JP5439353B2 - SiC単結晶の製造装置及びそれに用いられる坩堝 - Google Patents

SiC単結晶の製造装置及びそれに用いられる坩堝 Download PDF

Info

Publication number
JP5439353B2
JP5439353B2 JP2010289972A JP2010289972A JP5439353B2 JP 5439353 B2 JP5439353 B2 JP 5439353B2 JP 2010289972 A JP2010289972 A JP 2010289972A JP 2010289972 A JP2010289972 A JP 2010289972A JP 5439353 B2 JP5439353 B2 JP 5439353B2
Authority
JP
Japan
Prior art keywords
storage chamber
sic
crucible
manufacturing apparatus
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010289972A
Other languages
English (en)
Other versions
JP2012136388A (ja
JP2012136388A5 (ja
Inventor
信宏 岡田
一人 亀井
一彦 楠
将斉 矢代
晃治 森口
伴和 石井
寛典 大黒
幹尚 加渡
洋一郎 河合
秀光 坂元
鈴木  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2010289972A priority Critical patent/JP5439353B2/ja
Publication of JP2012136388A publication Critical patent/JP2012136388A/ja
Publication of JP2012136388A5 publication Critical patent/JP2012136388A5/ja
Application granted granted Critical
Publication of JP5439353B2 publication Critical patent/JP5439353B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、炭化珪素(SiC)単結晶の製造装置及びそれに用いられる坩堝に関し、さらに詳しくは、溶液成長法によるSiC単結晶の製造装置及びそれに用いられる坩堝に関する。
炭化珪素(SiC)は、熱的及び化学的に安定な化合物半導体である。SiCは、シリコン(Si)と比較して、優れたバンドギャップ、絶縁破壊電圧、電子飽和速度及び熱伝導率を有する。そのため、SiCは、動作損失の少ないパワーデバイス材料や、高耐圧な高周波デバイス材料、高温環境で使用される耐環境デバイス、耐放射線デバイス等の技術分野への応用が期待されている。これらの技術分野では、結晶欠陥の少ない高品質なSiC単結晶が求められる。
SiC単結晶の製造方法には、昇華法と溶液成長法とがある。溶液成長法は、昇華法と比較して、結晶欠陥の少ないSiC単結晶を生成することができる。SiC単結晶の溶液成長法は、Si又はSi及び添加元素を含有する融液に炭素(C)が溶解した溶液(以降、SiC溶液と称する)に、SiC種結晶を浸漬してSiC単結晶を育成する方法である。一般的に、黒鉛坩堝が用いられ、炭素は、坩堝から溶解してSiC溶液内に供給される。SiC種結晶は、棒状のシードシャフトの下端面に取り付けられ、SiC溶液に浸漬される。
溶液成長法では、SiC溶液のうち、浸漬したSiC種結晶の周辺部分の温度を、他のSiC溶液部分よりも低くする。これにより、SiC種結晶周辺域のSiCを過飽和状態とし、SiC単結晶の成長を促す。
上述のとおり、溶液成長法は、昇華法よりも、結晶欠陥の少ないSiC単結晶を製造できる。しかしながら、液晶成長法のSiC単結晶の成長速度は、昇華法よりも遅い。たとえば、従来の溶液成長法では、1650℃の純Si溶液を用いた場合、液晶成長法におけるSiC単結晶の成長速度は約5〜12μm/hrである。この成長速度は、昇華法におけるSiC単結晶の成長速度の1/10以下である。
溶液成長法におけるSiC単結晶の成長速度RA(m/s)は、式(A)に示されるウィルソン−フレンケルの式で定義される。
RA=A0×ΔC×exp(−ΔG/(k×t)) (A)
ここで、A0は係数である。ΔCは炭素の過飽和度(単位:mol/m3)である。ΔGは、溶媒分子を溶質分子から外すのに必要なエネルギ(単位:J/mol)である。kは気体定数(単位:J/K・mol)である。tは絶対温度(K)である。
式(A)より、SiC溶液中の炭素の過飽和度(ΔC)を高めれば、SiC単結晶の成長速度RAを高めることができる。SiC溶液のうち、SiC種結晶近傍部分への炭素の供給量を増やせば、炭素の過飽和度(ΔC)を高めることができる。
特開2006−117441号公報(特許文献1)は、SiC種結晶近傍への炭素の供給量を高める技術を開示する。特許文献1では、加速坩堝回転法(Accelerated Crucible Rotation Technique:以下、ACRT法という)をSiC単結晶の溶液成長法に適用する。ACRT法では、SiC種結晶の回転と、坩堝の回転とに対して、加速及び減速を繰り返す。これにより、SiC溶液が攪拌され、SiC種結晶近傍に炭素が供給されやすくなる。
特開2006−117441号公報
しかしながら、ACRT法以外の方法でも、SiC種結晶近傍部分に炭素が供給されやすい方が好ましい。
本発明の目的は、溶液成長法によるSiC単結晶の製造において、SiC溶液のうち、SiC種結晶近傍部分に炭素を供給しやすいSiC単結晶の製造装置を提供することである。
