を示す模式図である。 第4実施形態における冷却装置の全体構成を示す図である。 第4実施形態の第1変形例における冷却装置の構成を示す模式図である。 第4実施形態の第2変形例における冷却装置の構成を示す模式図である。 第5実施形態における冷却装置の全体構成を示す図である。 第5実施形態の第1変形例における冷却装置の構成を示す模式図である。 第6実施形態における冷却装置の貯液部一体型蒸発器を示す分解図である。 第6実施形態における貯液部一体型蒸発器の概略構成を示す模式図である。 第6実施形態の第1変形例における貯液部一体型蒸発器の構成を示す模式図である。 第6実施形態の第2変形例における貯液部一体型蒸発器の分解図である。 第6実施形態の第2変形例における貯液部一体型蒸発器の構成を示す模式図である。 第6実施形態の第3変形例における貯液部一体型蒸発器の分解図である。 第6実施形態の第3変形例における貯液部一体型蒸発器の構成を示す模式図である。 第7実施形態における冷却装置の全体構成を示す図である。 第7実施形態における冷却装置を分解した全体構成を示す斜視図である。 図23の冷却装置の内部構成を示す斜視図である。 図23の蒸発器の内部構成を示す斜視図である。 図23の一番右側の貯液・蒸発器を図25中矢印B側から視た内部構成を示す斜視図である。 図26A中XXVIB-XXVIB断面図である。 図24の一番左側の貯液・蒸発器を図25中矢印B側から視た内部構成を示す斜視図である。 図27A中XXVIIB-XXVIIB断面図である。 図23の蒸発器の作動の説明を補助するための図であって、蒸発器を図25中矢印B側から視た内部構成を示す模式図である。 第8実施形態における冷却装置を分解した全体構成を示す図である。 図29の蒸発器の内部構成を示す斜視図である。 図30の貯液・蒸発器を図中矢印B側から視た内部構成を示す斜視図である。 図31A中XXXIB-XXXIB断面図である。 図30の蒸発器の作動の説明を補助するための図であって、蒸発器を図30中矢印B側から視た内部構成を示す模式図である。 第9実施形態における蒸発器の作動の説明を補助するための図であって、蒸発器をの内部構成を示す模式図である。 第10実施形態における貯液部およびその周辺を示す図である。 比較例を示す図である。 対比例における冷却装置の構成を示す模式図である。
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
 (第1実施形態)
 図1、図2Aに示す本実施形態の冷却装置10は、電気自動車やハイブリッド車などの電動車両に搭載される。そして、本実施形態では、冷却装置10は、その電動車両に搭載される二次電池12を冷却する。
 すなわち、冷却装置10が冷却する被冷却対象は二次電池12である。
 冷却装置10を搭載する電動車両(以下、単に「車両」とも呼ぶ)では、二次電池12を主要構成部品として含む蓄電装置(言い換えれば、電池パック)に蓄えた電力がインバータなどを介してモータに供給され、それによって車両は走行する。二次電池12は、電力をインバータを介してモータに出力する際に自己発熱する。
 そして、二次電池12が過度に高温になると、その二次電池12を構成する電池セル121の劣化が促進されることから、自己発熱が少なくなるように電池セル121の出力および入力に制限を設ける必要がある。
 そのため、電池セル121の出力および入力を確保するためには、二次電池12を所定の温度以下に維持するための冷却装置が必要となる。
 また、車両走行中だけでなく夏季の駐車放置中などにも電池温度は上昇する。また、蓄電装置は車両の床下やトランクルーム下などに配置されることが多く、二次電池12に与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。二次電池12を高温状態で放置すると二次電池12の寿命が大幅に低下するので、車両の放置中も二次電池12を冷却するなど電池温度を低温に維持することが望まれている。
 更に、二次電池12は、複数の電池セル121を含む組電池として構成されているが、各電池セル121の温度にばらつきがあると電池セル121の劣化に偏りが生じ、蓄電装置の性能が低下してしまう。これは、最も劣化した電池セル121の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって蓄電装置に所望の性能を発揮させるためには、複数の電池セル121相互間の温度ばらつきを低減させる均温化が重要となる。
 また、二次電池12を冷却する他の冷却装置として、これまでブロワによる送風や、冷凍サイクルを用いた空冷、水冷、あるいは冷媒直接冷却方式が一般的となっているが、ブロワは車室内の空気を送風するだけなので、ブロワの冷却能力は低い。
 また、ブロワによる送風では空気の顕熱で二次電池12を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、電池セル121間の温度ばらつきを十分に抑制できない。また、冷凍サイクル方式では冷却能力は高いが、電池セル121との熱交換部は空冷または水冷の何れでも顕熱冷却であるので、同じく、電池セル121間の温度ばらつきを十分に抑制できない。
 更には、駐車放置中に冷凍サイクルのコンプレッサや冷却ファンを駆動させることは、電力消費の増大や騒音などの原因となるので好ましくない。
 これらの背景から、本実施形態の冷却装置10では、コンプレッサを用いず冷媒の自然対流で二次電池12を冷却するサーモサイフォン方式が採用されている。
 具体的に、冷却装置10は、図1に示すように、蒸発器14と、凝縮器16と、往路部としての往路配管18と、復路部としての復路配管20と、貯液部22とを備える。そして、その凝縮器16と往路配管18と蒸発器14と復路配管20は環状に連結され、冷却装置10の冷媒としての冷媒が循環するサーモサイフォン回路26を構成する。
 すなわち、サーモサイフォン回路26は、冷媒の蒸発および凝縮により熱移動を行うサーモサイフォンを構成する。そして、サーモサイフォン回路26は、気相冷媒が流れる流路と液相冷媒が流れる流路とが分離されたループ型のサーモサイフォン(言い換えれば、冷媒の循環回路)となるように構成されている。
 なお、図1の矢印DR1は、冷却装置10を車両に搭載した状態の重力方向を示すもので、矢印DR1において上矢印は車両の重力方向DR1の上側を示し、下矢印は車両の重力方向DR1の下側を示している。
 サーモサイフォン回路26内には冷媒が封入充填されている。そして、サーモサイフォン回路26内はその冷媒で満たされている。
 その冷媒はサーモサイフォン回路26を自然対流により循環し、冷却装置10は、その冷媒の液相と気相との相変化によって二次電池12の温度を調整する。詳細には、その冷媒の相変化によって二次電池12を冷却する。
 サーモサイフォン回路26内に充填されている冷媒は、例えば、HFO-1234yfまたはHFC-134aなどのフロン系冷媒である。或いは、冷媒として、水、アンモニア等のフロン系冷媒以外の各種の作動流体を用いても良い。
 図1に示すように、蒸発器14は、二次電池12および冷媒の間で熱交換して二次電池12から冷媒へ熱を移動させることにより二次電池12を冷却する熱交換器である。蒸発器14は、例えば熱伝導性の高い金属製である。
 ここで、サーモサイフォン回路26内への冷媒の充填量は、二次電池12および冷媒の間の熱交換が停止し、かつ車両の前後方向が水平方向に一致した状態において蒸発器14の内部が液相冷媒で満たされる量とされている。
 そのため、二次電池12および冷媒の間の熱交換が停止し、かつ車両の前後方向が水平方向に一致した状態における液相冷媒の液面(以下、停止時液面haという)は、往路配管18内と復路配管20内とに形成され、蒸発器14よりも重力方向DR1上側に位置する。
 複数の電池セル121はそれぞれ蒸発器14の上面141の上に並べて配置されている。そして、複数の電池セル121はそれぞれ、蒸発器14の上面141との間で熱伝導可能なようにその上面141に接続されている。
 これにより、蒸発器14の上面141は、二次電池12を冷却する電池冷却面として機能する。
 蒸発器14には入口14bと出口14cとが形成されている。その入口14bは、往路配管18の内部に形成された往路流通路18aを蒸発器14内へ連通させている。従って、サーモサイフォン回路26を冷媒が循環すると、往路流通路18aの冷媒は、入口14bを介して蒸発器14内部に流入する。
 その往路流通路18aは、凝縮器16から蒸発器14へ冷媒を流通させる冷媒の流路である。蒸発器14の入口14bは例えば、電池積層方向DRbにおける蒸発器14の一方側の端部に設けられている。
 また、蒸発器14の出口14cは、復路配管20に形成された復路流通路20aを蒸発器14内へ連通させている。従って、サーモサイフォン回路26を冷媒が循環すると、蒸発器14内の冷媒は出口14cを通して復路流通路20aへ出る。
 その復路流通路20aは、蒸発器14から凝縮器16へ冷媒を流す冷媒流路である。蒸発器14の出口14cは例えば、電池積層方向DRbにおける蒸発器14の他方側の端部に設けられている。
 なお、蒸発器14は、気相冷媒を入口14bと出口14cとのうち専ら出口14cから出させる不図示の構造を備えている。
 凝縮器16は、凝縮器16内の冷媒および受熱流体の間で熱交換して冷媒から受熱流体へ放熱させる熱交換器である。凝縮器16は凝縮部に対応する。詳細に言えば、凝縮器16には復路配管20から気相冷媒が流入し、凝縮器16は、冷媒から受熱流体に放熱させることによりその冷媒を凝縮させる。
 凝縮器16内の冷媒と熱交換させられる受熱流体としては、例えば空気(すなわち、車室外の空気)、或いは水などである。
 また、凝縮器16は蒸発器14よりも重力方向DR1の上側に配置されている。そして、凝縮器16のうち重力方向DR1の下側の部位に往路配管18が接続され、凝縮器16のうち重力方向DR1の上側の部位に復路配管20が接続されている。
 要するに、往路配管18は、復路配管20よりも重力方向DR1の下側にて凝縮器16に接続されている。
 このため、凝縮器16で凝縮した液相冷媒は、重力によって、凝縮器16内から往路流通路18aへと流れる。
 貯液部22には、入口開口部22aが設けられている。入口開口部22aは、貯液部22のうち重力方向DR1上側に向いて配置される部位(すなわち、天井部)に設けられている。
 換言すれば、入口開口部22aは、貯液部22のうち重力方向DR1の上側に設けられている。貯液部22のうち重力方向DR1の上側とは、貯液部22のうち重力方向DR1の中心線よりも上側のことである。
 貯液部22の入口開口部22aは、液貯配管30を介して復路配管20に形成される液相入口24に接続されている。液相入口24は、復路配管20のうち停止時液面haに対して重力方向DR1の上側に位置する。
 本実施形態では、復路配管20のうち貯液部22に対して重力方向DR1の上側に配置される配管(以下、上側復路配管という)は、垂直方向(すなわち重力方向DR1)に対して傾斜し、かつ気相冷媒の流れ方向の下流側に進むほど、重力方向DR1上側に向かうように形成されている傾斜部分である。
 本実施形態の液相入口24は、上側復路配管のうち重力方向DR1下側に向いて配置されている部分に設けられている。
 換言すれば、液相入口24は、上側復路配管のうち復路流通路20aを構成する内壁20eのうち重力方向DR1下側に配置されている。内壁20eのうち重力方向DR1下側は、上側復路配管をその軸線方向に対する直交方向に切断した断面のうち、重力方向DR1の中心線に対して重力方向DR1下側のことである。
 重力方向DR1の中心線とは、上側復路配管の上記断面のうち中心点を通過して水平方向に延びる仮想線である。
 貯液部22は、復路配管20の液相入口24に対して重力方向DR1の下側に配置されている。貯液部22は、復路配管20の液相入口24、液貯配管30、および入口開口部22aを通して流入した液相冷媒を貯めるタンクである。
 貯液部22のうち重力方向DR1の下側には、出口開口部22bが設けられている。貯液部22の出口開口部22bは、液戻し配管31を介して復路配管20に形成される液相冷媒戻り口27に接続されている。より具体的には、液相冷媒戻り口27に液相戻し配管31の液相冷媒出口が接続されて、かつ貯液部22の出口開口部22bに液相戻し配管31の液相冷媒入口が接続されている。貯液部22のうち重力方向DR1の下側とは、貯液部22のうち重力方向DR1の中心線よりも下側のことである。
 液戻し配管31は、貯液部22内の液相冷媒を復路配管20に戻す液相戻し部であって、貯液部22に対して重力方向DR1の下側に配置されている。
 本実施形態の貯液部22は、複数の電池セル121に対して離れた位置に配置されている。
 このように本実施形態では、貯液部22は、復路流通路20aに対して並列に接続されている。すなわち、貯液部22は、復路流通路20aに独立して配置されている。
 液相冷媒戻り口27は、復路配管20のうち貯液部22および液相入口24に対して重力方向DR1の下側に配置されている。液相冷媒戻り口27は、液相入口24に対して、復路配管20のうち気相冷媒の流れ方向上流側に位置する。
 次に、本実施形態の冷却装置10の作動について説明する。
 まず、二次電池12の温度が蒸発器14内の液相冷媒の温度と同一であるとき、二次電池12および蒸発器14の内部の液相冷媒の間の熱交換が停止される。
 この際に、蒸発器14の内部に液相冷媒が満たされた状態となるようにサーモサイフォン回路26内には冷媒が封入充填されている。
 このとき、復路流通路20a内と往路流通路18a内とに液相冷媒の液面がそれぞれ位置する。さらに、貯液部22内の液相冷媒の冷媒量と復路流通路20a内の液相冷媒の冷媒量と往路流通路18a内の液相冷媒の冷媒量とが釣り合った状態で、貯液部22内に液相冷媒の液面が存在する。
 その後、二次電池12が発熱して二次電池12の温度が高くなると、電池セル121の下面を通じて蒸発器14の上面141へ熱が伝わり、その熱によって蒸発器14内の液相冷媒が沸騰する。
 このことにより、蒸発器14内の液相冷媒の内部から冷媒が蒸発することになる。このため、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。気泡は、蒸発器14の内部から出口14cを通して復路配管20の復路流通路20a内に移動する。
 この際に、蒸発器14内および復路配管20内において、気泡を含む液相冷媒の体積は、熱交換の停止時における気泡を含まない液相冷媒の体積に比べて、大きくなる。このため、復路配管20の復路流通路20a内の液相冷媒の液面が、停止時液面haから図1中の液面hbに、上昇する。
 つまり、復路配管20の復路流通路20aでは、気泡を含む液相冷媒が気泡混合流として矢印Ybの如く上昇する。
 このとき、液相冷媒の液面が復路配管20の液相入口24まで到達すると、復路流通路20a内の液相冷媒が、重力により、矢印Ycの如く、液相入口24、液貯配管30、入口開口部22aを通して貯液部22の内部に流入する。
 この際に、貯液部22内部の液相冷媒は、矢印Yeの如く、出口開口部22b、液戻し配管31、および液相冷媒戻り口27を通して復路配管20に流れる。
 しかし、復路流通路20aから貯液部22に流入する液相冷媒の冷媒量と、貯液部22から復路配管20に流れる液相冷媒の冷媒量とが釣り合うことにより、貯液部22内の液相冷媒が貯えられて、貯液部22内の液相冷媒の液面が存在する。
 このことにより、復路流通路20a内における気泡混合流の総量を減らすことができるので、復路流通路20a内にて液相冷媒の液面が復路配管20の液相入口24よりも重力方向DR1の上側に移動することが抑えられる。
 従来、貯液部22を備えていない冷却装置10では、液相冷媒の沸騰に伴って「気相冷媒からなる気泡」が液相冷媒の内部から発生する。気泡は、蒸発器14の内部から出口14cを通して復路配管20の復路流通路20a内に移動する。このため、復路流通路20a内の冷媒の液面が上昇する。
 一方、気泡が破裂すると、復路流通路20a内の冷媒の液面が低下する。したがって、液相冷媒の沸騰に伴って、復路流通路20a内の冷媒の液面が上下に変動して振動を発生させる。
 このとき、復路流通路20a内の液相冷媒の内部に含まれる気泡が破裂すると異音が発生する。このため、復路流通路20a内を流れる「気泡を含む液相冷媒」が異音の発生音源となる。
 これに対して、本実施形態では、上述の如く、「気泡を含む液相冷媒」の液面が復路配管20の液相入口24よりも重力方向DR1の上側に移動することが抑えられる。
 したがって、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 また、従来、図2Bに示すように、激しい沸騰が生じると、復路流通路200内の冷媒(すなわち気泡流)の圧力が上昇し、復路流通路200内の冷媒の液面の上昇と下降の断続的な変化度合いが激しくなる。その結果、下降直前の液面の高さ(すなわちヘッド)hxが高くなる。ここで、下降直前の液面とは、気泡が破裂して液面が下降する直前の液面をいう。すると、気泡破裂時の液冷媒の落下距離Lが長くなるので、気泡破裂音が大きくなる。
 これに対して、液相冷媒が沸騰する際に復路流通路20a内の液相冷媒が貯液部22に貯められるので、復路流通路20a内の気泡を含んだ液相冷媒が少なくなる。このため、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。つまり、復路流通路20a内の冷媒の液面の変動量が低下する。その結果、気泡破裂音も抑えられる。
