JPWO2012173251A1 - SiC単結晶の製造装置及び製造方法 - Google Patents

SiC単結晶の製造装置及び製造方法 Download PDF

Info

Publication number
JPWO2012173251A1
JPWO2012173251A1 JP2013520608A JP2013520608A JPWO2012173251A1 JP WO2012173251 A1 JPWO2012173251 A1 JP WO2012173251A1 JP 2013520608 A JP2013520608 A JP 2013520608A JP 2013520608 A JP2013520608 A JP 2013520608A JP WO2012173251 A1 JPWO2012173251 A1 JP WO2012173251A1
Authority
JP
Japan
Prior art keywords
flow path
sic
shaft
seed crystal
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013520608A
Other languages
English (en)
Other versions
JP5628426B2 (ja
Inventor
楠 一彦
一彦 楠
亀井 一人
一人 亀井
矢代 将斉
将斉 矢代
信宏 岡田
信宏 岡田
寛典 大黒
寛典 大黒
幹尚 加渡
幹尚 加渡
秀光 坂元
秀光 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nippon Steel and Sumitomo Metal Corp filed Critical Toyota Motor Corp
Priority to JP2013520608A priority Critical patent/JP5628426B2/ja
Application granted granted Critical
Publication of JP5628426B2 publication Critical patent/JP5628426B2/ja
Publication of JPWO2012173251A1 publication Critical patent/JPWO2012173251A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/32Seed holders, e.g. chucks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/068Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/08Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

シードシャフトに取り付けられた種結晶を効率良く冷却することができる、SiC単結晶の製造装置を提供することを、目的とする。Si−C溶液(16)を収容する坩堝(14)と、SiC種結晶(36)が取り付けられる下端面(34)を有するシードシャフト(30)とを備える。シードシャフトは、坩堝の高さ方向に延び、内側に第1流路(60)を形成する内管(48)と、内管を収容し、内管との間に第2流路(SP1)を形成する外管(50)と、外管の下端開口を覆い、下端面を有する底部とを備える。第1流路及び第2流路のうち、一方の流路は冷却ガスが下方に流れる導入流路であり、他方の流路は冷却ガスが上方に流れる排出流路である。シードシャフトの軸方向から見て、SiC種結晶の60%以上の領域が、導入流路を形成する管の内側の領域に重なる。

