JPWO2017150445A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JPWO2017150445A1
JPWO2017150445A1 JP2018503291A JP2018503291A JPWO2017150445A1 JP WO2017150445 A1 JPWO2017150445 A1 JP WO2017150445A1 JP 2018503291 A JP2018503291 A JP 2018503291A JP 2018503291 A JP2018503291 A JP 2018503291A JP WO2017150445 A1 JPWO2017150445 A1 JP WO2017150445A1
Authority
JP
Japan
Prior art keywords
unit
output
steering
motor
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018503291A
Other languages
English (en)
Other versions
JP6354925B2 (ja
Inventor
貴弘 椿
貴弘 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Application granted granted Critical
Publication of JP6354925B2 publication Critical patent/JP6354925B2/ja
Publication of JPWO2017150445A1 publication Critical patent/JPWO2017150445A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/007Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits adjustable by the driver, e.g. sport mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

【課題】
I−P制御を用いていることによって、応答特性起因の振動を除去すると共に、ハンドル振動除去部を用いていることにより、自動モード中にトーションバーのバネ性とハンドルの慣性モーメントによる振動を除去することが可能な電動パワーステアリング装置を提供する。
【解決手段】
アシストモードに切り換えられた場合に第1のモータ電流指令値を出力し、自動モードに切り換えられた場合に第2のモータ電流指令値を出力し、目標操舵角について、所定中心周波数の近傍の周波数成分を遮断して出力するハンドル振動除去部と、実操舵角とハンドル振動除去部の出力値の差分を入力し、モータ角速度指令値を出力する位置制御部と、モータ角速度指令値とモータ角速度の偏差を演算して入力する積分部と、モータ角速度を入力する比例部と、積分部の出力から比例部の出力を減算して第2のモータ電流指令値を出力する速度制御部とを備える。
【選択図】図5

Description

本発明は、車両の操舵系を運転者が操舵するに際して、操舵系にアシスト力を付与するモータを制御するアシストモードと、車両が自律走行するに際して車両から随時与えられる目標操舵角に応じてモータを制御する自動モードとを有する電動パワーステアリング装置において、I−P制御(比例先行型PI制御)を用いることによって、応答特性起因の振動を除去すると共に、レートリミッタ及びフィルタ(ハンドル振動除去部)を用いることにより、自動モード中にトーションバーのバネ性とハンドル(ステアリングホイール)の慣性モーメントによる振動(バネ慣性系に起因する振動)を除去することができる電動パワーステアリング装置に関する。
従来技術として、電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクTrを検出するトルクセンサ10及び操舵角θhを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)100には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット100は、トルクセンサ10で検出された操舵トルクTrと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の操舵補助指令値の演算を行い、操舵補助指令値に補償等を施した電圧制御値Eによってモータ20に供給する電流を制御する。なお、舵角センサ14は必須のものではなく、配設されなくても良く、また、モータ20に連結されたレゾルバ等の回転位置センサから操舵角θを取得することも可能である。
コントロールユニット100には、車両の各種情報を授受するCAN(Controller Area Network)50が接続されており、車速VsはCAN50から受信することも可能である。また、コントロールユニット100には、CAN50以外の通信、アナログ/デジタル信号、電波等を授受する非CAN51も接続可能である。
また、コラム軸(ハンドル軸)2にトーションバーを具備する電動パワーステアリング装置では、例えば図2に示すような各種センサがトーションバー23を挟むコラム軸2に装着され、角度が検出される。即ち、ハンドル軸2のハンドル1側の入力シャフト2Aには、角度センサとしてのホールICセンサ21及びトルクセンサ入力側ロータの20°ロータセンサ22が装着されている。ホールICセンサ21は296°周期のAS_IS角度θnを出力する。トーションバー23よりもハンドル1側に装着された20°ロータセンサ22は、20°周期のコラム入力側角度信号θh1を出力し、コラム入力側角度信号θh1は舵角演算部50に入力される。又はンドル軸2の出力シャフト2Bには、トルクセンサ出力側ロータの40°ロータセンサ24が装着されており、40°ロータセンサ24からコラム出力側角度信号θc1が出力され、コラム出力側角度信号θc1は舵角演算部50に入力される。コラム入力側角度信号θh1及びコラム出力側角度信号θc1は共に舵角演算部50で絶対角度に演算され、舵角演算部50から絶対角度のハンドル角θh及びコラム角θcが出力される。なお、トーションバー捩れ角Δθ、ハンドル角θh、コラム角θcの関係を示す機構図は、図3に示すようになっている。
他の従来技術として、並列駐車、縦列駐車を容易とする駐車支援装置を備えたパワーステアリング装置において、目標舵角と舵角の偏差に対して、速度PI制御を行い操舵制御することが知られており、例えば、特開2003−341543号公報(特許文献1)に開示されている。
自動モード(駐車支援機能)とアシストモードを有する車両における電動パワーステアリング装置において、速度制御ループ系をマイナーループとする位置制御系を有する舵角制御部が、目標操舵角を円滑化するためのレートリミッタを備え、該レートリミッタを1次若しくは2次のローパスフィルタ(LPF)とすることが知られており、例えば、特開2013−252729号公報(特許文献2)、特開2014−054885号公報(特許文献3)に開示されている。
特開2003−341543号公報 特開2013−252729号公報 特開2014−054885号公報
特許文献1に記載された電動パワーステアリング装置では、速度PI制御を用いた舵角追従制御を行っていた車両において舵角制御を行う場合、走行車速、摩擦や路面反力の変化によって実舵角の応答が変わるため、目標舵角に対して追従性が不足し、また、ハンドルのバネ慣性系が考慮されていないために発生するハンドル振動が、運転者に違和感を与えるという問題が生じる。
特許文献2及び3に記載された電動パワーステアリング装置では、レートリミッタを備えているため、目標操舵角が急操舵であっても、円滑に操舵することができ、低車速においても良好な応答性を奏する。しかしながら、ハンドルのバネ慣性系の共振周波数に対する設計がされていないため、ハンドル振動を除去することは困難である。
本発明は上述のような事情に基づいてなされたものであり、本発明の目的は、I−P制御(比例先行型PI制御)を用いていることによって、応答特性起因の振動を除去すると共に、レートリミッタ及びフィルタ(ハンドル振動除去部)を用いることにより、自動モード中にトーションバーのバネ性とハンドルの慣性モーメントによる振動(バネ慣性系に起因する振動)を除去することができる電動パワーステアリング装置を提供することにある。