本発明の実施の形態による製造装置は、SiC溶液を収納可能な坩堝と、チャンバと、シードシャフトと、誘導加熱装置とを備える。チャンバは、坩堝を収納する。シードシャフトは、チャンバの上下方向に延び、SiC溶液に浸漬されるSiC種結晶が下端に取り付けられる。誘導加熱装置は、チャンバ内であって、坩堝の周りに配置される。坩堝は、上部収納室と、下部収納室とを備える。上部収納室は、坩堝の上部に配置され、第1の内径を有する。下部収納室は、上部収納室の下方に配置され、第1の内径よりも小さい第2の内径を有する。誘導加熱装置は、上部コイル部と、下部コイル部と、電源とを備える。上部コイル部は、上部収納室の周りに配置される。下部コイル部は、下部収納室の周りに配置され、上部コイル部が上部収納室内のSiC溶液に生成する電磁力よりも大きい電磁力を、下部収納室内のSiC溶液に生成する。電源は、上部コイル部及び下部コイル部に電流を供給する。
本発明の実施の形態によるSiC単結晶の製造装置では、下部収納室内のSiC溶液の圧力及び温度が、上部収納室内のSiC溶液の圧力及び温度よりも高くなりやすい。そのため、下部収納室内のSiC溶液は、SiC種結晶に向かって上昇しやすくなり、SiC種結晶近傍への炭素が供給されやすくなる。
本実施の形態による坩堝は、上述の製造装置に利用される。本実施の形態によるSiC単結晶の製造方法は、上述の製造装置を利用する。
図1は、第1の実施の形態によるSiC単結晶の製造装置の構成図である。 図2は、図1中の坩堝及び誘導加熱装置の構成図である。 図3Aは、図1中の坩堝内のSiC溶液の流速ベクトル分布図である。 図3Bは、図3のSiC溶液内の流動パターンの模式図である。 図4は、第2の実施の形態によるSiC単結晶の製造装置の構成図である。 図5は、図1及び図4と異なる形状を有する坩堝の構成図である。 図6は、図1、図4及び図5と異なる形状を有する坩堝の構成図である。 図7は、図1、図4〜図6と異なる形状を有する坩堝の構成図である。 図8は、図1、図4〜図7と異なる形状を有する坩堝の構成図である。 図9は、図1、図4〜図8と異なる形状を有する坩堝の構成図である。 10は、図1中の坩堝内の下部収納室の内径の上部収納室の内径に対する比と、坩堝内に発生する上昇流の平均流速との関係を示す図である。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[第1の実施の形態]
[SiC単結晶製造装置の構成]
図1は、本実施の形態によるSiC単結晶の製造装置の構成図である。図1を参照して、製造装置100は、チャンバ1と、断熱部材2と、誘導加熱装置3と、昇降装置4と、回転装置5と、坩堝6とを備える。
チャンバ1は筐体であり、断熱部材2と、誘導加熱装置3と、坩堝6とを収納する。SiC単結晶が製造されるとき、チャンバ1は水冷される。
回転装置5は、回転部材51と駆動源52とを備える。回転部材51は棒状であり、製造装置100の上下方向に延びる。回転部材51の上端には、坩堝6が配置される。坩堝6は回転部材51の上端に固定されてもよい。回転部材51の下端部は、駆動源52と連結される。SiC単結晶を製造するとき、回転装置5は、坩堝6を回転する。具体的には、駆動源52は、回転部材51を回転する。そのため、坩堝6は、回転部材51の軸心周りを回転する。
坩堝6は、本体62と、蓋61とを備える。本体62は、上端が開口した筐体である。蓋61は、本体62の上端に配置される。蓋61は円板状であり、中央に貫通孔611を有する。
本体62は、段差を有する円筒状の容器であり、内部にSiC溶液8を収納する。SiC溶液8は、SiC単結晶の原料であり、シリコン(Si)と炭素(C)とを含有する。SiC溶液8はさらに、Si及びC以外の他の1種又は2種以上の金属元素を含有してもよい。換言すれば、SiC溶液8は、Si又はSi及び添加元素を含有する融液に炭素(C)が溶解した溶液である。
SiC溶液8は、SiC溶液の原料を加熱により溶融して生成される。原料は、Si単体であってもよいし、Siと他の金属元素とを含有してもよい。SiC溶液の原料に含有される金属元素はたとえば、チタン(Ti)、マンガン(Mn)、クロム(Cr)、コバルト(Co)、バナジウム(V)、鉄(Fe)等である。SiC溶液の原料に含有される好ましい元素は、Ti及びMnであり、さらに好ましい元素は、Tiである。
坩堝6の素材はたとえば、黒鉛である。坩堝6が黒鉛で構成されれば、坩堝6自体がSiC溶液の炭素供給源になる。坩堝6の素材は、黒鉛以外であってもよい。たとえば、坩堝6は、セラミックスや高融点の金属で構成されてもよい。坩堝6が炭素供給源として利用できない場合、SiC溶液の原料は、黒鉛(炭素)を含有する。
好ましくは、少なくとも坩堝6の内面部は、炭素を含有する。たとえば、坩堝6の内面に、SiCからなる皮膜が形成される。この場合、SiC単結晶を製造中に、皮膜から炭素がSiC溶液に溶解する。さらに好ましくは、坩堝6は炭素を含有する。この場合、坩堝6はSiC溶液の炭素供給源となる。
昇降装置4は、シードシャフト41と、駆動源42とを備える。駆動源42は、チャンバ1の上方に配置される。シードシャフト41は棒状であり、チャンバ1の上下方向に延びる。シードシャフト41の下端はチャンバ1内に配置され、上端はチャンバ1の上方に配置される。つまり、シードシャフト41は、チャンバ1を貫通する。シードシャフト41は、回転部材51と同軸に配置される。
シードシャフト41の上端部は、駆動源42に連結される。駆動源42は、シードシャフト41を昇降する。駆動源42はさらに、シードシャフト41を、シードシャフト41の中心軸周りに回転する。
シードシャフト41は、蓋61の貫通孔611内に挿入される。そして、シードシャフト41の下端は、坩堝6内に配置される。シードシャフト41は、下端に下端面410を有する。下端面410には、SiC種結晶9が取り付けられる。
SiC種結晶9は円板状であり、SiC単結晶からなる。溶液成長法によりSiC単結晶を製造するとき、SiC種結晶9の表面にSiC単結晶が生成され、成長する。4H多形の結晶構造を有するSiC単結晶を製造する場合、好ましくは、SiC種結晶9は4H多形の結晶構造の単結晶である。さらに好ましくは、SiC種結晶9の表面(図1におけるSiC種結晶9の下面に相当)は、(0001)面又は(0001)面から8°以下の角度で傾斜した面である。この場合、SiC単結晶が安定して成長しやすい。