Description

本発明は、SiC単結晶の製造装置に関し、詳しくは、溶液成長法によるSiC単結晶の製造装置に関する。
炭化珪素(SiC)の単結晶を製造する方法として、溶液成長法が従来から知られる。溶液成長法は、Si−C溶液に浸漬されたSiCの種結晶上にSiCの単結晶を成長させる。Si−C溶液は、SiまたはSi合金の融液にカーボン(C)が溶解した溶液をいう。溶液が固相SiCと熱力学的に平衡状態となる組成範囲で、溶液中に炭素をより多く溶解させることが望まれる。Si−C溶液(液相)にSiC種結晶を接触させ、少なくとも種結晶近傍の溶液部分を過冷却状態とする。これにより、種結晶近傍の溶液部分にSiCの過飽和状態を作り出し、SiC単結晶を種結晶上に成長させる。
過飽和状態を創出する一般的な方法は、いわゆる温度差法である。温度差法は、溶液内の種結晶の近傍部分の温度を、他の部分の溶液温度よりも低くなるよう温度勾配を設ける。
特開平3−183690号公報(特許文献1)及び特開2006−169073号公報(特許文献2)に開示された単結晶の製造方法は、種結晶が取り付けられたシードシャフト内にガスを導入して、種結晶を冷却する。これらの文献に開示された製造方法は、種結晶を冷却することにより、溶液内の種結晶の近傍部分の温度を他の溶液部分よりも低くする。
しかしながら、ただ単にシードシャフト内にガスを導入するだけでは、種結晶を効率良く冷却することが難しい。
本発明の目的は、シードシャフトに取り付けられた種結晶を効率良く冷却することができる、SiC単結晶の製造装置を提供することである。
本発明の実施の形態によるSiC単結晶の製造装置は、坩堝と、シードシャフトとを備える。坩堝は、Si−C溶液を収容する。シードシャフトは、SiC種結晶が取り付けられる下端面を有する。シードシャフトは、内管と、外管と、底部とを備える。内管は、内側に第1流路を形成する。外管は、内管を収容し、内管との間に第2流路を形成する。底部は、外管の下端開口を覆い、下端面を有する。第1流路及び第2流路のうち、一方の流路は冷却ガスが下方に流れる導入流路であり、他方の流路は冷却ガスが上方に流れる排出流路である。シードシャフトの軸方向から見て、SiC種結晶の60%以上の領域が、導入流路を形成する管の内側の領域に重なる。
本発明の実施の形態によるSiC単結晶の製造装置は、シードシャフトに取り付けられた種結晶を効率良く冷却することができる。
図1は、本発明の第1の実施形態によるSiC単結晶の製造装置の模式図である。 図2は、図1中のシードシャフトの縦断面図である。 図3は、図2における内管とSiC種結晶との関係を示す斜視図である。 図4は、本発明の第1の実施形態の応用例1によるSiC単結晶の製造装置が備えるシードシャフトの縦断面図である。 図5は、本発明の第1の実施形態の応用例2によるSiC単結晶の製造装置が備えるシードシャフトの縦断面図である。 図6は、本発明の第1の実施形態の応用例3によるSiC単結晶の製造装置が備えるシードシャフトの縦断面図である。 図7は、本発明の第2の実施形態によるSiC単結晶の製造装置が備えるシードシャフトの縦断面図である。
本発明の実施の形態によるSiC単結晶の製造装置は、坩堝と、シードシャフトとを備える。坩堝は、Si−C溶液を収容する。シードシャフトは、SiC種結晶が取り付けられる下端面を有する。シードシャフトは、内管と、外管と、底部とを備える。内管は、内側に第1流路を形成する。外管は、内管を収容し、内管との間に第2流路を形成する。底部は、外管の下端開口を覆い、下端面を有する。第1流路及び第2流路のうち、一方の流路は冷却ガスが下方に流れる導入流路であり、他方の流路は冷却ガスが上方に流れる排出流路である。シードシャフトの軸方向から見て、SiC種結晶の60%以上の領域が、導入流路を形成する管の内側の領域に重なる。
シードシャフトの軸方向から見たときのSiC種結晶の大部分が、導入流路を形成する管の内側の領域の下方に位置する。例えば、導入流路が内管の内側に形成される場合には、シードシャフトの軸方向から見ると、SiC種結晶の大部分が、内管の内側の領域の下方に位置する。導入流路が内管と外管との間に形成される場合、シードシャフトの軸方向から見ると、SiC種結晶の大部分が、外管の内側の領域の下方に位置する。そのため、シードシャフトの底部(特に、SiC種結晶の取付領域)が、効率良く冷却される。その結果、SiC種結晶が効率良く冷却される。
好ましくは、内管は断熱性を有する。本実施の形態では、冷却ガスは、導入流路から底部に向かって流れ、底部に当たる。冷却ガスは底部の熱を奪い、底部を冷却する。底部から熱を奪った冷却ガスは、排出流路を流れる。以降の説明では、底部の熱を奪う前の冷却ガスを「使用前ガス」といい、底部の熱を奪った後の冷却ガスを「使用後ガス」という。内管が断熱性を有する場合、使用後ガスの熱が、内管を介して、使用前ガスに伝達されるのを防ぐことができる。その結果、冷却ガスにより、底部が効率よく冷却される。
好ましくは、内管の下端は底部から離れて配置される。この場合、底部の全体に冷却ガスが接触しやすい。その結果、冷却ガスにより、底部が更に効率良く冷却される。
本実施の形態では、上述のとおり、第1流路及び第2流路のうち、一方の流路は、冷却ガスが下方に流れる導入流路である。導入流路が内管の内側に形成される場合には、シードシャフトの軸方向から見ると、SiC種結晶の大部分が、内管の内側の領域の下方に位置する。したがって、底部の輻射抜熱が内管によって邪魔されるのを防ぐことができる。その結果、底部がより一層効率良く冷却される。
導入流路が内管と外管との間に形成される場合、導入流路が内管の内側に形成される場合と比べて、大きなSiC種結晶を採用することができる。
