JPWO2016080407A1 - 導電性粒子、導電材料及び接続構造体 - Google Patents

導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
JPWO2016080407A1
JPWO2016080407A1 JP2015560476A JP2015560476A JPWO2016080407A1 JP WO2016080407 A1 JPWO2016080407 A1 JP WO2016080407A1 JP 2015560476 A JP2015560476 A JP 2015560476A JP 2015560476 A JP2015560476 A JP 2015560476A JP WO2016080407 A1 JPWO2016080407 A1 JP WO2016080407A1
Authority
JP
Japan
Prior art keywords
conductive
conductive portion
particles
nickel
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015560476A
Other languages
English (en)
Other versions
JP6668075B2 (ja
Inventor
昌男 笹平
昌男 笹平
茂雄 真原
茂雄 真原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2016080407A1 publication Critical patent/JPWO2016080407A1/ja
Application granted granted Critical
Publication of JP6668075B2 publication Critical patent/JP6668075B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

導通信頼性及び絶縁信頼性を高めることができる導電性粒子を提供する。本発明に係る導電性粒子は、基材粒子と、第1の導電部と、第2の導電部とを備え、前記基材粒子の外表面上に前記第1の導電部が配置されており、前記第1の導電部の外表面上に前記第2の導電部が配置されており、前記第2の導電部が外表面に突起を有さず、前記第2の導電部が外表面に複数の突起を有し、前記第2の導電部の前記突起の内側に芯物質が配置されておらず、透過型電子顕微鏡による観察で、前記第1の導電部と前記第2の導電部とに、前記第1の導電部と前記第2の導電部とを厚み方向に貫通している結晶の線欠陥がないか、又は前記第1の導電部と前記第2の導電部とを厚み方向に貫通している結晶の線欠陥が10個以下で存在する。

Description

本発明は、基材粒子と、該基材粒子の表面上に配置された導電部とを有する導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
上記導電性粒子の一例として、下記の特許文献1には、基材粒子と、該基材粒子の表面に形成された導電層とを備える導電性粒子が開示されている。上記導電層は、ニッケル又はニッケル合金を含有する。上記導電層は、表面に塊状微粒子の凝集体である突起を有する。
下記の特許文献2には、芯材粒子の表面に、金属又は合金の皮膜が形成された導電性粒子が開示されている。この導電性粒子は、上記皮膜の表面から突出した突起部を複数有する。上記突起部は、上記金属又は合金の粒子が列状に複数個連結した粒子連結体から構成されている。
特開2006−302716号公報 特開2012−113850号公報
特許文献1,2に記載の導電性粒子では、導電部の外表面に突起が形成されている。導電性粒子を用いて電極間を電気的に接続する際には、一般に、電極間に導電性粒子を配置して、加熱及び加圧が行われる。特許文献1,2に記載の導電性粒子では、突起が折れやすく、電極間の接続抵抗が高くなることがある。また、折れた突起によって、絶縁不良が生じることがある。
本発明の目的は、導通信頼性及び絶縁信頼性を高めることができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。
本発明の広い局面によれば、基材粒子と、第1の導電部と、第2の導電部とを備え、前記基材粒子の外表面上に前記第1の導電部が配置されており、前記第1の導電部の外表面上に前記第2の導電部が配置されており、前記第1の導電部が外表面に突起を有さず、前記第2の導電部が外表面に複数の突起を有し、前記第2の導電部の前記突起の内側に芯物質が配置されておらず、透過型電子顕微鏡による観察で、前記第1の導電部と前記第2の導電部とに、前記第1の導電部と前記第2の導電部とを厚み方向に貫通している結晶の線欠陥がないか、又は前記第1の導電部と前記第2の導電部とを厚み方向に貫通している結晶の線欠陥が10個以下で存在する、導電性粒子が提供される。
本発明に係る導電性粒子のある特定の局面では、前記第1の導電部の厚みが10nm以上である。
本発明に係る導電性粒子のある特定の局面では、前記第1の導電部のビッカース硬度が50以上である。
本発明に係る導電性粒子のある特定の局面では、前記第1の導電部がニッケルを含む。
本発明に係る導電性粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が、3500N/mm以上、60000N/mm以下である。
本発明に係る導電性粒子のある特定の局面では、複数の前記突起の平均高さが、5nm以上、1000nm以下である。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子における最も外側に位置する導電部の外表面の全表面積100%中、突起がある部分の表面積が5%以上である。
本発明に係る導電性粒子のある特定の局面では、前記第1の導電部が、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含む。
本発明に係る導電性粒子のある特定の局面では、前記第2の導電部が、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含む。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電性粒子における最も外側に位置する導電部の外表面上に配置された絶縁性物質を備える。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、第3の導電部を備え、前記第2の導電部の外表面上に前記第3の導電部が配置されている。
本発明に係る導電性粒子のある特定の局面では、前記第2の導電部が、前記第1の導電部に接するように前記第1の導電部の外表面上に配置されており、前記第3の導電部が、前記第2の導電部に接するように前記第2の導電部の外表面上に配置されている。
本発明に係る導電性粒子のある特定の局面では、前記第3の導電部が、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含む。
本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。
本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電性粒子であるか、又は前記導電性粒子とバインダー樹脂とを含む導電材料であり、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。
本発明に係る導電性粒子は、基材粒子と、第1の導電部と、第2の導電部とを備え、上記基材粒子の外表面上に上記第1の導電部が配置されており、上記第1の導電部の外表面上に上記第2の導電部が配置されており、上記第1の導電部が外表面に突起を有さず、上記第2の導電部が外表面に複数の突起を有し、上記第2の導電部の上記突起の内側に芯物質が配置されておらず、透過型電子顕微鏡による観察で、上記第1の導電部と上記第2の導電部とに、上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥がないか、又は上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥が10個以下で存在するので、本発明に係る導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性を高めることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。 図5は、本発明の一実施形態に係る導電性粒子を示す断面画像である。 図6は、実施例9で得られた導電性粒子のニッケルを含む第1の導電部及びニッケルを含む第2の導電部のEDS線分析プロファイルである。 図7は、従来の導電性粒子を示す断面図である。 図8は、従来の導電性粒子を示す断面画像である。
以下、本発明の詳細を説明する。
(導電性粒子)
本発明に係る導電性粒子は、基材粒子と、第1の導電部と、第2の導電部とを備える。本発明に係る導電性粒子では、上記基材粒子の外表面上に上記第1の導電部が配置されており、上記第1の導電部の外表面上に上記第2の導電部が配置されている。本発明に係る導電性粒子では、上記第1の導電部が外表面に突起を有さず、上記第2の導電部が外表面に、複数の突起を有する。
導電性粒子として、導電部の外表面の突起を形成するために、導電部の内側又は内部に、かつ突起の内側に、芯物質が配置されている導電性粒子がある。この導電性粒子では、芯物質によって導電部の外表面が隆起されていることで、上記突起が形成されている。
これに対して、本発明に係る導電性粒子では、芯物質が用いられておらず、上記第2の導電部の上記突起の内側に芯物質が配置されていない。
さらに、本発明に係る導電性粒子では、透過型電子顕微鏡による観察で、上記第1の導電部と上記第2の導電部とに、上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥がないか、又は上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥が10個以下で存在する。この結晶の線欠陥の数には、上記第1の導電部と上記第2の導電部とを厚み方向に貫通していない結晶の線欠陥は、カウントされない。なお、後述する実施例の評価では、上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥があるか否かが評価されている。
本発明では、上述した構成が備えられているので、本発明に係る導電性粒子を用いて電極間を電気的に接続した場合に、導通信頼性及び絶縁信頼性を高めることができる。
例えば、導電性粒子を用いて電極間を電気的に接続する際には、一般に、電極間に導電性粒子を配置して、加熱及び加圧が行われる。本発明に係る導電性粒子を用いて電極間を電気的に接続した場合に、突起が折れにくく、接続抵抗を低くすることができる。突起が折れにくくなるのは、上記第1の導電部と上記第2の導電部とに、上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥がないか、又は上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥が10個以下であるためである。
特に、導電性粒子の表面及び電極の表面に、酸化膜が形成されていることが多い。本発明に係る導電性粒子を用いれば、導電性粒子の表面及び電極の表面の酸化膜を突起が貫通しやすいため、電極間の接続抵抗を低くすることができ、導通信頼性を高めることができる。さらに、電極を表面に有する接続対象部材によっては、高い圧力での電極間の電気的な接続が求められることがある。本発明に係る導電性粒子を用いることで、電極間を高い圧力で接続したとしても、接続後に接続抵抗を効果的に低くすることができる。さらに、折れた突起による絶縁不良の発生を抑えることができ、絶縁信頼性を高めることができる。
なお、本発明に係る導電性粒子では、表面に導電部が形成されているので、導電性粒子と呼ぶが、本発明に係る導電性粒子の用途は、導電接続用途に限定されない。本発明に係る導電性粒子は、導電性が求められる用途以外にも用いることができる。例えば、本発明に係る導電性粒子は、ギャップ制御材(スペーサ)としても用いることができる。