本発明は、車両の操舵系を操舵するに際して前記操舵系にアシスト力を付与するモータを制御するアシストモードと、前記車両が自律走行するに際して前記車両から随時与えられる目標操舵角に応じて前記モータを制御する自動モードとを有する電動パワーステアリング装置に関し、本発明の上記目的は、前記車両の車速と前記操舵系のステアリングシャフトに入力された操舵トルクとに基づいて第1のモータ電流指令値を算出するトルク制御部と、前記目標操舵角、実操舵角及び前記モータのモータ角速度に基づいて第2のモータ電流指令値を算出する舵角制御部とを備え、前記舵角制御部は、前記アシストモード時に前記第1のモータ電流指令値を出力し、前記自動モード時に前記第2のモータ電流指令値を出力する構成であり、所定周期における前記目標操舵角について階段状に出力値を変化させ、前記出力値を前記目標操舵角に一致させるようにするレートリミッタと、前記レートリミッタの出力を入力して所定中心周波数の近傍の周波数成分を遮断して出力するハンドル振動除去部と、前記実操舵角及び前記ハンドル振動除去部の出力値の差分を入力してモータ角速度指令値を出力する位置制御部と、前記モータ角速度指令値及び前記モータ角速度の偏差を演算し、前記偏差を入力する積分部と、前記モータ角速度を入力する比例部とを備え、前記積分部の出力から前記比例部の出力を減算して前記第2のモータ電流指令値を出力する速度制御部とで構成されていることにより、
或いは前記車両の車速と前記操舵系のステアリングシャフトに入力された操舵トルクとに基づいて第1のモータ電流指令値を算出するトルク制御部と、前記目標操舵角、実操舵角、前記モータのモータ角速度及びトーションバートルクに基づいて第2のモータ電流指令値を算出する舵角制御部とを備え、前記舵角制御部は、前記アシストモード時に前記第1のモータ電流指令値を出力し、前記自動モード時に前記第2のモータ電流指令値を出力する構成であり、所定周期における前記目標操舵角について階段状に出力値を変化させ、前記出力値を前記目標操舵角に一致させるようにするレートリミッタと、前記レートリミッタの出力を入力して所定中心周波数の近傍の周波数成分を遮断して出力するハンドル振動除去部と、前記実操舵角及び前記ハンドル振動除去部の出力値の差分を入力してモータ角速度指令値を出力する位置制御部と、前記モータ角速度指令値及び前記モータ角速度の偏差を演算し、前記偏差を入力する積分部と、前記モータ角速度を入力する比例部とを備え、前記積分部の出力から前記比例部の出力を減算して出力する速度制御部と、前記トーションバートルクの信号を入力し、所定の遮断周波数以上の前記信号を通過させるハンドル制振部とで構成され、前記舵角制御部は、前記速度制御部の出力と前記ハンドル制振部の出力とを加算して前記第2のモータ電流指令値として出力することにより達成される。
また、本発明は、車両の操舵系を操舵するに際して前記操舵系にアシスト力を付与するモータを制御するアシストモードと、前記車両が自律走行するに際して前記車両から随時与えられる目標操舵角に応じて前記モータを制御する自動モードとを有する電動パワーステアリング装置に関し、本発明の上記目的は、前記車両の車速と前記操舵系のステアリングシャフトに入力された操舵トルクとに基づいて第1のモータ電流指令値を算出するトルク制御部と、前記目標操舵角、実操舵角、及び前記モータのモータ角速度に基づいて第2のモータ電流指令値を算出する舵角制御部と、車両情報に基づいて前記目標操舵角を算出する車両運動制御部とを備え、前記車両運動制御部は、所定周期における横位置指令について階段状に出力値を変化させ、前記出力値を前記横位置指令に一致させるようにするレートリミッタと、前記レートリミッタの出力の振動周波数成分を除去する横位置指令振動除去部と、横位置に基づいて横速度を演算する横速度演算部と、前記横位置及び前記横位置指令振動除去部の出力値の差分を入力して横速度指令値を出力する横位置制御部と、前記横速度指令値及び前記横速度の偏差を演算し、前記偏差を入力する積分部と、前記横速度を入力する比例部とを備え、前記積分部の出力から前記比例部の出力を減算して出力する横速度制御部と、ヨーレート信号を入力し、所定の遮断周波数以上の前記ヨーレート信号を通過させる車両挙動安定化部とで構成され、前記車両運動制御部は、前記横速度制御部の出力と前記車両挙動安定化部の出力とを加算して前記目標操舵角とするすることにより達成される。
本発明の電動パワーステアリング装置によれば、I−P制御(比例先行型PI制御)を用いることによって応答特性起因の振動を除去すると共に、レートリミッタ及びフィルタ(ハンドル振動除去部)を用いることにより、自動モード中にトーションバーのバネ性とハンドルの慣性モーメントによる振動(バネ慣性系に起因する振動)を除去することが可能となる。
また、モータ速度指令FF(フィードフォワード)フィルタによって、目標舵角に対する実舵角の制御帯域を高周波側まで広げ、舵角制御の応答性を向上させることができる。また、横位置指令振動除去部を設けることによって、車両制御中に車両の持つ共振特性(ヨー共振など)に起因する振動現象が発生するような場合、レートリミット後の横位置指令yrefに含まれる振動周波数成分を低減することができる。また、車両のヨーレート信号γ[rad/s]に基づく車両挙動安定化手段により、車両の振動現象に対する制振効果を一層向上することができる。
電動パワーステアリング装置の概要を示す構成図である。 センサの装着例及びコラム角、ハンドル角の関係を示す図である。 トーションバーとハンドル角、コラム角の関係を示す機構図である。 本発明の第1実施形態における、電動パワーステアリング装置の制御系の構成例を示すブロック図である。 本発明の第1実施形態の構成例を示すブロック図である。 本発明で使用するレートリミッタの一例を示すブロック図である。 本発明の変化分設定部の構成例を示すブロック図である。 本発明のハンドル振動除去部のゲイン及び位相の周波数特性を示す特性図である。 本発明の第1実施形態(目標操舵角からハンドル舵角まで)の全体のブロック線図である。 ハンドル振動除去部の有無によるシミュレーション結果を示す特性図である。 ハンドル振動除去部の有無に対するトーションバートルクの時間応答を示すシミュレーション図である。 ハンドル舵角の時間応答を示すシミュレーション図である。 本発明の第2実施形態の構成例を示すブロック図である。 本発明の舵角制御部(第2実施形態)の構成例を示すブロック図である。 ハンドル制振部の周波数特性例を示す特性図である。 本発明の第2実施形態を示すブロック線図である。 本発明の第2実施形態(目標操舵角からハンドル舵角まで)を等価変換した全体のブロック線図である。 本発明の第2実施形態(目標操舵角からハンドル舵角まで)を等価変換した全体のブロック線図である。 ハンドル制振部及びハンドル振動除去部の有無に対するハンドル舵角の時間応答を示すシミュレーション結果である。 ハンドル制振部及びハンドル振動除去部の有無に対するハンドル舵角の時間応答を示すシミュレーション結果である。 本発明の第3実施形態を示すブロック図である。 本発明の第3実施形態の実操舵角の時間応答を示すシミュレーション結果である。 本発明の第4実施形態における目標操舵角生成部を示すブロック図である。 本発明の第4実施形態における車両運動制御部の構成例を示すブロック図である。 本発明の第4実施形態の車両横位置の時間応答を示すシミュレーション結果である。 図25におけるヨーレートの応答時間のシミュレーション結果である。
本発明は、車両の操舵系を運転者が操舵するに際して、操舵系にアシスト力を付与するモータを制御するアシストモードと、車両が自律走行するに際して車両から随時与えられる目標操舵角に応じてモータを制御する自動モードとを有する電動パワーステアリング装置において、I−P制御(比例先行型PI制御)を用いることによって、応答特性起因の振動を除去すると共に、レートリミッタ及びフィルタを用いていることにより、自動モード中にトーションバーのバネ性とハンドルの慣性モーメントによる振動(バネ慣性系に起因する振動)を除去する。
以下に、本発明の実施形態を図面を参照して詳細に説明する。
先ず、本発明のパワーステアリング装置では、2つの動作モード(アシストモード及び自動モード)を具備している。即ち、車両の操舵系を運転者が操舵するに際して、操舵系にアシスト力を付与するモータを制御するアシストモードと、車両が自律走行するに際して車両から随時与えられる目標操舵角に応じて、モータを制御する自動モードである。そして、自動モードとアシストモードを備える電動パワーステアリング装置を有する車両にあっては、ハンドルのバネ慣性系が考慮されなければ、ハンドルの振動を抑えることは困難である。
図4は、本発明の第1実施形態の構成例を示しており、モータ150にはモータ回転角θsを検出するためのレゾルバ等の回転センサ151が接続されており、モータ150は車両側のECU130及びEPS(電動パワーステアリング装置)側のECU140を介して駆動制御される。
車両側のECU130は、運転者の意思を示すボタン、スイッチ等に基づいて、自動モード又はアシストモードの切換指令SWを出力する切換指令部131と、カメラ(画像)や距離センサなどの信号に基づいて目標操舵角θrefを生成する目標操舵角生成部132とを具備している。また、コラム軸に設けられた舵角センサ152で検出された実操舵角θhは、車両側のECU130を経てEPS側のECU140内の舵角制御部200に入力される。