本発明の実施の形態によるSiC単結晶の製造方法は、上述の製造装置を利用する。
以下、実施形態によるより具体的なSiC単結晶の製造装置について、図面を参照しながら説明する。図中同一又は相当部分には、同一符号を付して、その説明は繰り返さない。
[第1の実施形態]
図1は、本発明の第1の実施形態によるSiC単結晶の製造装置10の構成図である。
[製造装置]
図1を参照して、製造装置10は、チャンバ12を備える。チャンバ12は、坩堝14を収容する。SiC単結晶が製造されるとき、チャンバ12は水冷される。
坩堝14は、Si−C溶液16を収容する。Si−C溶液16は、SiC単結晶の原料である。Si−C溶液16は、シリコン(Si)と炭素(C)とを含有する。
Si−C溶液16は、例えば、Si単体、又は、Siと他の金属元素との混合物を加熱することにより融液とし、その融液にカーボン(C)を溶解して生成される。他の金属元素は例えば、チタン(Ti)、マンガン(Mn)、クロム(Cr)、コバルト(Co)、バナジウム(V)、鉄(Fe)等である。これらの金属元素のうち、好ましい金属元素は、Ti、Cr及びFeである。更に好ましい金属元素は、Ti及びCrである。
好ましくは、坩堝14は炭素を含有する。坩堝14は例えば、黒鉛製や、SiC製であってもよい。坩堝14は、内表面をSiCで被覆してもよい。これにより、坩堝14は、Si−C溶液16への炭素供給源になる。
チャンバ12は、断熱部材18を更に収容する。断熱部材18は、坩堝14を取り囲むように配置される。換言すれば、断熱部材18は、坩堝14を収容する。
チャンバ12は、加熱装置20を更に収容する。加熱装置20は例えば、高周波コイルである。加熱装置20は、断熱部材18の側壁を取り囲むように配置される。換言すれば、断熱部材18及び坩堝14は、加熱装置20内に挿入される。
加熱装置20は、坩堝14を誘導加熱して、坩堝14に収容された原料を溶融する。これにより、Si−C溶液16が生成される。
加熱装置20は更に、Si−C溶液16を結晶成長温度に維持する。結晶成長温度は、Si−C溶液16の組成に依存する。一般的な結晶成長温度は、1600〜2000℃である。
製造装置10は、回転装置22を更に備える。回転装置22は、回転軸24と、駆動源26とを備える。
回転軸24は、チャンバ12の高さ方向(図1の上下方向)に延びる。回転軸24の上端は、断熱部材18内に位置する。回転軸24の上端には、坩堝14が配置される。回転軸24の下端は、チャンバ12の外側に位置する。回転軸24は、駆動源26に連結される。
駆動源26は、チャンバ12の下方に配置される。SiC単結晶を製造するとき、駆動源26は、回転軸24を、その中心軸線周りに回転させる。これにより、坩堝14が回転する。
製造装置10は、昇降装置28を更に備える。昇降装置28は、シードシャフト30と、駆動源32とを備える。
シードシャフト30は、チャンバ12の高さ方向に延びる。シードシャフト30の上端は、チャンバ12の外側に位置する。シードシャフト30は、駆動源32に連結される。
駆動源32は、チャンバ12の上方に配置される。駆動源32は、シードシャフト30を昇降する。駆動源32は更に、シードシャフト30を、その中心軸線周りに回転させる。
シードシャフト30の下端は、坩堝14内に位置する。シードシャフト30の下端面34には、SiC種結晶36が取り付けられる。
SiC種結晶36は、板状である。本例では、SiC種結晶36は円板状である。しかしながら、SiC種結晶36の形状は円板状に特に限定されない。SiC種結晶36の形状は、例えば、六角形、矩形等の多角形であっても良い。
SiC種結晶36は、SiC単結晶からなる。好ましくは、SiC種結晶36の結晶構造は、製造しようとするSiC単結晶の結晶構造と同じである。例えば、4H多形のSiC単結晶を製造する場合、4H多形のSiC種結晶を利用する。4H多形のSiC種結晶36を利用する場合、SiC種結晶36の表面は、(0001)面であるか、又は、(0001)面から8°以下の角度で傾斜した面であることが好ましい。この場合、SiC単結晶が安定して成長する。
[シードシャフトの構成]
図2は、図1中のシードシャフト30の縦断面図である。図1及び図2に示すように、シードシャフト30は、シャフト38と、シャフト40と、連結部材41とを備える。シャフト38は、シャフト40の上方に配置され、シャフト40と同軸に配置される。連結部材41は、シャフト38とシャフト40との間に配置され、シャフト38とシャフト40とを結合する。
シャフト38は、チャンバ12の高さ方向に延びる。シャフト38は、冷却水が流れる流路(図示せず)を備える。要するに、シャフト38は、冷却水により冷却される。
シャフト38は更に、導入孔42を有する。導入孔42は、シャフト38内に形成され、シャフト38の軸方向に延びる。導入孔42は、冷却ガスをシャフト40に導く。
冷却ガスは、製造装置10の外部から導入孔42に供給される。冷却ガスは、シャフト40内を軸方向に沿って流れて、シャフト40の下端を冷却する。冷却ガスの種類は、冷却効率等の観点から選択される。例えば、冷却ガスは、熱伝導性が高いヘリウムガスである。
シャフト38の下端には、フランジ44が設けられている。フランジ44は、円板状であり、その外周面にねじ山46を有する。フランジ44は、シャフト38をシャフト40と結合する。
シャフト40は、内管48と、外管50と、底部52と、支持部材54とを備える。内管48、外管50及び底部52は、冷却ガスの流路を形成する。支持部材54は、外管50及び内管48を懸架する。支持部材54は更に、シャフト40をシャフト38と結合するのに利用される。