上記第1の導電部は外表面に突起を有さない。なお、上記第1の導電部の外表面に、微小な凹凸があってもよい。高さが10nm未満である凸部は、突起に含まれないこととする。第1の導電部における高さが10nm未満である凸部は、例えば、接続抵抗の低減にさほど寄与しない。
上記線状の欠陥による悪影響を防ぐ観点からは、更に導通信頼性を効果的に高める観点からは、上記導電性粒子は、第3の導電部を備え、上記第2の導電部の外表面上に上記第3の導電部が配置されていることが好ましい。上記第3の導電部は、外表面に突起を有することが好ましい。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥がある場合に、結晶の線欠陥の数は好ましくは8個以下、より好ましくは5個以下、更に好ましくは3個以下である。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部に、上記第1の導電部を厚み方向に貫通している結晶の線欠陥がないことが好ましい。導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第2の導電部に、上記第2の導電部を厚み方向に貫通している結晶の線欠陥がないことが好ましい。導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部に結晶の線欠陥がないことが好ましい。導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第2の導電部に結晶の線欠陥がないことが好ましい。
上記結晶の線欠陥を、本発明に係る導電性粒子において最適化するためには、主金属に対して共析させる金属の割合、めっき反応速度、めっき浴中のpH、温度などの最適化が必要である。
上記導電部における結晶の線欠陥を発生し難くする方法としては、Ni導電部中のリン含有量の増加による結晶の微細化、Ni導電部中のボロン含有量の増加による微細化、めっき液中の有機系光沢剤の添加による微細化、並びに金属系光沢剤の添加による微細化が挙げられる。特にNi導電部中のリン又はボロン含有量の増加、めっき液中の有機系光沢剤の添加が、導電部における結晶の線欠陥を発生させない効果が高い。
ニッケルめっき導電部中のリン又はボロン含有量を増加させる方法としては、めっき液のpHを低くしてニッケルめっき液の反応の速度を遅くする方法、ニッケルめっき液の温度下げる方法、ニッケルめっき液中のリン系還元剤及びボロン系還元剤の濃度を高くする方法、ニッケルめっき液中の錯化剤濃度を高くする方法等が挙げられる。これらの方法は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記有機系光沢剤としては、サッカリン、ナフタレンジスルホン酸ナトリウム、ナフタレントリスルホン酸ナトリウム、アリルスルホン酸ナトリウム、プロパギルスルホン酸ナトリウム、ブチンジオール、プロパギルアルコール、クマリン、ホルマリン、エトキシ化ポリエチレンイミン、ポリアルキルイミン、ポリエチレンイミン、ゼラチン、デキストリン、チオ尿素、ポリビニルアルコール、ポリエチレングリコール、ポリアクリルアミド、ケイ皮酸、ニコチン酸及びベンザルアセトン等が挙げられる。上記有機系光沢剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記有機系光沢剤の好ましい例としては、エトキシ化ポリエチレンイミン、ポリアルキルイミン、ポリエチレンイミン、及びポリエチレングリコール等が挙げられる。
さらに、上記導電部における結晶の線欠陥を発生し難くする方法としては、金属安定剤のめっき液への添加が挙げられる。上記金属安定剤の添加により、めっき液の安定性が向上し、結晶の線欠陥が少なく、基材粒子への被覆性が良いめっき膜が形成される。
上記金属安定剤としては、鉛化合物、ビスマス化合物、タリウム化合物、及びバナジウム化合物等が挙げられる。上記金属安定剤の具体例としては、化合物を構成する金属(鉛、ビスマス、タリウム、バナジウム)の硫酸塩、炭酸塩、酢酸塩、硝酸塩及び塩酸塩等が挙げられる。環境への影響を考慮すると、ビスマス化合物、タリウム化合物又はバナジウム化合物が好ましい。
上記導電部における結晶の線欠陥を発生し難くする方法としては、めっき前処理のパラジウム触媒処理工程にて、パラジウムイオン又はパラジウムコロイドを基材粒子に均一かつ緻密に吸着させることが好ましい。均一かつ緻密にパラジウムイオン又はパラジウムコロイドを吸着させることで、基材粒子への金属めっき被覆性が向上し、基材粒子と導電部との界面に、結晶の線欠陥が発生し難くなる。また、パラジウム触媒液の濃度、処理温度、及び処理時間を最適化することで、導電部における結晶の線欠陥を発生し難くすることができる。
上記導電部における結晶の線欠陥を発生し難くする方法としては、Ni導電部の結晶性を高める方法が挙げられる。Ni導電部中のNi純度を高めることにより、通常のリン系還元剤及びボロン系還元剤を用いた、リン又はボロンを含有するNi導電部と比べて、極端に結晶を粗大化することができ、結晶配向を制御することができる。極端に結晶を粗大化することにより、結晶の線欠陥の起点となる、不純物による点欠陥を最小限に抑えることができ、導電部における結晶の線欠陥を発生し難くすることができる。
ニッケルめっき導電部中のNi純度を高める方法としては、リン系還元剤及びボロン系還元剤を含まない無電解ニッケルめっき液を用いる方法が好ましい。リン系還元剤及びボロン系還元剤を含まない還元剤としては、3価のチタン化合物、及びヒドラジン化合物等が挙げられる。上記還元剤の具体例としては、三塩化チタン、硫酸ヒドラジニウム、及びヒドラジン一水和物等が挙げられる。
上記導電部における上記第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥を発生し難くする方法としては、結晶子サイズの異なる導電層を積層構造にする方法が好ましい。結晶子サイズが小さい導電層を第1の導電部に形成し、第1の導電部よりも結晶子サイズが大きい第2の導電部を形成することにより、第1の導電部と上記第2の導電部とを厚み方向に貫通している結晶の線欠陥を発生し難くすることができる。更には、結晶子サイズが小さい導電層を第1の導電部に形成し、第1の導電部よりも結晶子サイズが大きい第2の導電部を形成し、第2の導電部よりも結晶子サイズが小さい第3の導電部を形成することで、第1の導電部と第2の導電部と上記第3の導電部を厚み方向に貫通している結晶の線欠陥を発生し難くすることができる。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部の厚みは好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは20nmを超え、特に好ましくは25nm以上である。上記第1の導電部の厚みの上限は特に限定されない。上記第1の導電部の厚みは1000nm以下であってもよく、500nm以下であってもよい。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部のビッカース硬度は好ましくは50以上、より好ましくは100以上である。上記第1の導電部のビッカース硬度の上限は特に限定されず、上記第1の導電部は硬いほどよい。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部のビッカース硬度は、上記第2の導電部のビッカース硬度よりも高いことが好ましい。この場合に、導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部のビッカース硬度と、上記第2の導電部のビッカース硬度との差の絶対値は好ましくは10以上、より好ましくは50以上である。上記第1の導電部のビッカース硬度と、上記第2の導電部のビッカース硬度との差の絶対値の上限は特に限定されない。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部のビッカース硬度は、上記第3の導電部のビッカース硬度よりも高いことが好ましい。この場合に、導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部のビッカース硬度と、上記第3の導電部のビッカース硬度との差の絶対値は好ましくは10以上、より好ましくは50以上である。上記第1の導電部のビッカース硬度と、上記第3の導電部のビッカース硬度との差の絶対値の上限は特に限定されない。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の導電部は、ニッケルを含むことが好ましい。ニッケルを含む導電部には、ニッケル合金を含む導電部が含まれる。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記導電性粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは1500N/mm以上、より好ましくは3500N/mm以上であり、好ましくは80000N/mm以下、より好ましくは60000N/mm以下である。
上記導電性粒子の上記圧縮弾性率(10%K値)は、以下のようにして測定できる。
微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
10%K値(N/mm)=(3/21/2)・F・S−3/2・R−1/2
F:導電性粒子が10%圧縮変形したときの荷重値(N)
S:導電性粒子が10%圧縮変形したときの圧縮変位(mm)
R:導電性粒子の半径(mm)
導通信頼性及び絶縁信頼性をより一層高める観点からは、複数の上記突起の平均高さは、好ましくは5nm以上、より好ましくは10nm以上であり、好ましくは1000nm以下、より好ましくは500nm以下である。
上記突起の平均高さは、導電性粒子1個に含まれる複数の突起の高さの平均である。上記突起の高さは、導電性粒子の中心と突起の先端とを結ぶ線(図1に示す破線L1)上における、突起が無いと想定した場合の導電部の仮想線(図1に示す破線L2)上(突起が無いと想定した場合の球状の導電性粒子の外表面上)から突起の先端までの距離を示す。すなわち、図1においては、破線L1と破線L2との交点から突起の先端までの距離を示す。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記導電性粒子における最も外側に位置する導電部の外表面の全表面積100%中、突起がある部分の表面積は好ましくは5%以上、より好ましくは25%以上であり、好ましくは98%以下、より好ましくは70%以下である。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第2の導電部の外表面の全表面積100%中、上記突起がある部分の表面積は好ましくは5%以上、より好ましくは25%以上であり、好ましくは98%以下、より好ましくは70%以下である。
導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第3の導電部の外表面の全表面積100%中、上記突起がある部分の表面積は好ましくは5%以上、より好ましくは25%以上であり、好ましくは98%以下、より好ましくは70%以下である。
導通信頼性を効果的に高める観点からは、上記導電性粒子の荷重値1mNでの変形率は、好ましくは3%以上、より好ましくは30%以上であり、好ましくは60%以下、より好ましくは36%以下である。導通信頼性を効果的に高める観点からは、上記導電性粒子の荷重値5mNでの変形率は、好ましくは10%以上、より好ましくは45%以上であり、好ましくは70%以下、より好ましくは55%以下である。導通信頼性を効果的に高める観点からは、上記導電性粒子の荷重値1mNでの圧縮回復率は、好ましくは5%以上、より好ましくは8%以上であり、好ましくは80%以下、より好ましくは15%以下である。導通信頼性を効果的に高める観点からは、上記導電性粒子の荷重値5mNでの圧縮回復率は、好ましくは5%以上、より好ましくは25%以上であり、好ましくは60%以下、より好ましくは35%以下である。
導電性粒子の変形率及び圧縮回復率は、以下のようにして測定できる。