切換指令部131は、自動モードに入ることを識別する信号、例えば運転者の意思をダッシュボードやハンドル周辺に設けたボタンやスイッチ、或いはシフトに設けた駐車モードなどによる車両状態の信号を基に切換指令SWを出力し、切換指令SWをEPS側のECU140内の切換部142に入力する。また、目標操舵角生成部132は、カメラ(画像)、距離センサなどのデータを基に公知の手法で目標操舵角θrefを生成し、生成された目標操舵角θrefをEPS側のECU140内の舵角制御部200に入力する。
EPS側のECU140は、操舵トルクTh及びモータ角速度ωcに基づいて、演算されたモータ電流指令値Itrefを出力するトルク制御部141と、目標操舵角θref、実操舵角θh、モータ角速度ωcに基づいて舵角自動制御のためのモータ電流指令値Imrefを演算して出力する舵角制御部200と、切換指令SWによってモータ電流指令値Itref及びImrefを切り換える切換部142と、切換部142からのモータ電流指令値(Itref又はImref)に基づいてモータ150を駆動制御するモータ駆動部143と、回転センサ151からのモータ回転角θsに基づいてモータ角速度ωcを演算するモータ角速度演算部144とを具備している。切換部142は、ECU130の切換指令部131からの切換指令SWに基づいて、トルク制御部141によるアシストモードと、舵角制御部200による自動モードとを切り換え、アシストモードではモータ電流指令値Itrefを出力し、自動モードではモータ電流指令値Imrefを出力する。また、モータ駆動部143は、PI電流制御部、PWM制御部、インバータ等(いずれも図示せず)で構成されている。
舵角制御部200は図5に示すような構成となっており、速度制御ループ系をマイナーループとする位置制御系となっている。目標操舵角θrefが急激に変化した場合の平滑化、つまり所定時間変化率の範囲内で円滑に変化するようにするレートリミッタ211に目標操舵角θrefが入力され、自動モード中におけるトーションバーのバネ性とハンドルの慣性モーメントによる振動(バネ慣性系に起因する振動)を除去するハンドル振動除去部212を経た目標操舵角θtaが減算部213Aに加算入力される。
そして、実操舵角θhは減算部213Aに減算入力され、平滑化された目標操舵角θtaとの角度偏差θbが位置制御部(Kpp)214でゲインKpp倍され、モータ速度指令値ωrefとして減算部213Bに加算入力される。減算部213Bにはモータ角速度演算部144からのモータ角速度ωcが減算入力され、演算された速度偏差Dfが積分部(ゲインKiv倍)215aを経て、減算部213Cに加算入力されると共に、モータ角速度ωcは比例部215bでゲインKpv倍されて減算部213Cに減算入力される。そして、舵角制御部200は、減算部213Cでの減算結果がリミッタ217でそれぞれ設定された上限値及び下限値に制限された電流指令値Imrefを、切換部142に出力する。
なお、位置制御部214及び速度制御部215で電流指令値演算部を構成している。
本発明の第1実施形態において、EPS側のECU140における舵角制御部200に、目標操舵角に対するレートリミッタ211、及びバネ慣性系起因の振動成分を除去するハンドル振動除去部212を設けることが特徴である。これにより、自動モード中におけるトーションバーのバネ性とハンドルの慣性モーメントによる振動(バネ慣性系に起因する振動)を除去することができる。そして、レートリミッタ211を設けることによって、目標操舵角の急変時においても、ハンドル操舵角の応答を和らげるような効果が得られるし、車速に関係なく、目標操舵角に対して正確に車両を移動させることができるので、運転者に対してより安全性を向上させることができる。
レートリミッタ211は、目標操舵角θtが急激に変化した場合に円滑化して出力するものであり、例えば図6に示すような構成となっている。即ち、目標操舵角θtは減算部211−1に加算入力され、過去値との減算結果である操舵角θt1が変化分設定部211−2で変化分θt2の設定をされる。変化分設定部211−2は、保持部(Z-1)211−4からの過去値と入力(θt)の差分θt1を設定し、加算部211−3での変化分θt2と過去値との加算結果を新たな目標操舵角θt3として出力する。変化分設定部211−2は、変化分が設定された上限及び下限を超えないようにするものであり、その特性は演算周期T毎に入力(目標操舵角)θtとの差分を求め、変化分設定部211−2の上限及び下限の範囲外の場合には、差分を過去値に加算することを繰返し行うことにより、図7に示すような階段状に出力θt3を変化させて、最終的に出力θt3を目標操舵角θtに一致させる。また、入力(目標操舵角)θtとの差分が変化分設定部211−2の上限及び下限の範囲内の場合には、変化分θt2=差分θt1を出力し、過去値に加算するので、その結果出力θt3と入力(目標操舵角)θtは一致する。これらの結果、目標操舵角θtが急激に変化しても、急激に変化する目標操舵角θtを滑らかに変化させることができ、急激な電流変化を防止し、運転者の自動運転の不安感を低減させる機能を果たしている。
次に、ハンドル振動除去部212の周波数特性について説明する。
先ず、トーションバーのバネ性とハンドルの慣性モーメントによるハンドル振動周波数は、約12.5[Hz]であることが知られている。ハンドル振動除去部212は、ハンドル振動周波数近傍、即ち12.5±5.0[Hz]のゲインを低下させるように作用するものであるから、ノッチフィルタがその用途に適する。本実施形態において使用されるノッチフィルタは、例えば、2次のフィルタの伝達関数の式として表現することができ、数1で表現できる。
Figure 2017150445
そして、数1の各定数を、中心周波数ωn=ωd=2π×12.5[rad/s]、減衰定数ζn=0.2、減衰定数ζd=0.6とした場合のボード線図を図8に示す。この図8より、ハンドル振動除去部212の周波数特性において、約12.5[Hz]を中心周波数としてゲインが低下している様子が分かる。なお、中心周波数は、トーションバーのバネ性とハンドルの慣性モーメントによるハンドル振動周波数に基づいて設定され、例えば12.5±5Hzの範囲に設定される。さらに、中心周波数ωnと中心周波数ωdは一致せず、2π×7.5〜2π×17.5[rad/s]の範囲でも良い。
次に、コラムからタイヤにかけてのシステムについて、一体となった慣性系(コラム慣性)として伝達関数を用いてまとめたモデルを示す。コラム慣性系をモデル化するため、以下のような物理量を使用する。
Jc:コラム慣性[kg・m]
Dc:コラム減衰係数[N・m/(rad/s)]
Jh:ハンドル慣性[kg・m]
Dh:ハンドル減衰係数[N・m/(rad/s)]
Ks:トーションバーバネ定数[N・m/rad]
D s:トーションバー減衰定数[N・m/(rad/s)]
Kt:モータトルク定数[N・m/A]
ただし、モータ発生トルクはコラム軸のトルクに換算(減速機構分を考慮)する。また、電流指令値Irefに対し実際のモータ電流は一致しているものとして扱っているため、電流制御は省略する。
θref:目標舵角[rad]
θh:ハンドル舵角[rad]
θc:コラム角[rad]
ωc:コラム角速度[rad/s]
なお、コラム角速度ωcはECU内でモータ回転角を差分演算してモータ回転速度にし、さらにコラム軸換算している。実際には、高周波域のノイズ除去のためにローパスフィルタ(LPF)を用いている(図示せず)。
Tt:トーションバートルク[N・m]
ref:電流指令値[A]
ωref:目標角速度[rad/s]
以上のような物理量を用いて、目標操舵角θrefからハンドル舵角θhまでの全体ブロック線図は、図9のような構成として示すことができる。この構成に基づいてモデルを説明する。
先ず、速度制御ループ系をマイナーループとする位置制御系となっており、目標操舵角θrefが急激に変化した場合の平滑化、つまり所定時間変化率の範囲内で円滑に変化するようにするレートリミッタ311に目標操舵角θrefが入力され、自動モード中におけるトーションバーのバネ性とハンドルの慣性モーメントによる振動(バネ慣性系に起因する振動)を除去するハンドル振動除去部312を経た目標操舵角θtaが減算部313aに加算入力される。
そして、実操舵角θhは減算部313aに減算入力され、平滑化された目標操舵角θtaと実操舵角θhとの角度偏差θbが位置制御部(Kpp)314でゲインKpp倍され、モータ速度指令値ωrefとして減算部313bに加算入力される。減算部313bで微分部319からのモータ角速度ωcが減算入力されて演算された速度偏差Dfが、積分部(ゲインKiv倍)315aを経て減算部313cに加算入力されると共に、モータ角速度ωcは比例部315bでゲインKpv倍されて減算部313cに減算入力される。そして、全体ブロック線図では、減算部313cでの減算結果が電流指令値Irefとしてモータトルク変換部316に出力され、モータトルク変換部316が電流指令値IrefをモータトルクTmに変換して、加算部313eに出力する。そして、トーションバー部317から生成されるトーションバートルクTtとモータトルクTmとが加算部313eに加算入力されて生成された加算トルクTsはコラム慣性部318aに入力され、コラム慣性部318aの出力は積分部318bに入力される。積分部318bの出力はコラム角θcとして、微分部319及び減算部313dに入力される。微分部319は、入力されたコラム角θcの出力を、コラム角速度ωcに変換して、比例部(Kpv)315b及び減算部313bに出力し、コラム角速度ωcに基づいて電流指令値Iref及びモータトルクTmが生成される。