具体的には、内管48は、ベース管56と、断熱管58とを備える。ベース管56は、耐熱材からなる。耐熱材は、例えば、黒鉛等である。ベース管56は、円筒であり、軸方向に延びる孔60を有する。孔60の上端部には、ねじ溝62が形成される。
断熱管58は、断熱材からなる。断熱材は、例えば、アルミナ、ジルコニア、熱分解炭素、黒鉛シート等である。断熱管58として、成形断熱材を用いても良い。断熱管58は、ベース管56の外周面に配置される。本例では、断熱管58は、円筒状であり、軸方向に延びる孔64を有する。断熱管58の内周面はベース管56の外周面に密着する。
外管50は、円筒である。外管50の内周面の上端部には、ねじ溝66が形成される。外管50の上端部のうち、ねじ溝66よりも下方の部分には、複数の排出孔68が形成される。複数の排出孔68は、例えば、外管50の周方向に互いに離れて配置される。排出孔68は、シードシャフト30の下端を冷却した冷却ガス(つまり、使用後ガス)を、外部に排出する。
底部52は、円板状であり、外管50の下端の開口を覆う。本実施形態では、底部52は外管50と一体形成される。しかしながら、底部52は、外管50と別の部材であってもよい。底部52は、下端面34を有する。下端面34には、SiC種結晶36が取り付けられる。
外管50及び底部52は、それぞれ、耐熱材からなる。耐熱材は例えば、黒鉛等である。
支持部材54は、フランジ72と、円環部80と、円環部82とを備える。支持部材54は、黒鉛等の耐熱材からなる。
フランジ72は、円板状である。フランジ72はフランジ44と重なる。つまり、フランジ72の上面は、フランジ44の下面と接触する。
連結部材41は耐熱材からなり、フランジ72とフランジ44とを連結する。連結部材41は、円環部74と、中央に貫通孔を有する底蓋部76とを備える。底蓋部76は円板状である。円環部74の上端部の内周面には、ねじ溝78が形成される。円環部74と底蓋部76とは一体的に形成される。ねじ溝78及びねじ山46により、連結部材41はフランジ44に取り付けられる。このとき、フランジ72は、底蓋部76とフランジ44とに挟まれて固定される。以上のとおり、支持部材54は、連結部材41により、シャフト38の下端と結合される。
支持部材54はさらに、シャフト40の上端と結合される。具体的には、支持部材54のフランジ72の下面には、円環部80及び82が設けられる。円環部80はフランジ72の下面の中央部分に設けられる。円環部80の外周面には、ねじ山84が形成されている。円環部82は、円環部80の周りに配置され、円環部80と同軸に配置される。円環部82の外周面には、ねじ山86が形成される。支持部材54は、中央部分に、上下方向に延びる貫通孔88を有する。貫通孔88は、円環部80の内周面を形成する。
支持部材54は、内管48の上端及び外管50の上端と結合する。具体的には、円環部80は、ねじ山84及びねじ溝62により、内管48の上端に取り付けられる。円環部82は、ねじ山86及びねじ溝66により、外管50の上端に取り付けられる。
以上のとおり、支持部材54は、内管48及び外管50を懸架する。このとき、内管48の下端(ベース管56及び断熱管58の下端)は、底部52の上面から離れて配置される。したがって、内管48の下端と、底部52の上面との間には、隙間SP0が形成される。
内管48の外径(つまり、断熱管58の外径)は、外管50の内径よりも小さい。そのため、内管48の外周面(断熱管58の外周面)と、外管50の内周面との間には、隙間SP1が形成される。内管48の孔60と、隙間SP0及びSP1とは、冷却ガスが流れる流路になる。したがって、内管48は、外管50とともに、冷却ガスの流路を形成する。
上述のとおり、シャフト38とシャフト40とは、連結部材41によって同軸に連結される。そして、導入孔42と貫通孔88と孔60とは、同軸に繋がる。したがって、導入孔42を下方に流れる冷却ガスは、貫通孔88を介して、孔60に流れる。したがって、図2において、孔60は、冷却ガス(使用前ガス)が下方に流れる導入流路(第1流路)になる。
使用前ガスは、導入流路(孔60)を下方に流れ、内管48の開口61から底部52の上面に吹き付けられる。底部52の上面に吹き付けられた使用前ガスは、SiC単結晶の製造中において、底部52を冷却し、底部52から熱を奪う。底部52を冷却し終えた冷却ガス(使用後ガス)は、隙間SP0から隙間SP1に流れる。使用後ガスは隙間SP1を上方に流れ、排出孔68を通じて、シャフト40の外に排出される。したがって、図2において、隙間SP1は、使用後ガスが流れる排出流路(第2流路)になる。
以上の構成により、シードシャフト30は、導入流路60と排出流路SP1を形成する。SiC単結晶の製造中、底部52の下面に取り付けられたSiC種結晶36は、導入流路60を流れる使用前ガスにより冷却される。底部52及びSiC種結晶36から熱を奪った使用後ガスは、排出流路SP1を流れてすみやかに外部に排出される。したがって、製造装置10は、SiC種結晶36を冷却する。
導入流路60と排出流路SP1との間には内管48が配置されるため、導入流路60を流れる使用前ガスは、排出流路SP1を流れる使用後ガスと接触しにくい。したがって、使用前ガスが使用後ガスにより暖められるのを防ぐことができる。その結果、SiC種結晶36が効率良く冷却される。
特に本実施形態では、断熱管58により、内管48が断熱性を有する。したがって、使用後ガスの熱は、内管48により断熱され、使用前ガスに伝達されにくい。その結果、SiC種結晶36が更に効率良く冷却される。