試料台上に導電性粒子を散布する。散布された導電性粒子1個について、微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、導電性粒子の中心方向に、25℃で、導電性粒子に1mN又は5mN(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。荷重速度は0.33mN/秒とする。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重−圧縮変位を測定する。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
圧縮回復率(%)=[(L1−L2)/L1]×100
L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
圧縮変形率(%)=L1/D×100
L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
D:導電性粒子の直径
以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより、本発明を明らかにする。なお、参照した図面では、大きさ及び厚みなどは、図示の便宜上、実際の大きさ及び厚みから適宜変更している。各実施形態における異なる部分構成は、適宜置き換えて、組み合わせることが可能である。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。
図1に示すように、導電性粒子1は、基材粒子2と、第1の導電部3(導電層)と、第2の導電部4(導電層)と、絶縁性物質5を備える。導電性粒子1では、多層の導電部が形成されている。
導電性粒子1では、透過型電子顕微鏡による観察で、第1の導電部3と第2の導電部4とに、第1の導電部3と第2の導電部4とを厚み方向に貫通している結晶の線欠陥がないか、又は第1の導電部3と第2の導電部4とを厚み方向に貫通している結晶の線欠陥が10個以下で存在する。
第1の導電部3は、基材粒子2の外表面上に配置されている。第1の導電部3は、基材粒子2に接している。基材粒子2と第2の導電部4との間に、第1の導電部3が配置されている。第2の導電部4は、第1の導電部3の外表面上に配置されている。第2の導電部4は、第1の導電部3に接している。導電性粒子1は、基材粒子2の外表面が第1の導電部3及び第2の導電部4により被覆された被覆粒子である。第2の導電部4は、導電性粒子1における最も外側に位置する導電部である。第2の導電部4の外表面上に他の導電部は配置されていない。
導電性粒子1は、第1の導電部3の外表面に突起を有さない。導電性粒子1は、第2の導電部4の外表面に複数の突起1aを有する。第1の導電部3は外表面に、突起を有さない。第1の導電部の外表面形状は球状である。第2の導電部4は外表面に、複数の突起4aを有する。突起1a,4aは複数である。
突起1a,4aの形状は球体の一部である。
なお、第2の導電部4の外表面は防錆処理されている。導電性粒子1は、第2の導電部4の外表面上に、図示しない防錆膜が形成されている。
導電性粒子1は、第2の導電部4の外表面上に配置された絶縁性物質5を備える。第2の導電部4の外表面の少なくとも一部の領域が、絶縁性物質5により被覆されている。絶縁性物質5は、絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、第2の導電部の外表面上に配置された絶縁性物質を備えていてもよい。
図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。
図2に示すように、導電性粒子1Aは、基材粒子2と、第1の導電部3A(導電層)と、第2の導電部4A(導電層)とを備える。
導電性粒子1Aでは、透過型電子顕微鏡による観察で、第1の導電部3Aと第2の導電部4Aとに、第1の導電部3Aと第2の導電部4Aとを厚み方向に貫通している結晶の線欠陥がないか、又は第1の導電部3Aと第2の導電部4Aとを厚み方向に貫通している結晶の線欠陥が10個以下で存在する。
第1の導電部3Aは、基材粒子2の外表面上に配置されている。第1の導電部3Aは、基材粒子2に接している。基材粒子2と第2の導電部4Aとの間に、第1の導電部3Aが配置されている。第2の導電部4Aは、第1の導電部3Aの外表面上に配置されている。第2の導電部4Aは、第1の導電部3Aに接している。第2の導電部4Aは、導電性粒子1Aにおける最も外側に位置する導電部である。第2の導電部4Aの外表面上に他の導電部は配置されていない。
導電性粒子1Aは、第1の導電部3Aの外表面に突起を有さない。導電性粒子1Aは、第2の導電部4Aの外表面に複数の突起1Aaを有する。第1の導電部3Aは外表面に、突起を有さない。第1の導電部3Aの外表面形状は、球状である。第2の導電部4Aは外表面に、複数の突起4Aaを有する。突起1Aa,4Aaは複数である。
突起1Aa,4Aaの形状は、アスペクト比が1.5以上である形状である。このように突起の形状は特に限定されない。
なお、第2の導電部4Aの外表面は防錆処理されている。導電性粒子1Aは、第2の導電部4Aの外表面上に、図示しない防錆膜が形成されている。
導電性粒子1Aは、第2の導電部4Aの外表面上に絶縁性物質を備えていない。このように、本発明に係る導電性粒子は、第2の導電部の外表面上に絶縁性物質を備えていなくてもよい。
図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。
図3に示すように、導電性粒子1Bは、基材粒子2と、第1の導電部3B(導電層)と、第2の導電部4B(導電層)と、第3の導電部6B(導電層)と、絶縁性物質5を備える。
このように、本発明に係る導電性粒子は、第3の導電部を備えていてもよい。
導電性粒子1Bでは、透過型電子顕微鏡による観察で、第1の導電部3Bと第2の導電部4Bとに、第1の導電部3Bと第2の導電部4Bとを厚み方向に貫通している結晶の線欠陥がないか、又は第1の導電部3Bと第2の導電部4Bとを厚み方向に貫通している結晶の線欠陥が10個以下で存在する。第1の導電部3Bと第2の導電部4Bとを厚み方向に貫通している結晶の線欠陥は、第1の導電部3Bと第2の導電部4Bと第3の導電部6Bを厚み方向に貫通している結晶の線欠陥であってもよく、第1の導電部3Bと第2の導電部4Bと第3の導電部6Bを厚み方向に貫通していない結晶の線欠陥であってもよい。
第1の導電部3Bは、基材粒子2の外表面上に配置されている。第1の導電部3Bは、基材粒子2に接している。基材粒子2と第2の導電部4Bとの間に、第1の導電部3Bが配置されている。第2の導電部4Bは、第1の導電部3Bの外表面上に配置されている。第2の導電部4Bは、第1の導電部3Bに接している。第1の導電部3Bと第3の導電部6Bとの間に、第2の導電部4Bが配置されている。第3の導電部6Bは、第2の導電部4Bの外表面上に配置されている。第3の導電部6Bは、第2の導電部4Bに接している。第3の導電部6Bは、導電性粒子1Bにおける最も外側に位置する導電部である。第3の導電部6Bの外表面上に他の導電部は配置されていない。
導電性粒子1Bは、第1の導電部3Bの外表面に突起を有さない。導電性粒子1Bは、第3の導電部6Bの外表面に複数の突起1Baを有する。第1の導電部3Bは外表面に、突起を有さない。第1の導電部3Bの外表面形状は、球状である。第2の導電部4Bは外表面に、複数の突起4Baを有する。第3の導電部6Bは外表面に、複数の突起6Baを有する。突起1Ba,4Ba,6Baは複数である。
なお、第3の導電部6Bの外表面は防錆処理されている。導電性粒子1Bは、第3の導電部6Bの外表面上に、図示しない防錆膜が形成されている。
導電性粒子1Bは、第3の導電部6Bの外表面上に配置された絶縁性物質5を備える。第3の導電部6Bの外表面の少なくとも一部の領域が、絶縁性物質5により被覆されている。このように、本発明に係る導電性粒子は、第3の導電部の外表面上に配置された絶縁性物質を備えていてもよい。
また、図5に、本発明の一実施形態に係る導電性粒子の断面画像を示した。
図7は、従来の導電性粒子を示す断面図である。
図7に示すように、導電性粒子101は、基材粒子102と、第1の導電部103と、第2の導電部104と、絶縁性物質105とを備える。第1の導電部103は、基材粒子102の外表面上に配置されている。第2の導電部104は、第1の導電部103の外表面上に配置されている。導電性粒子101は、第2の導電部104の外表面に複数の突起101aを有する。第2の導電部104は外表面に、複数の突起104aを有する。突起101a,104aは複数である。導電性粒子101は、第2の導電部104の外表面上に配置された絶縁性物質105を有する。
導電性粒子101では、透過型電子顕微鏡による観察で、第1の導電部103と第2の導電部104とに、第1の導電部103と上記第2の導電部104とを厚み方向に貫通している結晶の線欠陥Xが10個を超えて存在する。このため、導電性粒子101を用いて電極間を電気的に接続すると、導通信頼性及び絶縁信頼性が低くなる。
また、図8に、従来の導電性粒子の断面画像を示した。
以下、導電性粒子の詳細を説明する。なお、以下の説明において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。
[基材粒子]
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが更に好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、電極間の電気的な接続に、より一層適した導電性粒子が得られる。
上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の接続抵抗がより一層低くなる。
上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
上記有機コアを形成するための材料としては、上述した樹脂粒子を形成するための樹脂等が挙げられる。
上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。
上記コアの粒径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記コアの粒径が上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。例えば、上記コアの粒径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
上記コアの粒径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒径は、コアを任意の粒径測定装置により測定した平均粒径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析などの原理を用いた粒度分布測定機が利用できる。
上記シェルの厚みは、好ましくは100nm以上、より好ましくは200nm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。
上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、より一層好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは100μm以下、更に好ましくは50μm以下、更に一層好ましくは30μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに、基材粒子の表面に導電部を無電解めっきにより形成する際に凝集し難くなり、凝集した導電性粒子が形成されにくくなる。基材粒子の平均粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗がより一層低くなり、更に電極間の間隔が狭くなる。
上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
[導電部]