一方、トーションバー部317から生成されるトーションバートルクTtは遅延部320aに出力され、遅延部320aの出力が、ハンドル慣性部320bに入力され、続いてハンドル慣性部320bの出力が積分部320cに入力された演算結果として、ハンドル舵角θhが生成される。積分部320cから生成されたハンドル舵角θhは、減算部313aに減算入力され、モータ速度指令値ωrefの生成に使用される。また、積分部318bから出力されたコラム角θcは減算部313dで減算入力され、ハンドル舵角θhは減算部313dに加算入力される。このようにして、全体のブロック線図のトーションバー部317において、コラム角θcとハンドル舵角θhとの差分に基づいて、トーションバートルクTtが生成される。
従って、図9のように表された全体ブロック線図における、目標舵角θtaからトーションバートルクTtまでの伝達関数Gθtは、以下のようになる。目標操舵角をθta[rad]とし、トーションバートルクをTt[N・m]とすると、伝達関数Gθtは数2のように表される。
Figure 2017150445
そして、数2内のGθi及びGitは、それぞれ数3及び数4のように表される。
Figure 2017150445
Figure 2017150445
また、数3内のGωi及びGihは、それぞれ数5及び数6のように表される。
Figure 2017150445
Figure 2017150445
また、数4内のGicは、数7のように表される。
Figure 2017150445
さらに、数4及び数7に現れるGctは、数8のように表される。
Figure 2017150445
ここで、以上のように説明し、図9で示したようなブロック図で構成されたモデルに基づいて、ハンドル振動除去部212を舵角制御部200に組み込んだ場合と、組み込んでいない場合とにおける、目標操舵角からトーションバートルクが発生するまでの伝達関数の周波数特性についてシミュレーションを行い、比較した結果を図10に示す。
図10のシミュレーション結果において、ハンドル振動除去部212を、舵角制御部200に組み込まない場合の伝達関数の周波数特性のゲインは点線(A)で、位相は点線(C)で表わされ、ハンドル振動除去部212を、舵角制御部200に組み込んだ場合の伝達関数の周波数特性のゲインは実線(B)で、位相は実線(D)で表される。これらを比較すると、ハンドル振動除去部212を、舵角制御部200に組み込んだ場合には、約12.5[Hz]を中心としてゲインが低下していること、つまり、トーションバーのバネ性とハンドルの慣性モーメントによるハンドル振動が除去されている様子が分かる。
本発明の効果を説明するため、ハンドル振動除去部212が有る場合と、無い場合についてのトーションバートルクの時間応答波形を図11に示す。図11より、ハンドル振動除去部212が有る場合の方が、ピークはあるものの振動が抑制されていることが分かる。
さらに、図12は、舵角制御部200に目標操舵角θrefを入力したときのハンドル舵角θhの時間応答を示している。ここで図12の波形(A)は、目標操舵角の時間変化である。波形(B)は、目標操舵角を入力したときのハンドル舵角θhの時間応答である。ハンドル振動除去部212が有る場合における目標操舵角に追従するハンドル舵角θhの時間応答と、ハンドル振動除去部212が無い場合における目標操舵角に追従するハンドル舵角θhの時間応答とがほとんど同じもので、ほぼ重なっており、ハンドル振動除去部212がハンドル舵角θhの時間応答に影響しないことを示している。さらに、振動の収斂(しゅうれん)性が向上していることが分かる。
次に、第2実施形態について、第1実施形態との相違点を中心に図面を参照して説明する。
第2実施形態と上記第1実施形態との相違点は、トーションバートルクTtについて所定の周波数以下を遮断して、動作中のハンドル振動を抑制するために、ハンドル制振部216を舵角制御部200に設けた点である。このため、説明の便宜上、上述した実施形態1と同一の構成については同一の符号を付して、又は符号の後に「X」を付してその説明を省略する。
図13は、本発明の第2実施形態に係る電動パワーステアリング装置の制御系の構成例を示すブロック図である。図13において、前述の第1実施形態との相違点について説明する。この場合、舵角制御部200Xは、EPS側のECU140Aは、操舵トルクTh及びモータ角速度ωcに基づいて、演算されたモータ電流指令値Itrefを出力するトルク制御部141と、目標操舵角θref、実操舵角θh、モータ角速度ωc、及びトーションバートルクTtに基づいて舵角自動制御のためのモータ電流指令値Imrefを演算して出力する舵角制御部200Xを具備している。即ち前述(図4)の構成に加えて、トーションバートルクTtを舵角制御部200Xに入力するような構成となっている。図14は、本発明の第2実施形態における、舵角制御部200Xの構成例を示すブロック図である。
図14において、前述の第1実施形態との相違点に注目して説明する。この場合、舵角制御部200Xにおけるハンドル制振部216は、トーションバートルクTtについて所定の周波数以下を遮断した信号を加算器213Dに出力する。そして、加算部213Dの出力がリミッタ217に入力されるように構成されている。即ち前述(図5)の構成に加えて、ハンドル制振部216の出力に舵角制御部200Xの出力する信号を加算してリミッタ217に入力するような構成となっている。
或いは、ハンドル制振部216は、動作中のハンドル振動を抑制するため、舵角制御部200Xに設けられたものである。図15にハンドル制振部のゲインの周波数特性を示す特性図(A)、ハンドル制振部の位相の周波数特性を示す特性図(B)を示す。図15の特性図が示すようにハンドル制振部216は、ハイパスフィルタ(HPF)であり、カットオフ周波数は12.5Hz以下を減衰させると共に、位相進み補償(1次)を行っている。ハイパスフィルタのカットオフ周波数は、トーションバーのバネ性とハンドルの慣性モーメントによるハンドル振動周波数に基づいて設定され、例えば12.5±5Hzの範囲に設定される。
第2実施形態においても、第1実施形態と同様に、目標操舵角θrefからハンドル舵角θhまでの、全体ブロック線図は、図16のような構成として示すことができる。この構成に基づいてモデルを説明する。
図16において、前述の第1実施形態1との相違点に注目して説明する。この場合、前述(図9)の構成に加えて、トーショントルクTtがゲインCt倍されて減算部313cに加算入力されるような比例ゲイン部321を備えている。
図16に示すような目標舵角θrefからハンドル舵角θhまでの全体のブロック線図を等価変換すると、図17のようなブロック線図になり、さらに、等価変換すると図18のようなブロック線図になる。ただし、ここではレートリミッタ、出力リミッタ、ハンドル振動除去手段は省いている。
そして、図16のように表された全体ブロック線図における、目標舵角θtaからトーションバートルクTtまでの伝達関数Gθtは、目標操舵角をθta[rad]とし、トーションバートルクをTt[N・m]とすると、上記第1実施形態と同様に、数2のように表され、数2内のGθi及びGitは、それぞれ数3及び数4のように表される。
第2実施形態においては、数3内のGih及びGωiは、それぞれ数9及び数10のように表される。
Figure 2017150445
Figure 2017150445
さらに、数10内のGt´は、数11のように表される。
Figure 2017150445
さらに、数4内のGct及びGicは、それぞれ数12及び数13のように表させる。
Figure 2017150445
Figure 2017150445
ここで、本発明の第2実施形態の効果について図19を用いて説明する。図19の波形(A)はハンドル制振部及びハンドル振動除去部の補償が無い場合の目標操舵角に対するハンドル舵角の時間応答を示している(細線)。波形(B)はハンドル振動除去部のみが有る場合の目標操舵角に対するハンドル舵角θhの時間応答を示している(点線)。波形(C)はハンドル制振部及びハンドル振動除去部の両方が有る場合の目標操舵角に対するハンドル舵角θhの時間応答を示している(太線)。図20に示すシミュレーション結果によると、ハンドル制振部及びハンドル振動除去部を併用するものが、制振効果が最も大きいから、動作中のハンドル振動を抑制するという効果が期待できる。ただし、図21の舵角応答した際のトーションバートルクを図20に示す。さらに、振動の収れん性が向上している。