SiC単結晶を製造するとき、シードシャフト41を下降し、図1に示すとおり、SiC種結晶9をSiC溶液8に浸漬する。このとき、SiC溶液8は結晶成長温度に保たれる。結晶成長温度は、SiC溶液8の組成に依存する。一般的な結晶成長温度は1600〜2000℃である。
断熱部材2は、筐体状であり、側壁と、上蓋と、下蓋とを有する。断熱部材2の側壁は、坩堝6の周りに配置される。断熱部材2の上蓋は、坩堝6よりも上方に配置される。上蓋は、シードシャフト41を通すための貫通孔21を有する。断熱部材2の下蓋は、坩堝6の下方に配置される。下蓋は、回転部材51を通すための貫通孔22を有する。要するに、断熱部材2は、坩堝6全体を覆う。
断熱部材2は、周知の断熱材を備える。断熱材は、繊維系又は非繊維系の成形断熱材である。2インチ以上の直径を有するSiC単結晶を形成するためには、高い加熱効率を維持する必要がある。断熱部材2は、高い加熱効率を維持できる。ただし、断熱部材2はなくてもよい。
誘導加熱装置3は、坩堝6の周りに配置される。図1では、誘導加熱装置3は、断熱部材2の周りに配置される。誘導加熱装置3は、コイル31と、電源32とを備える。誘導加熱装置3は、坩堝6を誘導加熱し、坩堝6に収納された原料を溶融してSiC溶液8を生成する。誘導加熱装置3はさらに、坩堝6内のSiC溶液8に電磁力を与え、SiC溶液8を攪拌する。
[坩堝6の構成]
図2は、図1中の坩堝6及び誘導加熱装置3の構成図である。図2を参照して、坩堝6の本体62は、上端が開口した筐体である。本例では、本体62は、段差を有する円筒状である。
本体62は、上部筒部621と、下部筒部622と、上部収納室621Aと、下部収納室622Aとを備える。上部筒部621は、坩堝6の上部に配置される。上部筒部621は上端が開口した筒状であって、外径ODTを有する。上部筒部621内には上部収納室621Aが配置される。上部収納室621Aは円柱状の内面を有する。上部収納室621Aは、内径IDTを有する。
下部筒部622は、上部筒部621の下方に配置される。下部筒部622は、筒状であって、外径ODTよりも小さい外径ODBを有する。下部筒部622の上端にはフランジ623が形成され、フランジ623の外周縁には、上部筒部621の下端が結合される。上部筒部621及び下部筒部622は一体的に形成される。下部収納室622Aは円柱状の内面を有する。下部収納室622Aは、内径IDTよりも小さい内径IDBを有する。
下部収納室622Aの全体及び上部収納室621Aの少なくとも下部には、SiC溶液8が充填される。下部収納室622Aは、SiC溶液8内に、SiC種結晶9に向かう上昇流を形成する役割を有する。そのため、下部収納室622は、SiC種結晶9及びシードシャフト41の真下に配置されるのが好ましく、シードシャフト41と同軸に配置されるのが好ましい。好ましくはさらに、上部収納室621Aは下部収納室622Aと同軸に配置される。この場合、SiC溶液8が軸対称に対流しやすくなる。平面視において、下部収納室622はSiC種結晶9と重複する。
上部収納室621Aは、上部筒部621の内面と下部筒部622のフランジ623の上面とで区画される。フランジ623の上面は、上部収納室621Aの底面に相当する。以降、上部収納室621Aの底面を「段底面」621Bと称する。
上部収納室621Aの内径IDTは、下部収納室622Aの内径IDBよりも大きい。この場合、下部収納室622Aの流体(SiC溶液8)は、SiC種結晶9に向かって上昇した後、上部収納室621Aの外周方向に向かい、下部収納室622Aに戻る。つまり、上部収納室621Aにより、SiC種結晶9に向かう上昇流を含む対流が、SiC溶液8内に安定して形成されやすい。
[誘導加熱装置の構成]
誘導加熱装置3は、コイル31と電源32とを備える。コイル31は、上部コイル部311と、下部コイル部312とを備える。下部コイル部312は、上部コイル部311と結合されていてもよいし、別体であってもよい。
上部コイル部311及び下部コイル部312は、電源32から電流の供給を受け、坩堝6のSiC溶液8内に電磁力を生成する。生成された電磁力は、SiC溶液8の外周から中心に向かう。この電磁力により、SiC溶液8が攪拌され、SiC溶液8内に対流が発生する。
下部コイル部312は、下部収納室622A及び下部筒部622の外周面の周りに配置される。そのため、下部コイル部312は、下部収納室622A内のSiC溶液8内に電磁力を生成する。一方、上部コイル部311は、上部収納室621A及び上部筒部621の外周面の周りに配置される。そのため、上部コイル部311は、上部収納室621A内のSiC溶液8内に電磁力を生成する。
下部コイル部312は、上部コイル部311が上部収納室621AのSiC溶液8内に生成する電磁力よりも大きい電磁力を、下部収納室622AのSiC溶液8内に生成する。そのため、下部収納室622AのSiC溶液8内に上昇流が生成される。
本例では、図2に示すとおり、下部筒部622の外径ODBが上部筒部621の外径ODTよりも小さい。さらに、下部コイル部312は、上部筒部621の下方であって、下部筒部622の周りに配置される。したがって、下部コイル部312の直径は、上部コイル部311の直径よりも小さい。
上部コイル部311に流れる電流値が下部コイル部312に流れる電流値と同じであり、上部コイル部311の巻き数が下部コイル部312の巻き数と同じである場合、コイルの直径が小さいほど、磁束密度が大きくなる。そのため、下部コイル部312の電磁力は、上部コイル部311よりも大きくなる。さらに、下部収納室622Aの内径IDBは、上部収納室621Aの内径IDTよりも小さいため、下部収納室622A内のSiC溶液8に大きな電磁力を与えやすい。さらに、下部筒部622の外径ODBが上部筒部621の外径ODTよりも小さいため、下部筒部622の周壁の厚みを抑えることができる。そのため、下部コイル部312から発生した電磁波が周壁の厚みにより減衰するのを抑制でき、下部収納室622A内のSiC溶液8に生成される電磁力を大きくすることができる。
下部コイル部312は、上部コイル部311と別体であってもよいし、下部コイル部312は上部コイル部311とつながっていてもよい。
[製造装置100の動作概要]