上記導電性粒子は、上記導電部として、上記第1の導電部と上記第2の導電部とを有する。上記導電部、上記第1の導電部及び上記第2の導電部に含まれる金属としては、ニッケル、金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、イリジウム、コバルト、インジウム、パラジウム、ロジウム、ルテニウム、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及び錫ドープ酸化インジウム(ITO)等が挙げられる。これらの金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。
電極間に導電性粒子を効率的に配置し、かつ電極間の接続抵抗を効果的に低くする観点からは、上記第1の導電部は、金、銅、ニッケル又はパラジウムを含むことが好ましく、ニッケルを含むことが好ましい。電極間に導電性粒子を効率的に配置し、かつ電極間の接続抵抗を効果的に低くする観点からは、上記第2の導電部は、金、銅、ニッケル又はパラジウム、ルテニウムを含むことが好ましく、ニッケルを含むことが好ましい。電極間に導電性粒子を効率的に配置し、かつ電極間の接続抵抗を効果的に低くする観点からは、上記第3の導電部は、金、銅、ニッケル又はパラジウム、ルテニウムを含むことが好ましく、ニッケルを含むことが好ましい。
ニッケルを含む導電部には、金属として、ニッケルのみを用いた場合だけでなく、ニッケルと他の金属とを用いた場合も含まれる。上記ニッケルを含む導電部は、ニッケル合金部であってもよい。
上記ニッケルを含む導電部は、ニッケルを主金属として含むことが好ましい。上記ニッケルを含む導電部100重量%中、ニッケルの含有量(平均含有量)は50重量%以上であることが好ましい。上記ニッケルを含む導電部100重量%中、ニッケルの含有量は好ましくは65重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上である。ニッケルの含有量が上記下限以上であると、電極間の接続抵抗がより一層低くなる。
上記ニッケルを含む導電部は、銅、タングステン又はモリブデンを含むことが好ましく、タングステン又はモリブデンを含むことがより好ましい。銅、タングステン又はモリブデンの使用により、電極間の接続抵抗がより一層低くなる。上記ニッケルを含む導電部100重量%中、銅の含有量、タングステンの含有量及びモリブデンの含有量は好ましくは0.1重量%以上、より好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは10重量%以下である。銅の含有量、タングステンの含有量及びモリブデンの含有量が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。
電極間の接続抵抗をより一層低くする観点からは、上記ニッケルを含む導電部はリン又はボロンを含むことが好ましく、リンを含むことがより好ましい。上記ニッケルを含む導電部はボロンを含んでいてもよい。上記ニッケルを含む導電部100重量%中、リンの含有量及びボロンの含有量は好ましくは0重量%を超え、より好ましくは0.1重量%以上、更に好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。リンの含有量及びボロンの含有量が上記下限以上及び上記上限以下であると、接続抵抗がより一層低くなる。
電極間の接続抵抗をより一層低くし、かつ高温高湿下での電極間の接続信頼性をより一層高めるために、上記ニッケルを含む導電部100重量%中、リンの含有量は15重量%未満であることがより好ましい。電極間の低い接続抵抗と、高温高湿下での電極間の高い接続信頼性との双方を効果的に発現させる観点からは、上記ニッケルを含む導電部100重量%中、リンの含有量は0重量%を超え、より好ましくは0.1重量%以上、更に好ましくは2重量%以上である。リンの含有量が上記下限以上であると、接続抵抗がより一層低くなる。接続抵抗をより一層低くする観点からは、上記ニッケルを含む導電部100重量%中、リンの含有量は好ましくは13重量%以下、より好ましくは11重量%以下、更に好ましくは3重量%以下である。
上記第1の導電部及び上記第2の導電部がニッケルを含み、上記ニッケルを含む導電層の第1の導電部において、リンの平均含有量が5重量%以下であり、上記ニッケルを含む第2の導電部において、リンの平均含有量が5重量%以上であることが好ましい。上記第3の導電部がニッケルを含むことが好ましい。上記ニッケルを含む第3の導電部において、リンの平均含有量が5重量%以上であることが好ましい。第1の導電部におけるリンの平均含有量が5重量%未満であってもよい。第2の導電部におけるリンの平均含有量が5重量%を超えていてもよい。第3の導電部におけるリンの平均含有量が5重量%を超えていてもよい。
酸の存在下での導電層の腐食をより一層生じ難くする観点からは、上記第2の導電部におけるリンの平均含有量は好ましくは5重量%以上である。導電性をより一層高める観点からは、上記第2の導電部におけるリンの含有量は好ましくは20重量%以下である。
酸の存在下での導電層の腐食をより一層生じ難くする観点からは、上記第3の導電部におけるリンの平均含有量は好ましくは5重量%以上である。導電性をより一層高める観点からは、上記第3の導電部におけるリンの含有量は好ましくは20重量%以下である。
酸の存在下での導電層の腐食を効果的に抑える観点からは、上記第2の導電部におけるリンの平均含有量は、上記第1の導電部におけるリンの平均含有量よりも多いことが好ましく、1重量%以上多いことが好ましい。
酸の存在下での導電層の腐食を効果的に抑える観点からは、上記第3の導電部におけるリンの平均含有量は、上記第1の導電部におけるリンの平均含有量よりも多いことが好ましく、1重量%以上多いことが好ましい。
結晶の線欠陥を発生し難くし導電性をより一層高める観点からは、上記第1の導電部におけるリンの平均含有量は好ましくは5重量%以下である。導電性をより一層高める観点からは、上記第1の導電部におけるリンの含有量は好ましくは3重量%以下である。
また、上記第1の導電部及び上記第2の導電部がニッケルを含み、上記ニッケルを含む導電層の第1の導電部において、ボロンの平均含有量が3重量%以下であり、上記ニッケルを含む第2の導電部において、ボロンの平均含有量が3重量%以上であることが好まししい。上記第3の導電部がニッケルを含むことが好ましい。上記ニッケルを含む第3の導電部において、ボロンの平均含有量が3重量%以上であることが好まししい。第1の導電部におけるボロンの平均含有量が3重量%未満であってもよい。第2の導電部におけるボロンの平均含有量が3重量%を超えていてもよい。第3の導電部におけるボロンの平均含有量が3重量%を超えていてもよい。
酸の存在下での導電層の腐食をより一層生じ難くする観点からは、上記第2の導電部におけるボロンの平均含有量は好ましくは3重量%以上である。導電性をより一層高める観点からは、上記第2の導電部におけるリンの含有量は好ましくは20重量%以下であり、上記第2の導電部におけるボロンの含有量は好ましくは20重量%以下である。
酸の存在下での導電層の腐食をより一層生じ難くする観点からは、上記第3の導電部におけるボロンの平均含有量は好ましくは3重量%以上である。導電性をより一層高める観点からは、上記第3の導電部におけるリンの含有量は好ましくは20重量%以下であり、上記第3の導電部におけるボロンの含有量は好ましくは20重量%以下である。
酸の存在下での導電層の腐食を効果的に抑える観点からは、上記第2の導電部におけるボロンの平均含有量は、上記第1の導電部におけるボロンの平均含有量よりも多いことが好ましく、1重量%以上多いことが好ましい。
酸の存在下での導電層の腐食を効果的に抑える観点からは、上記第3の導電部におけるボロンの平均含有量は、上記第1の導電部におけるボロンの平均含有量よりも多いことが好ましく、1重量%以上多いことが好ましい。
結晶の線欠陥を発生し難くし導電性をより一層高める観点からは、上記第1の導電部におけるボロンの平均含有量は好ましくは3重量%以下である。導電性をより一層高める観点からは、上記第1の導電部におけるボロンの含有量は好ましくは2重量%以下である。
導電性をより一層高める観点からは、上記第1の導電部におけるタングステンの平均含有量は好ましくは1重量%以上である。導電性をより一層高める観点からは、上記第1の導電部におけるタングステンの含有量は好ましくは30重量%以下である。
酸の存在下での導電層の腐食を効果的に抑える観点からは、上記第2の導電部におけるタングステンの平均含有量は、上記第1の導電部におけるタングステンの平均含有量よりも多いことが好ましく、1重量%以上多いことが好ましい。
酸の存在下での導電層の腐食を効果的に抑える観点からは、上記第3の導電部におけるタングステンの平均含有量は、上記第1の導電部におけるタングステンの平均含有量よりも多いことが好ましく、1重量%以上多いことが好ましい。
導電性を効果的に一層高める観点からは、上記第1の導電部におけるタングステンの平均含有量は、上記導電部(導電層)の全体の領域におけるタングステンの平均含有量よりも多いことが好ましく、0.5重量%以上多いことが好ましい。
上記導電部におけるニッケル、ボロン及びリンの含有量を制御する方法としては、例えば、無電解ニッケルめっきにより導電部を形成する際に、ニッケルめっき液のpHを制御する方法、無電解ニッケルめっきにより導電部を形成する際に、ボロン含有還元剤の濃度を調整する方法、無電解ニッケルめっきにより導電部を形成する際に、リン含有還元剤の濃度を調整する方法、並びにニッケルめっき液中のニッケル濃度を調整する方法等が挙げられる。
上記第1の導電部の厚み、上記第2の導電部及び上記第3の導電部の各厚みはそれぞれ、好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは30nm以上、特に好ましくは100nm以上であり、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、特に好ましくは150nm以下である。上記第1の導電部の厚み、上記第2の導電部及び上記第3の導電部の厚みが上記下限以上及び上記上限以下であると、電極の表面の酸化被膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。上記厚みは、導電性粒子における上記第1の導電部の平均厚み、上記第2の導電部の平均厚み及び上記第3の導電部の平均厚みを示す。
上記第1の導電部と上記第2の導電部との合計の厚みはそれぞれ、好ましくは30nm以上、より好ましくは50nm以上であり、好ましくは1000nm以下、より好ましくは500nm以下である。上記第1の導電部と上記第2の導電部との合計の厚みが上記下限以上及び上記上限以下であると、電極の表面の酸化被膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。
上記第1の導電部と上記第2の導電部と上記第3の導電部の合計の厚みはそれぞれ、好ましくは30nm以上、より好ましくは50nm以上、更に好ましくは60nm以上であり、好ましくは1000nm以下、より好ましくは650nm以下、更に好ましくは500nm以下である。上記第1の導電部と上記第2の導電部と上記第3の導電部との合計の厚みが上記下限以上及び上記上限以下であると、電極の表面の酸化被膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。
上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは4.0μm以下、特に好ましくは5.0μm以下である。上記導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くなる。
上記導電性粒子の粒子径は、導電性粒子が真球状である場合には、直径を示し、導電性粒子が真球状ではない場合には、最大径を示す。
導電部の最も外側に位置する最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層又はパラジウム層であることがより好ましく、金層であることが特に好ましい。最外層がこれらの好ましい導電部である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。
粒子の表面上に導電部を形成する方法は特に限定されない。導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを粒子の表面にコーティングする方法等が挙げられる。なかでも、導電部の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
また、第1の導電部を形成する際に、カーボンナノチューブを複合めっきすることで、割れ難くすることができる。
第2の導電部及び第3の導電部に突起を形成する方法としては、還元剤を用いて金属錯体の還元反応により金属核を生成し、金属核を導電部に吸着することで析出突起を形成する方法、金属芯材又は無機芯材をめっき液中に添加し複合めっきにより複合突起を形成する方法等が挙げられる。
電極間の接続抵抗をより一層低くし、かつ高温高湿下での電極間の接続信頼性をより一層高める観点では、還元剤を用いて金属錯体の還元反応により金属核を生成し、金属核を導電部に吸着することで析出突起を形成する方法が好ましい。
無電解めっきにより形成する方法では、一般的に、触媒化工程と、無電解めっき工程とが行われる。以下、無電解めっきにより、樹脂粒子の表面に、ニッケルとリンとを含む合金めっき層を形成する方法の一例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が好適に用いられる。また、上記還元剤として、ボロン含有還元剤を用いることで、ボロンを含む導電層を形成できる。
上記無電解めっき工程では、ニッケル含有化合物及び上記リン含有還元剤を含むニッケルめっき浴が好適に用いられる。ニッケルめっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、ニッケルを析出させることができ、ニッケルとリンとを含む導電層を形成できる。
上記ニッケル含有化合物としては、硫酸ニッケル及び塩化ニッケル等が挙げられる。上記ニッケル含有化合物は、ニッケル塩であることが好ましい。
上記リン含有還元剤としては、次亜リン酸ナトリウム等が挙げられる。上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。
無電解めっきにより形成する方法では、一般的に、触媒化工程と、無電解めっき工程とが行われる。以下、無電解めっきにより、樹脂粒子の表面に、ニッケルを含む合金めっき層及び第2の導電部の外表面に突起を形成する方法の例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む導電層を形成できる。
上記無電解めっき工程では、ニッケル含有化合物、錯化剤、還元剤、金属安定剤を含有するめっき液を用いる無電解ニッケル−ボロン合金めっき方法において、還元剤としてボロン含有還元剤を含むニッケル−ボロン合金めっき液を用いることが好ましい。
ニッケル−ボロン合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、ニッケル−ボロン合金を析出させることができ、ニッケル及びボロンを含む導電層を形成できる。
上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。
上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。上記ボロン含有還元剤に加えて、リン含有還元剤を用いてもよい。上記リン含有還元剤としては、次亜リン酸、及び次亜リン酸ナトリウムが挙げられる。
上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL−リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤、並びに、これらの塩からなる群より選択される少なくとも1種の錯化剤を含有することが好ましい。
上記金属安定剤の添加により、めっき液の安定性が向上し、基材粒子への被覆性が良いめっき膜が形成される。金属安定剤としては、鉛化合物、ビスマス化合物、及びタリウム化合物、バナジウム化合物等が挙げられる。これらの安定剤の具体例としては、化合物を構成する金属(鉛、ビスマス、タリウム、バナジウム)の硫酸塩、炭酸塩、酢酸塩、硝酸塩及び塩酸塩等が挙げられる。環境への影響を考慮すると、ビスマス化合物又はタリウム化合物又はバナジウム化合物が好ましい。
第2の導電部の突起の平均高さは、めっき浴への浸漬時間又はめっき液の滴下速度で制御することができる。めっき温度は好ましくは30℃以上であり、好ましくは100℃以下であり、めっき時間は好ましく5分以上である。
上記のように、本発明に係る導電性粒子は、上記第2の導電部の外表面上に第3の導電部を備えていてもよい。この場合、上記結晶の線欠陥は第3の導電部に存在しないことが好ましい。このような導電粒子を得るためには、例えば上記の第1の導電部及び第2の導電部を有する導電性粒子を製造した後、第3の導電部を形成することによって得られる。
電極間に導電性粒子を効率的に配置し、かつ電極間の接続抵抗を効果的に低くする観点からは、上記第1の導電部は、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含むことが好ましく、ニッケルを含むことがより好ましい。
電極間に導電性粒子を効率的に配置し、かつ電極間の接続抵抗を効果的に低くする観点からは、上記第2の導電部は、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含むことが好ましく、ニッケルを含むことがより好ましい。
電極間に導電性粒子を効率的に配置し、かつ電極間の接続抵抗を効果的に低くする観点からは、上記第3の導電部は、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含むことが好ましく、ニッケルを含むことがより好ましい。
上記第1,2の導電部の金属の選択に関しては、上記第1,2の導電部がそれぞれ、ニッケル−タングステン−ボロン合金、ニッケル−タングステン−ボロン合金、又はニッケルを含むことが好ましい。上記第1,2,3の導電部の金属の選択に関しては、上記第1,2,3の導電部がそれぞれ、ニッケル−タングステン−ボロン合金、ニッケル−タングステン−ボロン合金、又はニッケルを含むことが好ましい。この場合、上記第2の導電部における硬度が上記第1の導電部におけるビッカース硬度よりも高いことが好ましい。例えば上記第2の導電部におけるボロンの含有量が上記第1の導電部におけるボロンの含有量よりも高いことが好ましい。
[絶縁性物質]
本発明に係る導電性粒子は、上記導電部の外表面上に配置された絶縁性物質を備えることが好ましい。上記導電性粒子における最も外側に位置する導電部が第2の導電部である場合に、上記第2の導電部の外表面に、上記絶縁性物質を配置することができる。上記導電性粒子における最も外側に位置する導電部が第3の導電部である場合に、上記第3の導電部の外表面に、上記絶縁性物質を配置することができる。絶縁性物質を有する導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。導電部が外表面に複数の突起を有するので、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。
電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。
上記絶縁性物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。
上記導電部の表面上に絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁性物質が脱離し難いことから、上記導電部の表面に、化学結合を介して上記絶縁性物質を配置する方法が好ましい。
上記導電部の外表面、及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。導電部の外表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミンなどの高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していても構わない。
上記絶縁性物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁性物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁性物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電部同士が接触し難くなる。絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
上記絶縁性物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁性物質の平均径は、粒度分布測定装置等を用いて求められる。
[防錆処理]
導電性粒子の腐食を抑え、電極間の接続抵抗を低くするために、上記第2の導電部の外表面は防錆処理されていることが好ましい。
導通信頼性をより一層高める観点からは、上記第2の導電部の外表面は、炭素数6〜22のアルキル基を有する化合物により、防錆処理されていることが好ましい。上記第2の導電部の外表面は、リンを含まない化合物により防錆処理されていてもよく、炭素数6〜22のアルキル基を有しかつリンを含まない化合物により防錆処理されていてもよい。導通信頼性をより一層高める観点からは、上記第2の導電部の外表面は、アルキルリン酸化合物又はアルキルチオールにより、防錆処理されていることが好ましい。防錆処理により、第2の導電部の外表面上に、防錆膜を形成できる。
上記防錆膜は、炭素数6〜22のアルキル基を有する化合物(以下、化合物Aともいう)により形成されていることが好ましい。上記第2の導電部の外表面は、上記化合物Aにより表面処理されていることが好ましい。上記アルキル基の炭素数が6以上であると、導電部全体で錆がより一層生じ難くなる。上記アルキル基の炭素数が22以下であると、導電性粒子の導電性が高くなる。導電性粒子の導電性をより一層高める観点からは、上記化合物Aにおける上記アルキル基の炭素数は16以下であることが好ましい。上記アルキル基は直鎖構造を有していてもよく、分岐構造を有していてもよい。上記アルキル基は、直鎖構造を有することが好ましい。
(導電材料)
本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は回路接続材料であることが好ましい。
上記バインダー樹脂は特に限定されない。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化性樹脂、熱硬化性樹脂、光硬化性樹脂又は湿気硬化性樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
(接続構造体)
本発明に係る導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。上記接続部が、上述した導電性粒子により形成されているか、又は、上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されていることが好ましい。
上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材を接続している接続部とを備え、該接続部の材料が、上述した導電性粒子であるか、又は、上述した導電性粒子とバインダー樹脂とを含む導電材料である接続構造体であることが好ましい。上記接続部が上述した導電性粒子により形成されているか、又は、上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されていることが好ましい。
図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。
図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1とバインダー樹脂(硬化したバインダー樹脂など)とを含む。接続部54は、導電性粒子1を含む導電材料により形成されている。接続部54は、導電材料を硬化させることにより形成されていることが好ましい。なお、図4では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子1A,1Bなどの他の導電性粒子を用いてもよい。
第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。
上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板である電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、SUS電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
(実施例1)
基材粒子Aとして、粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−203」)を用意した。
パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子A10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A)を得た。
懸濁液(A)を、硫酸ニッケル0.09mol/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmの溶液中に入れ、粒子混合液(B)を得た。
硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、及び硝酸ビスマス30ppmを含むニッケルめっき液(C)(pH8.0)を用意した。
また、ジメチルアミンボラン2.0mol/L、及び水酸化ナトリウム0.05mol/Lを含む突起形成めっき液(D)(pH10.0)を用意した。
40℃(めっき温度)に調整した分散状態の粒子混合液(B)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケル−ボロンめっきを行い、粒子混合液(E)を得た。ニッケルめっき液(C)の滴下速度は5mL/分で、滴下時間は30分間とした(第1の導電部めっき工程)。
その後、分散状態の粒子混合液(E)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は2mL/分で、滴下時間は50分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
その後、狙いの導電層の厚みにするために、分散状態の粒子混合液(E’)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C)の滴下速度は、25mL/分で、滴下時間は24分間とした(第2の導電部めっき工程)。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例2)
40℃に調整した分散状態の粒子混合液(B)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケル−ボロンめっきを行い、粒子混合液(E)を得た。ニッケルめっき液(C)の滴下速度は5mL/分で、滴下時間は75分間とした(第1の導電部めっき工程)。
その後、分散状態の粒子混合液(E)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は2mL/分で、滴下時間は50分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
その後、狙いの導電層の厚みにするために、分散状態の粒子混合液(E’)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C)の滴下速度は25mL/分で、滴下時間は15分間とした(第2の導電部めっき工程)。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例3)
40℃に調整した分散状態の粒子混合液(B)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケル−ボロンめっきを行い、粒子混合液(E)を得た。ニッケルめっき液(C)の滴下速度は5mL/分で、滴下時間は120分間とした(第1の導電部めっき工程)。
その後、分散状態の粒子混合液(E)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は2mL/分で、滴下時間は50分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
その後、狙いの導電層の厚みにするために、分散状態の粒子混合液(E’)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C)の滴下速度は25mL/分で、滴下時間は8分間とした(第2の導電部めっき工程)。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例4)
めっき温度を40℃から50℃に変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例5)
めっき温度を40℃から60℃に変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例6)
分散状態の粒子混合液(E)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は10mL/分で、滴下時間は10分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例7)
硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、硝酸ビスマス30ppm、及びタングステン酸ナトリウム0.05mol/Lを含むニッケルめっき液(D)(pH8.0)を用意した。Niめっき工程のニッケルめっき液(D)にタングステン酸ナトリウム0.05mol/Lを添加したこと以外は実施例1と同様にして、導電性粒子を得た。
このようにして、樹脂粒子の表面にニッケル−タングステン−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例8)
懸濁液(A)を、硫酸ニッケル0.09mol/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmの溶液中に入れ、粒子混合液(B)を得た。
硫酸ニッケル0.23mol/L、次亜リン酸ナトリウム0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、及び硝酸ビスマス30ppmを含むニッケルめっき液(C)(pH6.0)を用意した。
また、次亜リン酸ナトリウム2.5mol/L、及び水酸化ナトリウム0.05mol/Lを含む突起形成めっき液(D)(pH10.0)を用意した。
硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、及び硝酸ビスマス30ppmを含むニッケルめっき液(F)(pH8.0)を用意した。
60℃に調整した分散状態の粒子混合液(B)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケル−ボロンめっきを行い、粒子混合液(E)を得た。ニッケルめっき液(C)の滴下速度は、5mL/分で、滴下時間は30分間とした(第1の導電部めっき工程)。
その後、分散状態の粒子混合液(E)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は2mL/分で、滴下時間は50分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
その後、狙いの導電層の厚みにするために、分散状態の粒子混合液(E’)に上記ニッケルめっき液(F)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(F)の滴下速度は25mL/分で、滴下時間は24分間とした(第2の導電部めっき工程)。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−タングステン−リン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例9)
懸濁液(A)を、硫酸ニッケル0.09mol/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmの溶液中に入れ、粒子混合液(B)を得た。
硫酸ニッケル0.23mol/L、次亜リン酸ナトリウム0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、及び硝酸ビスマス30ppmを含むニッケルめっき液(C)(pH6.0)を用意した。
また、次亜リン酸ナトリウム2.5mol/L、及び水酸化ナトリウム0.05mol/Lを含む突起形成めっき液(D)(pH10.0)を用意した。
硫酸ニッケル0.23mol/L、次亜リン酸ナトリウム0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、及び硝酸ビスマス30ppmを含むニッケルめっき液(F)(pH8.0)を用意した。
60℃に調整した分散状態の粒子混合液(B)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケル−リンめっきを行い、粒子混合液(E)を得た。ニッケルめっき液(C)の滴下速度は5mL/分で、滴下時間は30分間とした(第1の導電部めっき工程)。
その後、分散状態の粒子混合液(E)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は2mL/分で、滴下時間は50分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
その後、狙いの導電層の厚みにするために、分散状態の粒子混合液(E’)に上記ニッケルめっき液(F)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(F)の滴下速度は、25mL/分で、滴下時間は24分間とした(第2の導電部めっき工程)。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−リン導電層(厚み0.11μm)を配置して、表面に突起を有する導電層である粒子を得た。
ニッケルを含む導電層の厚み方向における、ニッケル、リンの含有量の分布を測定した。集束イオンビームを用いて、得られた導電性粒子の薄膜切片を作製した。透過型電子顕微鏡FE−TEM(日本電子社製「JEM−2010FEF」)を用いて、エネルギー分散型X線分析装置(EDS)により、ニッケルを含む導電層の厚み方向におけるニッケル、リンの各含有量を測定した。ニッケルを含む第1の導電部及びニッケルを含む第2の導電部のEDS線分析プロファイルを図6に示す。
(実施例10)
基材粒子Aと粒子径のみが異なり、粒子径が2.5μmである基材粒子Bを用意した。上記基材粒子Aを上記基材粒子Bに変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例11)
基材粒子Aと粒子径のみが異なり、粒子径が10.0μmである基材粒子Cを用意した。上記基材粒子Aを上記基材粒子Cに変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例12)
粒子径が2.5μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−202」)の表面を、ゾルゲル反応による縮合反応を用いてシリカシェル(厚み250nm)により被覆したコアシェル型の有機無機ハイブリッド粒子(基材粒子D)を得た。上記基材粒子Aを上記基材粒子Dに変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例13)
攪拌機及び温度計が取り付けられた500mLの反応容器内に、0.13重量%のアンモニア水溶液300gを入れた。次に、反応容器内のアンモニア水溶液中に、メチルトリメトキシシラン4.1gと、ビニルトリメトキシシラン19.2gと、シリコーンアルコキシオリゴマー(信越化学工業社製「X−41−1053」)0.7gとの混合物をゆっくりと添加した。撹拌しながら、加水分解及び縮合反応を進行させた後、25重量%アンモニア水溶液2.4mLを添加した後、アンモニア水溶液中から粒子を単離して、得られた粒子を酸素分圧10−17atm、350℃で2時間焼成して、粒子径が3μmの有機無機ハイブリッド粒子(基材粒子E)を得た。上記基材粒子Aを上記基材粒子Eに変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(実施例14)
硫酸ニッケル0.09mol/L、硝酸タリウム30ppm及び硝酸ビスマス20ppm、ジメチルアミンボラン0.01mol/L、クエン酸ナトリウム0.05mol/L、を含む無電解ニッケルボロンめっき液(B2)(pH5.0)を用意した。
硫酸ニッケル0.23mol/L、硫酸ヒドラジニウム2.00mol/L及びグリシン0.25mol/Lを含む無電解純ニッケルめっき液(C2)(pH10.0)を用意した。
硫酸ヒドラジニウム2.5mol/L、及び水酸化ナトリウム0.05mol/Lを含む突起形成めっき液(D2)(pH10.0)を用意した。
第1の導電部めっき工程のニッケルめっき液(B)を無電解ニッケルボロンめっき液(B2)に変更し、突起形成工程の突起形成めっき液(D)を突起形成めっき液(D2)に変更し、第2の導電部めっき工程のニッケルめっき液(C)を無電解純ニッケルめっき液(C2)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
このようにして、樹脂粒子の表面に第1の導電層(厚み20nm)、及び第2の導電層として純ニッケル導電層(厚み80nm)を配置して、表面が突起を有する導電層である粒子を得た。
(実施例15)
硫酸ニッケル0.23mol/L、硫酸ヒドラジニウム2.00mol/L及びグリシン0.25mol/Lを含む無電解純ニッケルめっき液(C2)(pH10.0)を用意した。
また、硫酸ヒドラジニウム2.5mol/L、及び水酸化ナトリウム0.05mol/Lを含む突起形成めっき液(D2)(pH10.0)を用意した。
第1の導電部めっき工程及び第2の導電部めっき工程のニッケルめっき液(C)を無電解純ニッケルめっき液(C2)に変更し、突起形成工程の突起形成めっき液(D)を突起形成めっき液(D2)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
このようにして、樹脂粒子の表面に第1の導電層として純ニッケル導電層(厚み20nm)、第2の導電層として純ニッケル導電層(厚み80nm)を配置して、表面が突起を有する導電層である粒子を得た。
(実施例16)
基材粒子Aとして、粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−203」)を用意した。
パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子A10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A)を得た。
懸濁液(A)を、硫酸ニッケル0.09mol/L、硝酸タリウム30ppm及び硝酸ビスマス20ppmの溶液中に入れ、粒子混合液(B)を得た。
硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.5mol/L、クエン酸ナトリウム0.1mol/L、DL−りんご酸0.15mol/L、硝酸タリウム100ppm、硝酸ビスマス30ppm、及びタングステン酸ナトリウム0.05mol/Lを含むニッケルめっき液(C)(pH8.0)を用意した。
また、ジメチルアミンボラン2.0mol/L、及び水酸化ナトリウム0.05mol/Lを含む突起形成めっき液(D)(pH10.0)を用意した。
また、第3の導電部形成するために、純ニッケルめっき液(G)として、硫酸ニッケル0.12mol/L、硫酸ヒドラジニウム1.00mol/L及びグリシン0.15mol/Lを含む無電解純ニッケルめっき液(pH10.0)を用意した。
40℃に調整した分散状態の粒子混合液(B)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケル−ボロンめっきを行い、粒子混合液(E)を得た。ニッケルめっき液(C)の滴下速度は5mL/分で、滴下時間は30分間とした(第1の導電部めっき工程)。
その後、分散状態の粒子混合液(F)に上記突起形成めっき液(D)を徐々に滴下し、突起を形成し、粒子混合液(E’)を得た。突起形成めっき液(D)の滴下速度は2mL/分で、滴下時間は50分間とした。突起形成めっき液(D)の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った(突起形成工程)。
その後、狙いの導電層の厚みにするために、分散状態の粒子混合液(E’)に上記ニッケルめっき液(C)を徐々に滴下し、無電解ニッケルめっきを行い、粒子混合液(E’’)を得た。ニッケルめっき液(C)の滴下速度は、25mL/分で、滴下時間は24分間とした(第2の導電部めっき工程)。
その後、粒子混合液(E’’)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子Aの表面上に第1の導電部(厚み80nm)と第2の導電部(厚み40nm)が形成された粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(H)を得た。
その後、第3の導電層を形成するために、分散状態の懸濁液(H)に上記無電解純ニッケルめっき液(G)を徐々に滴下し、無電解純ニッケルめっきを行った。ニッケルめっき液(G)の滴下速度は25mL/分、滴下時間は10分間で、無電解純ニッケルめっきを行った。このようにして、懸濁液(I)を得た(第3の導電部めっき工程)。
その後、懸濁液(I)をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、第3の導電層として純ニッケル導電層(厚み30nm)を配置して、表面に突起を有する導電層である粒子を得た。
このようにして、樹脂粒子の表面に第1の導電層としてNiWB導電層(厚み80nm)、第2の導電層としてNiWB導電層(厚み40nm)、第3の導電層として純Ni導電層(厚み30nm)を配置して、表面が突起を有する導電層である粒子を得た。
(実施例17〜21)
基材粒子F〜Hは以下のようにして作製した。
基材粒子Fの作製:
エチレングリコールジメタクリレート800重量部と、スチレンモノマー200重量部とを混合し、混合液を得た。得られた混合液に過酸化ベンゾイル20重量部を加えて、均一に溶解するまで攪拌し、モノマー混合液を得た。分子量約1700のポリビニルアルコールを純水に溶解させた2重量%水溶液4000重量部を、反応釜に入れた。この中に、得られたモノマー混合液を入れ、4時間攪拌することで、モノマーの液滴が所定の粒径になるように、粒径を調整した。この後、85℃の窒素雰囲気下で9時間反応を行い、モノマー液滴の重合反応を行って、基材粒子Fを得た。
基材粒子Gの作製:
エチレングリコールジメタクリレート800重量部と、スチレンモノマー200重量部とを、1,4−ブタンジオールジアクリレート100重量部と、イソボルニルメタクリレート900重量部とに変更したこと以外は、基材粒子Fの作製と同様にして基材粒子Gを得た。
基材粒子Hの作製:
粒子径を表1の通り変更したこと以外は、基材粒子Gの作製と同様にして基材粒子Hを得た。
基材粒子Aを、下記の表1,2に示す基材粒子F〜Hのいずれかに変更し、ニッケル−ボロン導電層の厚み及び突起の状態を変更したこと以外は実施例1と同様して、表面が突起を有する導電層である粒子を得た。
(実施例22)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
実施例1で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(比較例1)
めっき温度を40℃から75℃に変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(比較例2)
金属ニッケル粒子スラリー(三井金属社製「2020SUS」、平均粒子径150nm)を用いて、実施例1で用いた樹脂粒子の表面に金属ニッケル粒子を付着させた後に、導電層を形成して、導電部の外表面に突起を形成した。
上記の変更をしたこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−ボロン導電層(厚み0.10μm)を配置して、表面に突起を有する導電層である粒子を得た。
(評価)
(1)導電部の結晶の線欠陥の有無(結晶の線欠陥の数)
3個の導電性粒子を無作為に選択した。電界放射型透過電子顕微鏡(FE−TEM)(日本電子社製「JEM−ARM200F」)を用いて、第1の導電部及び第2の導電部に、第1の導電部と第2の導電部とを厚み方向に貫通している結晶の線欠陥があるか否かを100万倍で評価した。
(2)導電性粒子の圧縮弾性率(10%K値)
得られた導電性粒子の上記圧縮弾性率(10%K値)を、23℃の条件で、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH−100」)を用いて測定した。10%K値を求めた。
(3)導通信頼性(接続抵抗の評価)
得られた導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN−5A」に添加し、分散させて、異方性導電ペーストを作製した。
L/Sが30μm/30μmであるITO電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが30μm/30μmである銅電極パターンを下面に有する半導体チップを用意した。
上記透明ガラス基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、0.5MPaの圧力をかけて異方性導電ペースト層を185℃で硬化させて、接続構造体を得た。接続構造体を得るために、電極間を0.5MPaの低圧で接続した。
得られた接続構造体15個の上下の電極間の接続抵抗を、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
[導通信頼性の判定基準]
○○○:接続抵抗が2.0Ω以下
○○:接続抵抗が2.0Ωを超え、3.0Ω以下
○:接続抵抗が3.0Ωを超え、5.0Ω以下
△:接続抵抗が5.0Ωを超え、10Ω以下
×:接続抵抗が10Ωを超える
(4)絶縁信頼性
上記(3)の評価で得られた接続構造体15個を、85℃及び湿度85%にて500時間放置した。放置後の接続構造体において、隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定して、絶縁抵抗の平均値を算出した。絶縁信頼性を下記の基準で判定した。
[絶縁信頼性の判定基準]
○○:絶縁抵抗が1000MΩ以上
○:絶縁抵抗が100MΩ以上、1000MΩ未満
△:絶縁抵抗が10MΩ以上、100MΩ未満
×:絶縁抵抗が10MΩ未満
(5)導電性粒子の変形率及び圧縮回復率の評価
実施例17〜21で得られた導電性粒子F〜Hを1mN及び5mNで圧縮したときの変形率と圧縮回復率を下記測定方法で、微小圧縮試験機(フィッシャー社製「フィッシャースコープH−100」)を用いて測定した。
試料台上に導電性粒子を散布した。散布された導電性粒子1個について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、導電性粒子の中心方向に、25℃で、導電性粒子に1mN又は5mN(反転荷重値)を与えた。荷重速度は0.33mN/sであった。その後、原点用荷重値(0.40mN)まで除荷を行った。この間の荷重−圧縮変位を測定し、上記式から変形率及び圧縮回復率を求めた。
結果を下記の表1〜3に示す。
Figure 2016080407
Figure 2016080407
Figure 2016080407
1,1A,1B…導電性粒子
1a,1Aa,1Ba…突起
2…基材粒子
3,3A,3B…第1の導電部(導電層)
4,4A,4B…第2の導電部(導電層)
4a,4Aa,4Ba…突起
5…絶縁性物質
6B…第3の導電部(導電層)
6Ba…突起
51…接続構造体
52…第1の接続対象部材
52a…第1の電極
53…第2の接続対象部材
53a…第2の電極
54…接続部

Claims (15)

  1. 基材粒子と、第1の導電部と、第2の導電部とを備え、
    前記基材粒子の外表面上に前記第1の導電部が配置されており、前記第1の導電部の外表面上に前記第2の導電部が配置されており、
    前記第1の導電部が外表面に突起を有さず、
    前記第2の導電部が外表面に複数の突起を有し、
    前記第2の導電部の前記突起の内側に芯物質が配置されておらず、
    透過型電子顕微鏡による観察で、前記第1の導電部と前記第2の導電部とに、前記第1の導電部と前記第2の導電部とを厚み方向に貫通している結晶の線欠陥がないか、又は前記第1の導電部と前記第2の導電部とを厚み方向に貫通している結晶の線欠陥が10個以下で存在する、導電性粒子。
  2. 前記第1の導電部の厚みが10nm以上である、請求項1に記載の導電性粒子。
  3. 前記第1の導電部のビッカース硬度が50以上である、請求項1又は2に記載の導電性粒子。
  4. 前記第1の導電部がニッケルを含む、請求項1〜3のいずれか1項に記載の導電性粒子。
  5. 10%圧縮したときの圧縮弾性率が、3500N/mm以上、60000N/mm以下である、請求項1〜4のいずれか1項に記載の導電性粒子。
  6. 複数の前記突起の平均高さが、5nm以上、1000nm以下である、請求項1〜5のいずれか1項に記載の導電性粒子。
  7. 前記導電性粒子における最も外側に位置する導電部の外表面の全表面積100%中、突起がある部分の表面積が5%以上である、請求項1〜6のいずれか1項に記載の導電性粒子。
  8. 前記第1の導電部が、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含む、請求項1〜7のいずれか1項に記載の導電性粒子。
  9. 前記第2の導電部が、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含む、請求項1〜8のいずれか1項に記載の導電性粒子。
  10. 前記導電性粒子における最も外側に位置する導電部の外表面上に配置された絶縁性物質を備える、請求項1〜9のいずれか1項に記載の導電性粒子。
  11. 第3の導電部を備え、
    前記第2の導電部の外表面上に前記第3の導電部が配置されている、請求項1〜10のいずれか1項に記載の導電性粒子。
  12. 前記第2の導電部が、前記第1の導電部に接するように前記第1の導電部の外表面上に配置されており、
    前記第3の導電部が、前記第2の導電部に接するように前記第2の導電部の外表面上に配置されている、請求項11に記載の導電性粒子。
  13. 前記第3の導電部が、銅、ニッケル、パラジウム、ルテニウム、ロジウム、銀、金、白金、イリジウム、コバルト、鉄、タングステン、モリブデン、リン及びホウ素からなる群から選択される少なくとも1種を含む、請求項11又は12に記載の導電性粒子。
  14. 請求項1〜13のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。
  15. 第1の電極を表面に有する第1の接続対象部材と、
    第2の電極を表面に有する第2の接続対象部材と、
    前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部の材料が、請求項1〜13のいずれか1項に記載の導電性粒子であるか、又は前記導電性粒子とバインダー樹脂とを含む導電材料であり、
    前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
JP2015560476A 2014-11-17 2015-11-17 導電性粒子、導電材料及び接続構造体 Active JP6668075B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014232997 2014-11-17
JP2014232997 2014-11-17
PCT/JP2015/082306 WO2016080407A1 (ja) 2014-11-17 2015-11-17 導電性粒子、導電材料及び接続構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020029621A Division JP2020095966A (ja) 2014-11-17 2020-02-25 導電性粒子、導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JPWO2016080407A1 true JPWO2016080407A1 (ja) 2017-08-24
JP6668075B2 JP6668075B2 (ja) 2020-03-18

Family

ID=56013942

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015560476A Active JP6668075B2 (ja) 2014-11-17 2015-11-17 導電性粒子、導電材料及び接続構造体
JP2020029621A Pending JP2020095966A (ja) 2014-11-17 2020-02-25 導電性粒子、導電材料及び接続構造体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020029621A Pending JP2020095966A (ja) 2014-11-17 2020-02-25 導電性粒子、導電材料及び接続構造体

Country Status (4)

Country Link
JP (2) JP6668075B2 (ja)
KR (1) KR102468513B1 (ja)
CN (1) CN107112072B (ja)
WO (1) WO2016080407A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095441B (zh) * 2017-09-20 2021-11-23 积水化学工业株式会社 含金属粒子、连接材料、连接结构体及连接结构体的制造方法、导通检查用部件以及导通检查装置
JPWO2019155924A1 (ja) 2018-02-06 2020-12-03 三菱マテリアル株式会社 銀被覆樹脂粒子
KR20210130152A (ko) * 2019-02-28 2021-10-29 세키스이가가쿠 고교가부시키가이샤 도전성 입자, 도전 재료 및 접속 구조체
KR102598343B1 (ko) * 2020-10-06 2023-11-06 덕산네오룩스 주식회사 도전입자, 도전재료 및 접속 구조체
JP2023544928A (ja) * 2020-10-06 2023-10-26 ドク サン ネオルクス カンパニー リミテッド 導電粒子、導電材料及び接続構造体
CN113828543B (zh) * 2021-09-13 2023-05-26 上海锐朗光电材料有限公司 一种用于芯片封装材料的银粉填充体筛选方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936678B2 (ja) 2005-04-21 2012-05-23 積水化学工業株式会社 導電性粒子及び異方性導電材料
JP4957838B2 (ja) * 2009-08-06 2012-06-20 日立化成工業株式会社 導電性微粒子及び異方性導電材料
JP2011100605A (ja) * 2009-11-05 2011-05-19 Hitachi Chem Co Ltd 回路接続材料及び、これを用いた回路部材の接続構造
JP5512306B2 (ja) * 2010-01-29 2014-06-04 日本化学工業株式会社 導電性粒子の製造方法
JP5184612B2 (ja) 2010-11-22 2013-04-17 日本化学工業株式会社 導電性粉体、それを含む導電性材料及びその製造方法
JP5941328B2 (ja) * 2012-04-10 2016-06-29 日本化学工業株式会社 導電性粒子及びそれを含む導電性材料
JP5973257B2 (ja) * 2012-07-03 2016-08-23 日本化学工業株式会社 導電性粒子及びそれを含む導電性材料
JP6438194B2 (ja) * 2013-01-24 2018-12-12 積水化学工業株式会社 基材粒子、導電性粒子、導電材料及び接続構造体
KR102172940B1 (ko) * 2013-01-24 2020-11-02 세키스이가가쿠 고교가부시키가이샤 기재 입자, 도전성 입자, 도전 재료 및 접속 구조체

Also Published As

Publication number Publication date
JP2020095966A (ja) 2020-06-18
CN107112072B (zh) 2019-06-28
KR20170073613A (ko) 2017-06-28
JP6668075B2 (ja) 2020-03-18
KR102468513B1 (ko) 2022-11-18
CN107112072A (zh) 2017-08-29
WO2016080407A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6668075B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6009933B2 (ja) 導電性粒子、導電材料及び接続構造体
JP5719483B1 (ja) 導電性粒子、導電材料及び接続構造体
JP6084868B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6276351B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2017069191A (ja) 導電性粒子、導電材料及び接続構造体
JP2019140116A (ja) 導電性粒子、導電材料及び接続構造体
JP2019024006A (ja) 導電性粒子、導電材料及び接続構造体
JP2016042466A (ja) 導電性粒子、導電材料及び接続構造体
JP2016154139A (ja) 導電性粒子粉体、導電性粒子粉体の製造方法、導電材料及び接続構造体
JP7144472B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6445833B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6423687B2 (ja) 導電性粒子、導電材料及び接続構造体
WO2017138521A1 (ja) 導電性粒子、導電材料及び接続構造体
JP2016167449A (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP6411194B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2016149360A (ja) 導電性粒子、導電材料及び接続構造体
JP6592298B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6801984B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2020145206A (ja) 導電性粒子、導電材料及び接続構造体
JP6460803B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2016028384A (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2015109267A (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150