第3実施形態と上記第2実施形態との相違点は、(レートリミッタ後の)目標舵角に対する実舵角の制御帯域を高周波側まで広げるために、モータ速度指令FFフィルタ218を舵角制御部200Yに設けた点である。このため、説明の便宜上、上述した第1実施形態及び第2実施形態と同一の構成については同一の符号を付して、又は符号の後に「Y」を付してその説明を省略する。
図21は、本発明の第3実施形態における、舵角制御部200Yの構成例を示すブロック図である。
図21において、前述の第2実施形態との相違点に注目して説明する。この場合、舵角制御部200Yにおけるモータ速度指令FFフィルタ218は、レートリミッタ211の出力を入力し、フィードフォワード(FF)処理をし、加算器213Eに加算入力されるように構成されている。そして、モータ速度指令FFフィルタ218は、目標舵角に対する実舵角の制御帯域を高周波側まで広げることによって、舵角制御の応答性を向上させるため、舵角制御部200Yに設けられたものである。
次に、モータ速度指令FFフィルタについて、シミュレーション結果を示す図22を用いて説明する。図22において、波形(A)は、目標舵角の時間変化、波形(B)は、モータ速度指令FFフィルタが無い場合における実操舵角の時間応答、(C)は、モータ速度指令FFフィルタが有る場合における実操舵角の時間応答を示している。図22が示しているとおり、モータ速度指令FFフィルタが無い場合より、モータ速度指令FFフィルタが有る場合の方が、舵角制御の追従性が向上しているのが分かる。第3実施形態によれば、急なレーンチェンジにもより効果的に使える。なぜなら、目標操舵角に対する実操舵角の追従性が高まり、車両運動制御の応答性も向上できるからである。
以下、第4の実施形態について、第1実施形態〜第3実施形態との相違点を中心に図面を参照して説明する。図23は、本発明の第4実施形態における、電動パワーステアリング装置の制御系の目標操舵角生成部132Xを示すブロック図である。
第4実施形態と上記第1実施形態〜第3実施形態との相違点は、車両横位置の挙動が安定化するために、車両情報(例えば、カメラ、角速度センサ、加速度センサ、GPSなど)に基づいて、横位置及び横位置指令yrefを算出し、横位置及び横位置指令yrefに基づいて、目標舵角θrefを演算する目標操舵角生成部132Xを後述する舵角制御部200Yに設けた点である。
次に、第4実施形態における目標操舵角生成部132Xについて説明する。目標操舵角生成部132Xは、車両状態量検出器132a、目標軌道演算部132b、車両運動制御部132cで構成されている。車両状態量検出器132aは、車両情報(カメラ、角速度センサ、加速度センサ、GPSなど)に基づいて、横位置、ヨー、横G等を演算する。そして、目標軌道演算部132bは、車両状態量検出器132aの演算結果に基づいて、横位置指令を演算する。そして、車両運動制御部132cは、横位置指令yref、横位置Y[m]、ヨー及び横G等に基づいて、目標舵角θrefを演算する。なお、横位置Y[m]はカメラ等の画像データ及びGPSの位置情報に基づいて演算される。そして、車線に対する自社両の相対的な距離を車両運動制御部132cにフィードバックされる。車両運動制御部132cは、ほぼ直線の車道において、レーンチェンジする際に必要な機能であり、また、緩やかなカーブにおいても同様に機能する。
図24は、本発明の第4実施形態における、車両運動制御部132cの構成例を示すブロック図である。図24に示す車両運動制御部132cには、横位置指令yref[m]、横位置Y[m]及びヨーレートγ[rad/s]が入力される。そして、横位置指令yref[m]が入力される横位置指令上下限リミッタ410と、横位置指令上下限リミッタ410の出力が入力される横位置指令レートリミッタ411が設けられている。また、横位置指令レートリミッタ411の出力が入力される横位置指令振動除去部412及び横速度指令FFフィルタ418が設けられている。そして、横位置指令振動除去手段412の出力は減算部413Aに加算入力され、横速度指令FFフィルタ418の出力は加算部413Bに加算入力される。減算部413Aは第2実施形態の減算部213Aに対応する。
さらに、ヨーレートγ[rad/s]が、車両挙動安定化手段419に入力され、車両挙動安定化手段419の出力は、加算部413Eに加算入力される。加算部413Eは、第2実施形態の加算部213Dに対応する。また、横位置Y[m]は、横速度演算手段416に入力され、減算部413Aに減算入力される。減算部413Aは第2実施形態の減算部213Aに対応する。ヨーレートγ[rad/s]と横Gを置き換えても、同じ制御構成で、同様の車両挙動安定化を実現できる。(なお、車両挙動安定化が完全に一致するものではない。)ヨーレートγ[rad/s]と横Gの方向の定義については、実操舵角を正に(定常的)入力した際に、ヨーレートγ[rad/s]と横Gも正方向の値をとる。
次に、車両運動制御部132cの各構成の機能について説明する。
横位置指令上下限リミッタ410は、横位置指令yrefの上限及び下限の制限を行う。これによって、通信異常、メモリ異常などに起因し、異常値が発生した場合に、上下限リミッタにより制限することができる。
横位置指令レートリミッタ411は、横位置指令yrefの急変によって、出力である目標舵角目標舵角θrefが急激に変動することを避けるため、横位置指令yrefをレートリミット処理する。また、ドライバへの安全性向上にも繋がる。
横位置指令振動除去部412は、車両制御中に車両の持つ共振特性(ヨー共振、等)に起因する振動現象が発生するような場合、レートリミット後の横位置指令yrefに含まれる振動周波数成分を低減するために、位相遅れ補償、ノッチフィルタ処理又はローパスフィルタ処理を行う。また、車両のヨー共振の周波数とゲインは車速に応じて変わることが一般的に知られていることから、車速に感応して周波数特性を変化させても良い。
横位置制御部414は、横位置指令振動除去部412の出力信号の横位置指令値と横位置の偏差に、比例ゲインKppを乗算し、横位置制御部414による横速度指令値を算出する。
横速度制御部415は、横速度指令値と横速度を横速度制御部(I-P制御器)に通し、横速度が横速度指令値に追従するような目標舵角(横速度制御部の出力値)を算出する。
横速度演算部416は、検出した横位置Yの微分相当の演算で良い。実装するには差分と、高周波のノイズを除去するためにローパスフィルタと、ゲインを用いることができる。ローパスフィルタとしては、例えば1次形式でカットオフ周波数を10Hzから30Hzの間に設定してもよい。或いは、ハイパスフィルタを利用した擬似微分とゲインで演算しても良い。ハイパスフィルタを用いる場合、ハイパスフィルタは、例えば1次形式で、カットオフ周波数を10Hzから30Hzの間に設定するようにしても良い。
目標舵角出力リミッタ417は、目標舵角の過出力防止のため、出力リミッタで制限する。
横速度指令FFフィルタ418は、横位置指令yrefへの横位置の追従特性を上げるために、レートリミッタ後の横位置指令yrefをFFフィルタ内でのフィルタとゲインにより、横位置制御部414の出力の横速度指令値に加算する。横速度指令FFフィルタ418については、位相進み、ハイパスフィルタ又は微分相当などを用いた横位置指令yrefの位相を進ませるフィルタでも良い。また、車速によって、フィルタ特性とゲインを可変としても良い。緊急回避時には、通常時よりも、大きいゲインにすることによって、追従性を向上することができる。
車両挙動安定化部419は、車両のヨーレート信号γ[rad/s]に基づく車両挙動安定化部419により、車両の振動現象に対する制振効果が更に向上することができる。車両挙動安定化部419は、位相補償フィルタ419aと比例部(ゲインKyaw)419bとから構成される。そして、位相補償フィルタ419aは、1次フィルタでも、2次フィルタであっても良い。また、位相補償フィルタ419aは、車両挙動を安定化させ得る位相特性であればローパスフィルタ、ハイパスフィルタ、ノッチフィルタ、バンドパスフィルタ(BPF)であっても良い。また、位相補償フィルタ419aは、車速に感応して周波数特性を変化させても良い。この場合、例えば車速に対するゲインマップと、カットオフ周波数を可変する位相補償であっても良い。なお、比例部419bのゲイン係数であるKyawは、正の値でも、負の値でも良い。
次に、車両運動制御部132cの効果について、シミュレーションによるヨーレートの時間応答を図25及び図26に示して説明する。
車両横位置の時間応答シミュレーションを行った結果を、図25に示す。図25において、波形(A)は、横位置指令yrefの時間変化、波形(B)は、車両挙動安定化手段が有る場合における車両横位置の時間応答、波形(C)は、車両挙動安定化手段が無い場合における車両横位置の時間応答を示している。
車両運動制御部内において車両挙動安定化手段を設けることによって、車両横位置が振動せずに安定しており、車両挙動安定化手段を設けられていない場合は、車両横位置が安定せず振動していることが、図25から分かる。このシミュレーションにおいては、車両挙動安定化手段の位相補償フィルタは、1次形式のローパスフィルタとし、そのカットオフ周波数を0.5Hzに設定した。