上述の坩堝6及び誘導加熱装置3を利用することにより、製造装置100は、坩堝6内のSiC溶液8を攪拌し、かつ、SiC種結晶9近傍に炭素を供給しやすくする。以下、この点について説明する。
上述のとおり、溶液成長法においてSiC単結晶の成長速度を高めるためには、SiC溶液8のうち、SiC種結晶9近傍の部分の炭素の過飽和度(ΔC)を高めればよい。SiC種結晶9近傍で炭素の過飽和度を高めるには、SiC単結晶を製造中、SiC溶液中の炭素をSiC種結晶9近傍に搬送しやすくすればよい。
SiC種結晶9近傍に炭素を供給するには、SiC溶液8内において、SiC種結晶9に向かう上昇流を含む流動分布が形成されればよい。上昇流の流速が速ければ、なおよい。
本実施の形態では、SiC種結晶9の真下に、下部収納室622Aが配置され、下部収納室622Aよりも上方に、下部収納室622Aよりも大きい上部収納室621Aが配置される。下部コイル部312が生成する電磁力は、上部コイル部311が生成する電磁力よりも大きい。さらに、下部収納室622Aの内径IDBの方が、上部収納室621Aの内径IDTよりも小さい。そのため、坩堝6に収納されているSiC溶液8のうち、下部収納室622A内の流体の圧力は、上部収納室621A内の流体の圧力よりも大きくなる。
したがって、下部収納室622A内の流体は、圧力差により、上昇する。下部収納室622Aの真上には、SiC種結晶9が配置される。そのため、下部収納室622Aで生成された上昇流は、SiC種結晶9に向かう。
図3A及び図3Bは、本実施の形態による製造装置100を用いた場合のSiC溶液8の流動パターンを示す図である。図3A及び図3Bは、以下の数値解析シミュレーションにより得られた。
軸対称RZ系として、電磁場解析を有限要素法により計算し、熱流動解析を差分法により計算した。図1と同じ構成の製造装置を計算モデルに設定した。坩堝6の上部収納室621Aの内径IDTは130mm、下部収納室622Aの内径IDBは40mmであった(図3B参照)。また、下部収納室622A内に収納されたSiC溶液8の高さHBは35mmであり、上部収納室621A内に収納されたSiC溶液8の高さHTは25mmであった。SiC種結晶9及びシードシャフト41の外径DSは50mmであった。上部コイル部311の直径は250mmであり、下部コイル部312の直径は110mmであった。上部筒部621及び下部筒部622の側壁の厚さTは、いずれも10mmであった。コイル31に流れる電流の周波数は6kHzであった。以上の条件で、SiC溶液8内の流速ベクトルを解析した。
図3Aは、シミュレートにより得られた、SiC溶液8内の流速ベクトル分布を示す。図3Bは、図3AのSiC溶液8内の流動パターンの模式図である。図3A及び図3Bはいずれも、坩堝6の中心軸から右半分の断面図である。そして、図3A中の矢印の向きはSiC溶液8の流れる方向を示し、矢印の長さは、流速の大きさを示す。
図3A及び図3Bを参照して、下部コイル部312により下部収納室622A内の流体に生成される電磁力は、上部コイル部311により上部収納室621A内の流体に生成される電磁力よりも大きい。そのため、下部収納室622A内の流体の圧力は、上部収納室621A内の流体の圧力より大きくなる。したがって、下部収納室622Aから真上に上昇する上昇流F1(図3B参照)が形成される。
上昇流F1は、真上に上昇し、SiC種結晶9の表面に向かう。上昇流F1は炭素を含有するため、SiC種結晶9近傍に炭素が供給される。上昇流F1を形成した流体はSiC種結晶9に到達した後、上部収納室621Aの外周に向かって流れる拡散流F2を形成する。上部収納室621Aの内径IDTは、下部収納室622Aの内径IDBよりも大きいため、流体は拡散流F2を形成できる。拡散流F2を形成した流体は、上部収納室621Aの内周面近傍で下降し、下部収納室622Aに戻る下降流F3を形成する。少なくとも坩堝6の内面部に炭素が含有されている場合、坩堝6の内面から炭素が溶け出し、拡散流F2及び下降流F3を構成する流体に含有される。炭素を含有した流体は、下降流F3に乗って、下部収納室622Aに戻る。下部収納室622Aに戻った流体は、下部コイル部312の電磁力により再び上昇流F1を形成する。
要するに、上部収納室621Aと下部収納室622Aとにより、SiC溶液8内で上昇流を安定して形成できる。これによりSiC溶液8が攪拌され、SiC溶液内の炭素がSiC種結晶9近傍に供給されやすくなる。さらに、坩堝6が炭素を含有する場合、上昇流F1の形成により、坩堝6からSiC溶液8内に溶け出した炭素をSiC種結晶9近傍に供給できる。
以上の仕組みにより、本実施の形態による製造装置100では、坩堝6内において、SiC種結晶9近傍に炭素を供給しやすい。
部収納室622AにおけるSiC溶液の高さHBの方が、上部収納室621AにおけるSiC溶液8の高さHTよりも、上昇流F1の流速に影響する。高さHBが高いほど、上昇流F1を形成する流体の容積が大きくなる。そのため、上昇流F1が形成されやすく、流速も大きくなりやすい。一方、高さHTは、上昇流F1の形成にあまり影響を与えない。高さHTは、上昇流F1を形成した流体を上部収納室621Aから下部収納室622Aに再び戻すための流路(拡散流F2及び下降流F3が形成されるためのスペース)を確保できれば足りる。したがって、高さHTは、上昇流F1の流速に対する寄与が小さい
好ましくは、下部収納室622Aの内径IDBは、上部収納室621Aの内径IDTの0.25〜0.65倍である。換言すれば、IDB/IDTは0.25〜0.65である。
SiC単結晶を育成する場合、上昇流F1の好ましい流速は10mm/s以上である。IDB/IDTが0.65を超える場合、下部収納室622Aと上部収納室621Aとの間の段底621Bが狭くなりすぎる。そのため、拡散流F2及び下降流F3が形成されにくくなり、上部収納室621Aまで上昇した流体が下部収納室622Aに戻りにくくなる。そのため、上昇流F1が安定して形成されにくく、上昇流F1の流速が低下する。一方、IDB/IDTが0.25未満の場合、段底621Bが広くなりすぎて、上昇した流体が段底621Bの上方で留まり、下部収納室622Aに戻りにくくなる。そのため、上昇流を安定して形成されにくく、結果として上昇流F1の流速が低下する。IDB/IDTが0.25〜0.65の範囲内であれば、上昇流F1の流速が10mm/s以上になる。