 一方、復路配管20の復路流通路20aでは、液相冷媒に含まれる気泡が破裂すると、気泡に含まれる気相冷媒が矢印Ydの如く復路流通路20aを通して凝縮器16に移動する。
 凝縮器16内では、気相冷媒が受熱流体へ放熱するため、気相冷媒が凝縮する。この凝縮した液相冷媒は、矢印Yaの如く、重力により、往路配管18の往路流通路18aを通して蒸発器14に流れる。
 このように、本実施形態の冷却装置10では、これらの作動がコンプレッサ等の駆動装置を必要とせずに、サーモサイフォン回路26に封入された冷媒の自然循環により行われる。
 自然循環は、凝縮器16と蒸発器14との温度差によって生じる自然対流により、サーモサイフォン回路26内を冷媒が循環することである。
 以上の通り、蒸発器14内の冷媒が激しく沸騰すると、貯液部22内に液相冷媒が貯まるため、サーモサイフォン回路26内の液相冷媒が減る。
 一方、蒸発器14内の冷媒の沸騰が停止しているとき、或いは冷媒の沸騰が微少であるとき、サーモサイフォン回路26内の液相冷媒の量が規定量以上となり、蒸発器14内部が冷媒で満たされる。
 このように、サーモサイフォン回路26における冷媒の蒸発熱量に応じてサーモサイフォン回路26内の冷媒の量が自動調整される。
 その後、蒸発器14内の冷媒の沸騰が停止すると、復路配管20の復路流通路20a内の液相冷媒の液面が低下するとともに、貯液部22内の液相冷媒は、矢印Yeの如く、出口開口部22b、液戻し配管31、および液相冷媒戻り口27を通して復路配管20に流れる。このため、貯液部22内の液相冷媒の液面は低下する。
 このため、蒸発器14内は冷媒で満たされる。よって、冷媒の微少な沸騰時や沸騰開始前には液相冷媒が熱的に二次電池12に接触することができる。
 以上説明した本実施形態では、冷却装置10は、二次電池12から冷媒へ熱を移動させることにより冷媒を沸騰させる蒸発器14と、蒸発器14に対して重力方向DR1の上側に配置され、冷媒から熱を放出させることにより冷媒を凝縮させる凝縮器16と、凝縮器16から蒸発器14へ冷媒を流通させる往路配管18とを備える。
 冷却装置10は、蒸発器14から凝縮器16へ冷媒を流通させる復路流通路20aを形成する復路配管20を備える。復路配管20は、二次電池12から冷媒への熱の移動が停止した場合において復路流通路20aにおける液相冷媒の液面を停止時液面haとした場合において、復路配管20のうち停止時液面haに対して重力方向DR1の上側に配置されて復路流通路20aに連通する液相入口24とを形成する。
 さらに、冷却装置10は、液相冷媒の沸騰に伴って蒸発器14内の液相冷媒の内部から発生する気泡が復路流通路20aにおける冷媒を上昇させる際に、復路流通路20aから液相入口24を通して流入した液相冷媒を貯める貯液部22と、貯液部22に対して重力方向DR1の下側に配置され、貯液部22内に貯められた液相冷媒を復路流通路20aに戻す液戻し配管31とを備える。
 したがって、液相冷媒の液面が復路配管20の液相入口24よりも重力方向DR1の上側に移動することが抑えられる。このため、復路流通路20aにおいて気泡を含んだ液相冷媒が異音の発生源となるものの、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、上述の如く、液相冷媒の沸騰に伴って復路流通路20a内の液相冷媒が貯液部22に貯められるので、復路流通路20a内の冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 ここで、貯液部22を用いない冷却装置10において、サーモサイフォン回路26内の冷媒の充填量を低減すると、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。
 しかし、この場合、冷却装置10の起動初期時には、蒸発器14内において上面141と液相冷媒の液面との間に気相冷媒が存在する場合には、二次電池12から上面141を通して液相冷媒に伝わる熱量にムラが生じるため、複数の電池セル121を均等に冷却することができなくなる。
 これに対して、本実施形態では、冷却装置10の起動初期時に、蒸発器14内部に冷媒が満たされており、蒸発器14の上面141と液相冷媒の液面との間に気相冷媒が存在しない。このため、二次電池12から上面141を通して液相冷媒に伝わる熱量にムラが生じ難くなるため、複数の電池セル121を均等に冷却することができる。
 本実施形態では、貯液部22の内部において液相冷媒を貯めることが可能である最大容積を最大貯液容積としたとき、二次電池12から冷媒への熱の移動が停止したとき、貯液部22の内部のうち液相冷媒の液面よりも重力方向DR1の上側に最大貯液容積の半分以上の容積を有するように余裕の容積を持つ貯液部22が構成されている。
 このため、冷媒がより激しく沸騰した際に貯液部22の内部に大量の液相冷媒を貯めることができる。したがって、冷媒がより激しく沸騰した際にも、異音の発生や振動の発生を抑えることができる。
 これに加えて、本実施形態では、上述の如く、余裕の容積を持つ貯液部22が構成されている。このため、貯液部22に冷媒を貯めることにより、サーモサイフォン回路26に実際に充填された冷媒の充填量のうち誤差充填量を吸収することができる。
 さらに、経年変化によりサーモサイフォン回路26から漏れ出る冷媒を見越して余分に充填される冷媒を貯液部22に貯めることができる。
 本実施形態では、復路流通路20aのうち液相入口24に対して冷媒の流れ方向下流側は、貯液部22に対して独立して設けられて、蒸発器14から流れる気相冷媒を凝縮器16へ流通させるように復路配管20が構成されている。このため、液相冷媒を液相入口24から貯液部22に流しつつ、気相冷媒を復路流通路20aを通して凝縮器16へ円滑に流通させることができる。
 本実施形態では、液相冷媒戻り口27の冷媒の通路断面積は、液相入口24の冷媒の通路断面積よりも小さくなるように設定されている。つまり、液相冷媒戻り口27の孔径寸法は、液相入口24の孔径寸法よりも小さくなるように設定されている。
 したがって、貯液部22からの液相冷媒が液相冷媒戻り口27を通過する際に生じる圧力損失は、復路流通路20aの液相冷媒が液相入口24を通過する際に生じる圧力損失よりも大きくなる。
 これにより、復路流通路20aから液相入口24を通して液相冷媒が貯液部22に入り易く、貯液部22から液相冷媒が液相冷媒戻り口27を通して復路流通路20aに流れ難くなる。これにより、液相冷媒の沸騰時に貯液部22に一定量以上の液相冷媒を容易に貯めることができる。
 本実施形態では、液相冷媒戻り口27の冷媒の通路断面積は、復路流通路20aの冷媒の通路断面積よりも小さくなるように設定されている。つまり、液相冷媒戻り口27の孔径寸法は、復路流通路20aの孔径寸法よりも小さくなるように設定されている。
 これにより、蒸発器14内で液相冷媒が沸騰しているときに、蒸発器14から流れる冷媒(すなわち、気泡混合流)が液相冷媒戻り口27を通して貯液部22に流れることを抑制することができる。このため、貯液部22内の液相冷媒が気泡混合流で無駄に増加することを未然に防ぐことができる。
 本実施形態では、液相入口24は、復路配管20のうち貯液部22に対して重力方向DR1の上側に配置される上側往路配管のうち、重力方向DR1下側に向けて配置される部位に設けられている。このため、往路配管18の復路流通路20aからの液相冷媒が重力により液相入口24を通して貯液部22内に流れ易くなる。
 本実施形態では、液戻し配管31は、貯液部22に対して重力方向の下側に配置されている。このため、貯液部22内の液相冷媒を円滑に復路配管20内に流すことができる。
 さらに、本実施形態の液相冷媒戻り口27は、貯液部22に対して重力方向下側に配置されている。このため、貯液部22内の液相冷媒を円滑に往復流通路19a内に流すことができる。
 (第1実施形態の第1変形例)
 上記第1実施形態では、貯液部22の出口開口部22bを液戻し配管31を介して復路配管20に接続した例について説明したが、これに代えて、図3に示すように、貯液部22の出口開口部22bを液戻し配管31を介して往路配管18に接続してもよい。
 これにより、貯液部22内の液相冷媒を蒸発器14側に戻すための液相冷媒戻り口27を往路配管18に形成することになる。したがって、冷媒の沸騰が停止すると、貯液部22の出口開口部22bから液相冷媒が液戻し配管31、および往路配管18を通して蒸発器14に流れる。本実施形態の冷却装置10では、入口14bおよび出口14cが蒸発器14のうち電池積層方向DRbの一方側に設けられている。
 (第2実施形態)
 上記第1実施形態では、入口開口部22aを貯液部22の天井部に配置した例について説明したが、これに代えて、図4に示すように、入口開口部22aを貯液部22の側壁に配置してもよい。
 なお、本実施形態では、出口14cおよび入口開口部22a以外の構成は、上記第1実施形態と同様であるため、その説明を省略する。
 (第2実施形態の第1変形例)
 第2実施形態の第1変形例では、図5示すように、上記第2実施形態において、貯液部22の出口開口部22bを液戻し配管31を介して蒸発器14の出口14cに接続してもよい。
 この場合、貯液部22内の液相冷媒は液戻し配管31を通して蒸発器14に流れることになる。このため、蒸発器14の出口14cは、蒸発器14からの気相冷媒を復路配管20に流出する気相冷媒出口と、貯液部22内の液相冷媒を蒸発器14に戻す冷媒戻り口との両方の役割を果たす。この場合、当該冷媒戻り口に液相戻し配管31の液相冷媒出口が接続される。
 第2実施形態の第1変形例において、蒸発器14の出口14cは、貯液部22に対して重力方向DR1の下側に配置されている。このため、貯液部22内の液相冷媒を円滑に蒸発器14に流すことができる。 なお、上記第2実施形態の第1変形例では、液戻し配管31と復路配管20とを蒸発器14の共通の出口14cに接続した例について説明したが、これに代えて、液戻し配管31と復路配管20とを蒸発器14のうち相違する開口部に接続してもよい。
 (第3実施形態)
 上記第1実施形態では、貯液部22が液貯配管30、液戻し配管31を通して復路流通路20aに接続されている例について説明したが、これに代えて、図6に示すように、復路配管20に直列に貯液部22を配置して貯液部22が復路流通路20aの一部を構成するようにしてもよい。
 すなわち、復路配管20は、蒸発器14の出口14cと貯液部22の入口開口部22aとの間で気相冷媒と液相冷媒とを流通させる上流側復路流通路120aを形成する上流側復路配管120を備える。上流側復路配管120は上流側復路部に対応する。入口開口部22aは、貯液部22のうち側壁に配置されている。復路配管20は、貯液部22の出口開口部22cと凝縮器16の冷媒出入口との間で気相冷媒と液相冷媒とを流通させる下流側復路流通路122aを形成する下流側復路配管122を備える。下流側復路配管122は、下流側復路部に対応する。
 出口開口部22cは、貯液部22のうち重力方向DR1の上側に向いた部分(すなわち、天井部)に配置されている。このことにより、復路流通路20aの中間部に貯液部22が配置されていることになる。すなわち、貯液部22が復路配管20とともに復路流通路20aを構成することになる。
 次に、本実施形態の冷却装置10の作動について説明する。
 まず、二次電池12の温度が蒸発器14内の液相冷媒の温度と同一であるとき、二次電池12および蒸発器14の内部の液相冷媒の間の熱交換が停止される。
 この際に、蒸発器14の内部に液相冷媒の液面haが存在するようにサーモサイフォン回路26内には冷媒が封入充填されている。
 その後、二次電池12が発熱して二次電池12の温度が高くなると、電池セル121の下面を通じて蒸発器14の上面141へ熱が伝わり、その熱によって蒸発器14内の液相冷媒が沸騰する。
 このことにより、蒸発器14において、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。気泡は、蒸発器14の内部から出口14cを通して復路配管20の上流側復路流通路120aの液相冷媒内を上昇する。
 この際に、気泡が上流側復路流通路120a内の液相冷媒の液面を停止時液面haから上昇させる。つまり、上流側復路流通路120a内では、気泡を含む液相冷媒が気泡混合流として上昇する。
 このとき、液相冷媒の液面が貯液部22の入口開口部22aまで到達すると、上流側復路流通路120a内の気泡を含む液相冷媒が、入口開口部22aを通して貯液部22の内部に流入する。
 このため、貯液部22の内部には、液相冷媒が貯えられる。さらに、貯液部22内部の液相冷媒は、出口開口部22b、液戻し配管31、液相冷媒戻り口27、および復路流通路20aを通して蒸発器14内に戻る。
 このことにより、上流側復路流通路120aから貯液部22に流入する液相冷媒の冷媒量と、貯液部22から上流側復路配管120に流れる液相冷媒の冷媒量とが釣り合うことにより、貯液部22内の液相冷媒が貯えられる。
 したがって、復路流通路20a内における気泡混合流の総量を調整して、復路流通路20a内にて液相冷媒の液面が貯液部22よりも重力方向DR1の上側に移動することが抑えられる。
 したがって、上記第1実施形態と同様に、異音の発生音源となる、「気泡が存在する液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、液相冷媒が沸騰する際に復路流通路20a内の液相冷媒が貯液部22に貯められるので、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 一方、復路流通路20aでは、液相冷媒に含まれる気泡が破裂すると、気泡に含まれる気相冷媒が貯液部22、復路流通路20aを通して凝縮器16に移動する。
 凝縮器16内では、気相冷媒が受熱流体へ放熱するため、気相冷媒が凝縮する。この凝縮した液相冷媒は、重力により、復路配管20のうち復路流通路20aを通して貯液部22に流れる。
 以上説明した本実施形態によれば、冷却装置10では、復路配管20は、蒸発器14の出口14cと貯液部22の入口開口部22aとの間で気相冷媒と液相冷媒とを流通させる上流側復路流通路120aを形成する上流側復路配管120を備える。
 復路配管20は、貯液部22の出口開口部22cと凝縮器16の冷媒出入口との間で気相冷媒と液相冷媒とを流通させる下流側復路流通路122aを形成する下流側復路配管122を備える。
 したがって、冷却装置10は、液相冷媒の沸騰に伴って蒸発器14内の液相冷媒の内部から発生する気泡が上流側復路流通路120aにおける冷媒を上昇させる際に、上流側復路流通路120aから流入した液相冷媒を貯液部22に貯めることができる。
 このため、液相冷媒の液面が貯液部22の重力方向DR1上側よりも重力方向DR1上側に移動することが抑えられる。このため、気泡を含んだ液相冷媒が異音の発生源となるものの、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、上述の如く、液相冷媒の沸騰に伴って復路流通路20a内の液相冷媒が貯液部22に貯められるので、復路流通路20a内の気泡を含んだ液相冷媒が少なくなる。このため、復路流通路20a内の冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 (第3実施形態の第1変形例)
 上記第3実施形態では、貯液部22の出口開口部22bが液戻し配管31を介して復路配管20に接続した例について説明したが、これに代えて、図7に示すように、貯液部22の出口開口部22bが液戻し配管31を介して往路配管18の液相冷媒戻り口27に接続してもよい。
 液相冷媒戻り口27は、液戻し配管31および往路配管18の往路流通路の間を連通する。このため、貯液部22内の液相冷媒は、液戻し配管31および往路配管18を通して蒸発器14に流れることになる。
 本第1変形例では、入口開口部22aは、貯液部22の側壁のうち重力方向DR1の上側に配置されている。
 (第3実施形態の第2変形例)
 上記第3実施形態では、入口開口部22aを貯液部22の側壁のうち重力方向DR1の中間部に配置した例について説明したが、これに代えて、図8に示すように、入口開口部22aを貯液部22のうち底部(すなわち、重力方向DR1の下側に向けた部位)に配置してもよい。
 本第2変形例では、上記第1実施形態と同様に、貯液部22の出口開口部22bが液戻し配管31を介して復路配管20の液相冷媒戻り口27に接続されている。このことにより、貯液部22内の液相冷媒が、液戻し配管31を通して復路配管20に戻されることになる。
 (第3実施形態の第3変形例)
 上記第3実施形態では、入口開口部22aを貯液部22の側壁のうち重力方向DR1の中間部に配置した例について説明したが、これに代えて、図9に示すように、入口開口部22aを貯液部22のうち側壁のうち重力方向DR1の下側に配置してもよい。
 本第3変形例では、貯液部22の出口開口部22bが液戻し配管31を介して往路配管18の液相冷媒戻り口27に接続されている。
 (第4実施形態)