さらに、内管48の下端面と底部52の上面との間に、隙間SP0が形成される。隙間SP0により、底部52の上面全体に冷却ガスを吹き付けることができ、底部52の冷却効率が高まる。したがって、底部52に取り付けられたSiC種結晶36は効率良く冷却される。
また、底部52によって暖められた使用後ガスが隙間SP1を流れるので、外管50が過度に冷却されるのを防ぐことができる。
[導入流路の開口とSiC種結晶との配置関係]
さらに、図3に示すように、シードシャフト30を軸方向Xから見たとき、導入流路60を有する内管48の開口61(つまり、内管48の内側の領域)は、SiC種結晶36の大部分と重なる。換言すれば、開口61は、SiC種結晶36に対して小さすぎない。そのため、導入流路60から流れ出た冷却ガスは、SiC種結晶36の略全体を冷却できる。その結果、SiC種結晶36が効率良く冷却される。
「開口61がSiC種結晶36に対して小さすぎない」とは、SiC種結晶36と開口61とが以下の関係を満たすことを意味する。図3に示すように、軸方向Xから見たときのSiC種結晶36の大きさが、開口61よりも大きい場合を想定する。軸方向Xから見たSiC種結晶36の面積をSとする。そして、軸方向Xから見て、開口61のうち、SiC種結晶36と重なる部分362の面積をSとする。この場合、SiC種結晶36の面積Sは、開口61とSiC種結晶36とが重複する面積Sに対して、以下の式(1)を満たす。
/S≧0.60 (1)
SiC種結晶36が開口61に対して式(1)を満たす場合、つまり、軸方向Xから見て、SiC種結晶36の60%以上の領域が、開口61に重なる場合、開口61は、SiC種結晶36に対して小さすぎない。この場合、導入流路60を流れる使用前ガスを底部52に吹き当てて、SiC種結晶36の略全体を抜熱できる。さらに、SiC種結晶36の大部分が冷却ガスの噴出口である開口61の下方に位置するため、底部52の輻射による抜熱が、内管48の存在によって、阻害されるのを防ぐことができる。以上より、SiC種結晶36が効率良く冷却される。
開口61がSiC種結晶36に対して小さすぎる場合、つまり、軸方向Xから見て、SiC種結晶36の60%未満の領域のみ、開口61に重なる場合、SiC種結晶36のうち、使用前ガスが吹き当てられる領域が小さすぎる。さらに、底部52の輻射による抜熱が、内管48に阻害される。そのため、SiC種結晶36の冷却効率が悪くなる。
以上のとおり、シードシャフト30は、内管48及び外管50により、導入流路60と排出流路SP1とを有する。シードシャフト30は、導入流路60により使用前ガスを底部52に吹き当てる。シードシャフト30はさらに、底部52の熱を奪った使用後ガスを、排出流路SP1により速やかに上方に流して外部に排出する。そのため、熱を奪った使用後ガスが使用前ガスと混合するのを抑制でき、SiC種結晶36の冷却効率が高まる。
さらに、上述のとおり、シードシャフト30の軸方向から見て、SiC種結晶36の60%以上の領域が導入流路60の開口61と重なる。具体的には、式(1)が満たされる。したがって、導入流路60を流れる使用前ガスがSiC種結晶36の略全体を冷却する。さらに、SiC種結晶36の大部分が、冷却ガスの噴出口である開口61の下方に位置する。そのため、底部52の輻射による抜熱が、内管48の存在によって、阻害されるのを防ぐことができる。以上の結果、底部52の冷却効率を高めることができる。
本実施形態では、シャフト40がシャフト38に連結されている。これにより、シードシャフト30全体での冷却効率を高めることができる。
さらに、外管50に形成された複数の排出孔68は、断熱部材18の上方に位置する。したがって、SiC単結晶の製造中に、排出孔68から排出された使用後ガス(排出ガス)が、断熱部材18の内側に入りにくく、排出ガスがSiC単結晶の成長に影響を与えにくい。
[SiC単結晶の製造方法]
製造装置10を用いたSiC単結晶の製造方法について説明する。上述のとおり、製造装置10は、SiC種結晶36を効率良く冷却する。そのため、Si−C溶液16のうち、SiC種結晶36の近傍部分は過冷却状態になり易い。そのため、SiC単結晶がSiC種結晶36上に成長し易くなり、結晶成長速度を大きくすることができる。
SiC単結晶の製造方法では初めに、製造装置10を準備し、シードシャフト30にSiC種結晶36を取り付ける(準備工程)。次に、チャンバ12内に坩堝14を配置し、Si−C溶液16を生成する(Si−C溶液生成工程)。次に、SiC種結晶36を坩堝14内のSi−C溶液16に浸漬する(浸漬工程)。次に、SiC単結晶を育成する(育成工程)。以下、各工程の詳細を説明する。
[準備工程]
初めに、シードシャフト30を備えた製造装置10を準備する。そして、シードシャフト30の下端面34にSiC種結晶36を取り付ける。SiC種結晶36の取付位置は、上記の式(1)を満たす。つまり、軸方向Xから見て、SiC種結晶36の60%以上の領域が、導入流路60を有する内管48の開口61に重なるように、SiC種結晶36を下端面34に取り付ける。
[Si−C溶液生成工程]
次に、チャンバ12内の回転軸24上に、坩堝14を配置する。坩堝14は、Si−C溶液16の原料を収容する。
次に、Si−C溶液16を生成する。先ず、チャンバ12内に不活性ガスを充填する。そして、加熱装置20により、坩堝14内のSi−C溶液16の原料を融点以上に加熱する。坩堝14が黒鉛からなる場合、坩堝14を加熱すると、坩堝14から炭素が融液に溶け込み、Si−C溶液16が生成される。坩堝14の炭素がSi−C溶液16に溶け込むと、Si−C溶液16内の炭素濃度は飽和濃度に近づく。
[浸漬工程]
次に、SiC種結晶36をSi−C溶液16に浸漬する。具体的には、駆動源32により、シードシャフト30を降下し、SiC種結晶36をSi−C溶液16に浸漬する。
[育成工程]
SiC種結晶36をSi−C溶液16に浸漬した後、加熱装置20により、Si−C溶液16を結晶成長温度に保持する。さらに、Si−C溶液16のSiC種結晶36の近傍を過冷却して、SiCを過飽和状態にする。具体的には、冷却ガスをシードシャフト30内に流して、SiC種結晶36が取り付けられた底部52を冷却する。底部52が冷えれば、SiC種結晶36も冷える。その結果、SiC種結晶36の近傍も冷える。SiC種結晶36の近傍領域が過冷却状態になれば、SiC濃度が上がり、過飽和状態になる。
SiC種結晶36の近傍領域のSiCを過飽和状態にしたまま、SiC種結晶36とSi−C溶液16とを回転する。シードシャフト30を回転することにより、SiC種結晶36が回転する。回転軸24を回転することにより、坩堝14が回転する。SiC種結晶36の回転方向は、坩堝14の回転方向と逆方向でも良いし、同じ方向でも良い。また、回転速度は一定であっても良いし、変動しても良い。シードシャフト30は、回転しながら、徐々に上昇する。このとき、Si−C溶液16に浸漬されたSiC種結晶36の表面にSiC単結晶が生成し、成長する。なお、シードシャフト30は、上昇せずに回転しても良い。さらに、シードシャフト30は、上昇も回転もしなくても良い。
本実施の形態によるSiCの製造方法は、シードシャフト30内を冷却ガスが流れるので、SiC種結晶36が効率良く冷却される。これにより、Si−C溶液16に接触させたSiC種結晶36の近傍の溶液が過冷却状態になり易くなる。その結果、SiC単結晶がSiC種結晶36上に成長し易くなり、結晶成長速度を大きくすることができる。
[第1の実施形態の応用例1,2]
図2に示すシードシャフト30では、内管48の下端面(ベース管56及び断熱管58の下端面)が底部52の上面から離れている。しかしながら、内管48の下端面は、底部52の上面に接触していても良い。例えば、図4に示すように、内管48の下端面は、底部52の上面に接触する。内管48の下端部には、1又は複数の連通部90が形成される。この場合、底部52の熱を奪った使用後ガスは、連通部90を通って、導入流路60から排出流路SP1に流れ込む(応用例1)。
図5に示すように、連通部90は、内管48の下端よりも上方に形成されてもよい(応用例2)。
[第1の実施形態の応用例3]
図2に示すシードシャフト30では、内管48は、ベース管56と断熱管58とを備える。しかしながら、内管48の構成はこれに限定されない。図6に示すように、内管48は断熱管58だけで構成されても良い。
[第2の実施形態]
図7に示すように、第2の実施形態の製造装置は、シャフト40に代えて、シャフト94を備える。第2の実施の形態による製造装置のその他の構成は、製造装置10と同様である。シャフト94は、シャフト40と比較して、冷却ガスの流れが異なる。
シャフト94では、孔60が使用後ガスの流れる排出流路(第1流路)であり、隙間SP1が使用前ガスの流れる導入流路(第2流路)である。この場合、軸方向Xから見て、SiC種結晶36の60%以上の領域が、外管50の内側の領域に重なればよい。
シャフト94では、外管50の外周面上に断熱部材96が配置される。これにより、使用前ガスが隙間SP1を流れても、外管50の周囲の雰囲気が過度に冷却されるのを防ぐことができる。
2つの製造装置(第1製造装置、第2製造装置)を準備して、各製造装置を利用してSiC単結晶を製造した。第1及び第2製造装置はいずれも、図2に示す構成を有した。第1製造装置のシードシャフトの内管の内径は、第2製造装置のシードシャフトの内管の内径と異なっていた。具体的には、第1製造装置の内管の内径は20mmであり、第2製造装置の内管の内径は8mmであった。第1製造装置のその他の構成は、第2製造装置と同じであった。第1及び第2製造装置において使用したSiC種結晶の直径はいずれも、25mmであった。
式(1)の左辺をF=S/Sと定義した。第1製造装置のF値は0.64であり、式(1)を満たした。一方、第2製造装置のF値は0.10であり、式(1)を満たさなかった。
第1及び第2製造装置において、SiC単結晶を製造した。このとき、いずれの製造装置においても同じ化学組成を有するSi−C溶液を使用した。単結晶製造中のSi−C溶液の温度は1950℃であった。冷却ガス流量は7.5〜10L/minであった。結晶成長時間は10時間であった。
SiC単結晶を製造した後、各製造装置におけるSiC単結晶の結晶成長速度を、以下の方法により求めた。先ず、成長させたSiC単結晶の縦断面の光学顕微鏡写真(倍率100倍)を撮影した。光学顕微鏡写真からSiC単結晶の成長厚みを測定した。成長厚みを成長時間で除して、結晶成長速度(μm/hr)を求めた。
[試験結果]
第1製造装置における結晶成長速度は55μm/hrであった。一方、第2製造装置における結晶成長速度は34μm/hrであり、式(1)を満たす第1製造装置よりも大幅に小さかった。
以上、本発明の実施形態について、詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施形態によって、何等、限定されない。
例えば、第1及び第2の実施形態において、ブロック形状を有するSiC種結晶36を採用しても良い。これにより、SiC種結晶36が取り付けられた底部52(シードシャフト30の下端面34)がSi−C溶液16に接触するのを防ぐことができる。
式(1)を満たすのであれば、SiC種結晶36、内管48及び外管50の形状等は、第1及び第2の実施形態の形状等に限定されない。

Claims (4)

  1. SiC単結晶の製造装置であって、
    Si−C溶液を収容する坩堝と、
    SiC種結晶が取り付けられる下端面を有するシードシャフトとを備え、
    前記シードシャフトは、
    内側に第1流路を形成する内管と、
    前記内管を収容し、前記内管との間に第2流路を形成する外管と、
    前記外管の下端開口を覆い、前記下端面を有する底部とを備え、
    前記第1流路及び前記第2流路のうち、一方の流路は冷却ガスが下方に流れる導入流路であり、他方の流路は前記冷却ガスが上方に流れる排出流路であり、
    前記シードシャフトの軸方向から見て、前記SiC種結晶の60%以上の領域が、前記導入流路を形成する管の内側の領域に重なる、製造装置。
  2. 前記内管が断熱性を有する、請求項1に記載の製造装置。
  3. 前記内管の下端が前記底部から離れて配置される、請求項1又は2に記載の製造装置。
  4. Si−C溶液の原料を収容する坩堝と、SiC種結晶が取り付けられる下端面を有するシードシャフトとを備えるSiC単結晶の製造装置であって、前記シードシャフトは、前記坩堝の高さ方向に延び、内側に第1流路が形成される内管と、前記内管を収容し、前記内管との間に第2流路を形成する外管と、前記外管の下端開口を覆い、前記下端面を有する底部とを備え、前記第1流路及び前記第2流路のうち、一方の流路は冷却ガスが下方に流れる導入流路であり、他方の流路は前記冷却ガスが上方に流れる排出流路である、前記製造装置を準備する工程と、
    前記シードシャフトの軸方向から見て、前記SiC種結晶の60%以上の領域が、前記導入流路を形成する管の内側の領域に重なるように、前記SiC種結晶を前記下端面に取り付ける工程と、
    前記坩堝を加熱して、Si−C溶液を生成する工程と、
    前記SiC種結晶を前記Si−C溶液に浸漬する工程と、
    前記シードシャフト内に前記冷却ガスを流しながら、前記SiC種結晶上にSiC単結晶を育成する工程とを備える、SiC単結晶の製造方法。
JP2013520608A 2011-06-17 2012-06-15 SiC単結晶の製造装置及び製造方法 Active JP5628426B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520608A JP5628426B2 (ja) 2011-06-17 2012-06-15 SiC単結晶の製造装置及び製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011135108 2011-06-17
JP2011135108 2011-06-17
PCT/JP2012/065420 WO2012173251A1 (ja) 2011-06-17 2012-06-15 SiC単結晶の製造装置及び製造方法
JP2013520608A JP5628426B2 (ja) 2011-06-17 2012-06-15 SiC単結晶の製造装置及び製造方法

Publications (2)

Publication Number Publication Date
JP5628426B2 JP5628426B2 (ja) 2014-11-19
JPWO2012173251A1 true JPWO2012173251A1 (ja) 2015-02-23

Family

ID=47357229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520608A Active JP5628426B2 (ja) 2011-06-17 2012-06-15 SiC単結晶の製造装置及び製造方法

Country Status (5)

Country Link
US (1) US9732441B2 (ja)
EP (1) EP2722421A4 (ja)
JP (1) JP5628426B2 (ja)
CN (1) CN103620094A (ja)
WO (1) WO2012173251A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471117B (zh) * 2012-07-19 2016-10-05 新日铁住金株式会社 SiC单晶体的制造装置和SiC单晶体的制造方法
EP2889397B1 (en) * 2012-08-26 2019-04-03 National University Corporation Nagoya University Sic single crystal producing method
JP2016079070A (ja) * 2014-10-17 2016-05-16 新日鐵住金株式会社 溶液成長法によるSiC単結晶の製造装置及びSiC単結晶の製造方法
KR102270624B1 (ko) * 2014-12-23 2021-06-29 에스케이이노베이션 주식회사 원뿔형 탄화규소 단결정의 성장 방법 및 장치
JP6172169B2 (ja) * 2015-01-16 2017-08-02 トヨタ自動車株式会社 SiC単結晶の製造方法
JP6350324B2 (ja) * 2015-02-10 2018-07-04 トヨタ自動車株式会社 単結晶製造装置
CN106119954B (zh) * 2016-08-31 2018-11-06 台州市一能科技有限公司 一种碳化硅单晶制造装置
CN106987903B (zh) * 2017-03-27 2019-11-05 宁夏佳晶科技有限公司 一种改进的大尺寸人造蓝宝石生产工艺
CN109371466A (zh) * 2018-11-26 2019-02-22 国宏中晶集团有限公司 一种碳化硅晶体电阻法生长用电源及其方法
TWI683042B (zh) * 2018-12-28 2020-01-21 環球晶圓股份有限公司 矽單晶長晶設備
CN110788302B (zh) * 2019-09-10 2023-11-28 浙江大学 适合超重力定向凝固使用的气冷系统
CN114481325A (zh) * 2022-01-29 2022-05-13 北京青禾晶元半导体科技有限责任公司 一种碳化硅多晶的制造装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190630A (en) * 1978-01-03 1980-02-26 Vsesojuzny Nauchno-Isslekovatelsky Institut Monokristallov Stsintillyatsionnykh Materialov I Osobo Chistykh Khimicheskikh Veschestv Apparatus for pulling single crystals from melt
JPS55158196A (en) * 1979-05-29 1980-12-09 Toshiba Corp Manufacture of single crystal
JPS6096596A (ja) 1983-10-28 1985-05-30 Sumitomo Electric Ind Ltd 単結晶引上げ軸
JPS63176388A (ja) * 1987-01-12 1988-07-20 Toshiba Corp 単結晶引上げ装置
JPH03183690A (ja) 1989-12-12 1991-08-09 Fujikura Ltd 単結晶の育成装置
JPH11268990A (ja) * 1998-03-20 1999-10-05 Denso Corp 単結晶の製造方法および製造装置
JP4736401B2 (ja) * 2004-11-02 2011-07-27 住友金属工業株式会社 炭化珪素単結晶の製造方法
JP4146835B2 (ja) 2004-12-17 2008-09-10 日本電信電話株式会社 結晶成長方法
US8956455B2 (en) * 2007-02-13 2015-02-17 Siemens Medical Solutions Usa, Inc. Seed crystal holder for growing single crystal from melt
JP4450074B2 (ja) * 2008-01-15 2010-04-14 トヨタ自動車株式会社 炭化珪素単結晶の成長方法
CN102203330B (zh) * 2008-08-29 2013-08-21 新日铁住金株式会社 碳化硅单晶的制造方法
JP5218348B2 (ja) * 2009-09-03 2013-06-26 新日鐵住金株式会社 炭化珪素単結晶の製造方法
JP5310493B2 (ja) * 2009-11-09 2013-10-09 トヨタ自動車株式会社 溶液法による単結晶の製造方法

Also Published As

Publication number Publication date
EP2722421A1 (en) 2014-04-23
CN103620094A (zh) 2014-03-05
US20140116324A1 (en) 2014-05-01
WO2012173251A1 (ja) 2012-12-20
JP5628426B2 (ja) 2014-11-19
US9732441B2 (en) 2017-08-15
EP2722421A4 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5628426B2 (ja) SiC単結晶の製造装置及び製造方法
US9388508B2 (en) Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal
JP5528396B2 (ja) 溶液成長法によるSiC単結晶の製造装置、当該製造装置を用いたSiC単結晶の製造方法及び当該製造装置に用いられる坩堝
KR102022693B1 (ko) 탄화규소 단결정의 제조 장치
JP6558394B2 (ja) SiC単結晶の製造方法及び製造装置
JP5925319B2 (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
JP5439353B2 (ja) SiC単結晶の製造装置及びそれに用いられる坩堝
JP2013173645A (ja) 結晶成長装置及び結晶成長方法
JP2011105575A (ja) 単結晶引き上げ装置
JP5828810B2 (ja) 溶液成長法に用いられるSiC単結晶の製造装置、当該製造装置に用いられる坩堝及び当該製造装置を用いたSiC単結晶の製造方法
JP2016064958A (ja) SiC単結晶の製造方法
JP5863977B2 (ja) SiC単結晶の製造装置及び製造方法
US20170306522A1 (en) APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH PROCESS AND CRUCIBLE EMPLOYED THEREIN
JP6354615B2 (ja) SiC単結晶の製造方法
WO2018062224A1 (ja) SiC単結晶の製造方法及びSiC種結晶
WO2017135272A1 (ja) SiC単結晶の製造方法及びSiC種結晶
JP2012012271A (ja) 黒鉛ルツボ
KR100712139B1 (ko) 브릿지만 공정을 이용한 단결정 생성장치 및 생성방법
JPH05254988A (ja) 単結晶の製造方法および装置
JP2017145160A (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
JP2013189354A (ja) シリコン単結晶の製造装置およびシリコン単結晶の製造方法
JP2005306679A (ja) シリコン単結晶引上げ装置の熱遮蔽部材
JP2006096619A (ja) 単結晶の製造方法およびその装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5628426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250