IDB/IDTのさらに好ましい範囲は、0.30〜0.60である。この場合、上昇流F1の流速が顕著に大きくなる。なお、IDB/IDTが0.25〜0.65の範囲外であっても、上昇流F1はある程度形成される。
[SiC単結晶の製造方法]
上記構成を有する製造装置100を用いたSiC単結晶の製造方法について説明する。SiC単結晶の製造方法では、初めに、製造装置100を準備し、シードシャフト41にSiC種結晶9を取り付ける(準備工程)。次に、チャンバ1内に坩堝6を配置し、SiC溶液8を生成する(SiC溶液生成工程)。次に、SiC種結晶9を坩堝6内のSiC溶液8に浸漬する(浸漬工程)。次に、SiC単結晶を育成する(育成工程)。育成工程において、下部コイル部312が上部コイル部311よりも大きい電磁力を生成することにより、SiC溶液8内で上昇流F1が安定的に形成される。これにより、種結晶9近傍での炭素の過飽和度が高くなり、SiC単結晶の成長が促進される。以下、各工程の詳細を説明する。
[準備工程]
初めに、シードシャフト41を備えた製造装置100を準備する。そして、シードシャフト41の下端面410にSiC種結晶9を取り付ける。
[SiC溶液生成工程]
次に、チャンバ1内の回転部材51上に、坩堝6を配置する。坩堝6は、SiC溶液の原料を収納する。坩堝6は、回転部材51と同軸に配置されるのが好ましい。この場合、回転部材51が回転するときに、坩堝6内のSiC溶液の温度が均一に保たれやすい。
次に、SiC溶液8を生成する。チャンバ1内に不活性ガスを充填する。不活性ガスはたとえば、ヘリウムやアルゴンである。次に、誘導加熱装置3は、誘導加熱により、坩堝6内のSiC溶液8の原料を融点以上に加熱する。坩堝6に炭素が含有される場合、坩堝6を加熱すると、坩堝6から炭素が融液に溶け込み、SiC溶液8が生成される。坩堝6が炭素を含有しない場合、SiC溶液8の原料に炭素が含有されている。SiC溶液8は、SiとCとを含有し、さらに、他の金属元素を含有してもよい。
[浸漬工程]
次に、SiC種結晶9をSiC溶液8に浸漬する。具体的には、駆動源42により、シードシャフト41を降下し、SiC種結晶9をSiC溶液8に浸漬する。
[育成工程]
SiC種結晶9をSiC溶液8に浸漬した後、誘導加熱装置3はSiC溶液8を誘導加熱し、SiC溶液8を結晶成長温度に保持する。このとき、下部コイル部312が下部収納室622A内のSiC溶液8に与える電磁力は、上部コイル部311が上部収納室621A内のSiC溶液8に与える電磁力よりも大きい。そのため、SiC種結晶9の下方に上昇流F1が安定して生成される。
さらに、SiC溶液8のSiC種結晶周辺域を過冷却しSiCを過飽和状態にする。SiC種結晶周辺域を冷却する方法は、以下の通りである。たとえば、誘導加熱装置3を制御して、SiC種結晶9の周辺域の温度をSiC溶液8の他の部分の温度よりも低くする。また、SiC種結晶9の周辺域を冷媒により冷却してもよい。具体的には、シードシャフト41の内部に冷媒を循環させる。冷媒はたとえばアルゴンやヘリウム等の不活性ガスである。シードシャフト41内に冷媒を循環させれば、SiC種結晶9が冷却される。SiC種結晶9が冷えれば、近傍部分も冷える。以上の方法によりSiC種結晶9の周辺域が過冷却状態となれば、SiC濃度が上がり、過飽和状態になる。
続いて、SiC溶液8のうち、SiC種結晶9の周辺域のSiCを過飽和状態にしたまま、SiC種結晶9とSiC溶液8とを回転する。シードシャフト41を回転することにより、SiC種結晶9が回転する。回転部材51を回転することにより、坩堝6が回転する。SiC種結晶9の回転方向は、坩堝6の回転方向と逆方向でもよいし、同じ方向でもよい。また、回転速度は一定でもよいし、変動してもよい。シードシャフト41は、回転しながら徐々に上昇する。このとき、SiC溶液8に浸漬されたSiC種結晶9の表面にSiC単結晶が生成し、成長する。
SiC単結晶の育成中、上述のとおり、SiC種結晶9の下方には上昇流F1が安定して形成される。そのため、SiC種結晶9近傍には炭素が頻繁に供給され、SiC種結晶9近傍部分の炭素の過飽和度は高く維持される。
[第2の実施の形態]
本実施の形態によるSiC単結晶の製造装置は、図1の構成に限定されない。
図4は第2の実施の形態による製造装置200の構成図である。図4を参照して、製造装置200は、製造装置100と比較して、坩堝6に代えて新たな坩堝60を備え、誘導加熱装置3に代えて新たな誘導加熱装置30を備える。製造装置200のその他の構成は製造装置100と同じである。
図4を参照して、坩堝60は、蓋61と本体63とを備える。本体63の外面は、外径が一定の円柱である。坩堝60はさらに、上部収納室621Aと、下部収納室622Aとを有する。下部収納室622Aの内径IDBは、上部収納室621Aの内径IDTよりも小さい。そのため、本体63のうち、下部収納室622Aが配置される部分の側壁の厚さTBは、上部収納室621Aが配置される部分の側壁の厚さTTよりも厚い。
誘導加熱装置30は、上部コイル部311と、下部コイル部313とを備える。下部コイル部313は上部コイル部311と同じ直径を有する。下部コイル部313は、上部コイル部311と結合しておらず、上部コイル部311から離れている。電源32は、下部コイル部313に、上部コイル部311よりも大きい電流を与える。具体的には、下部コイル部313により下部収納室622A内で生成される電磁力が、上部コイル部311により上部収納室621A内で生成される電磁力よりも大きくなるように、下部コイル部313に上部コイル部311よりも大きい電流を供給する。
以上の構成を有する製造装置200も、製造装置100と同様に、SiC単結晶を育成中、SiC溶液8内に上昇流F1を形成できる。そのため、SiC溶液8のうち、SiC種結晶9近傍部分に炭素を供給しやすい。
[他の実施の形態]