また、図26は、図25のシミュレーションにおける、ヨーレートの時間変化である。波形(A)は車両挙動安定化部が有る場合のヨーレートの時間応答である。また、波形(B)は車両挙動安定化部が無い場合のヨーレートの時間応答である。このシミュレーションの結果、ヨーレートの時間応答は、図26が示すように、車両挙動安定化部が有る場合の方が、ヨーレートが振動しにくく、車両挙動安定化部が無い場合より安定していることが分かる。
2 コラム軸(ハンドル軸)
20 モータ
23 トーションバー
100 コントロールユニット(ECU)
130 車両側のECU
131 切換指令部
132、132X 目標操舵角生成部
132a 車両状態量検出器
132b 目標軌道演算部
132c 車両運動制御部
140、140A EPS側のECU
141 トルク制御部
142 切換部
143 モータ駆動部
150 モータ
200、200X、200Y 舵角制御部
211、311 レートリミッタ
212、312 ハンドル振動除去部
214 位置制御部
215 速度制御部
215a、315a、318b、320c、415a 積分部
215b、314、315b、415b、419b 比例部
216 ハンドル制振部
218 モータ速度指令FFフィルタ
316 モータトルク変換部(Kt)
317 トーションバー部
318a コラム慣性部
319 微分部(s)
320a 遅延部
320b ハンドル慣性部
410 横位置指令上下限リミッタ
411 横位置指令レートリミッタ
412 位置指令振動除去
414 横位置制御部
415 横速度制御部
416 横速度演算手段
418 横速度指令FFフィルタ
419 車両挙動安定化手段
419a 位相補償フィルタ

Claims (14)

  1. 車両の操舵系を操舵するに際して前記操舵系にアシスト力を付与するモータを制御するアシストモードと、前記車両が自律走行するに際して前記車両から随時与えられる目標操舵角に応じて前記モータを制御する自動モードとを有する電動パワーステアリング装置において、
    前記車両の車速と前記操舵系のステアリングシャフトに入力された操舵トルクとに基づいて第1のモータ電流指令値を算出するトルク制御部と、
    前記目標操舵角、実操舵角及び前記モータのモータ角速度に基づいて第2のモータ電流指令値を算出する舵角制御部とを備え、
    前記舵角制御部は、
    前記アシストモード時に前記第1のモータ電流指令値を出力し、前記自動モード時に前記第2のモータ電流指令値を出力する構成であり、
    所定周期における前記目標操舵角について階段状に出力値を変化させ、前記出力値を前記目標操舵角に一致させるようにするレートリミッタと、
    前記レートリミッタの出力を入力して所定中心周波数の近傍の周波数成分を遮断して出力するハンドル振動除去部と、
    前記実操舵角及び前記ハンドル振動除去部の出力値の差分を入力してモータ角速度指令値を出力する位置制御部と、
    前記モータ角速度指令値及び前記モータ角速度の偏差を演算し、前記偏差を入力する積分部と、前記モータ角速度を入力する比例部とを備え、前記積分部の出力から前記比例部の出力を減算して前記第2のモータ電流指令値を出力する速度制御部と、
    で構成されている電動パワーステアリング装置。
  2. 車両の操舵系を操舵するに際して前記操舵系にアシスト力を付与するモータを制御するアシストモードと、前記車両が自律走行するに際して前記車両から随時与えられる目標操舵角に応じて前記モータを制御する自動モードとを有する電動パワーステアリング装置において、
    前記車両の車速と前記操舵系のステアリングシャフトに入力された操舵トルクとに基づいて第1のモータ電流指令値を算出するトルク制御部と、
    前記目標操舵角、実操舵角、前記モータのモータ角速度及びトーションバートルクに基づいて第2のモータ電流指令値を算出する舵角制御部とを備え、
    前記舵角制御部は、
    前記アシストモード時に前記第1のモータ電流指令値を出力し、前記自動モード時に前記第2のモータ電流指令値を出力する構成であり、
    所定周期における前記目標操舵角について階段状に出力値を変化させ、前記出力値を前記目標操舵角に一致させるようにするレートリミッタと、
    前記レートリミッタの出力を入力して所定中心周波数の近傍の周波数成分を遮断して出力するハンドル振動除去部と、
    前記実操舵角及び前記ハンドル振動除去部の出力値の差分を入力してモータ角速度指令値を出力する位置制御部と、
    前記モータ角速度指令値及び前記モータ角速度の偏差を演算し、前記偏差を入力する積分部と、前記モータ角速度を入力する比例部とを備え、前記積分部の出力から前記比例部の出力を減算して出力する速度制御部と、
    前記トーションバートルクの信号を入力し、所定の遮断周波数以上の前記信号を通過させるハンドル制振部と、
    で構成され、
    前記舵角制御部は、前記速度制御部の出力と前記ハンドル制振部の出力とを加算して前記第2のモータ電流指令値として出力する電動パワーステアリング装置。
  3. 前記舵角制御部は、前記レートリミッタの出力を入力し、フィードフォワード処理をして出力するモータ速度指令フィードフォワードフィルタを更に備え、
    前記位置制御部が比例部を有し、前記差分を前記比例部に入力し、前記比例部の出力と、前記モータ速度指令フィードフォワードフィルタとを加算して、前記モータ角速度指令値として出力するようになっている請求項1又は2に記載の電動パワーステアリング装置。
  4. 前記舵角制御部は、前記速度制御部の出力に対して、所定の上限値及び所定の下限値を設けて前記出力を制限して前記第2のモータ電流指令値を出力する出力リミッタを備える請求項1乃至3のいずれかに記載の電動パワーステアリング装置。
  5. 前記ハンドル振動除去部が前記所定中心周波数の近傍を遮断するノッチフィルタである請求項1乃至4のいずれかに記載の電動パワーステアリング装置。
  6. 前記所定中心周波数は、前記自動モード中におけるトーションバーのバネ性とステアリングホイールの慣性モーメントによる振動周波数である請求項1乃至5のいずれかに記載の電動パワーステアリング装置。
  7. 前記所定の遮断周波数は、前記自動モード中におけるトーションバーのバネ性とステアリングホイールの慣性モーメントによる振動周波数である請求項1乃至6のいずれかに記載の電動パワーステアリング装置。
  8. 前記所定中心周波数が7.5〜17.5Hzである請求項6に記載の電動パワーステアリング装置。
  9. 前記所定の遮断周波数が7.5〜17.5Hzである請求項7に記載の電動パワーステアリング装置。
  10. 車両の操舵系を操舵するに際して前記操舵系にアシスト力を付与するモータを制御するアシストモードと、前記車両が自律走行するに際して前記車両から随時与えられる目標操舵角に応じて前記モータを制御する自動モードとを有する電動パワーステアリング装置において、
    前記車両の車速と前記操舵系のステアリングシャフトに入力された操舵トルクとに基づいて第1のモータ電流指令値を算出するトルク制御部と、
    前記目標操舵角、実操舵角、及び前記モータのモータ角速度に基づいて第2のモータ電流指令値を算出する舵角制御部と、
    車両情報に基づいて前記目標操舵角を算出する車両運動制御部と、
    を備え、
    前記車両運動制御部は、
    所定周期における横位置指令について階段状に出力値を変化させ、前記出力値を前記横位置指令に一致させるようにするレートリミッタと、
    前記レートリミッタの出力の振動周波数成分を除去する横位置指令振動除去部と、
    横位置に基づいて横速度を演算する横速度演算部と、
    前記横位置及び前記横位置指令振動除去部の出力値の差分を入力して横速度指令値を出力する横位置制御部と、
    前記横速度指令値及び前記横速度の偏差を演算し、前記偏差を入力する積分部と、前記横速度を入力する比例部とを備え、前記積分部の出力から前記比例部の出力を減算して出力する横速度制御部と、
    ヨーレート信号を入力し、所定の遮断周波数以上の前記ヨーレート信号を通過させる車両挙動安定化部と、
    で構成され、
    前記車両運動制御部は、前記横速度制御部の出力と前記車両挙動安定化部の出力とを加算して前記目標操舵角とする電動パワーステアリング装置。
  11. 前記舵角制御部は、前記レートリミッタの出力を入力し、フィードフォワード処理をして出力する横速度指令フィードフォワードフィルタを更に備え、
    前記横位置制御部が第1比例部を有し、前記差分を前記第1比例部に入力し、前記比例部の出力と、前記横速度指令フィードフォワードフィルタの出力とを加算し、前記横速度指令値として出力する請求項10に記載の電動パワーステアリング装置。
  12. 前記車両情報は、前記横位置指令、前記横位置及び前記ヨーレート信号である請求項10又は11に記載の電動パワーステアリング装置。