 上記第1実施形態では、凝縮器16と蒸発器14とによってループ状のサーモサイフォン回路26を構成した冷却装置10について説明したが、これに代えて、本第4実施形態では、凝縮器16と蒸発器14とを1つの配管(すなわち、単管)で接続したサーモサイフォンを構成する冷却装置10について図10を参照して説明する。
 図10に本実施形態の冷却装置10の構成を示す。図10において図1と同一の符号は同一のものを示し、その説明を省略する。
 本実施形態の冷却装置10は、往路配管18および復路配管20に代わる往復路配管19を備える。往復路配管19の一方の出入口は凝縮器16の出入口16aに接続されて、往復路配管19の他方の出入口は、蒸発器14の出入口14kに接続されている。往復路配管19は、往復路部に対応する。
 凝縮器16の出入口16aは、凝縮器16のうち重力方向DR1の下側に配置されている。蒸発器14の出入口14kは、蒸発器14の側壁に配置されている。往復路配管19は、凝縮器16から液相冷媒を蒸発器14に流通させるとともに、蒸発器14から凝縮器16に気相冷媒を流通させる往復流通路19aを構成する。
 往復路配管19のうち貯液部22に対して重力方向DR1の上側に配置される配管(以下、上側往復路配管という)は、垂直方向に対して傾斜して、気相冷媒の流れ方向の下流側に進むほど、重力方向DR1の上側に向かうように形成されている傾斜部分である。 
 本実施形態の液相入口24は、往復路配管19の上側往復路配管のうち重力方向DR1下側に向けて配置される部位に設けられている。
 貯液部22の入口開口部22aは、液貯配管30を介して往復路配管19の上側往復路配管の液相入口24に接続されている。液相入口24は、復路配管20のうち停止時液面haに対して重力方向DR1の上側に位置する。
 貯液部22の出口開口部22bは、液戻し配管31を介して往復路配管19の液相冷媒戻り口27に接続されている。液戻し配管31は、貯液部22内の液相冷媒を往復路配管19に戻す液相戻し部であって、貯液部22に対して重力方向DR1の下側に配置されている。
 このように本実施形態では、貯液部22は、往復流通路19aに対して並列に接続されている。すなわち、貯液部22は、往復流通路19aに独立して配置されている。液相冷媒戻り口27は、往復路配管19のうち貯液部22に対して重力方向DR1の下側に配置されている。
 次に、本実施形態の冷却装置10の作動について説明する。
 まず、二次電池12の温度が蒸発器14内の液相冷媒の温度と同一であるとき、二次電池12および蒸発器14の内部の液相冷媒の間の熱交換が停止される。
 この際に、蒸発器14の内部に液相冷媒が満たされた状態となるようにサーモサイフォン内に冷媒が封入充填されている。このとき、往復流通路19a内に液相冷媒の液面(図中ha参照)が存在する。
 その後、二次電池12が発熱して二次電池12の温度が高くなると、電池セル121の下面を通じて蒸発器14の上面141へ熱が伝わり、その熱によって蒸発器14内の液相冷媒が沸騰する。
 このことにより、蒸発器14内の液相冷媒の内部から冷媒が蒸発して気泡が蒸発器14の内部から上昇して出口14dを通して往復路配管19の往復流通路19a内に移動する。この際に、気泡が往復路配管19の往復流通路19a内の液相冷媒の液面(図1中hb参照)を停止時液面haから上昇させる。つまり、往復路配管19の往復流通路19aでは、気泡を含む液相冷媒が増大して気泡混合流として矢印Ybの如く上昇する。
 このとき、液相冷媒の液面が往復路配管19の液相入口24まで到達すると、往復流通路19a内の液相冷媒が、矢印Ycの如く、液相入口24、液貯配管30、入口開口部22aを通して貯液部22の内部に流入する。
 一方、貯液部22内部の液相冷媒は、矢印Yeの如く、出口開口部22b、液戻し配管31、および液相冷媒戻り口27を通して往復路配管19に流れる。
 このとき、往復路配管19の液相入口24から液貯配管30を通して貯液部22に流入する液相冷媒量と、貯液部22から液戻し配管31を通して往復路配管19に流れる液相冷媒量とが均衡する。このため、貯液部22の内部には、液相冷媒が貯えられる。
 このことにより、往復流通路19a内における気泡混合流の総量を減らすことができるので、往復流通路19a内にて液相冷媒の液面が往復路配管19の液相入口24よりも重力方向DR1の上側に移動することが抑えられる。
 一方、往復路配管19の往復流通路19aでは、液相冷媒に含まれる気泡が破裂すると、気泡に含まれる気相冷媒が矢印Ydの如く往復流通路19a、出入口16aを通して凝縮器16に移動する。
 凝縮器16内では、気相冷媒が受熱流体へ放熱するため、気相冷媒が凝縮する。この凝縮した液相冷媒は、矢印Yaの如く、重力により、出入口16a、往復路配管19の往復流通路19aを通る。この液相冷媒は、更に矢印Ycの如く、往復流通路19aから、液相入口24、貯液配管30、入口開口部22aを通して貯液部22に流れる。さらに、貯液部22内の液相冷媒は、矢印Yeの如く、出口開口部22b、液戻し配管31、液相冷媒戻り口27、往復流通路19aを通して、蒸発器14に流れる。
 この際に、往復路配管19のうち往復流通路19aを構成する内面19eに沿って液相冷媒が水膜状に凝縮器16から液相入口24を通して貯液部22に流れる。一方、往復流通路19aのうち凝縮器16と液相入口24の間において、液相冷媒に対して内側に気相冷媒が蒸発器14から凝縮器16に向けて流れる。
 このように、本実施形態の冷却装置10では、往復路配管19のうち往復流通路19aにおいて液相冷媒と気相冷媒とが流通する。
 以上の通り、蒸発器14内の冷媒が激しく沸騰すると、貯液部22内に液相冷媒が貯まるため、往復路配管19内の液相冷媒が減る。一方、蒸発器14内の冷媒の沸騰が停止しているとき、或いは冷媒の沸騰が微少であるとき、往復路配管19内の液相冷媒の量が規定量以上となり、蒸発器14内部が冷媒で満たされる。
 このように、冷媒の蒸発熱量に応じて往復路配管19内の冷媒の量が自動調整される。
 以上説明した本実施形態によれば、冷却装置10は、凝縮器16および蒸発器14の間で冷媒を流通させる往復流通路19aを形成する内面19eを有する往復路配管19を備える。
 往復路配管19は、その内面19eに沿って凝縮器16からの液相冷媒を水膜状に貯液部22に流通させるとともに、往復流通路19aのうち液相冷媒に対して内側に蒸発器14からの気相冷媒を凝縮器16に流通させる。
 往復路配管19のうち停止時液面haに対して重力方向DR1の上側には、往復流通路19aに連通する液相入口24が形成されている。
 冷却装置10は、液相冷媒の沸騰に伴って液相冷媒から発生する気泡が往復流通路19aにおける冷媒を上昇させる際に、往復流通路19aの液相入口24から流入した液相冷媒を貯める貯液部22と、貯液部22に対して重力方向DR1の下側に配置され、貯液部22内に貯められた液相冷媒を往復流通路19a或いは蒸発器14に戻す液相戻し配管31とを備える。
 したがって、液相冷媒の液面が往復路配管19のうち液相入口24よりも重力方向DR1の上側に移動することが抑えられる。このため、上記第1実施形態と同様に、往復流通路19aにおいて異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、上述の如く、液相冷媒の沸騰に伴って往復流通路19a内の液相冷媒が貯液部22に貯められるので、往復流通路19a内の気泡を含んだ液相冷媒が少なくなる。このため、往復流通路19a内の冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 本実施形態では、液戻し配管31は、貯液部22に対して重力方向の下側に配置されているので、上記第1実施形態と同様に、貯液部22内の液相冷媒を円滑に復路配管20内に流すことができる。
 本実施形態では、往復流通路19aのうち液相入口24に対して気相冷媒の流れ方向下流側は、貯液部22に対して独立して設けられている。そして、往復流通路19aのうち液相入口24に対して気相冷媒の流れ方向下流側は、往復路配管19の往復流通路19aを形成する内面19eに沿って凝縮器16からの液相冷媒を水膜状に液相入口24に流通させ、また往復流通路19aのうち液相冷媒に対して内側に蒸発器14からの気相冷媒を凝縮器16に流通させるように往復路配管19が構成されている。
 このため、往復流通路19aのうち液相入口24に対して気相冷媒の流れ方向下流側は、凝縮器16から液相冷媒を液相入口24から貯液部22に流しつつ、気相冷媒を凝縮器16へ円滑に流通させることができる。
 本実施形態では、貯液部22のうち重力方向DR1上側に向けた部位(すなわち、天井部)に、往復路配管19の液相入口24から流入する液相冷媒が入る入口開口部22aが形成されている。
 このため、往復路配管19からの液相冷媒を円滑に貯液部22に流すことができる。ここで、貯液部22のうち重力方向DR1の上側とは、貯液部22のうち重力方向DR1の中心線よりも上側のことである。
 さらに、本実施形態では、液相入口24は、上記第1実施形態と同様に、上側往復路配管のうち重力方向DR1下側に向けて配置される部位に設けられている。このため、往復流通路19aからの液相冷媒が重力により液相入口24を通して貯液部22内に流れ易くなる。
 本実施形態の液相冷媒戻り口27は、上記第1実施形態と同様に、貯液部22に対して重力方向下側に配置されている。このため、貯液部22内の液相冷媒を円滑に往復流通路19a内に流すことができる。
 本実施形態の液相冷媒戻り口27の冷媒の通路断面積は、液相入口24の冷媒の通路断面積よりも小さい。これにより、往復流通路19aから液相入口24を通して液相冷媒が貯液部22に入り易く、貯液部22から液相冷媒が液相冷媒戻り口27を通して往復流通路19aに流れ難くなる。
 これにより、液相冷媒の沸騰時に貯液部22に一定量以上の液相冷媒を容易に貯めることができる。
 本実施形態の液相冷媒戻り口27の冷媒の通路断面積は、往復流通路19aの冷媒の通路断面積よりも小さい。
 これにより、蒸発器14内で液相冷媒が沸騰しているときに、蒸発器14から流れる冷媒(すなわち、気泡混合流)が液相冷媒戻り口27を通して貯液部22に流れることを抑制することができる。このため、貯液部22内の液相冷媒が気泡混合流で無駄に増加することを未然に防ぐことができる。
 (第4実施形態の第1変形例)
 上記第4実施形態では、貯液部22の出口開口部22bを液戻し配管31を介して往復路配管19の液相冷媒戻り口27に接続した例について説明したが、これに代えて、本第1変形例では、図11に示すように、貯液部22の出口開口部22bを液戻し配管31を介して蒸発器14の液相入口14eに接続してもよい。
 これにより、貯液部22内の液相冷媒は、出口開口部22b、液戻し配管31、液相入口14eを通して蒸発器14に流すことができる。
 (第4実施形態の第2変形例)
 上記第4実施形態では、貯液部22の出口開口部22bと蒸発器14の液相冷媒戻り口27との間に液戻し配管31を配置した例について説明したが、これに代えて、本第2変形例では、図12に示すように、往復路配管19の液相冷媒戻り口27と貯液部22の出口開口部22bとの間に液戻し配管31を配置してもよい。往復路配管19の液相冷媒戻り口27は、往復流通路19aと液戻し配管31との間を連通する孔である。
 これにより、貯液部22内の液相冷媒は、液戻し配管31、および往復路配管19を通して蒸発器14の出口14cに流すことができる。この場合、出口14cは、貯液部22内の液相冷媒を蒸発器14に流す冷媒戻り口と、蒸発器14からの気相冷媒を往復路配管19に流す冷媒出口との両方の役割を果たすことができる。
 なお、第4実施形態の第2変形例において、蒸発器14の出口14cは、貯液部22に対して重力方向DR1の下側に配置することにより、貯液部22内の液相冷媒を円滑に蒸発器14に流すことができる。
 (第5実施形態)
 上記第4実施形態では、凝縮器16および蒸発器14の間で往復路配管19に対して貯液部22を並列的に接続した例について説明したが、これに代えて、凝縮器16および蒸発器14の間で往復路配管19に対して貯液部22を直列に接続した本第5実施形態について説明する。図13に本実施形態の冷却装置10の構成を示す。
 図13において図10と同一の符号は、同一のものを示し、その説明を省略する。
 本実施形態の冷却装置10では、往復路配管19は、蒸発器14の出口14cから貯液部22の入口開口部22aへ気相冷媒を流通させる上流側往復流通路を形成する上流側往復路配管190と、貯液部22から凝縮器16へ気相冷媒を流通させる下流側往復流通路を形成する下流側往復路配管191とを備える。上流側往復路配管190が上流側往復路部に対応し、下流側往復路配管191が下流側往復路部に対応する。
 これにより、貯液部22が、上流側往復流通路と下流側往復流通路とともに、往復流通路を構成することになる。往復流通路は、蒸発器14と凝縮器16との間で気相冷媒と液相冷媒とを流通させる流路である。
 次に、本実施形態の冷却装置10の作動について説明する。
 まず、二次電池12の温度が蒸発器14内の液相冷媒の温度と同一であるとき、二次電池12および蒸発器14の内部の液相冷媒の間の熱交換が停止される。
 この際に、蒸発器14の内部に液相冷媒の液面haが存在するようにサーモサイフォンに冷媒が封入充填されている。
 その後、二次電池12が発熱して二次電池12の温度が高くなると、電池セル121の下面を通じて蒸発器14の上面141へ熱が伝わり、その熱によって蒸発器14内の液相冷媒が沸騰する。
 このことにより、蒸発器14において、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。気泡は、蒸発器14内の液相冷媒の内部を上昇する。これに伴い、気泡を含む液相冷媒の体積は増大して、液相冷媒の液面は、蒸発器14内の停止時液面haから、上流側往復路配管190の上流往復流通路内まで上昇する。
 つまり、往復路配管19の往復流通路19aでは、気泡を含む液相冷媒が気泡混合流として上昇する。
 このとき、液相冷媒の液面が貯液部22の入口開口部22aまで到達すると、往復路配管19の往復流通路19a内の気泡を含む液相冷媒が、入口開口部22aを通して貯液部22の内部に流入する。
 この際に、貯液部22内部の液相冷媒は、出口開口部22b、液戻し配管31、および液相入口14eを通して蒸発器14に流れる。
 しかし、上流側往復路配管190から貯液部22に流れる液相冷媒量と貯液部22から液戻し配管31を通して蒸発器14に流れる液相冷媒量とが釣り合うとすることにより、貯液部22内の液相冷媒が貯えられる。
 このことにより、往復流通路19a内における気泡混合流の総量を調整して、往復流通路19a内にて液相冷媒の液面が貯液部22よりも重力方向DR1の上側に移動することが抑えられる。
 したがって、上記第1実施形態と同様に、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、液相冷媒が沸騰する際に往復流通路19a内の液相冷媒が貯液部22に貯められるので、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 一方、往復路配管19の往復流通路19aでは、液相冷媒に含まれる気泡が破裂すると、気泡に含まれる気相冷媒が貯液部22、下流側往復路配管191を通して凝縮器16に移動する。
 凝縮器16内では、気相冷媒が受熱流体へ放熱するため、気相冷媒が凝縮する。この凝縮した液相冷媒は、重力により、下流側往復路配管191のうち往復流通路19aを形成する内面19eに沿って水膜状に貯液部22に流れる。
 このため、蒸発器14から気相冷媒が貯液部22から往復路配管19の往復流通路19aを通して凝縮器16へ流通する際には、気相冷媒は、往復流通路19aのうち液相冷媒の内側を流通する。
 このように、蒸発器14および凝縮器16の間で往復路配管19を通して気相冷媒と液相冷媒とが自然循環することになる。
 以上説明した本実施形態によれば、冷却装置10では、上流側往復路配管190の一方側の冷媒出入口が蒸発器14の出口14cに接続されて、上流側往復路配管190の他方側の冷媒出入口が貯液部22の入口開口部22aに接続されている。
 下流側往復路配管191の一方側の冷媒出入口が貯液部22の出入口開口部22cに接続されて、下流側往復路配管191の冷媒出入口が凝縮器16の出入口16aに接続されている。
 蒸発器14において、液相冷媒の沸騰に伴って液相冷媒の内部から発生した気泡を含んだ液相冷媒の体積が増大して液相冷媒を上昇させる。
 なお、図13中の出入口開口部22cと図7中の出口開口部22cとは同一に構成されているので、同一の符号を付している。
 このとき、液相冷媒の液面が蒸発器14内部から上流側往復路配管190内を通過して貯液部22の入口開口部22aまで到達すると、往復路配管19の往復流通路19a内の気泡を含む液相冷媒が、入口開口部22aを通して貯液部22の内部に流入して、貯液部22の内部には、液相冷媒が貯えられる。
 したがって、往復流通路19a内にて液相冷媒の液面が貯液部22よりも重力方向DR1の上側に移動することが抑えられる。このため、上記第1実施形態と同様に、異音の発生音源となる、「気泡を含む液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、液相冷媒が沸騰する際に往復流通路19a内の液相冷媒が貯液部22に貯められるので、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 (第5実施形態の第1変形例)
 上記第5実施形態では、貯液部22の側壁のうち重力方向DR1の上側に入口開口部22aを設けた例について説明したが、これに代えて、図14に示すように、貯液部22の側壁のうち重力方向DR1の下側に入口開口部22aを設けてもよい。
 (第6実施形態)
 上記第1実施形態では、冷却装置10において、蒸発器14と貯液部22とを独立して設けた例について説明したが、これに代えて、本第5実施形態では、蒸発器14に貯液部22を一体化した貯液部一体型蒸発器14Aの具体例について説明する。
 図15に本実施形態の貯液部一体型蒸発器14Aの分解図を示す。本実施形態の貯液部一体型蒸発器14Aは、プレート140a、140bを備える。プレート140a、140bは、アルミニウム等の金属材料からなる板材である。
 プレート140a、140bは、互いに厚み方向DR2に合わされた状態でプレート140aのうち厚み方向DR2の他方側の面のうち環状縁部150aとプレート140bのうち厚み方向DR2の一方側の面のうち環状縁部150bとが接合されている。
 このことにより、プレート140a、140bの間において環状縁部150a、150bに囲まれた領域に蒸発器40、貯液部22、および液戻し配管31が構成されている。
 プレート140aのうち厚み方向DR2の一方側の面のうち電池積層方向DRbの一方側で、かつ重力方向DR1の下側には、入口14bが配置されている。入口14bには、往路配管を介して凝縮器の出口が接続されている。
 プレート140aのうち厚み方向DR2の一方側の面のうち電池積層方向DRbの他方側で、かつ重力方向DR1の上側には、出口14fが配置されている。出口14fには、復路配管を介して凝縮器の入口が接続される。
 このように構成される貯液部一体型蒸発器14Aは、入口14bが出口14fに対して重力方向DR1下側に配置されていることにより、入口14bと出口14fとのうち専ら出口14fから気相冷媒を出させる構造を構成する。
 本実施形態では、貯液部一体型蒸発器14A、往路配管、復路配管、および凝縮器は、上記第1実施形態のループ型のサーモサイフォン回路26を構成する。
 プレート140aのうち重力方向DR1のうち下側には、厚み方向DR2一方側に凸となる凸部151aが電池積層方向DRbに亘って設けられている。凸部151aのうち厚み方向DR2の他方側には、厚み方向DR2一方側に凹む凹部(以下、下側凹部という)が電池積層方向DRbに亘って設けられている。
 プレート140bのうち重力方向DR1のうち下側には、厚み方向DR2他方側に凹む凹部151bが電池積層方向DRbに亘って設けられている。
 ここで、プレート140aの下側凹部とプレート140bの凹部151bとが合わさることにより冷媒流路151が形成されている。冷媒流路151には、入口14bから導入される液相冷媒が流れる。
 プレート140aのうち厚み方向DR2一方側で、かつ凸部151aに対して重力方向DR1の上側には、複数の電池セル121が接触する側壁152が形成されている。
 プレート140bのうち凹部151bに対して重力方向DR1の上側で、かつ厚み方向DR2一方側には、電池積層方向DRbに拡がる内壁面153が形成されている。内壁面153には、重力方向DR1に亘って厚み方向DR2の一方側に凸となる凸部153aが複数個、具体的には図中で9個、形成されている。
 複数の凸部153aは、それぞれ、間隔を開けて電池積層方向DRbに並べられている。複数の凸部153aは、プレート140aの側壁152のうち厚み方向DR2の他方側の面に接合されている。
 このことにより、プレート140a、140bの間で複数の凸部153aのうち隣り合う2つの凸部153aの間では、熱交換通路153bが複数形成されている。
 プレート140aのうち側壁152に対して重力方向DR1上側には、厚み方向DR2の他方側から一方側に凸となる凸部156が形成されている。凸部156のうち厚み方向DR2の他方側には、厚み方向DR2の一方側に凹む凹部(以下、上側凹部という)が形成されている。
 本実施形態では、プレート140aの凸部156には、厚み方向DR2他方側に凹む凹部157が電池積層方向DRbに亘って設けられている。凹部157は、二次電池12と貯液部22との間において空気を断熱材とする断熱部を構成する。
 プレート140bの厚み方向DR2の一方側の面のうち内壁面153に対して重力方向DR1上側には、厚み方向DR2の他方側に凹む凹部154が形成されている。
 プレート140bの凹部154内には、電池積層方向DRbに亘って厚み方向DR2の一方側に凸となる凸部155が形成されている。凸部155のうち電池積層方向DRbの一方側は、その先端部が重力方向DR1上側に向くようにL字状に屈曲されている。
 凸部155の電池積層方向DRbの一方側と環状縁部150a、150bとの間には排出流路14hが形成されている。ここで、プレート140bの凸部155は、プレート140aのうち凹部157に対して厚み方向DR2の他方側に接合されている。
 プレート140aの上側凹部とプレート140bの凹部154との間において凸部155に対して重力方向DR1の下側は、複数の熱交換通路153bを通過した冷媒を排出流路14hに導く冷媒通路154aが構成されている。
 プレート140aの上側凹部とプレート140bの凹部154との間において凸部155に対して重力方向DR1の上側で、かつ排出流路14hに対して電池積層方向DRbの他方側は、貯液部22を構成する。
 プレート140aの上側凹部とプレート140bの凹部154との間において排出流路14hおよび貯液部22の間には液相入口24が形成されている。液相入口24は、貯液部22と排出流路14hとの間を連通する。液相入口24は、停止時液面haに対して重力方向DR1の上側に配置されている。排出流路14hは出口14fに連通している。 
 このような貯液部一体型蒸発器14Aにおいて、入口14b、冷媒流路151、側壁152、内壁面153、冷媒通路154a、排出流路14h、および出口14fは、蒸発器14を構成している。
 プレート140aのうち電池積層方向DRb他方側には、厚み方向DR2の一方側に凸となる凸部158aが形成されている。凸部158aのうち厚み方向DR2の他方側には、厚み方向DR2の一方側に凹む凹部(以下、側方凹部という)が形成されている。
 プレート140bのうち電池積層方向DRb一方側には、厚み方向DR2の他方側に凹む凹部158bが形成されている。プレート140aの側方凹部とプレート140bの凹部158bとが合わさって液戻し配管31を構成している。
 次に、本実施形態の貯液部一体型蒸発器14Aの作動について、図16を用いて説明する。
 まず、二次電池12の温度が蒸発器14内の液相冷媒の温度と同一であるとき、二次電池12および蒸発器14の内部の液相冷媒の間の熱交換が停止される。
 この際に、蒸発器14の内部に液相冷媒の液面haが存在するようにヒートサイフォンに冷媒が封入充填されている。
 その後、二次電池12が発熱して二次電池12の温度が高くなると、二次電池12からの熱が電池セル121の側面を通じてプレート140aの側壁152に伝わり、その熱によって蒸発器14内の液相冷媒が沸騰する。
 このことにより、蒸発器14において、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。気泡は、複数の熱交換通路153b、冷媒通路154a、排出流路14hを通して液相冷媒内を移動する。
 この際に、気泡が蒸発器14内の液相冷媒の液面を停止時液面haから排出流路14hを上昇させる。つまり、気泡を含む液相冷媒が気泡混合流として熱交換通路153bから排出流路14h内を上昇する。
 このとき、液相冷媒の液面が貯液部22の液相入口24まで到達すると、排出流路14h内の気泡を含む液相冷媒が、液相入口24を通して貯液部22の内部に流入する。このため、貯液部22の内部には、液相冷媒が貯えられる。
 さらに、貯液部22内部の液相冷媒は、液戻し配管31を通して冷媒流路151内に戻る。
 この際に、排出流路14hから液相入口24を通して貯液部22に流れる液相冷媒と貯液部22から液戻し配管31を通して冷媒流路151に流れる液相冷媒とが釣り合って貯液部22内部の液相冷媒が貯まる。
 このことにより、蒸発器14内における気泡混合流の総量を調整して、排出流路14h内にて液相冷媒の液面が貯液部22(すなわち、液相入口24)よりも重力方向DR1の上側に移動することが抑えられる。
 したがって、上記第1実施形態と同様に、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、液相冷媒が沸騰する際に排出流路14h内の液相冷媒が貯液部22に貯められるので、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 一方、排出流路14hでは、液相冷媒に含まれる気泡が破裂すると、気泡に含まれる気相冷媒が往路配管18を通して凝縮器16の入口に移動する。凝縮器16内では、気相冷媒が受熱流体へ放熱するため、気相冷媒が凝縮する。この凝縮した液相冷媒は、重力により、往復路配管を通して蒸発器14に流れる。
 このように、蒸発器14および凝縮器16の間で気相冷媒と液相冷媒とが自然循環することになる。
 以上説明した本実施形態によれば、貯液部一体型蒸発器14Aでは、停止時液面haに対して重力方向DR1の上側に液相入口24が配置されている。この際に、気泡が蒸発器14内の液相冷媒の液面を停止時液面haから上昇させる際に、貯液部22に、液相冷媒が貯えられる。
 したがって、排出流路14h内にて液相冷媒の液面が液相入口24よりも重力方向DR1の上側に移動することが抑えられる。したがって、上記第1実施形態と同様に、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、液相冷媒が沸騰する際に排出流路14h内の液相冷媒が貯液部22に貯められるので、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 本実施形態のプレート140aに形成されている凹部157は、二次電池12と貯液部22との間において空気を断熱材とする断熱部を構成する。このため、二次電池12から発生する熱が貯液部22内の液相冷媒に伝達されることが抑制される。したがって、貯液部22内の液相冷媒が熱による悪影響を受けることが抑制される。
 (第6実施形態の第1変形例)
 本第1変形例では、上記第6実施形態において、図17に示すように、排出流路14hおよび貯液部22の間で複数の微細孔を有するネット155aを配置する。これにより、排出流路14hから貯液部22に気泡が移動することが妨げられる。
 (第6実施形態の第2変形例)
 本第1変形例では、上記第6実施形態において、液戻し配管31を内壁面153に対して電池積層方向DRbの他方側に設けた例について説明したが、これに代えて、図18、図19に示すように、凸部155において、貯液部22と冷媒通路154aとの間を連通させる溝を液戻し配管31として設けてもよい。
 (第6実施形態の第3変形例)
 上記第6実施形態では、貯液部22を貯液部一体型蒸発器14Aのうち電池積層方向DRbの他方側で、かつ重力方向DR1の上側に配置した例について説明したが、これに代えて、図20、図21に示すように、貯液部22を貯液部一体型蒸発器14Aのうち電池積層方向DRbの一方側で、かつ重力方向DR1の上側に配置してもよい。
 (第7実施形態)
 上記第6実施形態では、貯液部一体型蒸発器14A自体の上側に貯液部22を配置した例について説明したが、これに代えて、本第7実施形態では、蒸発器の内側に貯液部を配置した例について図22、図23等を参照して説明する。
 本実施形態の冷却装置10は、図22および図23に示すように、図15の貯液部一体型蒸発器14Aに代わる積層熱交換器160と、熱伝導材170a、170bと、図15の二次電池12に代わる二次電池12a、12bとを備える。
 本実施形態と上記第6実施形態とでは、積層熱交換器160、熱伝導材170a、170b、および二次電池12a、12b以外の他の構成は、同一である。このため、以下、積層熱交換器160、熱伝導材170a、170b、および複数の二次電池12a、12bについて説明し、積層熱交換器160、熱伝導材170a、170b、および複数の二次電池12a、12b以外の他の構成の説明を簡素化する。
 まず、積層熱交換器160は、所定方向に積層してなる貯液・蒸発器180a、180b、180c、180d、180e・・・・・・180k、180mから構成されて、二次電池12a、12bを冷却する熱交換器である。本実施形態では、貯液・蒸発器180a~180mは、二次電池12a、12bの電池セル121毎に構成されている。
 なお、図23には、貯液・蒸発器180a、180b、180c、180d、180e・・・・・・180mのうち貯液・蒸発器180a、180b、180c、180d以外の図示を省略している。
 以下、説明の便宜上、貯液・蒸発器180a、180b、180c、180d・・・・・・180k、180mが積層される方向をSa方向とし、このSa方向に直交し、かつ重力方向DR1に直交する方向をSb方向とする。
 二次電池12aは、積層熱交換器160に対してSb方向一方側に配置されている。二次電池12aは、Sa方向に積層されている複数の電池セル121を備える。つまり、複数の電池セル121は、貯液・蒸発器180a~180mの積層方向と同一方向に積層されている。
 二次電池12bは、積層熱交換器160に対してSb方向の他方側に配置されている。二次電池12bは、Sa方向に積層されている複数の電池セル121を備える。
 なお、二次電池12a、12bは、説明の便宜上、互いに相違する符号が付してあるが、互いに同じ二次電池である。
 熱伝導材170a、170bは、それぞれ、電気絶縁性を有し、かつ高い熱伝導性を有する材料によって薄板状に形成されている。熱伝導材170aは、積層熱交換器160と二次電池12aとの間に配置されている。熱伝導材170bは、積層熱交換器160と二次電池12bとの間に配置されている。
 本実施形態の貯液・蒸発器180a~180mは、それぞれ、Sa方向の寸法よりも重力方向DR1の寸法の方が大きく、かつSb方向の寸法よりも重力方向DR1の寸法の方が大きいブロック状に形成されている。
 貯液・蒸発器180a~180mは、貯液・蒸発器180a、貯液・蒸発器180b、貯液・蒸発器180c、・・・貯液・蒸発器180mの順にSa方向一方側からSa方向他方側に並べられている。
 次に、本実施形態の積層熱交換器160の貯液・蒸発器180a~180mのうち貯液・蒸発器180aを代表として貯液・蒸発器180aの構造について説明する。
 貯液・蒸発器180aは、図23、図24、および図25に示すように、直方体に形成されているケース181aと蓋部182とを備える。ケース181aは、Sa方向の一方側に開口する開口部を形成する。
 ケース181aは、図26A、図26Bに示すように、上面183、下面184、側面185、186、および背面187を備える。上面183は、下面184、側面185、186とともに、開口部を形成する。背面187は、上面183、下面184、側面185、186に対してSa方向他方側に配置されている。
 図23の蓋部182は、ケース181aの開口部を塞いでいる。蓋部182には、Sa方向に貫通する入口14bと出口14cが設けられている。つまり、入口14bと出口14cは、積層熱交換器160に対してSb方向の一方側に配置されている。
 入口14bには、往路配管18を通して凝縮器16の出口が接続されている。出口14cは、貯液・蒸発器180aの気液分離室201のうち重力方向上側の領域と連通している。出口14cは、復路配管20を通して凝縮器16の入口が接続されている。
 ケース181a内には、仕切壁190a、190b、190cが設けられている。仕切壁190a、190bは、それぞれ、重力方向DR1に延びる板状に形成されている。仕切壁190a、190bは、Sb方向に並べられている。
 仕切壁190aは、側面185との間に、冷媒および二次電池12aの間で熱交換させる蒸発部200aを形成する。
 仕切壁190bは、側面186との間に、冷媒および二次電池12bの間で熱交換させる蒸発部200bを形成する。
 本実施形態の蒸発部200a、200bにおいて、ウィック(すなわち、毛細管構造)を設けたり、熱交換フィンを内蔵してもよい。これにより、冷媒および二次電池12a、12bの熱交換を促進することができるため、冷媒の蒸発を促進することができる。
 仕切壁190a、190bの間には、気液分離室201および液冷媒供給室203が形成されている。液冷媒供給室203は冷媒供給部に対応する。仕切壁190cは、気液分離室201と液冷媒供給室203とを区分けするように形成されている。仕切壁190cは分離壁に対応する。気液分離室201は気液分離部に対応する。
 気液分離室201は、仕切壁190cに対して重力方向DR1上側に形成されている。気液分離室201は、後述するように、蒸発部200a、200bから供給される冷媒を気相冷媒と液相冷媒とに気液分離する。液冷媒供給室203は、仕切壁190cに対して重力方向DR1下側に形成されている。
 仕切壁190aと下面184との間には、液冷媒供給室203と蒸発部200aとの間を連通して、液冷媒供給室203から蒸発部200aに液冷媒を供給する連通路204a(図26A、図26B参照)が形成されている。
 仕切壁190bと下面184との間には、液冷媒供給室203と蒸発部200bとの間を連通して、液冷媒供給室203から蒸発部200bに液冷媒を供給する連通路204b(図26A参照)が形成されている。
 仕切壁190aと上面183との間には、蒸発部200aと気液分離室201との間を連通して、蒸発部200aから気液分離室201に冷媒を供給する連通路205a(図26A、図26B参照)が形成されている。連通路205aは導入部に対応する。
 仕切壁190bと上面183との間には、蒸発部200bと気液分離室201との間を連通して、蒸発部200bから気液分離室201に冷媒を供給する連通路205b(図26A参照)が形成されている。連通路205bは導入部に対応する。
 仕切壁190cには、貯液部201bと液冷媒供給室203との間を連通する冷媒戻し流路191aが形成されている。冷媒戻し流路191aは、貯液部201b内の液相冷媒を液冷媒供給室203に戻す。
 本実施形態の冷媒戻し流路191aの流路断面積は、蒸発部200a或いは、200bの流路断面積よりも小さくなっている。このことにより、冷媒戻し流路191aを冷媒が流れる際に生じる圧力損失は、蒸発部200a或いは、200bを冷媒が流れる際に生じる圧力損失に比べて大きくなっている。
 背面187のうち仕切壁190cに対して重力方向DR1上側には、貯液・蒸発器180bの気液分離室201に連通する連通路207が形成されている。貯液・蒸発器180bは、貯液・蒸発器180aに対してSa方向他方側に配置されている。
 つまり、隣り合う2つの貯液・蒸発器180a、180bは、気液分離室201同士が連通路207を通して連通されている。
 背面187のうち仕切壁190cおよび連通路207の間には、貯液・蒸発器180aの貯液部201bと貯液・蒸発器180bの貯液部201bとを区分けする仕切壁206aが形成されている。
 仕切壁206aには、貯液・蒸発器180aの貯液部201bと貯液・蒸発器180bの貯液部201bとの間を連通させる連通孔206が設けられている。連通孔206は連通部に対応する。
 背面187のうち仕切壁190cに対して重力方向DR1下側には、Sa方向に貫通する連通孔208が設けられている。つまり、貯液・蒸発器180aの連通孔208は、貯液・蒸発器180aの液冷媒供給室203および貯液・蒸発器180bの液冷媒供給室203の間を連通している。
 蓋部182、および仕切壁190a、190b、190cは、アルミニウム等の金属材料によって構成されている。
 本実施形態の貯液・蒸発器180b~180mは、ケース181a、および仕切壁190a、190b、190cを備える。
 貯液・蒸発器180aにおけるケース181aと貯液・蒸発器180b~180mにおけるケース181aとは同一である。
 貯液・蒸発器180aにおける仕切壁190a、190b、190cと貯液・蒸発器180b~180mにおける仕切壁190a、190b、190cとは同一である。
 但し、貯液・蒸発器180mにおけるケース181aの背面187は、連通孔206、207、208が廃止されて塞がれている(図27A、図27B参照)。
 貯液・蒸発器180a~180mのうち隣り合う2つの蒸発器のうちSa方向他方側の蒸発器のケース181aの開口部は、Sa方向一方側の蒸発器のケース181aの背面187によって塞がれている。
 例えば、隣り合う2つの貯液・蒸発器180a、180bのうちSa方向他方側の貯液・蒸発器180bのケース181aの開口部は、Sa方向一方側の貯液・蒸発器180aのケース181aの背面187によって塞がれている。
 このため、貯液・蒸発器180aと同様に、貯液・蒸発器180b~180mは、それぞれ、気液分離室201、および液冷媒供給室203を備える。貯液・蒸発器180b~180mのそれぞれの気液分離室201は、蒸発部200a、200bから供給される冷媒を気相冷媒と液相冷媒とに分離する。
 ここで、貯液・蒸発器180a~180mのうち隣り合う2つの蒸発器の気液分離室201同士が連通路207を通して連通している。貯液・蒸発器180a~180mの気液分離室201は、気液分離室201内の気相冷媒を出口14cに導く1つの気相冷媒流路201aを形成する。
 貯液・蒸発器180a~180mの気液分離室201のうち重力方向DR1下側は、気液分離された液相冷媒を貯める貯液部201bを形成する。
 貯液・蒸発器180a~180mのそれぞれの貯液部201bは、仕切壁206aによって、区分けされている。仕切壁206aは、ケース181aの背面187によって構成されている。
 貯液・蒸発器180a~180mのうち隣り合う2つの貯液・蒸発器の液冷媒供給室203同士が連通路である連通孔208を通して連通されている。
 本実施形態の貯液・蒸発器180a~180mのそれぞれの液冷媒供給室203には、貯液・蒸発器180a~180kの連通路である連通孔208を通して断熱管210が貫通されている。
 断熱管210のうちSa方向一方側の冷媒入口は、入口14bに接続されている。断熱管210には、入口14bから入る液相冷媒をSa方向一方側に流通させる液冷媒供給流路211が形成されている。
 断熱管210には、液冷媒供給流路211から貯液・蒸発器180a~180mの液冷媒供給室203に供給する複数の連通孔212が設けられている。断熱管210は、入口14bから入る液相冷媒に対して二次電池12a、12bから熱が伝達されることを抑制する。
 本実実施形態の断熱管210には、断熱性を有する樹脂材料によって構成されている。貯液・蒸発器180a~180mは、ろう付け等によって接合されている。
 このように構成される積層熱交換器160では、蒸発部200a、200b、気液分離室201および液冷媒供給室203が貯液・蒸発器毎に設けられて、かつ貯液・蒸発器毎の蒸発部200a、200bからの気相冷媒を排出する1つの気相冷媒流路201aが設けられている。
 なお、図24、図25、図26B、図27B、図28においては、断熱管210の図示が省略されている。さらに、図24においては、仕切壁190a、190bの図示が省略されている。
 次に、本実施形態の冷却装置10の作動について図27A、図27B、図28を参照して説明する。
 まず、二次電池12a、12bの温度が積層熱交換器160の貯液・蒸発器180a~180m内の液相冷媒の温度と同一であるとき、二次電池12a、12bおよび貯液・蒸発器180a~180mの内部の液相冷媒の間の熱交換が停止される。
 この際に、貯液・蒸発器180a~180mの蒸発部200a、200b内部に液相冷媒が満たされた状態となるようにサーモサイフォン回路26内には冷媒が封入充填されている。
 このとき、貯液・蒸発器180a~180mの蒸発部200a、200bおよび貯液部201b内に液相冷媒の液面ha(図28参照)が位置する。
 その後、二次電池12a、12bが発熱して、二次電池12a、12bの温度が高くなる。すると、二次電池12aから貯液・蒸発器180a~180mのケース181aの側面185へ熱が伝わり、二次電池12bから貯液・蒸発器180a~180mのケース181aの側面186へ熱が伝わる。
 このように、二次電池12a、12bから貯液・蒸発器180a~180mに伝わる熱によって貯液・蒸発器180a~180m内の蒸発部200a、200b内の液相冷媒が沸騰する。
 このことにより、貯液・蒸発器180a~180m内の蒸発部200a、200b内の液相冷媒の内部から冷媒が蒸発することになる。このため、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。
 この際に、蒸発部200a、200bにおいて、気泡を含む液相冷媒の体積は、熱交換の停止時における気泡を含まない液相冷媒の体積に比べて、大きくなる。このため、蒸発部200a、200b内の液相冷媒の液面(図28中hb参照)が停止時液面haよりも上昇する。
 つまり、蒸発部200a、200bでは、気泡を含む液相冷媒が気泡混合流として上昇する。
 このとき、蒸発部200a内の液相冷媒の液面が連通路205aまで到達すると、連通路205a内の気泡混合流が、重力により、気液分離室201に流入する。
 蒸発部200b内の液相冷媒の液面が連通路205bまで到達すると、連通路205b内の気泡混合流が、重力により、気液分離室201に流入する。
 この際に、気相冷媒流路201a内にて気泡混合流が気相冷媒と液相冷媒とに分離される。気相冷媒が、図24中の矢印Ka如く気相冷媒流路201aを通して出口14cに流れる。液相冷媒は、貯液部201b内に流れて貯まる。そして、貯液部201b内の液相冷媒は、冷媒戻し流路191aを通して、液冷媒供給室203に戻る。
 このことにより、蒸発部200a、200b内における気泡混合流の総量を減らすことができるので、液相冷媒の液面が出口14cよりも重力方向DR1の上側に移動することが抑えられる。
 すなわち、液相冷媒の液面が貯液・蒸発器180a~180mよりも重力方向DR1の上側に移動することが抑えられる。したがって、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、蒸発部200a、200b内の液相冷媒が沸騰する際に液相冷媒が貯液部201bに貯められるので、蒸発部200a、200b内の気泡を含んだ液相冷媒が少なくなる。このため、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 一方、気相冷媒が出口14cから復路配管20の復路流通路20aを通して凝縮器16に移動する。
 凝縮器16内では、気相冷媒が受熱流体へ放熱するため、気相冷媒が凝縮する。この凝縮した液相冷媒は、重力により、往路配管18の往路流通路18aを通して積層熱交換器160の入口14bに流れる。
 すると、液相冷媒は、断熱管210の液冷媒供給流路211を流れる。そして、液冷媒供給流路211から液相冷媒は、複数の連通孔212を通して貯液・蒸発器180a~180mのそれぞれの液冷媒供給室203に流れる。
 貯液・蒸発器180a~180mにおいて、液冷媒供給室203から液相冷媒は、蒸発部200a、200bに流れる。
 このように、本実施形態の冷却装置10では、これらの作動がコンプレッサ等の駆動装置を必要とせずに、サーモサイフォン回路26に封入された冷媒の自然循環により行われる。自然循環は、凝縮器16と貯液・蒸発器180a~180mとの温度差によって生じる自然対流により、サーモサイフォン回路26内を冷媒が循環することである。
 以上の通り、蒸発部200a、200b内の冷媒が激しく沸騰すると、貯液部201b内に液相冷媒が貯まるため、蒸発部200a、200b内の液相冷媒が減る。一方、蒸発部200a、200b内の冷媒の沸騰が停止しているとき、或いは冷媒の沸騰が微少であるとき、蒸発部200a、200b内の液相冷媒の量が規定量以上となり、蒸発部200a、200b内部が冷媒で満たされる。
 このように、蒸発部200a、200bにおける冷媒の蒸発熱量に応じて蒸発部200a、200b内の冷媒の量が自動調整される。
 その後、蒸発部200a、200b内の冷媒の沸騰が停止すると、蒸発部200a、200b内の液相冷媒の液面が低下するとともに、貯液部201bの液相冷媒は、貯液部201b内の液相冷媒は、冷媒戻し流路191aを通して、液冷媒供給室203に戻る。
 このため、貯液部201b内の液相冷媒の液面は低下する。したがって、蒸発部200a、200b内は冷媒で満たされる。よって、冷媒の微少な沸騰時や沸騰開始前には液相冷媒が熱的に二次電池12に接触することができる。
 以上説明した本実施形態では、積層熱交換器160の貯液・蒸発器180a~180mにおいて、蒸発部200a、200b内の液相冷媒の沸騰に伴って液相冷媒の内部から発生する気泡が液相冷媒を上昇させる際に、蒸発部200a、200bから連通路205a、205bを通して流入した気泡混合流を気液分離する気液分離室201を備える。
 気液分離室201は、気相冷媒を出口14cに流通させる気相冷媒流路201aを構成するとともに、液相冷媒を貯める貯液部201bを構成する。
 したがって、液相冷媒の液面が連通路205a、205bよりも重力方向DR1の上側に移動することが抑えられる。このため、蒸発部200a、200bにおいて、気泡を含んだ液相冷媒が異音の発生源となるものの、異音の発生音源となる、「気泡を含んだ液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 これに加えて、上述の如く、液相冷媒の沸騰に伴って蒸発部200a、200b内の液相冷媒が貯液部201bに貯められるので、蒸発部200a、200bの冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 本実施形態では、貯液・蒸発器180a~180mにおいて、貯液部201bが蒸発部200a、200bの間に構成されている。このため、貯液部201bが貯液・蒸発器180a~180mの外側に配置される場合に比べて蒸発部200a、200bから気液分離室201までの距離が短く、冷媒の流れに生じる圧力損失が小さくなる。このため、冷媒の循環を良好することができる。よって、気泡混合流の吹き出しに伴う異音の発生を抑制することができるとともに、冷却性能も大きくすることができる。
 本実施形態の貯液・蒸発器180a~180mのうち隣り合う2つの蒸発器の貯液部201bの間には、仕切壁206aが配置されている。このため、積層熱交換器160に揺れが生じた場合に、貯液・蒸発器180a~180mのうちSa方向一方側の貯液・蒸発器から液相冷媒がSa方向他方側の貯液・蒸発器に流れることを蒸発器毎の仕切壁206aが抑制することができる。
 一方、Sa方向他方側の貯液・蒸発器から液相冷媒がSa方向一方側の貯液・蒸発器に流れることを蒸発器毎の仕切壁206aが抑制することができる。このため、貯液・蒸発器180a~180mにおいて液相冷媒がSa方向に流れることにより異音が発生することを抑止することができる。
 本実施形態の仕切壁206aには、貯液・蒸発器180a~180mのうち隣り合う2つの貯液・蒸発器の貯液部201bの間を連通させる連通孔206が設けられている。このため、貯液・蒸発器180a~180mの貯液部201bに連通孔206を通して液相冷媒が分配される。したがって、貯液・蒸発器180a~180mのうちいずれかの貯液・蒸発器の貯液部201bにおいて、液相冷媒の過不足が生じることを未然に防ぐことができる。
 本実施形態の貯液・蒸発器180a~180mにおいて、気液分離室201が蒸発部200a(或いは、蒸発部200b)に対して二次電池12aの反対側に配置されている。このため、貯液・蒸発器180a~180mの重力方向DR1の寸法を小さくすることができる。
 本実施形態では、気液分離室201が、上述の如く、蒸発部200a、200bに対して二次電池12aの反対側に配置されている。このため、気液分離室201のうち重力方向DR1の下側に形成される貯液部201bに貯められる液相冷媒は、蒸発部200a、200b内の液相冷媒に比べて、沸騰が生じ難くなる。
 このため、気液分離室201に十分な容積と高さとが確保されていれば、気液分離とともに、液相冷媒の液面上昇の防止を図る貯液部201bとしての機能を兼ねることができる。これに加えて、気液分離室201のうち重力方向上側において十分な大きさを気相冷媒流路201aを確保することができる。これにより、気相冷媒流路201aにおける気相冷媒の排出も良好になる。
 本実施形態では、冷媒戻し流路191aを冷媒が流れる際に生じる圧力損失は、蒸発部200a或いは、200bを冷媒が流れる際に生じる圧力損失に比べて大きくなっている。このため、蒸発部200a、200bで冷媒が激しく沸騰しているときに、蒸発部200a、200bからの気相冷媒が液冷媒供給室203および冷媒戻し流路191aを通して貯液部201bに流れることを未然に抑えることができる。
 本実施形態では、貯液・蒸発器180a~180mは、二次電池12a、12bの電池セル121毎に構成されている。このため、積層熱交換器160のうちSa方向のうち一部で冷媒のドライアウトが生じることを抑制することができ、二次電池12a、12bの電池セル毎の冷却バラツキ、温度バラツキが生じることを抑制することができる。
 本実施形態では、貯液部201b内に冷媒充填時に冷媒液面を跨ぐように設定すれば、冷媒漏れや冷媒充填時の充填公差の吸収にも有効である。この貯液部201bにより、冷媒充填時の冷媒量変化に対する液面変動量を、貯液部201bが無い場合に比べて小さくすることができる。
 (第8実施形態)
 上記第7実施形態では、仕切壁190aが蒸発部200aと液冷媒供給室203とを区分けし、かつ仕切壁190bが蒸発部200bと液冷媒供給室203とを区分けした例について説明したが、これに代えて、図29、図30、図31A、図31B、図32に示すように、仕切壁190a、190bを構成してもよい。
 本実施形態では、貯液・蒸発器180a~180mにおいて、蒸発部200aと液冷媒供給室203とを区分けする壁が削除されている。蒸発部200bと液冷媒供給室203とを区分けする壁を削除されている。
 つまり、蒸発部200aのうち重力方向DR1の下側と液冷媒供給室203とが直接接続され、蒸発部200bのうち重力方向DR1の下側と液冷媒供給室203とが直接接続されている。
 以上説明した本実施形態によれば、液冷媒供給室203からの液相冷媒が蒸発部200a、200bに流れ易くなり、このため、冷媒の循環を良好することができるので、冷却性能も大きくすることができる。
 なお、図29~図32において、仕切壁190a、190b以外の構成は、上記第7実施形態と同様であり、その説明を省略する。
 (第9実施形態)
 本第9実施形態では、上記第8実施形態において、図33に示すように、断熱管210を削除してもよい。
 この場合、入口14bから流入した液相冷媒は、次の通り、貯液・蒸発器180a~180mの液冷媒供給室203に順次流れる。
 すなわち、液相冷媒は、貯液・蒸発器180aの液冷媒供給室203、連通孔208、貯液・蒸発器180bの液冷媒供給室203、連通孔208、貯液・蒸発器180cの液冷媒供給室203、連通孔208、・・・、貯液・蒸発器180kの液冷媒供給室203、連通孔208、貯液・蒸発器180mの液冷媒供給室203の順に流れる。
 このとき、貯液・蒸発器毎に液冷媒供給室203から液相冷媒が蒸発部200a、200bに供給される。
 (第10実施形態)
 次に、第10実施形態について説明する。本実施形態の冷却装置10は、第1実施形態の冷却装置10に対して、貯液部22、液戻し配管31、復路配管20の構造を変更したものである。具体的には、復路配管20に直列に貯液部22が配置されて貯液部22が復路流通路20aの一部を構成する。
 本実施形態の復路配管20は、互いに直接接続していない上流側復路配管120と下流側復路配管122とを備える。
 上流側復路配管120は、蒸発器14の出口14cと貯液部22の入口開口部22aとの間で気相冷媒と液相冷媒とを流通させる上流側復路流通路120aを形成する。入口開口部22aは、貯液部22の重力方向DR1中央部かつ水平方向中央部に配置されている。
 下流側復路配管122は、貯液部22の出口開口部22cと凝縮器16の冷媒出入口との間で気相冷媒と液相冷媒とを流通させる下流側復路流通路122aを形成する。出口開口部22cは、入口開口部22aよりも重力方向DR1の上方にある。
 出口開口部22cは、貯液部22のうち重力方向DR1の上側に向いた部分(すなわち、天井部)に配置されている。このことにより、復路流通路20aの中間部に貯液部22が配置されていることになる。すなわち、貯液部22が復路配管20とともに復路流通路20aを構成する。
 貯液部22の内部空間である液溜め部は、重力方向DR1の下方から順に、拡大部22p、胴部22q、縮小部22rに分かれている。拡大部22pは、重力方向DR1の下方から上方に向かって水平方向の広さが大きくなっている。胴部22qは、重力方向DR1の下方から上方に向かった水平方向の広さの変化の絶対値が、拡大部22pよりも縮小部22rよりも小さい。縮小部22rは、重力方向DR1の下方から上方に向かって水平方向の広さが小さくなっている。拡大部22pの上端は胴部22qの下端に直接繋がる。胴部22qの上端は縮小部22rの下端に直接繋がる。
 上流側復路配管120の上側の端部は、貯液部22の底面から貯液部22の液溜め部側に突出している突出部120xである。突出部120xは、拡大部22pを上方に伸び、更に更に胴部22qを上方に伸びている。突出部120xの最上端は、胴部22qに位置していてもよいし、拡大部22pに位置していてもよい。突出部120xの最上端は、貯液部22の入口開口部22aでもある。
 突出部120xの下方端には、複数個の液戻し通路31xが形成されている。これら複数個の液戻し通路31xの各々が、液相戻し部に対応する。これら複数個の液戻し通路31xを介して、上流側復路流通路120aと拡大部22pとが互いに連通している。これら複数個の液戻し通路31xは、拡大部22pのうち重力方向DR1の最も下方の部分に連通している。
 したがって、上流側復路流通路120a内の冷媒の液面が液戻し通路31xよりも重力方向DR1の下方にある場合、拡大部22pにある液冷媒は、重力により、これら複数個の液戻し通路31xを通って、上流側復路流通路120aに戻ることができる。また、上流側復路流通路120a内の冷媒の液面が液戻し通路31xよりも重力方向DR1の上方にある場合も、拡大部22pにある液冷媒は、重力により、これら複数個の液戻し通路31xを通って、上流側復路流通路120aに戻ることができる。
 次に、本実施形態の冷却装置10の作動について説明する。まず、二次電池12の温度が蒸発器14内の液相冷媒の温度と同一であるとき、二次電池12および蒸発器14の内部の液相冷媒の間の熱交換が停止される。
 この際に、蒸発器14の内部に液相冷媒の液面haが存在するようにサーモサイフォン回路26内には冷媒が封入充填されている。この液面haは、上述の液戻し通路31xよりも重力方向DR1の下方にある。
 その後、二次電池12が発熱して二次電池12の温度が高くなると、電池セル121の下面を通じて蒸発器14の上面141へ熱が伝わり、その熱によって蒸発器14内の液相冷媒が沸騰する。
 このことにより、蒸発器14において、液相冷媒の沸騰に伴って気相冷媒を含む気泡が液相冷媒の内部から発生する。気泡は、蒸発器14の内部から出口14cを通して復路配管20の上流側復路流通路120aの液相冷媒内を上昇する。
 この際に、気泡が上流側復路流通路120a内の液相冷媒の液面を停止時液面haから上昇させる。つまり、上流側復路流通路120a内では、気泡を含む液相冷媒が気泡混合流として上昇する。
 液面は、上昇中、液戻し通路31xよりも重力方向DR1の下方から、液戻し通路31xよりも重力方向DR1の上方に、移動する。上流側復路流通路120aのうち液戻し通路31xと同じ高さに位置する部分およびその近傍の冷媒の流路断面積は、上記複数個の液戻し通路31xの流路断面積の総和よりも、十分大きい。
 したがって、液戻し通路31xよりも下方から上方に液面が移動した後、以下の関係が成立する。すなわち、上流側復路流通路120aから液戻し通路31xを通って拡大部22pに流入する液冷媒の量は、上流側復路流通路120a内において液戻し通路31xよりも上方にある液冷媒の量に比べて、非常に小さい。
 液相冷媒の液面が突出部120xの上端すなわち貯液部22の入口開口部22aまで到達すると、上流側復路流通路120a内の気泡を含む液相冷媒が、入口開口部22aを通り過ぎると、重力で気液分離される。気液分離後の液相冷媒は、図34の矢印のように、貯液部22の液溜め部に流入する。気液分離後の気相冷媒は、上昇して下流側復路流通路122aに入り、下流側復路流通路122aを凝縮器16まで進む。
 このため、貯液部22の液溜め部には、液相冷媒が貯えられる。ここで、上流側復路流通路120aから液戻し通路31xを通って貯液部22の液溜め部に流入する液冷媒の量に比べて、上流側復路流通路120aから入口開口部22aを通って貯液部22の液溜め部に流入する冷媒の量の方が、圧倒的に多い。
 さらに、液溜め部の液相冷媒は、上流側復路流通路120a中の冷媒の液面が液戻し通路31xよりも低いときも高いときも、液冷媒が液戻し通路31xを通して上流側復路流通路120aに戻る。上流側復路流通路120a中の冷媒の液面が液戻し通路31xより高いときに液冷媒が液戻し通路31xを通して上流側復路流通路120aに戻るのは、液溜め部の冷媒の気泡含有量が、上流側復路流通路120aの気泡含有量よりも少ないからである。
 このように、液面の上昇は、入口開口部22aの高さの部分以下に抑えられるので、下降直前の液面の高さ(すなわちヘッド)が、例えば図2Bの例に比べて、低くなる。すると、気泡が破裂して液冷媒が落下するときの落下距離L1が短くなる。したがって、気泡破裂音を抑えることができる。
 したがって、上記第1実施形態と同様に、異音の発生音源となる、「気泡が存在する液相冷媒が存在する領域」を小さくすることができる。よって、液相冷媒の沸騰に伴って生じる異音を低減することができる。
 つまり、液相冷媒が沸騰する際に復路流通路20a内の液相冷媒が貯液部22に貯められるので、冷媒の液面の変動が小さくなる。よって、液相冷媒の沸騰に伴って生じる振動が小さくなる。
 また、冷媒が沸騰して上流側復路流通路120a内で液面が断続的に変動しているとき、液溜め部における冷媒の液面の高さも変動する。このとき、液溜め部(すなわち、拡大部22p、胴部22q、縮小部22r)の水平面内の広さは、上流側復路流通路120a内の広さよりも大きいので、液溜め部における冷媒の液面の高さの変動量L2は、上記落下距離L1よりも小さい。
 なお、下降直前の液面の高さを単に低くしたいだけなら、図35に示す比較例のように、本実施形態の冷却装置10から突出部120xを廃した冷却装置を用いてもよい。この比較例における冷却装置では、貯液部22が復路配管20の一部になっていると共に、液相戻し部が存在しない。
 この比較例では、蒸発器14内の液相冷媒が沸騰して冷媒の液面が上昇したとき、冷媒の液面が、上流側復路流通路120a内から、貯液部22の拡大部22pに移動し、更に、胴部22qに移動する。このとき、胴部22q、拡大部22pの水平面内の広さが、上流側復路流通路120aの水平面内の広さよりも十分大きいので、冷媒の液面の高さの変動量L3は、本実施形態における落下距離L1よりも小さい。しかし、拡大部22pでは、水平面内の広さが重力方向DR1上方に向かうにつれて急激に上昇する。したがって、液面が拡大部22pで上昇および下降することで、冷媒の圧力変動が大きくなり、その圧力変動に起因して異音が生じてしまう。
 これに対し、本実施形態では、図34に示すように、貯液部22の液溜め部に突出部120xが配置されているので、拡大部22pを上流側復路流通路120aから隔てる隔壁として突出部120xが昨日する。したがって、本実施形態では、液面の上昇、下降に伴う冷媒の圧力変動が抑えられ、ひいては、異音の発生が抑えられる。
 (他の実施形態)
 (1)上記第1~9実施形態および各変形例では、被冷却対象を二次電池12とした例について説明したが、これに限らず、二次電池12以外の他の各種機器、半導体素子、空気等の気体を被冷却対象としてもよい。
 (2)上記第1~第4実施形態では、停止時液面haが往路配管18内と復路配管20内とに形成される例について説明したが、これに代えて、停止時液面haが蒸発器14内に形成されるように構成してもよい。
 (3)上記第1~4実施形態では、蒸発器14の上側に二次電池12を配置した例について説明したが、これに代えて、蒸発器14の側方に二次電池12を配置してもよい。 
 (4)上記第1~6実施形態および各変形例では、液戻し配管31を貯液部22に対して重力方向DR1の下側に配置した例について説明したが、これに限らず、次のようにしてもよい。
 例えば、液戻し配管31をS字状に湾曲させて、液戻し配管31のうち一部だけが貯液部22に対して重力方向DR1の上側に配置し、液戻し配管31のうち一部以外の残りの部分が貯液部22に対して重力方向DR1の下側に配置されるようにしてもよい。
 (5)上記第1実施形態の第1変形例では、停止時液面haが蒸発器14内に形成されるように構成した例について説明したが、これに限らず、往路配管18内と復路配管20内とに停止時液面haが形成されるようにしてもよい。
 同様に、上記第2実施形態の第1変形例、および上記第3実施形態の第1、3変形例においても、停止時液面haが蒸発器14内に形成される場合に限らず、往路配管18内と復路配管20内とに停止時液面haが形成されるようにしてもよい。
 (6)上記第4実施形態の第1変形例では、停止時液面haが蒸発器14内に形成される例について説明したが、これに限らず、往復路配管19内に停止時液面haが形成されるようにしてもよい。
 同様に、上記第4実施形態の第2変形例、上記第5実施形態、および上記第5実施形態の第1変形例においても、停止時液面haが蒸発器14内に形成される場合に限らず、往復路配管19内に停止時液面haが形成されるようにしてもよい。
 (7)上記第1~9実施形態および各変形例では、冷却装置10を自動車に適用した例について説明したが、自動車以外の列車、電車、飛行機等の移動体に冷却装置10を適用してもよく、或いは設置型の機器に冷却装置10を適用してもよい。
 (8)上記第1~9実施形態および各変形例では、凝縮器16では、受熱流体として空気または水を用いて冷媒を冷却した例について説明したが、これに代えて、凝縮器16において蒸気圧縮式の冷凍サイクルを用いて冷媒を冷却してもよい。
 (9)上記第4実施形態の第2変形例では、貯液部22内の液相冷媒を液戻し配管31を通して蒸発器14の出口14cに流す例について説明したが、これに代えて、蒸発器14の出口14c以外に冷媒戻り口を設け、貯液部22内の液相冷媒を液戻し配管31を通して蒸発器14の冷媒戻口に流すようにしてもよい。
 (10)上記第6実施形態、および第1~第3変形例では、貯液部一体型蒸発器14Aによってループ状のサーモサイフォン回路26を構成した例について説明したが、これに代えて、次のようにしてもよい。
 すなわち、上記第4実施形態において凝縮器16と蒸発器14とを往復路配管19で接続したサーモサイフォン回路に貯液部一体型蒸発器14Aを適用してもよい。或いは、上記第4実施形態の第1、第2変形例におけるサーモサイフォン回路に貯液部一体型蒸発器14Aを適用してもよい。
 このように上記第6実施形態、および第1~第3変形例における貯液部一体型蒸発器14Aを上記第4実施形態の第1、第2変形例におけるサーモサイフォン回路に適用する場合には、入口14bを密閉した状態にして、かつ出口14cに往復路配管19の一方の冷媒出入口を接続し、かつ凝縮器16の出入口に往復路配管19の他方の冷媒出入口を接続した状態にする。
 このため、凝縮器16から往復路配管19を通して供給される液相冷媒は、出口14cから貯液部一体型蒸発器14Aの蒸発器14の内部に入る。蒸発器14の内部では、液相冷媒は、出口14c、排出流路14h、冷媒通路154a、複数の熱交換通路153b、冷媒流路151の順に流れる。
 一方、蒸発器14の内部で液相冷媒の沸騰により発生した気泡(すなわち、気相冷媒)は、複数の熱交換通路153b、冷媒通路154a、排出流路14h、出口14c、往復路配管19、凝縮器16の順に流れる。
 (11)上記第3実施形態では、停止時液面haが上流側復路流通路120aに形成される例について説明したが、これに代えて、貯液部22に停止時液面haが形成されるようにしてもよい。
 (12)上記第5実施形態、および第1変形例では、停止時液面haが蒸発器14内に存在するようにした例について説明したが、これに限らず、上流側往復路配管190に停止時液面haに存在するようにしてもよい。或いは、停止時液面haが貯液部22に存在するようにしてもよい。
 (13)上記第7、8、9実施形態では、積層熱交換器160および二次電池12aの間に熱伝導材170a、170bを配置した例について説明したが、これに限らず、二次電池12aが電気絶縁性を有するのであれば、積層熱交換器160および二次電池12a、12bの間に熱伝導材170a、170bを配置する必要がない。
 (14)上記第7、8、9実施形態では、積層熱交換器160において、貯液・蒸発器180a~180mが電池セル121毎に構成されている例について説明したが、これに限らず、Sa方向においてある区間毎に貯液・蒸発器180a~180mが形成されていればよく、貯液・蒸発器180a~180mがそれぞれ電池セル121毎に構成される必要がない。
 (15)上記第7、8、9実施形態では、積層熱交換器160において、Sa方向一方側に入口14bと出口14cとを設けた例について説明したが、これに代えて、Sa方向他方側に入口14bと出口14cとを設けてもよい。
 或いは、Sa方向他方側に入口14bと出口14cとを設けてもよい。Sa方向他方側に入口14bを設け、Sa方向一方側に出口14cとを設けてもよい。さらには、Sa方向一方側に入口14bを設け、Sa方向他方側に出口14cとを設けてもよい。
 (16)上記第7、8、9実施形態では、積層熱交換器160において、蒸発部200a、200bを貯液・蒸発器毎に仕切るように構成した例について説明したが、これに代えて、隣り合う2つの貯液・蒸発器のうち一方の貯液・蒸発器の蒸発部200aと他の貯液・蒸発器の蒸発部200bとが連通するように構成してもよい。
 (17)上記第7、8、9実施形態では、貯液・蒸発器180a~180mのそれぞれに2つの蒸発部200a、200bを設けた例について説明したが、これに代えて、貯液・蒸発器180a~180mのそれぞれに1つの蒸発部、或いは3つ以上の蒸発部を設けてもよい。
 (18)上記第7、8、9実施形態では、貯液・蒸発器180a~180mといった12個の貯液・蒸発器を設けた例について説明したが、貯液・蒸発器の個数は、12個に限定されず、幾つでもよく、1つ、或いは、12以外の複数個であってもよい。
 (19)上記第7、8、9実施形態において、上記第1~6実施形態と同様に、次のように、貯液・蒸発器180a~180mを構成してもよい。
 すなわち、貯液・蒸発器180a~180mの貯液部において冷媒を貯めることが可能である最大容積を最大貯液容積とし、被冷却対象から冷媒への熱の移動が停止したときに、当該貯液部内に冷媒の液面が位置する場合において、被冷却対象から冷媒への熱の移動が停止したときに当該貯液部の内部のうち冷媒の液面よりも重力方向上側に最大貯液容積の半分以上の容積を有するように貯液・蒸発器180a~180mが構成されている。
 (20)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (まとめ)
 上記第1~第9実施形態、各変形例、および他の実施形態の一部または全部に記載された第1の観点によれば、冷媒が循環し、冷媒の液相と気相との相変化によって被冷却対象を冷却する冷却装置であって、被冷却対象から液相冷媒へ熱を移動させることにより液相冷媒を沸騰させる蒸発部と、蒸発部に対して重力方向の上側に配置され、気相冷媒から熱を放出させることにより気相冷媒を凝縮させる凝縮部と、凝縮部から蒸発部へ液相冷媒を流通させる往路流通路を形成する往路部と、蒸発部から凝縮部へ気相冷媒を流通させる復路流通路を形成する復路部と、液相冷媒の沸騰に伴って蒸発部内の液相冷媒の内部から発生する気泡が液相冷媒を上昇させる際に、この上昇された液相冷媒を貯める貯液部と、貯液部内の液相冷媒を復路流通路、蒸発部、および往路流通路のうちのいずれかに流す液相戻し部と、を備える。
 第2の観点によれば、貯液部は、液相冷媒の沸騰に伴って蒸発部内の液相冷媒の内部から発生する気泡が復路流通路における液相冷媒を上昇させる際に、復路部から流入した液相冷媒を貯める。
 第3の観点によれば、液相戻し部は、貯液部に対して重力方向の下側に配置されている。 これにより、貯液部内の液相冷媒を復路流通路、蒸発部、および往路流通路のうちいずれかに容易に流すことができる。
 第4の観点によれば、被冷却対象から冷媒への熱の移動が停止した場合における液相冷媒の液面を停止時液面としたとき、復路部のうち停止時液面に対して重力方向の上側には、復路流通路に連通する液相入口が形成されており、貯液部は、蒸発部内の液相冷媒の内部から発生する気泡が復路流通路における液相冷媒を上昇させる際に、復路部の液相入口から流入した液相冷媒を貯める。これにより、復路流通路から液相冷媒を貯液部に容易に流すことができる。
 第5の観点によれば、復路流通路のうち液相入口に対して気相冷媒の流れ方向下流側は、貯液部に対して独立して設けられて、蒸発部から流れる気相冷媒を凝縮部へ流通させるように復路部が構成されている。
 第6の観点によれば、貯液部には、復路流通路の液相入口から流入する液相冷媒が入る入口開口部が形成されており、入口開口部は、貯液部のうち重力方向上側に向けて配置される部位に設けられている。
 したがって、復路流通路から貯液部に液相冷媒を容易に流すことができる。
 第7の観点によれば、復路部は、復路流通路が気相冷媒の流れ方向下流側に進むほど重力方向の上側に向かうように垂直方向に対して傾斜している傾斜部分を備え、液相入口は、当該傾斜部分のうち重力方向下側に向けて配置される部位に設けられている。
 これにより、復路流通路から貯液部に液相冷媒を容易に流すことができる。
 第8の観点によれば、復路部、蒸発部、および往路部のうちのいずれか1つの部材に形成されている冷媒戻り口に液相戻し部の液相冷媒出口が接続されて、かつ貯液部の液相冷媒出口に液相戻し部の液相冷媒入口が接続されて、貯液部内の液相冷媒が液相戻し部を通して1つの部材に流れる。
 第9の観点によれば、冷媒戻り口は、貯液部に対して重力方向下側に配置されている。これにより、貯液部の液相冷媒を復路部、蒸発部、および往路部のうちのいずれか1つの部材に容易に流すことができる。
 第10の観点によれば、冷媒戻り口の冷媒の通路断面積は、液相入口の冷媒の通路断面積よりも小さい。
 これにより、液相冷媒が冷媒戻り口を通過する際の圧力損失は、液相冷媒が液相入口を通過する際の圧力損失よりも大きくなる。このため、復路流通路から液相入口を通して液相冷媒が貯液部に入り易く、貯液部から液相冷媒が冷媒戻り口を通して復路部、蒸発部、および往路部のうちのいずれか1つの部材に流れ難くなる。したがって、液相冷媒の沸騰時に貯液部に液相冷媒を容易に貯めることができる。
 第11の観点によれば、冷媒戻り口の冷媒の通路断面積は、復路流通路の冷媒の通路断面積よりも小さい。
 これにより、蒸発部内で液相冷媒が沸騰しているときに、蒸発部から流れる液相冷媒が復路流通路から冷媒戻り口を通して貯液部に流れることを抑制することができる。このため、貯液部内の液相冷媒が気相冷媒を含んだ液相冷媒で無駄に増加することを未然に防ぐことができる。
 第12の観点によれば、貯液部には、復路流通路から流入する冷媒が入る入口開口部と、貯液部内部から気相の冷媒が出る出口開口部とが形成されており、復路部は、蒸発部から貯液部へ気相冷媒を流通させる上流側復路流通路を形成する上流側復路部と、貯液部から凝縮部へ気相冷媒を流通させる下流側復路流通路を形成する下流側復路部と、を備え、貯液部は、蒸発部内の液相冷媒の内部から発生する気泡によって上流側復路流通路から流入した液相冷媒を貯める。
 これにより、貯液部は、上流側復路流通路から流入した液相冷媒を貯めることができる。
 第13の観点によれば、貯液部は、液相冷媒の沸騰に伴って蒸発部内の液相冷媒の内部から発生する気泡が蒸発部内における液相冷媒を上昇させる際に、蒸発部から流入した液相冷媒を貯める。
 第14の観点によれば、蒸発部に対して被冷却対象の反対側に配置されて、液相冷媒の沸騰に伴って蒸発部から流入した気泡および液相冷媒を気相冷媒と液相冷媒とに分離してこの分離した気相冷媒を復路流通路に排出する気相冷媒流路と、分離した液相冷媒を貯める貯液部とを構成する少なくとも1つの気液分離部を備える。
 これにより、蒸発部に対して重力方向上側に貯液部を配置した場合に比べて、冷却装置の重力方向の大きさを小さくすることができる。
 これに加えて、蒸発部から貯液部までの蒸発部から気液分離部までの距離が短く、冷媒の流れに生じる圧力損失が小さくなる。このため、冷媒の循環を良好することができる。よって、液相冷媒の上昇に伴う異音の発生を抑制することができるとともに、冷却性能も大きくすることができる。
 第15の観点によれば、少なくとも1つの気液分離部が複数並べられており、複数の気液分離部のうち隣り合う2つの気液分離部のそれぞれの貯液部の間には、仕切り壁が設けられている。
 ここで、冷却装置に横揺れ等が生じたときに複数の気液分離部のそれぞれの貯液部の間で液相冷媒が流れることにより異音が発生する。
 これに対して、複数の気液分離部のそれぞれの貯液部の間で液相冷媒が流れることを仕切り壁が抑制することにより、異音の発生を未然に抑えることができる。
 第16の観点によれば、仕切り壁には、隣り合う2つの気液分離部のそれぞれの貯液部の間を連通する連通部が設けられている。
 これにより、複数の貯液部に連通部を通して液相冷媒が分配される。したがって、複数の貯液部のうちいずれかの貯液部において、液相冷媒の過不足が生じることを未然に防ぐことができる。
 第17の観点によれば、蒸発部と気液分離部とに対して重力方向上側に配置されて、蒸発部から流入した気泡および液相冷媒を気液分離部に導く導入部を備える。
 第18の観点によれば、気液分離部に対して重力方向下側に配置されて、往路流通路から流れる液相冷媒を蒸発部に供給する液冷媒供給部と、気液分離部および液冷媒供給部の間に配置されている分離壁と、を備え、液相戻し部は、分離壁に設けられて、貯液部内の液相冷媒を液冷媒供給部を通して蒸発部に流す。
 第19の観点によれば、貯液部および蒸発部を備える貯液・蒸発器を備える。
 第20の観点によれば、貯液・蒸発器は、2つの被冷却対象の間に配置されており、
 さらに貯液・蒸発器は、2つの被冷却対象のうち一方の被冷却対象から移動される熱により液相冷媒を沸騰させる蒸発部としての第1の蒸発部と、
 2つの被冷却対象のうち一方の被冷却対象以外の他方の被冷却対象から移動される熱により液相冷媒を沸騰させる第2の蒸発部と、を備え
 少なくとも1つの気液分離部は、第1の蒸発部と第2の蒸発部とから流入した気泡および液相冷媒を気相冷媒と液相冷媒とに分離してこの分離した気相冷媒を復路流通路に排出する気相冷媒流路と、分離した液相冷媒を貯める貯液部とを構成する。
 第21の観点によれば、冷媒が循環し、冷媒の液相と気相との相変化によって被冷却対象を冷却する冷却装置であって、被冷却対象から液相冷媒へ熱を移動させることにより液相冷媒を沸騰させる蒸発部と、蒸発部に対して重力方向の上側に配置され、気相冷媒から熱を放出させることにより気相冷媒を凝縮させる凝縮部と、凝縮部および蒸発部の間に往復流通路を形成する内面を有し、往復流通路のうち内面に沿って凝縮部からの液相の冷媒を蒸発部側に流通させ、また往復流通路のうち液相冷媒に対して内側に蒸発部からの気相冷媒を凝縮部に流通させる往復路部と、液相冷媒の沸騰に伴って液相冷媒の内部から発生する気泡が往復流通路における液相冷媒を上昇させる際に、往復路部から流入した液相冷媒を貯める貯液部と、貯液部内の液相冷媒を往復流通路、或いは蒸発部に流す液相戻し部とを備える。
 第22の観点によれば、液相戻し部は、貯液部に対して重力方向の下側に配置されている。
 これにより、貯液部内の液相冷媒を往復流通路、或いは蒸発部に容易に流すことができる。
 第23の観点によれば、被冷却対象から冷媒への熱の移動が停止した場合における液相冷媒の液面を停止時液面としたとき、往復路部のうち停止時液面に対して重力方向の上側には、往復流通路に連通する液相入口が形成されており、貯液部は、液相冷媒から発生する気泡が往復流通路における液相冷媒を上昇させる際に、往復路部の液相入口から流入した液相冷媒を貯める。
 これにより、往復流通路から液相冷媒を貯液部に容易に流すことができる。
 第24の観点によれば、往復流通路のうち液相入口に対して気相冷媒の流れ方向下流側は、貯液部に対して独立して設けられて、かつ内面に沿って凝縮部からの液相冷媒を貯液部に流通させ、また往復流通路のうち液相冷媒に対して内側に蒸発部からの気相冷媒を凝縮部に流通させるように往復路部が構成されている。
 第25の観点によれば、貯液部には、往復路部の液相入口から流入する液相冷媒が入る入口開口部が形成されており、入口開口部は、貯液部のうち重力方向上側に向けて配置される部位に設けられている。
 これにより、往復路部からの液相冷媒を貯液部に容易に流すことができる。
 第26の観点によれば、往復路部は、往復流通路が気相冷媒の流れ方向下流側に進むほど重力方向の上側に向かうように垂直方向に対して傾斜する傾斜部分を備え、液相入口は、当該傾斜部分のうち重力方向下側に向けて配置される部位に設けられている。
 これにより、往復流通路から貯液部に液相冷媒を容易に流すことができる。
 第27の観点によれば、往復路部、および蒸発部のうちのいずれか1つの部材に形成されている冷媒戻り口に液相戻し部の液相冷媒出口が接続されて、かつ貯液部の液相冷媒出口に液相戻し部の液相冷媒入口が接続されて、貯液部内の液相冷媒が液相戻し部を通して1つの部材に流れる。
 第28の観点によれば、冷媒戻り口は、貯液部に対して重力方向下側に配置されている。これにより、貯液部の液相冷媒を往復路部、或いは蒸発部に容易に流すことができる。
 第29の観点によれば、冷媒戻り口の冷媒の通路断面積は、液相入口の冷媒の通路断面積よりも小さい。
 これにより、液相冷媒が冷媒戻り口を通過する際の圧力損失は、液相冷媒が液相入口を通過する際の圧力損失よりも大きくなる。このため、往復流通路から液相入口を通して液相冷媒が貯液部に入り易く、貯液部から液相冷媒が冷媒戻り口を通して往復路部、或いは蒸発部に流れ難くなる。したがって、液相冷媒の沸騰時に貯液部に液相冷媒を容易に貯めることができる。
 第30の観点によれば、冷媒戻り口の冷媒の通路断面積は、往復流通路の冷媒の通路断面積よりも小さい。
 これにより、蒸発部内で液相冷媒が沸騰しているときに、蒸発部から流れる液相冷媒が往復流通路から冷媒戻り口を通して貯液部に流れることを抑制することができる。このため、貯液部内の液相冷媒が気相冷媒を含んだ液相冷媒で無駄に増加することを未然に防ぐことができる。
 第31の観点によれば、貯液部には、往復流通路から流入する冷媒が入る入口開口部と、貯液部内部から気相の冷媒が出る出口開口部とが形成されており、往復路部は、蒸発部から貯液部へ気相冷媒を流通させる上流側往復流通路を形成する上流側往復路部と、貯液部から凝縮部へ気相冷媒を流通させる下流側往復流通路を形成する下流側往復路部と、を備え、貯液部は、蒸発部内の液相冷媒の内部から発生する気泡によって上流側往復流通路から流入した液相冷媒を貯める。
 これにより、貯液部は、上流側往復流通路から流入した液相冷媒を貯めることができる。 
 第32の観点によれば、貯液部と被冷却対象との間には、貯液部および被冷却対象の間で熱の伝達を抑制する断熱部が配置されている。
 したがって、被冷却対象から貯液部内の液相冷媒に熱を伝達することを未然に防ぐことができる。
 第33の観点によれば、貯液部において冷媒を貯めることが可能である最大容積を最大貯液容積とし、被冷却対象から冷媒への熱の移動が停止したときに、貯液部内に冷媒の液面が位置する場合において、被冷却対象から冷媒への熱の移動が停止したときに貯液部の内部のうち冷媒の液面よりも重力方向上側に最大貯液容積の半分以上の容積を有するように貯液部が構成されている。したがって、液相冷媒の沸騰時に、貯液部に大量の液相冷媒を貯めることができる。

Claims (33)

  1.  冷媒が循環し、前記冷媒の液相と気相との相変化によって被冷却対象(12)を冷却する冷却装置であって、
     前記被冷却対象から液相冷媒へ熱を移動させることにより前記液相冷媒を沸騰させる蒸発部(14)と、
     前記蒸発部に対して重力方向の上側に配置され、気相冷媒から熱を放出させることにより前記気相冷媒を凝縮させる凝縮部(16)と、
     前記凝縮部から前記蒸発部へ前記液相冷媒を流通させる往路流通路(18a)を形成する往路部(18)と、
     前記蒸発部から前記凝縮部へ前記気相冷媒を流通させる復路流通路(20a)を形成する復路部(20)と、
     前記液相冷媒の沸騰に伴って前記蒸発部内の前記液相冷媒の内部から発生する気泡が前記液相冷媒を上昇させる際に、この上昇された前記液相冷媒を貯める貯液部(22、201b)と、
     前記貯液部内の前記液相冷媒を前記復路流通路、前記蒸発部、および前記往路流通路のうちのいずれかに流す液相戻し部(31、191a)と、
     を備える冷却装置。
  2.  前記貯液部は、前記液相冷媒の沸騰に伴って前記蒸発部内の前記液相冷媒の内部から発生する気泡が前記復路流通路における前記液相冷媒を上昇させる際に、前記復路部から流入した前記液相冷媒を貯める請求項1に記載の冷却装置。
  3.  前記液相戻し部は、前記貯液部に対して重力方向の下側に配置されている請求項1または2に記載の冷却装置。
  4.  前記被冷却対象から前記冷媒への熱の移動が停止した場合における前記液相冷媒の液面を停止時液面としたとき、前記復路部のうち前記停止時液面に対して重力方向の上側には、前記復路流通路に連通する液相入口(24)が形成されており、
     前記貯液部は、前記蒸発部内の前記液相冷媒の内部から発生する気泡が前記復路流通路における前記液相冷媒を上昇させる際に、前記復路部の前記液相入口から流入した前記液相冷媒を貯める請求項1ないし3のいずれか1つに記載の冷却装置。
  5.  前記復路流通路のうち前記液相入口に対して前記気相冷媒の流れ方向下流側は、前記貯液部に対して独立して設けられて、前記蒸発部から流れる前記気相冷媒を前記凝縮部へ流通させるように前記復路部が構成されている請求項4に記載の冷却装置。
  6.  前記貯液部には、前記復路流通路の前記液相入口から流入する前記液相冷媒が入る入口開口部(22a)が形成されており、
     前記入口開口部は、前記貯液部のうち重力方向上側に向けて配置される部位に設けられている請求項4または5に記載の冷却装置。
  7.  前記復路部は、前記復路流通路が前記気相冷媒の流れ方向下流側に進むほど重力方向上側に向かうように垂直方向に対して傾斜している傾斜部分を備え、
     前記液相入口は、当該傾斜部分のうち重力方向下側に向けて配置される部位に設けられている請求項4に記載の冷却装置。
  8.  前記復路部、前記蒸発部、および前記往路部のうちのいずれか1つの部材に形成されている冷媒戻り口(27、14c)に前記液相戻し部の液相冷媒出口が接続されて、かつ前記貯液部の液相冷媒出口(22b)に前記液相戻し部の液相冷媒入口が接続されて、前記貯液部内の前記液相冷媒が前記液相戻し部を通して前記1つの部材に流れる請求項1ないし7のいずれか1つに記載の冷却装置。
  9.  前記冷媒戻り口は、前記貯液部に対して重力方向下側に配置されている請求項8に記載の冷却装置。
  10.  前記冷媒戻り口の前記冷媒の通路断面積は、前記液相入口の前記冷媒の通路断面積よりも小さい請求項8または9に記載の冷却装置。
  11.  前記冷媒戻り口の前記冷媒の通路断面積は、前記復路流通路の前記冷媒の通路断面積よりも小さい請求項8ないし10のいずれか1つに記載の冷却装置。
  12.  前記貯液部には、前記復路流通路から流入する前記冷媒が入る入口開口部(22a)と、前記貯液部内部から気相の前記冷媒が出る出口開口部(22c)とが形成されており、
     前記復路部は、
     前記蒸発部から前記貯液部へ前記気相冷媒を流通させる上流側復路流通路を形成する上流側復路部(120)と、
     前記貯液部から前記凝縮部へ前記気相冷媒を流通させる下流側復路流通路を形成する下流側復路部(122)と、を備え、
     前記貯液部は、前記蒸発部内の前記液相冷媒の内部から発生する気泡によって前記上流側復路流通路から流入した前記液相冷媒を貯める請求項1または2に記載の冷却装置。
  13.  前記貯液部は、前記液相冷媒の沸騰に伴って前記蒸発部内の前記液相冷媒の内部から発生する気泡が前記蒸発部内における前記液相冷媒を上昇させる際に、前記蒸発部から流入した前記液相冷媒を貯める請求項1ないし3のいずれか1つに記載の冷却装置。
  14.  前記蒸発部に対して前記被冷却対象の反対側に配置されて、前記液相冷媒の沸騰に伴って前記蒸発部から流入した前記気泡および前記液相冷媒を気相冷媒と液相冷媒とに分離してこの分離した気相冷媒を前記復路流通路に排出する気相冷媒流路(201a)と、前記分離した液相冷媒を貯める前記貯液部とを構成する少なくとも1つの気液分離部(201)を備える請求項1ないし3、13のいずれか1つに記載の冷却装置。
  15.  前記少なくとも1つの気液分離部が複数並べられており、
     前記複数の気液分離部のうち隣り合う2つの気液分離部のそれぞれの前記貯液部の間には、仕切り壁(206a)が設けられている請求項14に記載の冷却装置。
  16.  前記仕切り壁には、前記隣り合う2つの気液分離部のそれぞれの前記貯液部の間を連通する連通部(206)が設けられている請求項15に記載の冷却装置。
  17.  前記蒸発部と前記気液分離部とに対して重力方向上側に配置されて、前記蒸発部から流入した前記気泡および前記液相冷媒を前記気液分離部に導く導入部(205a、205b)を備える請求項15または16に記載の冷却装置。
  18.  前記気液分離部に対して重力方向下側に配置されて、前記往路流通路から流れる前記液相冷媒を前記蒸発部に供給する液冷媒供給部(203)と、
     前記気液分離部および前記液冷媒供給部の間に配置されている分離壁(190c)と、を備え、
     前記液相戻し部(191a)は、前記分離壁に設けられて、前記貯液部内の前記液相冷媒を前記液冷媒供給部を通して前記蒸発部に流す請求項13ないし17のいずれか1つに記載の冷却装置。
  19.  前記貯液部および前記蒸発部を備える貯液・蒸発器を備える請求項13ないし18のいずれか1つに記載の冷却装置。
  20.  前記貯液・蒸発器は、2つの前記被冷却対象の間に配置されており、
     さらに前記貯液・蒸発器は、前記2つの被冷却対象のうち一方の前記被冷却対象から移動される熱により前記液相冷媒を沸騰させる前記蒸発部としての第1の蒸発部(200a)と、
     前記2つの被冷却対象のうち前記一方の被冷却対象以外の他方の被冷却対象から移動される熱により前記液相冷媒を沸騰させる第2の前記蒸発部(200b)と、を備え
     前記少なくとも1つの前記気液分離部は、前記第1の蒸発部と前記第2の蒸発部とから流入した前記気泡および前記液相冷媒を気相冷媒と液相冷媒とに分離してこの分離した気相冷媒を前記復路流通路に排出する前記気相冷媒流路と、前記分離した液相冷媒を貯める前記貯液部とを構成する請求項19に記載の冷却装置。
  21.  冷媒が循環し、前記冷媒の液相と気相との相変化によって被冷却対象(12)を冷却する冷却装置であって、
     前記被冷却対象から液相冷媒へ熱を移動させることにより前記液相冷媒を沸騰させる蒸発部(14)と、
     前記蒸発部に対して重力方向上側に配置され、気相冷媒から熱を放出させることにより前記気相冷媒を凝縮させる凝縮部(16)と、
     前記凝縮部および前記蒸発部の間に往復流通路(19a)を形成する内面(19e)を有し、前記往復流通路のうち前記内面に沿って前記凝縮部からの前記液相冷媒を前記蒸発部側に流通させ、また前記往復流通路のうち前記液相冷媒に対して内側に前記蒸発部からの前記気相冷媒を前記凝縮部に流通させる往復路部(19)と、
     前記液相冷媒の沸騰に伴って前記液相冷媒の内部から発生する気泡が前記往復流通路における前記液相冷媒を上昇させる際に、前記往復路部から流入した前記液相冷媒を貯める貯液部(22)と、
     前記貯液部内の前記液相冷媒を前記往復流通路、或いは前記蒸発部に流す液相戻し部(31)と、
     を備える冷却装置。
  22.  前記液相戻し部は、前記貯液部に対して重力方向の下側に配置されている請求項21に記載の冷却装置。
  23.  前記被冷却対象から前記冷媒への熱の移動が停止した場合における前記液相冷媒の液面を停止時液面としたとき、前記往復路部のうち前記停止時液面に対して重力方向の上側には、前記往復流通路に連通する液相入口(24)が形成されており、
     前記貯液部は、前記液相冷媒から発生する気泡が前記往復流通路における前記液相冷媒を上昇させる際に、前記往復路部の前記液相入口から流入した前記液相冷媒を貯める請求項21または22に記載の冷却装置。
  24.  前記往復流通路のうち前記液相入口に対して前記気相冷媒の流れ方向下流側は、前記貯液部に対して独立して設けられて、かつ前記内面に沿って前記凝縮部からの前記液相冷媒を前記貯液部に流通させ、また前記往復流通路のうち前記液相冷媒に対して内側に前記蒸発部からの前記気相冷媒を前記凝縮部に流通させるように前記往復路部が構成されている請求項21ないし23のいずれか1つに記載の冷却装置。
  25.  前記貯液部には、前記往復路部の前記液相入口から流入する前記液相冷媒が入る入口開口部(22a)が形成されており、
     前記入口開口部は、前記貯液部のうち重力方向上側に向けて配置される部位に設けられている請求項23または24に記載の冷却装置。
  26.  前記往復路部は、前記往復流通路が前記気相冷媒の流れ方向下流側に進むほど重力方向の上側に向かうように垂直方向に対して傾斜する傾斜部分を備え、
     前記液相入口は、当該傾斜部分のうち重力方向下側に向けて配置される部位に設けられている請求項23に記載の冷却装置。
  27.  前記往復路部、および前記蒸発部のうちのいずれか1つの部材に形成されている冷媒戻り口(27、14c)に前記液相戻し部の液相冷媒出口が接続されて、かつ前記貯液部の液相冷媒出口(22b)に前記液相戻し部の液相冷媒入口が接続されて、前記貯液部内の前記液相冷媒が前記液相戻し部を通して前記1つの部材に流れる請求項21ないし26のいずれか1つに記載の冷却装置。
  28.  前記冷媒戻り口は、前記貯液部に対して重力方向下側に配置されている請求項27に記載の冷却装置。
  29.  前記冷媒戻り口の前記冷媒の通路断面積は、前記液相入口の前記冷媒の通路断面積よりも小さい請求項27または28に記載の冷却装置。
  30.  前記冷媒戻り口の前記冷媒の通路断面積は、前記往復流通路の前記冷媒の通路断面積よりも小さい請求項27ないし29のいずれか1つに記載の冷却装置。
  31.  前記貯液部には、前記往復流通路から流入する前記冷媒が入る入口開口部(22a)と、前記貯液部内部から気相の前記冷媒が出る出口開口部(22c)とが形成されており、
     前記往復路部は、
     前記蒸発部から前記貯液部へ前記気相冷媒を流通させる上流側往復流通路を形成する上流側往復路部(190)と、
     前記貯液部から前記凝縮部へ前記気相冷媒を流通させる下流側往復流通路を形成する下流側往復路部(191)と、を備え、
     前記貯液部は、前記蒸発部内の前記液相冷媒の内部から発生する気泡によって前記上流側往復流通路から流入した前記液相冷媒を貯める請求項21または22に記載の冷却装置。
  32.  前記貯液部と前記被冷却対象との間には、前記貯液部および前記被冷却対象の間で熱の伝達を抑制する断熱部(157、170a、170b)が配置されている請求項1ないし31のいずれか1つに記載の冷却装置。
  33.  前記貯液部において前記冷媒を貯めることが可能である最大容積を最大貯液容積とし、
     前記被冷却対象から前記冷媒への熱の移動が停止したときに、前記貯液部内に前記冷媒の液面が位置する場合において、前記被冷却対象から前記冷媒への熱の移動が停止したときに前記貯液部の内部のうち前記冷媒の液面よりも重力方向上側に前記最大貯液容積の半分以上の容積を有するように前記貯液部が構成されている請求項1ないし32のいずれか1つに記載の冷却装置。
PCT/JP2017/030423 2016-10-12 2017-08-24 冷却装置 WO2018070116A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018544694A JP6662465B2 (ja) 2016-10-12 2017-08-24 冷却装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016201131 2016-10-12
JP2016-201131 2016-10-12
JP2017-082918 2017-04-19
JP2017082918 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018070116A1 true WO2018070116A1 (ja) 2018-04-19

Family

ID=61906180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030423 WO2018070116A1 (ja) 2016-10-12 2017-08-24 冷却装置

Country Status (2)

Country Link
JP (1) JP6662465B2 (ja)
WO (1) WO2018070116A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230349A1 (ja) * 2017-06-16 2018-12-20 株式会社デンソー 冷却器、およびサーモサイフォン
CN109411847A (zh) * 2018-10-31 2019-03-01 西安科技大学 一种电池包热管理装置及其散热和加热方法
WO2019208726A1 (ja) * 2018-04-27 2019-10-31 株式会社デンソー 冷却装置
JP2019199992A (ja) * 2018-05-16 2019-11-21 株式会社デンソー 機器温調装置
CN112584676A (zh) * 2020-12-01 2021-03-30 敖立鸿 一种半浸没式溶液蒸发散热器
US10996002B2 (en) 2016-10-12 2021-05-04 Denso Corporation Evaporator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864490A (zh) * 2021-01-14 2021-05-28 哈尔滨工程大学 一种基于冷媒气液两相换热的鼓泡式动力电池热管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314601A (en) * 1978-10-04 1982-02-09 Giuffre Anthony A Heat exchange system for recycling waste heat
JPH0323604U (ja) * 1989-07-17 1991-03-12
JPH0552562U (ja) * 1991-12-18 1993-07-13 株式会社長府製作所 熱伝達装置
JPH0765780B2 (ja) * 1986-11-04 1995-07-19 ダイキン工業株式会社 循環式熱移動装置
JPH11325766A (ja) * 1998-05-20 1999-11-26 Denso Corp 沸騰冷却装置
JP2016065681A (ja) * 2014-09-25 2016-04-28 日本電気株式会社 冷却装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942943B2 (ja) * 2013-08-20 2016-06-29 トヨタ自動車株式会社 電池温度調節装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314601A (en) * 1978-10-04 1982-02-09 Giuffre Anthony A Heat exchange system for recycling waste heat
JPH0765780B2 (ja) * 1986-11-04 1995-07-19 ダイキン工業株式会社 循環式熱移動装置
JPH0323604U (ja) * 1989-07-17 1991-03-12
JPH0552562U (ja) * 1991-12-18 1993-07-13 株式会社長府製作所 熱伝達装置
JPH11325766A (ja) * 1998-05-20 1999-11-26 Denso Corp 沸騰冷却装置
JP2016065681A (ja) * 2014-09-25 2016-04-28 日本電気株式会社 冷却装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996002B2 (en) 2016-10-12 2021-05-04 Denso Corporation Evaporator
WO2018230349A1 (ja) * 2017-06-16 2018-12-20 株式会社デンソー 冷却器、およびサーモサイフォン
WO2019208726A1 (ja) * 2018-04-27 2019-10-31 株式会社デンソー 冷却装置
JP2019190798A (ja) * 2018-04-27 2019-10-31 株式会社デンソー 冷却装置
JP7035774B2 (ja) 2018-04-27 2022-03-15 株式会社デンソー 冷却装置
JP2019199992A (ja) * 2018-05-16 2019-11-21 株式会社デンソー 機器温調装置
WO2019221237A1 (ja) * 2018-05-16 2019-11-21 株式会社デンソー 機器温調装置
JP7077763B2 (ja) 2018-05-16 2022-05-31 株式会社デンソー 機器温調装置
CN109411847A (zh) * 2018-10-31 2019-03-01 西安科技大学 一种电池包热管理装置及其散热和加热方法
CN109411847B (zh) * 2018-10-31 2021-02-05 西安科技大学 一种电池包热管理装置及其散热和加热方法
CN112584676A (zh) * 2020-12-01 2021-03-30 敖立鸿 一种半浸没式溶液蒸发散热器
CN112584676B (zh) * 2020-12-01 2022-04-15 敖立鸿 一种半浸没式溶液蒸发散热器

Also Published As

Publication number Publication date
JP6662465B2 (ja) 2020-03-11
JPWO2018070116A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2018070116A1 (ja) 冷却装置
US10996002B2 (en) Evaporator
WO2018230349A1 (ja) 冷却器、およびサーモサイフォン
KR101233577B1 (ko) 배터리 팩
US10948239B2 (en) Intermittent thermosyphon
US20110073284A1 (en) Evaporator for loop heat pipe system
EP2667408B1 (en) Natural circulation type cooling apparatus
WO2018047534A1 (ja) 機器温調装置
JP6593544B2 (ja) 機器温調装置
JP6575690B2 (ja) 機器温調装置
JP6662462B2 (ja) 機器温調装置
WO2018047538A1 (ja) 機器温調システム
EP2833084A1 (en) Refrigeration apparatus and method
WO2019093230A1 (ja) 機器温調装置
JP2014154683A (ja) 冷却装置
WO2020255883A1 (ja) 冷却装置
WO2018061551A1 (ja) 機器温調装置
JP2021027245A (ja) 冷却装置
JP2005147625A (ja) ループ型ヒートパイプ
KR20180109668A (ko) 전기소자 냉각용 열교환기
JP2019086275A (ja) 機器温調装置
JP2020008270A (ja) 機器温調装置
JP2022052208A (ja) 沸騰冷却装置
JP2021028545A (ja) サーモサイフォン式冷却装置
JP2021028546A (ja) サーモサイフォン式冷却装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544694

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860587

Country of ref document: EP

Kind code of ref document: A1