本発明の実施の形態によるSiC単結晶の製造装置に利用される坩堝の形状は、図1及び図4に限定されない。たとえば、図5に示すとおり、坩堝6内の下部収納室622Aの内径は、下部収納室622Aの下端から上端に向かって徐々に大きくなってもよい。つまり、下部収納室622Aの表面は、テーパ形状を有してもよい。さらに、坩堝6内の上部収納室621Aの内径も、上部収納室の下端から上端に向かって徐々に大きくなってもよい。つまり、上部収納室621Aの表面がテーパ形状を有してもよい。この場合、上部収納室621Aの内径IDTは、上部収納室621Aの上端から下端までの各高さ位置での内径の平均で定義される。同様に、下部収納室622Aの内径IDBは、下部収納室622Aの上端から下端までの各高さ位置での内径の平均で定義される。
さらに、上部収納室621A及び下部収納室622Aの表面は、平面でなくてもよく、曲率を有していてもよい。たとえば、図6に示すとおり、上部収納室621A及び下部収納室622Aの表面の縦断形状が弓状であってもよい。この場合の上部収納室621Aの内径IDT及び下部収納室622Aの内径IDBの定義は、図5の場合と同じである。
さらに、上部収納室621Aの段底621Bは、水平でなくてもよい。たとえば、図7に示すように、段底621Bが、テーパ形状を有してもよい。
さらに、図8に示すとおり、下部収納室622Aの下方に、下部収納室622Aの内径IDBよりも小さい内径を有する収納室623Aが配置されてもよい。収納室623Aは、下部収納室622Aの下端とつながる。そのため、下部収納室622Aと623Aとの間に、段底622Bが形成される。
さらに、図9に示すとおり、下部収納室622Aの下方に、内径IDBよりも大きい内径を有する収納室624Aが配置されてもよい。収納室624Aは、下部収納室622Aの下端とつながる。
図8や図9に示すような形状を有する坩堝6を備えた製造装置であっても、製造装置100及び200と同様に、坩堝6内に上昇流F1を生成できる。
本発明の実施の形態における製造装置に利用される誘導加熱装置は、誘導加熱装置3及び30に限定されない。誘導加熱装置は、上部コイル部と下部コイル部とを備え、下部コイル部が下部収納室622AのSiC溶液8内に生成する電磁力が、上部コイル部が上部収納室621AのSiC溶液8内に生成する電磁力よりも大きければよい。
したがって、誘導加熱装置において、電源が、上部コイル部に電流I1を流し、かつ、下部コイル部に電流I1よりも低い周波数を有する電流I2を流すことにより、下部コイル部における電磁波の浸透深さが大きくし、下部収納室622A内のSiC溶液8に作用する電磁力を、上部収納室621A内のSiC溶液8に作用する電磁力よりも大きくしてもよい。
また、誘導加熱装置において、下部コイル部の単位長さ当たりの巻き数(回/m)を上部コイル部の単位長さ当たりの巻き数(回/m)よりも大きくすることにより、下部コイル部が下部収納室622A内で生成する電磁力を、上部コイル部が上部収納室621A内で生成する電磁力よりも大きくしてもよい。
坩堝6は炭素を含有する方が好ましい。この場合、坩堝6内の炭素がSiC溶液に溶け込み、上昇流F1によりSiC種結晶9の下方に搬送される。そのため、SiC種結晶9近傍部分の炭素の過飽和度が高くなりやすい。好ましくは、坩堝6は黒鉛からなる。
上述の実施の形態では、製造装置100は、断熱部材2を備える。しかしながら、製造装置100は断熱部材2を備えなくてもよい。
上述のSiC単結晶の製造装置100と同じ構成を有する製造装置を準備した。坩堝6内のSiC溶液の高さが異なる複数の条件を設定し、数値解析シミュレーションによりSiC溶液内の流動パターンを解析した。そして、SiC種結晶の下方のSiC溶液の流速を求めた。
[シミュレーション方法]
シミュレーションを以下のとおり実施した。軸対称RZ系として、電磁場解析は有限要素法により計算し、熱流動解析は差分法により計算した。図1と同じ構成の製造装置100を計算モデルに設定した。坩堝6の上部収納室621Aの内径IDTは130mm、坩堝6の下部収納室622Aの内径IDBは40mm、坩堝6の壁の厚みTは10mmであった。SiC種結晶9の直径は50mmであった。上部収納室621A内のSiC溶液8の高さHTと、下部収納室622A内のSiC溶液8の高さHBは、いずれも表1に示すとおりであった。坩堝6の上部収納室621A及び下部収納室622A内の各コーナ部には、R=10mmの曲率(コーナR)を設けた。
表1の各設定条件ごとに電磁場解析及び熱流動解析を実施し、流動解析結果を得た
表1中の各条件で得られた流速ベクトル分布に基づいて、SiC種結晶9の下端から5mm下方の位置において、SiC種結晶9中心からSiC種結晶9の端までの間の範囲(つまり、25mm幅)の平均流速(mm/s)を算出した。平均流速は、SiC溶液8中の下方から上方に向かう方向をプラス(+)とした。
[シミュレーション結果]
算出された平均流速を表に示す。
Figure 0005439353
中の各フィールド内の値は、平均流速(mm/s)を示す。表1を参照して、各設定条件ともに、平均流速はプラスであり、いずれの設定条件においても上昇流F1が形成された
上部収納室621Aの内径IDTを一定とし、下部収納室622Aの内径IDBを変動してSiC溶液8内の流動パターンを解析した。そして、SiC種結晶9の下方のSiC溶液8の流速を求めた。
[シミュレーション方法]
実施例1と同様に、軸対称RZ系として、電磁場解析は有限要素法により計算し、熱流動解析は差分法により計算した。図1と同じ構成の製造装置100を計算モデルに設定した。上部収納室621Aの内径IDTは130mm、坩堝6の側壁の厚みTは10mmであった。上部収納室621A内のSiC溶液8の高さHTは25mmであり、下部収納室622A内のSiC溶液8の高さHBは40mmであった。坩堝6の上部収納室621A及び下部収納室622A内の各コーナ部には、R=10mmの曲率(コーナR)を設けた。
に示すとおり、下部収納室622Aの内径IDBが異なる複数の設定条件を準備した。各設定条件についてシミュレーションを実施し、SiC溶液8内の流動パターンを解析した。そして、実施例1と同様に、各設定条件において、SiC種結晶9の下方のSiC溶液8の平均流速を求めた。平均流速は、SiC溶液8中の下方から上方に向かう方向をプラス(+)とした。
Figure 0005439353