  13. 前記車両挙動安定化部は、位相補償フィルタと第2比例部とから構成され、前記位相補償フィルタが、1次フィルタ又は2次フィルタである請求項10乃至12のいずれかに記載の電動パワーステアリング装置。
  14. 前記位相補償フィルタは1次のローパスフィルタであり、前記ローパスフィルタのカットオフ周波数が0.5Hzに設定されている請求項13に記載の電動パワーステアリング装置。
JP2018503291A 2016-02-29 2017-02-27 電動パワーステアリング装置 Expired - Fee Related JP6354925B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2016038052 2016-02-29
JP2016038053 2016-02-29
JP2016038052 2016-02-29
JP2016038053 2016-02-29
JP2016076895 2016-04-06
JP2016076895 2016-04-06
PCT/JP2017/007487 WO2017150445A1 (ja) 2016-02-29 2017-02-27 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP6354925B2 JP6354925B2 (ja) 2018-07-11
JPWO2017150445A1 true JPWO2017150445A1 (ja) 2018-08-30

Family

ID=59743906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503291A Expired - Fee Related JP6354925B2 (ja) 2016-02-29 2017-02-27 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10358163B2 (ja)
EP (1) EP3378734B1 (ja)
JP (1) JP6354925B2 (ja)
CN (1) CN108698639A (ja)
WO (1) WO2017150445A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584658B2 (ja) * 2016-05-24 2019-10-02 三菱電機株式会社 電動パワーステアリング装置
US10618552B2 (en) * 2016-09-16 2020-04-14 Nsk Ltd. Electric power steering apparatus
WO2018070511A1 (ja) * 2016-10-14 2018-04-19 日本精工株式会社 電動パワーステアリング装置
CN109963772B (zh) * 2016-11-07 2021-07-20 日本精工株式会社 电动助力转向装置
EP3418156B1 (en) * 2017-02-03 2020-07-08 NSK Ltd. Electric power steering device
US10661825B2 (en) * 2017-03-16 2020-05-26 Nsk Ltd. Electric power steering apparatus
JP6911693B2 (ja) * 2017-10-11 2021-07-28 トヨタ自動車株式会社 運転支援制御システム
US20200231206A1 (en) * 2017-10-13 2020-07-23 Nsk Ltd. Electric power steering apparatus
KR102302556B1 (ko) * 2018-02-27 2021-09-16 현대모비스 주식회사 스티어링 휠 진동 저감 장치 및 방법
JP6638012B2 (ja) 2018-03-16 2020-01-29 株式会社Subaru 車両の車線逸脱防止制御装置
KR102049923B1 (ko) * 2018-08-27 2019-11-28 현대모비스 주식회사 엠디피에스 시스템의 제어 장치 및 방법
CN109278850B (zh) * 2018-10-16 2020-09-15 北京汽车股份有限公司 转向助力控制方法、系统及汽车
EP3808621B1 (en) * 2019-01-31 2023-05-24 Nsk Ltd. Actuator control device used in steering of vehicle
KR102660394B1 (ko) 2019-03-11 2024-04-24 에이치엘만도 주식회사 전동 파워스티어링 시스템의 오버레이 제어 장치 및 그 방법
WO2020202707A1 (ja) * 2019-03-29 2020-10-08 日本電産株式会社 制御装置
FR3094317B1 (fr) * 2019-04-01 2021-03-05 Renault Sas Module anticipateur, dispositif de contrôle en temps réel de trajectoire et procédé associés
JP7452243B2 (ja) * 2020-05-22 2024-03-19 株式会社ジェイテクト ステアリングシステム
JP2021183463A (ja) * 2020-05-22 2021-12-02 株式会社ジェイテクト 操舵装置
KR20220008012A (ko) * 2020-07-13 2022-01-20 현대모비스 주식회사 전동식 조향시스템의 제어 장치 및 방법
KR20220064445A (ko) * 2020-11-11 2022-05-19 현대모비스 주식회사 전동식 조향시스템의 제어 장치 및 방법
CN112844169B (zh) * 2020-12-24 2021-10-29 乾日安全科技(北京)有限公司 一种真石漆输送管用搅拌装置
CN113184044B (zh) * 2021-05-10 2023-01-20 驭势(上海)汽车科技有限公司 车辆电动助力转向系统的检测方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008422A (ja) * 2005-07-04 2007-01-18 Toyota Motor Corp 車両制御装置および車両制振方法
JP2010221799A (ja) * 2009-03-23 2010-10-07 Toyota Motor Corp 運転支援装置
JP2014122017A (ja) * 2012-11-26 2014-07-03 Jtekt Corp 制御システム
WO2014136515A1 (ja) * 2013-03-08 2014-09-12 日本精工株式会社 電動パワーステアリング装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839742B2 (ja) * 1991-04-25 1998-12-16 株式会社東芝 抄紙機の電流補正付速度制御装置
JP3190525B2 (ja) * 1994-09-14 2001-07-23 松下電器産業株式会社 電動パワーステアリング装置
JP3666793B2 (ja) * 2000-02-10 2005-06-29 本田技研工業株式会社 電動パワーステアリング装置
JP3969162B2 (ja) * 2002-04-08 2007-09-05 株式会社ジェイテクト 電動パワーステアリング装置
JP3917008B2 (ja) 2002-05-30 2007-05-23 株式会社ジェイテクト 自動操舵制御装置
JP3705545B2 (ja) * 2002-10-09 2005-10-12 本田技研工業株式会社 電動パワーステアリング装置
US7233850B2 (en) * 2002-10-31 2007-06-19 Koyo Seiko Co., Ltd. Vehicle steering apparatus
JP4684698B2 (ja) * 2005-03-22 2011-05-18 本田技研工業株式会社 車両の操舵制御装置
JP4367402B2 (ja) * 2005-11-02 2009-11-18 トヨタ自動車株式会社 車両の操舵制御装置
KR100999139B1 (ko) * 2007-12-13 2010-12-08 기아자동차주식회사 전동식 파워 스티어링의 제어방법
KR101216822B1 (ko) * 2007-12-14 2012-12-28 미쓰비시덴키 가부시키가이샤 전동 파워 스티어링 제어 장치
JP4775413B2 (ja) * 2008-07-04 2011-09-21 株式会社デンソー 電動パワーステアリング装置
JP5428325B2 (ja) * 2008-08-25 2014-02-26 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