[シミュレーション結果]
算出された平均流速を表に示す。「DIB/DIT」欄には、内径IDTに対する内径IDBの比を示す。さらに、図10は、表中の「DIB/DIT」と「平均流速(mm/s)との関係を示す図である。図10中の横軸は、「DIB/DIT」を示す。表中の縦軸は、「平均流速(mm/s)」を示す。
及び図10を参照して、各設定条件ともに、平均流速はプラスであり、いずれの設定条件においても上昇流F1が形成された。さらに、IDB/IDT値が0.25〜0.65の場合、上昇流F1の平均流速が10mm/s以上であった。さらに、IDB/IDT値が0.30〜0.60の場合、それ以外の場合と比較して、平均流速が顕著に高くなり、20mm/sを超えた。
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
1 チャンバ
3,30 誘導加熱装置
6,60 坩堝
8 SiC溶液
9 SiC種結晶
31 コイル
32 電源
41 シードシャフト
100,200 製造装置
311 上部コイル部
312,313 下部コイル部
621A 上部収納室
622A 下部収納室

Claims (9)

  1. SiC溶液を収納可能な坩堝と、
    前記坩堝を収納するチャンバと、
    前記チャンバの上下方向に延び、前記SiC溶液に浸漬されるSiC種結晶が下端に取り付けられるシードシャフトと、
    前記坩堝の周りに配置される誘導加熱装置とを備え、
    前記坩堝は、
    前記坩堝の上部に配置され、第1の内径を有し且つ上下方向に延びる第1の内面を有する上部収納室と、
    前記上部収納室の下方に配置され、第1の内径よりも小さい第2の内径を有し且つ上下方向に延びる第2の内面を有する下部収納室と、
    前記第1の内面の下端と前記第2の内面の上端とを接続する段差面とを備え、
    前記誘導加熱装置は、
    前記上部収納室の周りに配置される上部コイル部と、
    前記下部収納室の周りに配置され、前記上部コイル部が前記上部収納室内の前記SiC溶液に生成する電磁力よりも大きい電磁力を、前記下部収納室内の前記SiC溶液に生成する下部コイル部と、
    前記上部コイル部及び下部コイル部に電流を供給する電源とを備える、製造装置。
  2. 請求項1に記載の製造装置であって、
    前記坩堝はさらに、
    前記坩堝の上部に配置され、第1の外径を有し、内部に前記上部収納室が配置される上部筒部と、
    前記上部筒部の下方に配置され、前記第1の外径よりも小さい第2の外径を有し、内部に前記下部収納室が配置される下部筒部とを備える、製造装置。
  3. 請求項2に記載の製造装置であって、
    前記上部コイル部は、前記上部筒部の周りに配置され、
    前記下部コイル部は、前記下部筒部の周りに配置され、
    前記下部コイル部の直径は、前記上部コイル部の直径よりも小さい、製造装置。
  4. 請求項1〜請求項3のいずれか1項に記載の製造装置であって、
    前記下部収納室内の前記SiC溶液の高さが、前記上部収納室内の前記SiC溶液の高さよりも高い、製造装置。
  5. 請求項1〜請求項4のいずれか1項に記載の製造装置であって、
    前記第2の内径の前記第1の内径に対する比は0.25〜0.65である、製造装置。
  6. 請求項1に記載の製造装置であって、
    前記電源は、
    前記上部コイル部に第1の電流を供給し、前記下部コイル部に、前記第1の電流よりも周波数の低い第2の電流を供給する、製造装置。
  7. 請求項1〜請求項6のいずれか1項に記載の製造装置に用いられる坩堝。
  8. 溶液成長法によるSiC単結晶の製造方法に用いられる坩堝であって、
    前記坩堝の上部に配置され、第1の内径を有し且つ上下方向に延びる第1の内面を有する上部収納室と、
    前記上部収納室の下方に配置され、第1の内径よりも小さい第2の内径を有し且つ上下方向に延びる第2の内面を有する下部収納室と、
    前記第1の内面の下端と前記第2の内面の上端とを接続する段差面とを備える、坩堝。
  9. SiC溶液を収納可能な坩堝と、前記坩堝を収納するチャンバと、前記チャンバの上下方向に延び、前記SiC溶液に浸漬されるSiC種結晶が下端に取り付けられるシードシャフトと、前記坩堝の周りに配置される誘導加熱装置とを備え、前記坩堝は、前記坩堝の上部に配置され、第1の内径を有し且つ上下方向に延びる第1の内面を有する上部収納室と、前記上部収納室の下方に配置され、第1の内径よりも小さい第2の内径を有し且つ上下方向に延びる第2の内面を有する下部収納室と、前記第1の内面の下端と前記第2の内面の上端とを接続する段差面とを備え、前記誘導加熱装置は、前記上部収納室の周りに配置される上部コイル部と、前記下部収納室の周りに配置され、前記上部コイル部が前記上部収納室内の前記SiC溶液に生成する電磁力よりも大きい電磁力を、前記下部収納室内の前記SiC溶液に生成する下部コイル部と、前記上部コイル部及び下部コイル部に電流を供給する電源とを備える製造装置を準備する工程と、
    前記シードシャフトに取り付けられた前記SiC種結晶を前記坩堝内の前記SiC溶液に浸漬する工程と、
    前記誘導加熱装置により、前記坩堝内の前記SiC溶液を加熱する工程と、
    前記シードシャフトを回転しながら、前記SiC種結晶上にSiC単結晶を育成する工程とを備える、SiC単結晶の製造方法。
JP2010289972A 2010-12-27 2010-12-27 SiC単結晶の製造装置及びそれに用いられる坩堝 Active JP5439353B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289972A JP5439353B2 (ja) 2010-12-27 2010-12-27 SiC単結晶の製造装置及びそれに用いられる坩堝

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289972A JP5439353B2 (ja) 2010-12-27 2010-12-27 SiC単結晶の製造装置及びそれに用いられる坩堝

Publications (3)

Publication Number Publication Date
JP2012136388A JP2012136388A (ja) 2012-07-19
JP2012136388A5 JP2012136388A5 (ja) 2012-08-30
JP5439353B2 true JP5439353B2 (ja) 2014-03-12

Family

ID=46674150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289972A Active JP5439353B2 (ja) 2010-12-27 2010-12-27 SiC単結晶の製造装置及びそれに用いられる坩堝

Country Status (1)

Country Link
JP (1) JP5439353B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211147A1 (en) * 2012-07-27 2015-07-30 Kyocera Corporation Crucible, crystal growing apparatus, and crystal growing method
JP5863977B2 (ja) * 2012-09-04 2016-02-17 新日鐵住金株式会社 SiC単結晶の製造装置及び製造方法
JP6231375B2 (ja) * 2013-12-25 2017-11-15 京セラ株式会社 坩堝、結晶製造装置および結晶の製造方法
JP6279930B2 (ja) * 2014-02-27 2018-02-14 京セラ株式会社 結晶製造装置および結晶の製造方法
WO2016059790A1 (ja) * 2014-10-17 2016-04-21 新日鐵住金株式会社 溶液成長法によるSiC単結晶の製造装置、及びそれに用いられる坩堝
JP6354615B2 (ja) * 2015-02-18 2018-07-11 トヨタ自動車株式会社 SiC単結晶の製造方法
KR102122739B1 (ko) * 2017-12-19 2020-06-16 한국세라믹기술원 단결정 성장을 위하여 용액에 침잠되는 돌설부를 구비하는 도가니
KR102166452B1 (ko) * 2018-10-26 2020-10-15 한국세라믹기술원 단결정 용액성장 장치 및 단결정 용액성장 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085736B2 (ja) * 1987-06-01 1996-01-24 三菱マテリアル株式会社 シリコン単結晶育成方法及び装置
JP4265269B2 (ja) * 2003-04-21 2009-05-20 トヨタ自動車株式会社 SiC単結晶製造炉
JP4196791B2 (ja) * 2003-09-08 2008-12-17 トヨタ自動車株式会社 SiC単結晶の製造方法
JP4475091B2 (ja) * 2004-10-19 2010-06-09 住友金属工業株式会社 炭化珪素単結晶の製造方法
JP4830496B2 (ja) * 2006-01-12 2011-12-07 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2007197231A (ja) * 2006-01-24 2007-08-09 Toyota Motor Corp SiC単結晶の製造方法
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
JP2008105896A (ja) * 2006-10-25 2008-05-08 Toyota Motor Corp SiC単結晶の製造方法

Also Published As

Publication number Publication date
JP2012136388A (ja) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5439353B2 (ja) SiC単結晶の製造装置及びそれに用いられる坩堝
JP5854438B2 (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
JP5528396B2 (ja) 溶液成長法によるSiC単結晶の製造装置、当該製造装置を用いたSiC単結晶の製造方法及び当該製造装置に用いられる坩堝
JP5517913B2 (ja) SiC単結晶の製造装置、製造装置に用いられる治具、及びSiC単結晶の製造方法
JP5628426B2 (ja) SiC単結晶の製造装置及び製造方法
JP5925319B2 (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
WO2016059788A1 (ja) SiC単結晶の製造方法及びSiC単結晶の製造装置
JP2011105575A (ja) 単結晶引き上げ装置
JP5828810B2 (ja) 溶液成長法に用いられるSiC単結晶の製造装置、当該製造装置に用いられる坩堝及び当該製造装置を用いたSiC単結晶の製造方法
WO2016059790A1 (ja) 溶液成長法によるSiC単結晶の製造装置、及びそれに用いられる坩堝
JP2013112553A (ja) SiC単結晶の製造方法及びSiC単結晶の製造装置
CN107532329B (zh) SiC单晶的制造方法
WO2017135272A1 (ja) SiC単結晶の製造方法及びSiC種結晶
JP6627984B2 (ja) SiC単結晶の製造方法及び製造装置、並びにSiC単結晶の製造に用いるシードシャフト
JP2017145160A (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
JP2016079070A (ja) 溶液成長法によるSiC単結晶の製造装置及びSiC単結晶の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350