DE102009048092A1 (de) * 2009-10-02 2011-04-07 Thyssenkrupp Presta Ag Sicherheitseinrichtung für elektrische Servolenkung
US9691289B2 (en) * 2010-12-22 2017-06-27 Brightstar Learning Monotonous game-like task to promote effortless automatic recognition of sight words
US8698639B2 (en) * 2011-02-18 2014-04-15 Honda Motor Co., Ltd. System and method for responding to driver behavior
US8634986B2 (en) * 2011-03-30 2014-01-21 GM Global Technology Operations LLC Friction-based state of health indicator for an electric power steering system
JP5693429B2 (ja) * 2011-10-21 2015-04-01 三菱重工業株式会社 モータ制御装置、モータ制御方法
JP6069896B2 (ja) * 2012-06-05 2017-02-01 日本精工株式会社 電動パワーステアリング装置
JP5494760B2 (ja) * 2012-08-30 2014-05-21 ダイキン工業株式会社 電動機制御装置
JP2014054885A (ja) * 2012-09-11 2014-03-27 Nsk Ltd 電動パワーステアリング装置
JP6079784B2 (ja) * 2012-10-04 2017-02-15 日産自動車株式会社 操舵制御装置
EP2905204B1 (en) * 2012-10-04 2017-07-19 Nissan Motor Co., Ltd Steering control device
WO2014073180A1 (ja) * 2012-11-07 2014-05-15 日産自動車株式会社 操舵制御装置
US9440675B2 (en) * 2013-03-07 2016-09-13 Nsk Ltd. Electric power steering apparatus
WO2014148304A1 (ja) * 2013-03-18 2014-09-25 本田技研工業株式会社 車両用操舵装置
JP6182770B2 (ja) * 2013-08-30 2017-08-23 日立オートモティブシステムズ株式会社 電動車両制御システム
JP6167363B2 (ja) * 2013-09-12 2017-07-26 日立オートモティブシステムズ株式会社 電動車両の制御装置及び電動車両の制御方法
EP2977296B1 (en) * 2014-01-29 2018-07-18 NSK Ltd. Electric power steering device
GB2523195B (en) * 2014-02-18 2017-10-25 Jaguar Land Rover Ltd Control system and method
JP6260818B2 (ja) * 2014-02-18 2018-01-17 株式会社ジェイテクト 電動パワーステアリング装置
JP5935960B2 (ja) * 2014-03-25 2016-06-15 日本精工株式会社 電動パワーステアリング装置
JP6375545B2 (ja) * 2014-09-24 2018-08-22 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の制御回路
JP2016150644A (ja) * 2015-02-17 2016-08-22 日立オートモティブシステムズ株式会社 パワーステアリング装置
JP6281751B2 (ja) * 2015-03-06 2018-02-21 富士電機株式会社 位置制御システム
EP3260354B1 (en) * 2015-03-10 2020-04-01 NSK Ltd. Electric power steering apparatus, and control apparatus for determining parameter set therein
JP6391096B2 (ja) * 2015-03-10 2018-09-19 東洋電機製造株式会社 交流電動機の電流制御装置
WO2016180469A1 (en) * 2015-05-11 2016-11-17 Thyssenkrupp Presta Ag Electric power steering system with ripple compensation
US9688307B2 (en) * 2015-10-05 2017-06-27 Denso Corporation Electric power steering controller
US20170204589A1 (en) * 2016-01-20 2017-07-20 Komatsu Ltd. Construction Machine, Hybrid Hydraulic Excavator, And Output Torque Control Method For Motor Generator
US9751556B1 (en) * 2016-03-03 2017-09-05 GM Global Technology Operations LLC Method and system for fault isolation in an electric power steering system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008422A (ja) * 2005-07-04 2007-01-18 Toyota Motor Corp 車両制御装置および車両制振方法
JP2010221799A (ja) * 2009-03-23 2010-10-07 Toyota Motor Corp 運転支援装置
JP2014122017A (ja) * 2012-11-26 2014-07-03 Jtekt Corp 制御システム
WO2014136515A1 (ja) * 2013-03-08 2014-09-12 日本精工株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
US10358163B2 (en) 2019-07-23
JP6354925B2 (ja) 2018-07-11
CN108698639A (zh) 2018-10-23
WO2017150445A1 (ja) 2017-09-08
EP3378734A4 (en) 2019-07-17
US20190002019A1 (en) 2019-01-03
EP3378734B1 (en) 2020-04-01
EP3378734A1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6354925B2 (ja) 電動パワーステアリング装置
JP6233482B2 (ja) 電動パワーステアリング装置
JP6107928B2 (ja) 電動パワーステアリング装置
JP6610848B2 (ja) 電動パワーステアリング装置
JP6330986B1 (ja) 電動パワーステアリング装置
JP6245258B2 (ja) 電動パワーステアリング装置
JP5915811B2 (ja) 電動パワーステアリング装置
US10315693B2 (en) Vehicle steering control device
JP5935960B2 (ja) 電動パワーステアリング装置
WO2009122606A1 (ja) 電動式パワーステアリング制御装置
JP6025974B2 (ja) 電動パワーステアリング制御装置およびその制御方法
JP2013193490A (ja) 電動パワーステアリング装置
JP7129003B2 (ja) モータ制御装置
JP6376307B2 (ja) 車両用ステアリング制御装置
JP5585422B2 (ja) 電動パワーステアリング装置及び車両
WO2023079776A1 (ja) モータ制御装置
JP2015074355A (ja) 操舵制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20180319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180319

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees