JPWO2006104006A1 - 検体分析方法および検体分析装置 - Google Patents

検体分析方法および検体分析装置 Download PDF

Info

Publication number
JPWO2006104006A1
JPWO2006104006A1 JP2007510430A JP2007510430A JPWO2006104006A1 JP WO2006104006 A1 JPWO2006104006 A1 JP WO2006104006A1 JP 2007510430 A JP2007510430 A JP 2007510430A JP 2007510430 A JP2007510430 A JP 2007510430A JP WO2006104006 A1 JPWO2006104006 A1 JP WO2006104006A1
Authority
JP
Japan
Prior art keywords
sample
unit
measurement
analysis
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007510430A
Other languages
English (en)
Other versions
JP4999679B2 (ja
Inventor
典正 山本
典正 山本
隆司 山登
隆司 山登
松尾 直彦
直彦 松尾
聖 井口
聖 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2007510430A priority Critical patent/JP4999679B2/ja
Publication of JPWO2006104006A1 publication Critical patent/JPWO2006104006A1/ja
Application granted granted Critical
Publication of JP4999679B2 publication Critical patent/JP4999679B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/023Controlling conditions in casing
    • G01N2201/0231Thermostating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/815Test for named compound or class of compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/815Test for named compound or class of compounds
    • Y10S436/817Steroids or hormones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/112499Automated chemical analysis with sample on test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/113332Automated chemical analysis with conveyance of sample along a test line in a container or rack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • Y10T436/146666Bile pigment

Abstract

検体の分析に先立って干渉物質の測定が可能な新規な検体分析方法が得られる。この検体分析方法は、検体容器(150)に収容されている検体を吸引し、第1容器(153)に分取するステップと、第1容器中の検体に対して光学測定を行うステップと、検体を第2容器(154)に分取し、第2容器にて検体と試薬とを混和して測定用試料を調製するステップと、検体の光学測定の結果に応じて、測定用試料に対して分析を行うステップとを備えている。

Description

本発明は、血漿、血清および尿などの検体を分析する検体分析方法および検体分析装置に関する。
従来、臨床検査の分野において、血漿、血清および尿などの検体中に含まれる特定の物質の量や活性の度合いを光学的に測定して分析する検体分析装置が知られている。このような検体分析装置では、検体に試薬を添加して分析用試料を調製した後、その分析用試料に所定の波長の光を照射する。そして、分析用試料からの散乱光や透過光などを分析することにより分析結果を得る検体分析方法が一般的に用いられている。
ところで、溶血や乳び、黄疸の症状を有する検体では、正確な光学的測定を行うのが困難な場合がある。これは、以下の理由による。すなわち、検体として血漿を用いる場合に、通常の血漿は薄い黄色のほぼ透明であるが、溶血検体は、検体中にヘモグロビンを多く含有するため赤みを帯びている。また、乳び検体は、検体中に脂質を多く含有するため白濁している。また、黄疸検体は、検体中にビリルビンを多く含有するため黄色または黄緑色を呈している。このように、ヘモグロビンや脂質、ビリルビンなどの光学的測定の妨げとなる物質(干渉物質)が検体中に存在する場合には、特定の波長の光が吸収されたり、散乱光の変化量が十分に得られなかったりするため、正確な光学的測定を行うのが困難である。特に、溶血、乳びおよび黄疸の症状が顕著な検体の場合には、正確な光学的測定を行うのがより困難になるので、分析結果を得るのが困難であるという不都合があった。その結果、検体分析装置の分析効率が低下する場合があるという不都合があった。
そこで、従来、上記した不都合を解消するために、検体分析装置による検体の分析を行う前に、検体の状態を自動的に判断する検体検査自動化システムが提案されている。このような検体検査自動化システムは、たとえば、特開平7−280814号公報に開示されている。この特開平7−280814号公報に開示された検体検査自動化システムは、検体容器から検体を分注する分注装置、分注装置により分注された検体を分析する自動分析装置を有し、さらに自動分析装置による血清検体の分析の前に、別途設けられた「溶血、乳び、黄疸測定装置」を用いて検体中の溶血、乳びおよび黄疸(干渉物質)の有無を測定し、その測定結果と自動分析装置への検査依頼項目とを照合する。そして、照合の結果に基づいて、分析結果が検体中の干渉物質の影響を受けない検査依頼項目のみの分析を行うとともに、分析結果が検体中の干渉物質の影響を受ける検査依頼項目の分析を行わないように自動分析装置を制御する。この際、検体分析装置により分析を行うと判断された場合には、分注装置によって採血管中の検体を自動分析装置用サンプルカップに分注し、その自動分析装置用サンプルカップを自動分析装置に搬送している。そして、自動分析装置用サンプルカップに分注された検体に対して試薬を投入することによって、干渉物質の影響を受けない検査依頼項目についての分析が行なわれる。また、照合の結果、血清検体に関して分析可能な検査依頼項目が存在しない場合には、その血清検体の分注を行わないように分注装置を制御する。これにより、上記特開平7−280814号公報の検体検査自動化システムでは、自動分析装置の分析効率が低下するのを抑制している。
上記特開平7−280814号公報には、採血管の外側から溶血、乳び、黄疸の状態を分光測定する構成が開示されている。しかしながら、採血管には検体を特定するためのバーコードラベルが通常貼付されており、このバーコードラベルが邪魔になって正確に干渉物質の測定を行うことができない場合がある。
その一方で、米国特許第6797518号には、検体を吸引する計量チップの先端に残った検体に対して干渉物質の測定を行う構成が開示されており、米国特許第5734468号には、ニードルと透明部分を有するプローブにより検体を吸引し、当該プローブの透明部分で干渉物質の測定を行う構成が開示されている。
この発明は、上記のような課題を解決するためになされたものであり、検体の分析に先立って干渉物質の測定が可能な新規な検体分析方法および検体分析装置を提供することを目的とする。
上記目的を達成するために、この発明の第1の局面による検体分析方法は、検体容器に収容されている検体を吸引し、第1容器に分取するステップと、第1容器中の検体に対して光学測定を行うステップと、検体を第2容器に分取し、第2容器にて検体と試薬とを混和して測定用試料を調製するステップと、検体の光学測定の結果に応じて、測定用試料に対して分析を行うステップとを備えている。
この発明の第2の局面による検体分析装置は、検体容器に収容されている検体を吸引し、第1容器に分取する第1分取部と、第1容器に分取された検体に対して光学測定を行う光学測定部と、検体を第2容器に分取する第2分取部と、第2容器にて検体と試薬とを混和して測定用試料を調製する試料調製部と、第2容器の測定用試料を分析する分析部と、検体の光学測定の結果に応じて、分析部による分析動作を制御する制御部とを備えている。
本発明の第1実施形態による検体分析装置の全体構成を示した斜視図である。 図1に示した第1実施形態による検体分析装置の検出機構部および搬送機構部を示した平面図である。 図1に示した制御装置の構成を示すブロック図である。 図1に示した第1実施形態による検体分析装置の検体容器の正面図である。 図1に示した第1実施形態による検体分析装置の第1光学的情報取得部を示した斜視図である。 図5に示した第1実施形態による第1光学的情報取得部を概略的に示した断面図である。 図5に示した第1実施形態による第1光学的情報取得部の構成を示したブロック図である。 図1に示した第1実施形態による検体分析装置の第2光学的情報取得部の構成を示したブロック図である。 図8に示した第1実施形態による第2光学的情報取得部のランプ部の構成を示した概略図である。 図9に示した第1実施形態によるランプ部のフィルタ部材を示した平面図である。 図1に示した第1実施形態による検体分析装置の制御方法を示したフローチャートである。 図1に示した第1実施形態による検体分析装置の制御装置の表示部に出力された検体分析一覧表を示した図である。 図1に示した第1実施形態による検体分析装置の検体分析動作の手順を示したフローチャートである。 図5に示した第1実施形態による第1光学的情報取得部からの光学的情報の解析処理を説明するためのフローチャートである。 図5に示した第1実施形態による第1光学的情報取得部からの光学的情報の解析処理を説明するためのフローチャートである。 図5に示した第1実施形態による第1光学的情報取得部からの光学的情報の解析処理を説明するためのフローチャートである。 本発明の第2実施形態による検体分析装置の全体構成を示した斜視図である。 図17に示した第2実施形態による検体分析装置の検出機構部および搬送機構部を示した平面図である。 図17に示した第2実施形態による検体分析装置の第1光学的情報取得部を示した斜視図である。 図17に示した第2実施形態による検体分析装置の第1光学的情報取得部の構成を説明するための模式図である。 図17に示した第2実施形態による検体分析装置の第1光学的情報取得部のブロック図である。 図17に示した第2実施形態による検体分析装置のランプユニットを示した斜視図である。 図17に示した第2実施形態による検体分析装置のランプユニットの構成を説明するための模式図である。 図22に示したランプユニットのフィルタ部を示した拡大斜視図である。 図17に示した第2実施形態による検体分析装置の第2光学的情報取得部の検出部の内部構造を説明するための概略図である。 図17に示した第2実施形態による検体分析装置の第2光学的情報取得部の検出部の構成を説明するための断面図である。 図17に示した第2実施形態による検体分析装置の第2光学的情報取得部のブロック図である。 図17に示した第2実施形態による検体分析装置の検体分析動作の手順を示したフローチャートである。 干渉物質(ヘモグロビン)の吸光度スペクトルを示したグラフである。 干渉物質(ビリルビン)の吸光度スペクトルを示したグラフである。 干渉物質(乳び)の吸光度スペクトルを示したグラフである。 本発明の第1実施形態の変形例による第2光学的情報取得部の構成を示した概略図である。 本発明の第2実施形態の変形例による検体分析装置の検体分析動作の手順を示したフローチャートである。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
(第1実施形態)
まず、図1〜図10を参照して、本発明の第1実施形態による検体分析装置1の全体構成について説明する。
本発明の第1実施形態による検体分析装置1は、血液の凝固・線溶機能に関連する特定の物質の量や活性の度合いを光学的に測定して分析するための装置であり、検体としては血漿を用いる。なお、第1実施形態による検体分析装置1では、凝固時間法、合成基質法および免疫比濁法を用いて検体の光学的な測定を行っている。凝固時間法は、検体が凝固する過程を透過光または散乱光の変化として検出する測定方法である。また、合成基質法は、検体に添加された発色性合成基質が発色する過程の吸光度の変化を、透過光の変化に基づき検出する測定方法である。また、免疫比濁法は、検体に添加されたラテックス試薬などの抗体感作試薬が抗原抗体反応することによる吸光度の変化を、透過光の変化に基づき検出する測定方法である。検体分析装置1は、図1に示すように、検出機構部2と、検出機構部2の前面側に配置された搬送機構部3と、検出機構部2に電気的に接続された制御装置4とにより構成されている。
搬送機構部3は、検体を収容した複数(第1実施形態では、10本)の試験管150が載置されたラック151を検出機構部2の吸引位置2a(図2参照)に対応する位置まで搬送することにより、検出機構部2に検体を自動的に供給するように構成されている。また、試験管150は、図4に示すように、上部に開口部が設けられており、その開口部には蓋152が嵌め込まれている。この蓋152には、後述するノズル35が突き刺される凹部152aが形成されている。この搬送機構部3は、未処理の検体を収容した試験管150が載置されたラック151をセットするためのラックセット領域3aと、処理済みの検体を収容した試験管150が載置されたラック151を収容するためのラック収容領域3bとを有している。すなわち、ラックセット領域3aにセットされたラック151は、図2に示すように、検出機構部2の吸引位置2aに対応する位置まで搬送される。そして、検出機構部2による試験管150内の検体の分注(一次分注)処理が行われた後、ラック収容領域3bに搬送されて収容される。なお、搬送機構部3のラックセット領域3aには、複数のラック151をセット可能である。
制御装置4は、パーソナルコンピュータ(PC)などからなり、図1に示すように、制御部4aと、表示部4bと、キーボード4cとを含んでいる。制御部4aは、検出機構部2および搬送機構部3の動作制御を行うとともに、検出機構部2で得られた検体の光学的な情報を分析するための機能を有している。この制御部4aは、CPU、ROM、RAMなどからなる。また、表示部4bは、検体中に存在する干渉物質(ヘモグロビン、乳び(脂質)およびビリルビン)に関する情報と、制御部4aで得られた分析結果とを表示するために設けられている。
次に、制御装置4の構成について説明する。制御装置4は、図3に示すように、制御部4aと、表示部4bと、キーボード4cとから主として構成されたコンピュータ401によって構成されている。制御部4aは、CPU401aと、ROM401bと、RAM401cと、ハードディスク401dと、読出装置401eと、入出力インタフェース401fと、通信インタフェース401gと、画像出力インタフェース401hとから主として構成されており、CPU401a、ROM401b、RAM401c、ハードディスク401d、読出装置401e、入出力インタフェース401f、通信インタフェース401g、および画像出力インタフェース401hは、バス401iによって接続されている。
CPU401aは、ROM401bに記憶されているコンピュータプログラムおよびRAM401cにロードされたコンピュータプログラムを実行することが可能である。そして、後述するようなアプリケーションプログラム404aを当該CPU401aが実行することにより、コンピュータ401が制御装置4として機能する。
ROM401bは、マスクROM、PROM、EPROM、EEPROM等によって構成されており、CPU401aに実行されるコンピュータプログラムおよびこれに用いるデータ等が記録されている。
RAM401cは、SRAMまたはDRAM等によって構成されている。RAM401cは、ROM401bおよびハードディスク401dに記録されているコンピュータプログラムの読み出しに用いられる。また、これらのコンピュータプログラムを実行するときに、CPU401aの作業領域として利用される。
ハードディスク401dは、オペレーティングシステムおよびアプリケーションプログラム等、CPU401aに実行させるための種々のコンピュータプログラムおよび当該コンピュータプログラムの実行に用いるデータがインストールされている。血液凝固分析処理用のアプリケーションプログラム404aも、このハードディスク401dにインストールされている。
読出装置401eは、フレキシブルディスクドライブ、CD−ROMドライブ、またはDVD−ROMドライブ等によって構成されており、可搬型記録媒体404に記録されたコンピュータプログラムまたはデータを読み出すことができる。また、可搬型記録媒体404には、血液凝固分析処理用のアプリケーションプログラム404aが格納されており、コンピュータ401が当該可搬型記録媒体404から本発明に係るアプリケーションプログラム404aを読み出し、当該アプリケーションプログラム404aをハードディスク401dにインストールすることが可能である。
なお、上記アプリケーションプログラム404aは、可搬型記録媒体404によって提供されるのみならず、電気通信回線(有線、無線を問わない)によってコンピュータ401と通信可能に接続された外部の機器から前記電気通信回線を通じて提供することも可能である。例えば、前記アプリケーションプログラム404aがインターネット上のサーバコンピュータのハードディスク内に格納されており、このサーバコンピュータにコンピュータ401がアクセスして、当該アプリケーションプログラム404aをダウンロードし、これをハードディスク401dにインストールすることも可能である。
また、ハードディスク401dには、例えば、米マイクロソフト社が製造販売するWindows(登録商標)等のグラフィカルユーザインタフェース環境を提供するオペレーティングシステムがインストールされている。以下の説明においては、本実施の形態に係るアプリケーションプログラム404aは当該オペレーティングシステム上で動作するものとしている。
出力インタフェース401fは、例えば、USB、IEEE1394、RS−232Cなどのシリアルインタフェース、SCSI、IDE、IEEE1284等のパラレルインタフェース、およびD/A変換器、A/D変換器等からなるアナログインタフェース等から構成されている。入出力インタフェース401fには、キーボード4cが接続されており、ユーザが当該キーボード4cを使用することにより、コンピュータ401にデータを入力することが可能である。
通信インタフェース401gは、例えば、Ethernet(登録商標)インタフェースである。コンピュータ401は、当該通信インタフェース401gにより、所定の通信プロトコルを使用して検出機構部2との間でデータの送受信が可能である。
画像出力インタフェース401hは、LCDまたはCRT等で構成された表示部4bに接続されており、CPU401aから与えられた画像データに応じた映像信号を表示部4bに出力するようになっている。表示部4bは、入力された映像信号にしたがって、画像(画面)を表示する。
検出機構部2は、搬送機構部3から供給された検体に対して光学的な測定を行うことにより、検体に関する光学的情報を取得することが可能なように構成されている。第1実施形態による検体分析装置1では、搬送機構部3の試験管150から検出機構部2のキュベット153および154(図2参照)内に分注された検体に対して光学的な測定が行われる。このキュベット153は、後述する1次分注テーブル24の保持部24aに保持されるとともに、キュベット154は、後述する2次分注テーブル23の保持部23aに保持される。検出機構部2は、図1および図2に示すように、キュベット供給部10と、回転搬送部20と、検体分注アーム30と、第1光学的情報取得部40と、2つの試薬分注アーム50と、キュベット移送部60と、第2光学的情報取得部70と、緊急検体セット部80と、キュベット廃棄部90と、流体部100とを備えている。
キュベット供給部10は、複数のキュベット153および154を回転搬送部20に順次供給することが可能なように構成されている。このキュベット供給部10は、図2に示すように、ブラケット11(図1参照)を介して装置本体に取り付けられたホッパ12と、ホッパ12の下方に設けられた2つの誘導板13と、2つの誘導板13の下端に配置された支持台14と、支持台14から所定の間隔を隔てて設けられた供給用キャッチャ部15とを含んでいる。2つの誘導板13は、キュベット153および154のつば部153aおよび154a(図6参照)の直径よりも小さく、かつ、キュベット153および154の胴部153bおよび154b(図6参照)の直径よりも大きくなるような間隔を隔てて互いに平行に配置されている。ホッパ12内に供給されたキュベット153および154は、つば部153aおよび154aが2つの誘導板13の上面に係合した状態で、支持台14に向かって滑り落ちながら移動するように構成されている。
支持台14は、図2に示すように、支持台14に対して回転可能に設けられた回転部14aと、回転部14aに隣接して形成された凹部14bとを有している。回転部14aの外周部分には、所定の角度(90度)毎に4つの切欠部14cが形成されている。これらの4つの切欠部14cは、2つの誘導板13により誘導されたキュベット153および154を1つずつ収容するために設けられている。また、凹部14bは、回転部14aの切欠部14c内のキュベット153および154を受け取ることが可能なように構成されており、供給用キャッチャ部15によりキュベット153および154を回転搬送部20に供給する際の供給開始位置として設けられている。
供給用キャッチャ部15は、キュベット供給部10のキュベット153および154を回転搬送部20に供給するために設けられている。この供給用キャッチャ部15は、駆動モータ15aと、駆動モータ15aに接続されたプーリ15bと、プーリ15bと所定の間隔を隔てて設けられたプーリ15cと、プーリ15bおよび15cに装着された駆動伝達ベルト15dと、プーリ15cに軸15eを介して取り付けられたアーム部15fと、アーム部15fを上下方向に移動させるための駆動部15gとを有している。駆動モータ15aは、アーム部15fを支持台14と回転搬送部20との間で軸15eを中心に回動させるための駆動源としての機能を有している。アーム部15fの先端部には、キュベット153および154を挟み込んで把持するためのチャック部15hが設けられている。
回転搬送部20は、キュベット供給部10から供給されたキュベット153および154と、キュベット153および154内の検体に添加される試薬を収容した試薬容器(図示せず)とを回転方向に搬送するために設けられている。この回転搬送部20は、円形状の試薬テーブル21と、円形状の試薬テーブル21の外側に配置された円環形状の試薬テーブル22と、円環形状の試薬テーブル22の外側に配置された円環形状の二次分注テーブル23と、円環形状の二次分注テーブル23の外側に配置された円環形状の一次分注テーブル24とにより構成されている。これらの一次分注テーブル24、二次分注テーブル23、試薬テーブル21および試薬テーブル22は、それぞれ、時計回り方向および反時計回り方向の両方に回転可能で、かつ、各々のテーブルが互いに独立して回転可能なように構成されている。
試薬テーブル21および22は、それぞれ、所定の間隔を隔てて設けられた複数の孔部21aおよび22aを含んでいる。試薬テーブル21および22の孔部21aおよび22aは、検体から測定用試料を調製する際に添加される種々の試薬を収容した複数の試薬容器(図示せず)を載置するために設けられている。また、一次分注テーブル24および二次分注テーブル23は、それぞれ、所定の間隔を隔てて設けられた円筒形状の複数の保持部24aおよび23aを含んでいる。保持部24aおよび23aは、それぞれ、キュベット供給部10から供給されたキュベット153および154を保持するために設けられている。一次分注テーブル24の保持部24aに保持されたキュベット153には、一次分注処理の際に、搬送機構部3の試験管150からの検体が分注される。また、二次分注テーブル23の保持部23aに保持されたキュベット154には、二次分注処理の際に、一次分注テーブル24に保持されたキュベット153からの検体が分注される。また、保持部24aには、図6に示すように、保持部24aの側方の互いに対向する位置に一対の小孔24bが形成されている。この一対の小孔24bは、後述する第1光学的情報取得部40の発光ダイオード(LED)41から出射された光を通過させるために設けられている。
図2に示した検体分注アーム30は、搬送機構部3により検出機構部2の吸引位置2aに搬送された試験管150内の検体を、回転搬送部20の一次分注テーブル24の保持部24aに保持されているキュベット153内に分注するための機能を有している。また、検体分注アーム30は、回転搬送部20の一次分注テーブル24の保持部24aに保持されているキュベット153内の検体を、二次分注テーブル23の保持部23aに保持されているキュベット154内に分注するための機能も有している。この検体分注アーム30は、駆動モータ31と、駆動モータ31に接続された駆動伝達部32と、駆動伝達部32に軸33(図1参照)を介して取り付けられたアーム部34とを含んでいる。駆動伝達部32は、駆動モータ31からの駆動力によりアーム部34を、軸33を中心に回動させるとともに、上下方向に移動させることが可能なように構成されている。アーム部34の先端部には、ノズル35(図1参照)が取り付けられている。このノズル35は、試験管150の開口部に嵌め込まれた蓋152の凹部152a(図4参照)に貫通させることにより、検体の吸引を行う機能を有している。
第1光学的情報取得部40は、試薬を添加する前の検体中の干渉物質の有無、種類および含有の度合いなどを検出するために、検体から光学的な情報を取得するように構成されている。この第1光学的情報取得部40による試薬が添加された検体からの光学的情報の取得は、第2光学的情報取得部70による検体の光学的な測定の前に行われる。第1光学的情報取得部40は、図2および図5に示すように、回転搬送部20の一次分注テーブル24の上方に配置されており、一次分注テーブル24の保持部24aに保持されたキュベット153内の検体から光学的な情報を取得する。第1光学的情報取得部40は、図5に示すように、光源としての発光ダイオード(LED)41(図6参照)と、発光側ホルダ42と、光電変換素子43(図6参照)と、受光側ホルダ44と、ブラケット45と、基板46とを含んでいる。
発光ダイオード41は、図6に示すように、一次分注テーブル24の保持部24aに保持されたキュベット153に対して光を照射可能なように設けられている。この発光ダイオード41は、基板46のコントローラ46d(図7参照)により3つの異なる波長の光を周期的に順次出射することが可能なように制御されている。なお、第1実施形態による発光ダイオード41は、430nmの波長を有する青色の光と、565nmの波長を有する緑色の光と、627nmの波長を有する赤色の光とを出射可能である。発光側ホルダ42は、図5に示すように、発光ダイオード41(図6参照)および基板46を支持するために設けられている。光電変換素子43は、キュベット153を通過した発光ダイオード41からの光を検出して、電気信号に変換するための機能を有している。受光側ホルダ44は、図5に示すように、ブラケット45を介して発光側ホルダ42に取り付けられており、内部に光電変換素子43(図6参照)を収容可能な形状に形成されている。この受光側ホルダ44には、所定の位置にスリット47aが設けられた蓋部材47が取り付けられている。一次分注テーブル24の保持部24aに保持されたキュベット153を透過した発光ダイオード41からの光は、蓋部材47のスリット47aを介して光電変換素子43により検出される。
基板46は、光電変換素子43からの電気信号を増幅して、制御装置4の制御部4aに送信する機能を有している。基板46は、図7に示すように、プリアンプ46aと、増幅部46bと、A/D変換器46cと、コントローラ46dとにより構成されている。また、増幅部46bは、アンプ46eと、電子ボリューム46fとを有している。プリアンプ46aおよびアンプ46eは、光電変換素子43からの電気信号を増幅するために設けられている。増幅部46bのアンプ46eは、コントローラ46dからの制御信号を電子ボリューム46fに入力することによりアンプ46eのゲイン(増幅率)を調整することが可能なように構成されている。A/D変換器46cは、アンプ46eにより増幅された電気信号(アナログ信号)をデジタル信号に変換するために設けられている。
コントローラ46dは、発光ダイオード41から出射される光の波長(430nm、565nmおよび627nm)の周期的な変化に合わせて、アンプ46eのゲイン(増幅率)を変化させるように構成されている。また、コントローラ46dは、図7に示すように、制御装置4の制御部4aに電気的に接続されており、第1光学的情報取得部40において取得されたデジタル信号のデータを制御装置4の制御部4aに送信する。これにより、制御装置4において、第1光学的情報取得部40からのデジタル信号のデータの分析(解析)が行われることにより、発光ダイオード41から出射される3つの光に対するキュベット153内の検体の吸光度が求められるとともに、検体中の干渉物質の有無や種類、含有の度合いなどが分析される。そして、その分析結果に基づいて、第2光学的情報取得部70による検体の測定を行うか否かが判断されるとともに、第2光学的情報取得部70からの検出結果の分析方法と分析結果の表示方法とが制御される。
図2に示した2つの試薬分注アーム50は、試薬テーブル21および22の孔部21aおよび22aに載置された試薬容器(図示せず)内の試薬を、二次分注テーブル23のキュベット154に分注するために設けられている。これらの2つの試薬分注アーム50により、二次分注テーブル23のキュベット154内の検体に試薬が添加されて測定用試料が調製される。2つの試薬分注アーム50は、図2に示すように、それぞれ、駆動モータ51と、駆動モータ51に接続された駆動伝達部52と、駆動伝達部52に軸53(図1参照)を介して取り付けられたアーム部54とを含んでいる。駆動伝達部52は、駆動モータ51からの駆動力によりアーム部54を、軸53を中心に回動させるとともに、上下方向に移動させることが可能なように構成されている。アーム部54の先端部には、試薬の吸引および吐出を行うためのノズル55(図1参照)が取り付けられている。
キュベット移送部60は、測定用試料を収容したキュベット154を回転搬送部20の二次分注テーブル23と第2光学的情報取得部70のキュベット載置部71との間で移送するために設けられている。キュベット移送部60は、図2に示すように、キュベット154を挟み込んで把持するためのチャック部61と、チャック部61をX方向、Y方向およびZ方向(図1参照)に各々移動させるための駆動機構部62とを含んでいる。また、駆動機構部62は、チャック部61を振動させるための機能を有している。これにより、キュベット154を把持した状態でチャック部61を振動させることによって、容易に、キュベット154内に収容された測定用試料を攪拌することが可能である。
第2光学的情報取得部70は、検体に試薬を添加して調製された測定用試料の加温を行うとともに、測定用試料の光学的な測定を行うための機能を有している。この第2光学的情報取得部70は、図2に示すように、キュベット載置部71と、キュベット載置部71の下方に配置された検出部72(図8参照)とにより構成されている。キュベット載置部71には、キュベット154を挿入するための複数の挿入孔71aが設けられている。また、キュベット載置部71には、挿入孔71aに挿入されたキュベット154を所定の温度に加温するための加温機構(図示せず)が内蔵されている。
ここで、第1実施形態では、第2光学的情報取得部70の検出部72は、挿入孔71aに挿入されたキュベット154内の測定用試料に対して複数の条件下で光学的な測定を行うことが可能なように構成されている。この検出部72は、図8に示すように、光源としてのランプ部73と、光電変換素子74と、プリアンプ75と、増幅部76と、A/D変換器77と、ロガー78と、コントローラ79とを含んでいる。ランプ部73は、図9に示すように、ハロゲンランプ73aと、3つの集光レンズ73bと、円板形状のフィルタ部材73cと、光ファイバ73dと、分岐光ファイバ73eとを有している。3つの集光レンズ73bは、ハロゲンランプ73aからの光をフィルタ部材73cに集光するために設けられている。
また、第1実施形態では、フィルタ部材73cは、図9および図10に示すように、軸73fを中心に回転可能に設けられている。このフィルタ部材73cには、図10に示すように、透過波長の異なる複数のフィルタ73gがフィルタ部材73cの回転方向に沿って所定の角度間隔(第1実施形態では45度間隔)で設けられている。上記のように、透過波長の異なる複数のフィルタ73gを有するフィルタ部材73cを回転可能に構成することによって、ハロゲンランプ73aの光が透過波長の異なる複数のフィルタ73gを順次通過することが可能であるので、複数の異なる波長を有する光を光ファイバ73dに順次供給することが可能である。なお、第1実施形態では、フィルタ部材73cにより、340nm、405nm、575nm、660nmおよび800nmの5つの異なる波長を有する光を光ファイバ73dに供給することが可能である。340nmおよび405nmの波長を有する光は、それぞれ、合成基質法による測定に用いられる。また、575nmおよび800nmの波長を有する光は、それぞれ、免疫比濁法による測定に用いられる。また、660nmの波長を有する光は、凝固時間法による測定に用いられる。分岐光ファイバ73eは、光ファイバ73dからの光を分岐させることにより、キュベット載置部71の複数の挿入孔71aに各々挿入されたキュベット154に光を供給するために設けられている。
また、図8に示した光電変換素子74は、キュベット載置部71の挿入孔71aに挿入されたキュベット154内の測定用試料を透過したランプ部73からの光を検出して電気信号に変換するための機能を有している。プリアンプ75は、光電変換素子74からの電気信号を増幅するために設けられている。
また、第1実施形態では、増幅部76は、図8に示すように、所定のゲイン(増幅率)を有するアンプ(L)76aと、アンプ(L)76aよりも高いゲイン(増幅率)を有するアンプ(H)76bと、切替スイッチ76cとを有している。第1実施形態では、プリアンプ75からの電気信号は、アンプ(L)76aおよびアンプ(H)76bの両方に入力される。アンプ(L)76aおよびアンプ(H)76bは、プリアンプ75からの電気信号をさらに増幅するために設けられている。また、切替スイッチ76cは、アンプ(L)76aからの電気信号をA/D変換器77に出力するか、アンプ(H)76bからの電気信号をA/D変換器77に出力するかを選択するために設けられている。この切替スイッチ76cは、コントローラ79からの制御信号が入力されることにより切替動作を行うように構成されている。
A/D変換器77は、増幅部76からの電気信号(アナログ信号)をデジタル信号に変換するために設けられている。ロガー78は、A/D変換器77からのデジタル信号のデータを一時的に保存するための機能を有している。このロガー78は、制御装置4の制御部4aに電気的に接続されており、第2光学的情報取得部70において取得されたデジタル信号のデータを制御装置4の制御部4aに送信する。これにより、制御装置4において、予め取得済みの第1光学的情報取得部40からのデジタル信号のデータの分析結果に基づいて、第2光学的情報取得部70から送信されたデジタル信号のデータが分析されて、表示部4bに表示される。
図2に示した緊急検体セット部80は、緊急を要する検体に対しての検体分析処理を行うために設けられている。この緊急検体セット部80は、搬送機構部3から供給された検体に対しての検体分析処理が行われている際に、緊急検体を割り込ませることが可能なように構成されている。緊急検体セット部80は、X方向に延びるように設けられたレール81と、レール81に沿って移動可能な緊急検体用ラック82とを含んでいる。この緊急検体用ラック82には、緊急検体が収容された試験管(図示せず)を挿入するための試験管挿入孔82aと、試薬を収容した試薬容器(図示せず)を挿入するための試薬容器挿入孔82bとが設けられている。
キュベット廃棄部90は、回転搬送部20のキュベット153を廃棄するために設けられている。キュベット廃棄部90は、図2に示すように、廃棄用キャッチャ部91と、廃棄用キャッチャ部91から所定の間隔を隔てて設けられた廃棄用孔92(図1参照)と、廃棄用孔92の下方に設置された廃棄ボックス93とにより構成されている。廃棄用キャッチャ部91は、回転搬送部20のキュベット153および154を、廃棄用孔92(図1参照)を介して廃棄ボックス93に移動させるために設けられている。この廃棄用キャッチャ部91は、駆動モータ91aと、駆動モータ91aに接続されたプーリ91bと、プーリ91bと所定の間隔を隔てて設けられたプーリ91cと、プーリ91bおよび91cに装着された駆動伝達ベルト91dと、プーリ91cに軸91eを介して取り付けられたアーム部91fと、アーム部91fを上下方向に移動させるための駆動部91gとを有している。駆動モータ91aは、アーム部91fを回転搬送部20と廃棄用孔92との間で軸91eを中心に回動させるための駆動源としての機能を有している。アーム部91fの先端部には、キュベット153および154を挟み込んで把持するためのチャック部91hが設けられている。また、廃棄ボックス93には、使用者が廃棄ボックス93を装置手前側に引き出す際に把持するための把持部93aが取り付けられている。
図1に示した流体部100は、検体分析装置1のシャットダウン処理の際に、各分注アームに設けられたノズル35およびノズル55に洗浄液などの液体を供給するために設けられている。
次に、図1、図11および図12を参照して、本発明の第1実施形態による検体分析装置1の検体分析動作について説明する。
まず、図1に示した検体分析装置1の検出機構部2および制御装置4の電源をそれぞれオン状態にすることにより、ステップS1において、検体分析装置1の初期設定が行われる。これにより、キュベット153および154を移動させるための機構と各分注アームとを初期位置に戻すための動作や、制御装置4のハードディスク401dに記憶されているアプリケーションプログラム404aの初期化などが行われる。そして、ステップS2において、使用者による検体分析情報の入力が行われる。すなわち、使用者は、制御装置4のキーボード4cを用いて、制御装置4の表示部4bに出力される検体分析一覧表(図12参照)中の検体番号および測定項目の欄に情報の入力を行う。これらの検体分析情報は、制御部4aのRAM401cに保存される。
ここで、図12に示した検体分析一覧表について説明する。検体番号の欄には、個々の検体を識別するための番号(「000101」など)が入力される。また、検体番号に関連付けられた測定項目の欄には、検体に対して行われる測定方法を示した記号(「PT」や「ATIII」など)が入力される。なお、測定項目の「PT」(プロトロンビン時間)および「APTT」(活性化部分トロンボプラスチン時間)は、凝固時間法を用いて測定を行う項目である。測定項目の「ATIII」(アンチトロンビンIII)は、合成基質法を用いて測定を行う項目である。測定項目の「FDP」(フィブリン分解生成物)は、免疫比濁法を用いて測定を行う項目である。
また、検体分析一覧表には、二次分注フラグの項目と、ビリルビン、ヘモグロビンおよび乳びの3つの小項目を含む干渉物質フラグの項目と、波長変更フラグの項目と、Highゲインフラグの項目とが設けられている。これらの各項目は、ステップS1の初期設定においてオフ(表中では「0」で表示)に設定されているが、第1光学的情報取得部40からの光学的情報の分析結果に応じて、オン(表中では「1」で表示)に変更される。なお、図12は、いずれの項目もオフである状態を示している。二次分注フラグがオンの状態は、その測定項目について、検体が二次分注の対象であることを示す。干渉物質フラグのビリルビン、ヘモグロビンまたは乳びのフラグがオンの状態は、その測定項目について、検体がビリルビン、ヘモグロビンまたは乳びの影響を受けている可能性が高いという内容のメッセージを制御装置4の表示部4bに出力することを示す。また、ビリルビン、ヘモグロビンおよび乳びのフラグがすべてオンの状態は、干渉物質の影響が大きいため、ビリルビン、ヘモグロビンおよび乳びのいずれの影響を受けているのかを判断するのが困難な状態であり、検体が干渉物質(種類の特定は行わない)の影響を受けている可能性が高いという内容のメッセージを制御装置4の表示部4bに出力することを示す。波長変更フラグがオンの状態は、その測定項目について、通常の波長(660nm)の光とは異なる波長(800nm)の光を用いて取得された光学的情報を解析の対象とすることを示す。Highゲインフラグがオンの状態は、通常のアンプ46eのゲイン(増幅率)よりも高いゲイン(増幅率)で取得した光学的情報を解析の対象とすることを示す。
そして、測定用試料の調製に必要な試薬を収容した試薬容器(図示せず)と、検体を収容した試験管150とが各々所定の位置にセットされた状態で、使用者による分析動作開始の入力が行われる。これにより、ステップS3において、検体の分析動作が開始される。そして、所定の検体分析動作が終了した後、ステップS4において、CPU401aにより検体分析装置1のシャットダウンの指示が入力されたか否かが判断される。そして、ステップS4において、CPU401aにより検体分析装置1のシャットダウンの指示が入力されていないと判断された場合には、ステップS2に戻り、使用者による他の検体分析情報の入力が行われる。一方、ステップS4において、CPU401aにより検体分析装置1のシャットダウンの指示が入力されたと判断された場合には、ステップS5において、シャットダウン処理が行われる。これにより、図1に示した各分注アームに設けられたノズル35およびノズル55の洗浄などが行われた後、検体分析装置1の検出機構部2および制御装置4の電源が自動的にオフ状態になり、検体分析装置1の検体分析動作が終了する。
次に、図1、図2および図13を参照して、上記した図11のステップS3における検体分析装置1の検体の分析動作について詳細に説明する。使用者による分析動作開始の入力が行われることにより、まず、ステップS11において、図2に示した搬送機構部3によって、検体を収容した試験管150が載置されたラック151の搬送が行われる。これにより、ラックセット領域3aのラック151が検出機構部2の吸引位置2aに対応する位置まで搬送される。そして、ステップS12において、検体分注アーム30のノズル35(図1参照)により試験管150から所定量の検体の吸引が行われる。そして、検体分注アーム30の駆動モータ31を駆動させて、検体分注アーム30のノズル35を回転搬送部20の一次分注テーブル24に保持されたキュベット153の上方に移動させる。そして、ステップS13において、検体分注アーム30のノズル35から一次分注テーブル24のキュベット153内に検体が吐出されることにより一次分注処理が行われる。
そして、一次分注テーブル24を回転させて、検体が分注されたキュベット153を第1光学的情報取得部40による測定が可能な位置に搬送する。これにより、ステップS14において、第1光学的情報取得部40による検体に対する光学的な測定が行われて、検体から光学的な情報が取得される。具体的には、まず、一次分注テーブル24の保持部24a(図6参照)に保持されたキュベット153内の検体を透過した発光ダイオード(LED)41からの3つの異なる波長(430nm、565nmおよび627nm)の光を、順次、光電変換素子43が検出する。そして、光電変換素子43により変換された電気信号をプリアンプ46a(図7参照)およびアンプ46eで増幅するとともに、A/D変換器46cでデジタル信号に変換する。その後、コントローラ46dによりデジタル信号のデータを制御装置4の制御部4aに送信する。これにより、第1光学的情報取得部40による検体に対する光学的な情報(デジタル信号のデータ)の取得が完了する。そして、ステップS15において、制御装置4のCPU401aにより、検体の光学的情報の解析(分析)が行われる。
ここで、第1実施形態では、ステップS16において、制御装置4のCPU401aにより、ステップS15の分析結果に基づいて、一次分注テーブル24の保持部24aに保持されたキュベット153内の検体が二次分注の対象であるか否かが判断される。そして、ステップS16において、一次分注テーブル24に保持されたキュベット153内の検体が二次分注の対象ではないと判断された場合には、ステップS17において、CPU401aは、検体に含有される干渉物質(ビリルビン、ヘモグロビンおよび乳びからなるグループより選択される少なくとも1つの物質(干渉物質の特定が困難な場合も含む))の影響が大きいため信頼性の高い解析を行うことが困難である、という内容のメッセージを制御装置4の表示部4bに出力する。一方、ステップS16において、一次分注テーブル24の保持部24aに保持されたキュベット153内の検体が二次分注の対象であると判断された場合には、ステップS18において、検体分注アーム30のノズル35により一次分注テーブル24の保持部24aに保持されたキュベット153から所定量の検体が吸引される。その後、検体分注アーム30のノズル35から二次分注テーブル23の複数のキュベット154に所定量の検体が各々吐出されることにより二次分注処理が行われる。
そして、試薬分注アーム50を駆動させて、試薬テーブル21および22に載置された試薬容器内の試薬を二次分注テーブル23のキュベット154内の検体に添加する。これにより、ステップS19において、測定用試料の調製が行われる。そして、キュベット移送部60のチャック部61を用いて、測定用試料が収容された二次分注テーブル23のキュベット154を第2光学的情報取得部70のキュベット載置部71の挿入孔71aに移動させる。
また、第1実施形態では、ステップS20において、第2光学的情報取得部70の検出部72によりキュベット154内の測定用試料に対して複数の条件下で光学的な測定が行われることにより、測定用試料から複数(10種類)の光学的な情報が取得される。具体的には、まず、キュベット載置部71の挿入孔71aに挿入されたキュベット154は、加温機構(図示せず)により所定の温度に加温される。その後、キュベット載置部71のキュベット154へ、検出部72(図8参照)のランプ部73から光が照射される。なおランプ部73からは、5つの異なる波長(340nm、405nm、575nm、660nmおよび800nm)の光がフィルタ部材73cの回転によって周期的に照射される。ランプ部73から照射され、キュベット152およびキュベット152内の測定用試料を透過した上記各波長の光は、光電変換素子74によって順次検出される。そして、光電変換素子74により変換された5つの異なる波長の光に対応する電気信号がプリアンプ75で増幅された後、順次、増幅部76に入力される。
増幅部76では、プリアンプ75からの5つの異なる波長の光に対応する電気信号が、増幅率の高いアンプ(H)76bおよび通常の増幅率のアンプ(L)76aに各々入力される。そして、コントローラ79により切替スイッチ76cを制御することにより、アンプ(H)76bにより増幅された電気信号がA/D変換器77に出力された後、アンプ(L)76aにより増幅された電気信号がA/D変換器77に出力される。ここで切替スイッチ76cは、ランプ部73におけるフィルタ部材73cの回転のタイミングに応じて繰り返し切替えられる。これにより、増幅部76においては、5つの異なる波長の光に対応する電気信号がそれぞれ2つの異なる増幅率で増幅され、合計10種類の電気信号がA/D変換器77に繰り返し出力される。そして、10種類の電気信号は、A/D変換器77でデジタル信号に変換され、ロガー78に一時的に記憶された後、コントローラ79から制御装置4の制御部4aに順次送信される。これにより、第2光学的情報取得部70によって測定用試料に対する複数(10種類)の光学的な情報(デジタル信号のデータ)の取得が完了する。
そして、ステップS21において、制御装置4のCPU401aにより、予め取得済みの第1光学的情報取得部40からの光学的情報(デジタル信号のデータ)の分析結果に基づいて、第2光学的情報取得部70からの測定用試料に対する複数(10種類)の光学的情報のうち、分析に適していると判断された光学的情報の解析(分析)が行われる。そして、ステップS22において、制御装置4のCPU401aにより、ステップS21での測定用試料の解析結果を出力することが可能か否かが判断される。そして、ステップS22において、ステップS21での測定用試料の解析結果を出力することができないと判断された場合には、ステップS17において、CPU401aは、測定用試料に含有される干渉物質(乳び)の影響が大きいため信頼性の高い解析を行うことが困難である、という内容のメッセージを制御装置4の表示部4bに出力する。なお、上記したステップS22からステップS17への判断が行われる場合として、第1実施形態では、凝固時間法を用いて行う測定項目において、800nmの波長の光に対応する電気信号のデータの解析結果を出力できない場合などが挙げられる。一方、ステップS22において、ステップS21での測定用試料の解析結果を出力することができると判断された場合には、ステップS23において、CPU401aは、測定用試料の解析結果を制御装置4の表示部4bに出力する。
次に、図13〜図16を参照して、図13のステップS15における第1光学的情報取得部40からの光学的情報の解析処理方法について詳細に説明する。なお、第1光学的情報取得部40からの光学的情報の解析処理は、制御装置4のCPU401aにより行われる。第1光学的情報取得部40において取得された検体の光学的情報が制御装置4の制御部4aに送信されることにより、図14に示したステップS31において、各波長(430nm、565nmおよび627nm)の光に対する検体の吸光度が算出される。ここで、吸光度Aは、検体の光透過率T(%)を用いて、以下の式(1)により求められる値である。
A = −log10(T/100) ・・・(1)
そして、ステップS32において、430nmの波長の光に対する検体の吸光度が1.5よりも大きいか否かが判断される。そして、ステップS32において、430nmの波長の光に対する検体の吸光度が1.5以下であると判断された場合には、ステップS33において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグの項目がオフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS32において、430nmの波長の光に対する検体の吸光度が1.5よりも大きいと判断された場合には、ステップS34において、「P」の値が10よりも大きいか否かが判断される。ここで、「P」は、「−(565nmの波長の光に対する検体の吸光度−430nmの波長の光に対する検体の吸光度)/(565−430)」により求められる値である。そして、ステップS34において、「P」の値が10よりも大きいと判断された場合には、図15のステップS35において、検体の測定項目が合成基質法を用いる測定項目であるか否かが判断される。
そして、ステップS35において、検体の測定項目が合成基質法を用いる測定項目ではないと判断された場合には、ステップS36において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグの項目がオフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS35において、検体の測定項目が合成基質法を用いる測定項目であると判断された場合には、ステップS37において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上であるか否かが判断される。ここで、希釈倍率とは、この検体からその測定項目の測定用試料が調製された場合における検体の希釈倍率である(ステップS16においてこの検体が二次分注の対象であると判断されれば、測定項目に応じてこの検体のうち所定量が二次分注テーブル23のキュベット154に分注され(ステップS18)、さらに所定種類、所定量の試薬が添加されることにより測定用試料が調製される(ステップS19)。したがって、上記希釈倍率は、測定項目に応じて予め決定されている。)。そして、ステップS37において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上であると判断された場合には、ステップS38において、検体分析一覧表中のオン状態で検体がビリルビンの影響を受けている可能性が高いことを示すビリルビンの項目のフラグがオフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS37において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2より小さいと判断された場合には、ステップS39、S40およびS41において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグ、オン状態で検体がビリルビンの影響を受けている可能性が高いことを示すビリルビンフラグ、および、オン状態で高いゲイン(増幅率)で取得した光学的情報を解析の対象とすることを示すHighゲインフラグの項目が各々オフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。
また、図14に示したステップS34において、「P」の値が10以下であると判断された場合には、ステップS42において、「P」の値が4よりも大きいか否かが判断される。そして、ステップS42において、「P」の値が4よりも大きいと判断された場合には、ステップS43において、「Q」の値が1.4よりも大きいか否かが判断される。ここで、「Q」は、「−(627nmの波長の光に対する検体の吸光度−565nmの波長の光に対する検体の吸光度)/(627−565)」により求められる値である。そして、ステップS43において、「Q」の値が1.4より大きくないと判断された場合には、図15のステップS35に進み、上記したように、検体の測定項目が合成基質法を用いる測定項目であるか否かが判断される。一方、図14のステップS43において、「Q」の値が1.4よりも大きいと判断された場合には、ステップS44において、検体の測定項目が合成基質法または免疫比濁法を用いる測定項目であるか否かが判断される。
そして、ステップS44において、検体の測定項目が合成基質法または免疫比濁法を用いる測定項目ではないと判断された場合には、ステップS45において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグの項目がオフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS44において、検体の測定項目が合成基質法または免疫比濁法を用いる測定項目であると判断された場合には、ステップS46において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上であるか否かが判断される。そして、ステップS46において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上であると判断された場合には、ステップS47において、検体分析一覧表中のオン状態で検体がヘモグロビンの影響を受けている可能性が高いことを示すヘモグロビンの項目のフラグがオフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS46において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上でない(0.2より小さい)と判断された場合には、ステップS48、S49およびS50において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグ、オン状態で検体がヘモグロビンの影響を受けている可能性が高いことを示すヘモグロビンフラグ、および、オン状態で高いゲイン(増幅率)で取得した光学的情報を解析の対象とすることを示すHighゲインフラグの項目が各々オフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。
また、ステップS42において、「P」の値が4より大きくない(4以下)であると判断された場合には、図16のステップS51において、「Q」の値が1.4以下であるか否かが判断される。そして、ステップS51において、「Q」の値が1.4以下ではない(1.4よりも大きい)と判断された場合には、ステップS52において、検体分析一覧表中の干渉物質フラグのビリルビン、ヘモグロビンおよび乳びの3つのフラグがすべてオフ(表中では「0」)からオン(表中では「1」)に変更されて、干渉物質の影響が大きいため、ビリルビン、ヘモグロビンおよび乳びのいずれの影響を受けているかを判断するのが困難な状況であることを示すように設定される。そして、図13のステップS16に戻る。一方、ステップS51において、「Q」の値が1.4以下であると判断された場合には、ステップS53において、検体の測定項目が合成基質法または免疫比濁法を用いる測定項目であるか否かが判断される。そして、ステップS53において、検体の測定項目が合成基質法または免疫比濁法を用いる測定項目ではないと判断された場合には、ステップS54、S55、S56およびS57において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグ、オン状態で検体が乳びの影響を受けている可能性が高いことを示す乳びフラグ、オン状態で通常の波長(660nm)の光とは異なる波長(800nm)の光を用いて取得された光学的情報を解析の対象とすることを示す波長変更フラグ、および、オン状態で高いゲイン(増幅率)で取得した光学的情報を解析の対象とすることを示すHighゲインフラグの項目が各々オフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS53において、検体の測定項目が合成基質法または免疫比濁法を用いる測定項目であると判断された場合には、ステップS58において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上であるか否かが判断される。
そして、ステップS58において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上であると判断された場合には、ステップS59において、検体分析一覧表中のオン状態で検体が乳びの影響を受けている可能性が高いことを示す乳びの項目のフラグがオフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。一方、ステップS58において、「430nmの波長の光に対する吸光度×希釈倍率」の値が0.2以上ではない(0.2より小さい)と判断された場合には、ステップS60、S61およびS62において、検体分析一覧表中のオン状態で二次分注の対象であることを示す二次分注フラグ、オン状態で検体が乳びの影響を受けている可能性が高いことを示す乳びフラグ、および、オン状態で高いゲイン(増幅率)で取得した光学的情報を解析の対象とすることを示すHighゲインフラグの項目が各々オフ(表中では「0」)からオン(表中では「1」)に変更されて、図13のステップS16に戻る。
第1実施形態では、上記のように、試験管150に収容されている検体を一次分注テーブル24の保持部24aに保持されるキュベット153に分取するとともに、一次分注テーブル24の保持部24aに保持されるキュベット153に分取された検体の一部を二次分注テーブル23の保持部23aに保持されるキュベット154に分取する検体分注アーム30を設けることによって、第2光学的情報取得部70による測定や再測定の際には、キュベット153に分取された検体の一部をキュベット154に分取すればよいので、試験管150に収容されている検体を分取する必要がない。これにより、検体の分取が終了した試験管150を検体分析装置1の付近に待機させる必要がないので、検体の分取後の試験管150の取り扱いの自由度を向上させることができる。
また、第1実施形態では、第1光学的情報取得部40により取得された光学的情報の分析結果に基づいて、一次分注テーブル24の保持部24aに保持されたキュベット153内の検体が二次分注の対象であるか否かを判断する制御装置4の制御部4bを設けることによって、第2光学的情報取得部70において正確な分析を行うことができる場合のみ、第2光学的情報取得部70により光学的情報が取得されるようにすることができる。これにより、無駄な分析を行う必要がないので、分析効率が低下するのを抑制することができる。
また、第1実施形態では、検体分注アーム30のノズル35を蓋152の凹部152aに貫通させることにより試験管150内の検体を吸引するようにしたとしても、検体分析装置1では、同じ検体に対して再分析する必要が生じた場合に、一次分注テーブル24の保持部24aに保持されるキュベット153の検体を二次分注テーブル23の保持部23aに保持されるキュベット154に分取し、キュベット154に分取された検体に対して再分析を行うので、再分析を行う際に、試験管150の蓋152にノズル35を貫通させる必要がない。これにより、試験管150の蓋152に再度ノズル35を貫通させることに起因して、試験管150の蓋152の小片が試験管150の内部に混ざったり、ノズル35に詰まったりするのを抑制することができるので、試験管150から検体を所定の一定量だけ吸引する際の吸引量の精度が低下するのを抑制することができる。
また、第1実施形態では、5つの異なる波長の光を出射するランプ部73を設けることによって、ランプ部73から測定用試料に5つの異なる波長の光を照射することができるので、光電変換素子74およびA/D変換器77を介して複数の種類の電気信号を得ることができる。これにより、容易に、測定用試料から光学的情報を複数の条件下で取得することができる。
また、第1実施形態では、所定のゲイン(増幅率)を有するアンプ(L)76aと、アンプ(L)76aよりも高いゲイン(増幅率)を有するアンプ(H)76bと、アンプ(L)76aからの電気信号をA/D変換器77に出力するか、アンプ(H)76bからの電気信号をA/D変換器77に出力するかを選択する切替スイッチ76cとを有する増幅部76を設けることによって、光電変換素子74により変換された電気信号を異なる増幅率のアンプ(L)76aおよびアンプ(H)76bに入力して増幅することができる。これにより、A/D変換器77を介して複数の種類の電気信号を得ることができるので、容易に、測定用試料から光学的情報を複数の条件下で取得することができる。
(第2実施形態)
図17〜図27を参照して、この第2実施形態では、上記第1実施形態と異なり、第1光学的情報取得部240と第2光学的情報取得部270とに共通に用いられるランプユニット250を備えた検体分析装置201について説明する。なお、第2実施形態で用いる凝固時間法は、検体が凝固する過程を透過光の変化として検出する測定方法である。そして、凝固時間法を用いて測定を行う測定項目としては、PT(プロトロンビン時間)、APTT(活性化部分トロンボプラスチン時間)やFbg(フィブリノーゲン量)などがある。
そして、検体分析装置201は、図17に示すように、検出機構部202と、検出機構部202の前面側に配置された搬送機構部3と、検出機構部202に電気的に接続された制御装置4とにより構成されている。なお、第2実施形態による検体分析装置201の搬送機構部3および制御装置4は、上記第1実施形態と同様の構成なので、その説明を省略する。
この第2実施形態による検出機構部202は、図17および図18に示すように、キュベット供給部10と、回転搬送部20と、検体分注アーム30と、第1光学的情報取得部240と、ランプユニット250と、2つの試薬分注アーム50と、キュベット移送部60と、第2光学的情報取得部270と、緊急検体セット部80と、キュベット廃棄部90と、流体部100とを備えている。なお、第2実施形態による検出機構部202のキュベット供給部10、回転搬送部20、検体分注アーム30、試薬分注アーム50、キュベット移送部60、緊急検体セット部80、キュベット廃棄部90および流体部100の構成は、上記第1実施形態による検出機構部2の構成と同様である。
第1光学的情報取得部240は、試薬を添加する前の検体中の干渉物質(乳び、ヘモグロビンおよびビリルビン)の有無およびその濃度を測定するために、検体から光学的な情報を取得するように構成されている。具体的には、後述するランプユニット250から照射される5種類の光(340nm、405nm、575nm、660nmおよび800nm)の内の4種類の光(405nm、575nm、660nmおよび800nm)を用いて、干渉物質の有無およびその濃度を測定している。
また、第2実施形態による第1光学的情報取得部240では、図19および図20に示すように、第1実施形態による第1光学的情報取得部40の発光ダイオード(LED)41(図5参照)と異なり、後述するランプユニット250の分岐光ファイバ258が導かれている。そして、分岐光ファイバ258から照射される5種類の光が、一次分注テーブル24の保持部24aに保持されるキュベット152内の検体に照射されることにより、そのキュベット152内の検体を透過した後、蓋部材47のスリット47aを介して光電変換素子43に検出される。そして、図21に示すように、光電変換素子43で発生した電気信号がA/D変換器46cによりデジタル信号に変換されて、制御装置4の制御部4aに送信される。そして、制御装置4の制御部4aは、受信したデジタル信号を用いて、吸光度を求めるとともに、検体中の干渉物質の有無やその濃度などを分析する。そして、第2実施形態では、検体中の干渉物質の有無やその濃度などに基づいて、後述する第2光学的情報取得部270で測定した光学的な情報を分析するか否かが判断される。
ここで、第2実施形態では、ランプユニット250は、図18に示すように、第1光学的情報取得部240および第2光学的情報取得部270で行われる光学的な測定に用いられる光を供給するために設けられている。すなわち、1つのランプユニット250が、第1光学的情報取得部240および第2光学的情報取得部270に対して共通に用いられるように構成されている。このランプユニット250は、図22および図23に示すように、光源としてのハロゲンランプ251と、集光レンズ252a〜252cと、円盤形状のフィルタ部253と、モータ254と、光透過型のセンサ255と、光ファイバカプラ256と、11本の分岐光ファイバ257(図23参照)と、1本の分岐光ファイバ258(図23参照)とから構成されている。
ハロゲンランプ251は、図22に示すように、ハロゲンランプ251が発熱することによって熱せられた空気を冷却するための複数のフィンを有するランプケース251aに収容されている。
集光レンズ252a〜252cは、ハロゲンランプ251から照射された光を集光する機能を有している。そして、集光レンズ252a〜252cは、ハロゲンランプ251から照射された光を光ファイバカプラ256に導く光路上に配置されている。また、ハロゲンランプ251から照射されて集光レンズ252a〜252cにより集光された光は、後述するフィルタ部253の光学フィルタ253b〜253fのいずれか1つを透過して光ファイバカプラ256に導かれる。
また、ランプユニット250のフィルタ部253は、図24に示すように、モータ254のモータ軸(図示せず)を中心に回転可能に取り付けられている。このフィルタ部253は、5つの光透過特性(透過波長)のそれぞれ異なる光学フィルタ253b〜253fが設けられるフィルタ板253aを備えている。フィルタ板253aには、光学フィルタ253b〜253fを取り付けるための5つの孔253gと、光が透過しないように閉塞される孔253hとが設けられている。そして、5つの孔253gには、それぞれ、光透過特性(透過波長)の異なる5つの光学フィルタ253b、253c、253d、253eおよび253fが設置されている。この孔253gおよび253hは、フィルタ部253の回転方向に沿って所定の角度間隔(第2実施形態では、60°の等間隔)で設けられている。なお、孔253hは、予備の孔であり、フィルタの追加が必要となった場合には、フィルタが装着される。
光学フィルタ253b、253c、253d、253eおよび253fは、それぞれ、340nm、405nm、575nm、660nmおよび800nmの波長の光を透過し、その他の波長の光は透過しない。したがって、光学フィルタ253b、253c、253d、253eおよび253fを透過した光は、それぞれ、340nm、405nm、575nm、660nmおよび800nmの波長特性を有する。
また、フィルタ板253aは、円周方向に沿って所定の角度間隔(第2実施形態では、60°の等間隔)で6つのスリットが設けられている。それら6つのスリットのうち1つは、他の5つの通常スリット253iよりもフィルタ板253aの回転方向のスリット幅が大きい原点スリット253jである。原点スリット253jおよび通常スリット253iは、隣接する孔253gおよび253hの間の中間角度位置に所定の角度間隔(第2実施形態では、60°の等間隔)で形成されている。
ここで、第2実施形態では、ランプユニット250から一次分注テーブル24のキュベット152に光が照射される場合には、フィルタ部253が連続的に回転するように構成されている。したがって、フィルタ板253aの回転に伴って、集光レンズ252a〜252c(図20参照)により集光された光の光路上に光透過特性の異なる5つの光学フィルタ253b〜253fと、1つの遮光された孔253h(図21参照)とが断続的に順次配置される。このため、波長特性の異なる5種類の光が断続的に順次照射される。
また、光透過型のセンサ255は、図24に示すように、フィルタ部253の回転に伴う原点スリット253jおよび通常スリット253iの通過を検出するために設けられている。このセンサ255は、原点スリット253jおよび通常スリット253iが通過すると、スリットを介して光源からの光を受光部が検出し、検出信号を出力する。なお、原点スリット253jは、通常スリット253iよりもスリット幅が大きいので、原点スリット253jが通過した場合には、センサ255から出力される検出信号は、通常スリット253iが通過した場合の検出信号よりも、出力期間が長い。したがって、センサ255からの検出信号に基づいて、フィルタ部253が正常に回転しているか否かが監視することが可能となる。
また、光ファイバカプラ256は、11本の分岐光ファイバ257および1本の分岐光ファイバ258のそれぞれに光学フィルタ253b〜253fを通過した光を入射させる機能を有している。つまり、第2実施形態では、光ファイバカプラ256は、11本の分岐光ファイバ257および1本の分岐光ファイバ258に対して、同時に同質の光を導いている。また、11本の分岐光ファイバ257の先端は、図18に示すように、第2光学的情報取得部270に接続されており、ランプユニット250からの光を第2光学的情報取得部270にセットされるキュベット152内の測定用試料に導いている。具体的には、図25に示すように、11本の分岐光ファイバ257は、それぞれ、第2光学的情報取得部270の後述する10個の挿入孔271aおよび1つの参照光用測定孔271bに光を供給するように配置されている。また、1本の分岐光ファイバ258の先端は、図18および図19に示すように、11本の分岐光ファイバ257とは異なり、第1光学的情報取得部240に接続されており、ランプユニット250からの光を一次分注テーブル24の保持部24aに保持されるキュベット152内の検体に導いている。したがって、光学フィルタ253b〜253fを断続的に通過する波長特性の異なる5種類の光は、分岐光ファイバ257および258を介して、第1光学的情報取得部240および第2光学的情報取得部270の各々に供給されている。
第2光学的情報取得部270は、検体に試薬を添加して調製された測定用試料の加温を行うとともに、その測定用試料から光学的な情報を測定するための機能を有している。この第2光学的情報取得部270は、図18に示すように、キュベット載置部271と、キュベット載置部271の下方に配置された検出部272とにより構成されている。キュベット載置部271には、図25に示すように、キュベット152(図18参照)を挿入するための10個の挿入孔271aと、キュベット152を挿入せずに参照光を測定するための1つの参照光用測定孔271bとが設けられている。また、キュベット載置部271には、挿入孔271aに挿入されたキュベット152を所定の温度に加温するための加温機構(図示せず)が内蔵されている。
また、第2実施形態では、参照光用測定孔271bは、分岐光ファイバ257から照射された光の特性を監視するために設けられている。具体的には、分岐光ファイバ257から照射された光を直接検出部272の参照光用光電変換素子272eに受光させることにより、ランプユニット250のハロゲンランプ251(図22参照)に由来する揺らぎなどの特性を電気信号として検知している。そして、検知した光の特性(電気信号)を挿入孔271aに挿入されたキュベット152内の測定用試料の透過光に対応する信号から減算処理することにより、測定用試料の透過光に対応する信号を補正する。これにより、光学的な情報の測定毎に光の特性による微差が生じるのを抑制することが可能である。
また、第2光学的情報取得部270の検出部272は、挿入孔271aに挿入されたキュベット152内の測定用試料に対して複数の条件下で光学的な測定(本測定)を行うことが可能なように構成されている。この検出部272には、図25および図26に示すように、キュベット152が挿入される各挿入孔271aに対応して、コリメータレンズ272a、光電変換素子272bおよびプリアンプ272cが設けられるとともに、参照光用測定孔271b(図25参照)に対応して、参照光用コリメータレンズ272d、参照光用光電変換素子272eおよび参照光用プリアンプ272fが設けられている。
コリメータレンズ272aは、図25および図26に示すように、ランプユニット250(図22参照)からの光を誘導する分岐光ファイバ257の端部と、対応する挿入孔271aとの間に設置されている。このコリメータレンズ272aは、分岐光ファイバ257から出射された光を平行光にするために設けられている。また、光電変換素子272bは、挿入孔271aを挟んで分岐光ファイバ257の端部に対向するように設置された基板273の挿入孔271a側の面に取り付けられている。そして、光電変換素子272bは、挿入孔271aに挿入されたキュベット152内の測定用試料に光を照射したときに測定用試料を透過する光(以下、透過光という)を検出するとともに、検出した透過光に対応する電気信号(アナログ信号)を出力する機能を有している。この光電変換素子272bは、ランプユニット250の分岐光ファイバ257から照射される5種類の光を受光するように配置されている。なお、分岐光ファイバ257から照射される405nmの波長を有する光は、Fbg(フィブリノーゲン量)を測定する際に用いられるメイン波長である。そして、660nmの波長を有する光は、PT(プロトロンビン時間)およびAPTT(活性化部分トロンボプラスチン時間)を測定する際に用いられるメイン波長であり、Fbgを測定する際に用いられるサブ波長でもある。また、800nmの波長を有する光は、PTおよびAPTTを測定する際に用いられるサブ波長である。
プリアンプ272cは、基板273の挿入孔271aと反対側の面に取り付けられており、光電変換素子272bからの電気信号(アナログ信号)を増幅するために設けられている。
そして、基板273には、図27に示すように、上記した光電変換素子272b(参照光用光電変換素子272e)、プリアンプ272c(参照光用プリアンプ272f)の他に、増幅部76と、A/D変換器77と、ロガー78と、コントローラ79とが設けられている。そして、増幅部76は、所定のゲイン(増幅率)を有するアンプ(L)76aと、アンプ(L)76aよりも高いゲイン(増幅率)を有するアンプ(H)76bと、切替スイッチ76cとを有している。
図28は、図17に示した第2実施形態による検体分析装置の検体分析動作の手順を示したフローチャートである。次に、図17〜図21、図22、図24、図26および図28を参照して、検体分析装置201の検体の分析動作について詳細に説明する。
まず、図17に示した検体分析装置201の検出機構部202および制御装置4の電源をそれぞれオン状態にすることにより、検体分析装置201の初期設定が行われる。これにより、キュベット152を移動させるための機構と各分注アームとを初期位置に戻すための動作や、制御装置4の制御部4aに記憶されているソフトウェアの初期化などが行われる。
そして、図18に示した搬送機構部3によって、検体を収容した試験管150が載置されたラック151の搬送が行われる。これにより、ラックセット領域3aのラック151が検出機構部202の吸引位置2aに対応する位置まで搬送される。
そして、ステップS101において、検体分注アーム30により試験管150から所定量の検体の吸引が行われる。そして、検体分注アーム30を回転搬送部20の一次分注テーブル24に保持されたキュベット152の上方に移動させる。その後、検体分注アーム30から一次分注テーブル24のキュベット152内に検体が吐出されることにより、キュベット152内に検体が分取される。
そして、一次分注テーブル24を回転させて、検体が分注されたキュベット152を第1光学的情報取得部240による測定が可能な位置に搬送する。これにより、ステップS102において、第1光学的情報取得部240による検体に対する光学的な測定が行われて、検体から光学的な情報が取得される。具体的には、一次分注テーブル24の保持部24a(図20参照)に保持されたキュベット152内の検体を透過した5種類(340nm、405nm、575nm、660nmおよび800nm)の光を、順次、光電変換素子43が検出する。そして、光電変換素子43により検出された電気信号をプリアンプ45a(図21参照)およびアンプ45eで増幅するとともに、A/D変換器45cでデジタル信号に変換する。その後、コントローラ45dによりデジタル信号のデータを制御装置4の制御部4aに送信する。これにより、第1光学的情報取得部240による検体に対する光学的な情報(第1光学的情報)の取得が完了する。
また、ステップS102の光学的な情報(第1光学的情報)の取得の後、ステップS103において、CPU401aにより、第1光学的情報取得部240で測定した第1光学的情報から算出したメイン波長での吸光度が閾値以下か否かが判断される。具体的には、検体の検査項目が「PT」の場合には、「PT」のメイン波長である660nmを有する光を照射して測定された第1光学的情報から算出した吸光度が閾値(たとえば、2.0)以下か否かが判断される。また、同様に、検体の検査項目が「APTT」の場合には、「APTT」のメイン波長である660nmを有する光を照射して測定された第1光学的情報から算出した吸光度が閾値(たとえば、2.0)以下か否かが判断される。また、検体の検査項目が「ATIII」の場合には、「ATIII」のメイン波長である405nmを有する光を照射して測定された第1光学的情報から算出した吸光度が閾値(たとえば、2.0)以下か否かが判断される。
そして、ステップS103において、第1光学的情報取得部240で測定された第1光学的情報から算出したメイン波長での吸光度が閾値以下の場合には、ステップS104において、CPU401aは、第2光学的情報を分析するための分析波長をメイン波長に設定する。そして、ステップS105において、検体分注アーム30により一次分注テーブル24の保持部24aに保持されたキュベット152から所定量の検体が吸引される。その後、検体分注アーム30から二次分注テーブル23の複数のキュベット152に所定量の検体が各々吐出されることにより二次分注処理が行われる。そして、試薬分注アーム50を駆動させて、試薬テーブル21および22に載置された試薬容器(図示せず)内の試薬を二次分注テーブル23のキュベット152内の検体に添加する。これにより、測定用試料の調製が行われる。そして、キュベット移送部60を用いて、測定用試料が収容された二次分注テーブル23のキュベット152を第2光学的情報取得部270のキュベット載置部271の挿入孔271aに移動させる。
そして、ステップS106において、第2光学的情報取得部270の検出部272によりキュベット152内の測定用試料に対して複数の条件下で光学的な測定(本測定)が行われることによって、測定用試料から複数(10種類)の光学的な情報(第2光学的情報)が取得される。具体的には、まず、キュベット載置部271の挿入孔271aに挿入されたキュベット152は、加温機構(図示せず)により所定の温度に加温される。その後、図26に示すように、キュベット載置部271のキュベット152へ、ランプユニット250の分岐光ファイバ257から光が照射される。なお、分岐光ファイバ257からは、5つの異なる波長(340nm、405nm、575nm、660nmおよび800nm)の光が、フィルタ部253(図24参照)の回転によって周期的に照射される。分岐光ファイバ257から照射され、キュベット152およびキュベット152内の測定用試料を透過した上記各波長の光は、光電変換素子272bによって順次検出される。そして、光電変換素子272bにより変換された5つの異なる波長の光に対応する電気信号がプリアンプ272cで増幅された後、順次、増幅部76に入力される。
増幅部76では、プリアンプ272c(図27参照)からの5つの異なる波長の光に対応する電気信号が、増幅率の高いアンプ(H)76bおよび通常の増幅率のアンプ(L)76aに各々入力される。そして、コントローラ79により切替スイッチ76cを制御することにより、アンプ(H)76bにより増幅された電気信号がA/D変換器77に出力された後、アンプ(L)76aにより増幅された電気信号がA/D変換器77に出力される。ここで、切替スイッチ76cは、ランプユニット250におけるフィルタ部253(図24参照)の回転のタイミングに応じて繰り返し切り替えられる。これにより、増幅部76においては、5つの異なる波長の光に対応する電気信号がそれぞれ2つの異なる増幅率で増幅され、合計10種類の電気信号がA/D変換器77に繰り返し出力される。そして、10種類の電気信号は、A/D変換器77でデジタル信号に変換され、ロガー78に一時的に記憶された後、制御装置4の制御部4aに順次送信される。これにより、第2光学的情報取得部270によって測定用試料に対する複数(10種類)の光学的な情報(第2光学的情報)の取得が完了する。
一方、ステップS103において、第1光学的情報取得部240で測定された第1光学的情報から算出したメイン波長での吸光度が閾値より大きい場合には、ステップS107において、CPU401aにより、第1光学的情報取得部240で測定された第1光学的情報から算出したサブ波長での吸光度が閾値以下か否かが判断される。具体的には、検体の検査項目が「PT」の場合には、「PT」のサブ波長である800nmを有する光を照射して測定された第1光学的情報から算出した吸光度が閾値(たとえば、2.0)以下か否かが判断される。また、同様に、検体の検査項目が「APTT」の場合には、「APTT」のサブ波長である800nmを有する光を照射して測定された第1光学的情報から算出した吸光度が閾値(たとえば、2.0)以下か否かが判断される。また、検体の検査項目が「ATIII」の場合には、「ATIII」のサブ波長である660nmを有する光を照射して測定された第1光学的情報から算出した吸光度が閾値(たとえば、2.0)以下か否かが判断される。
そして、ステップS107において、第1光学的情報取得部240で測定された第1光学的情報から算出したサブ波長での吸光度が閾値以下の場合には、ステップS108において、CPU401aは、第2光学的情報を分析するための分析波長をサブ波長に設定する。そして、ステップS109およびステップS110において、上記したステップS105およびステップS106と同様にして、第2光学的情報取得部270によって測定用試料に対する複数(10種類)の光学的な情報(第2光学的情報)を取得する。
また、一方、ステップS107において、第1光学的情報取得部240で測定した第1光学的情報から算出したサブ波長での吸光度が閾値より大きい場合には、検体に含有される干渉物質(ビリルビン、ヘモグロビンおよび乳び)の影響が大きいため信頼性の高い分析を行うことが困難であると判断して、本測定を中止し、処理を終了する。これにより、干渉物質の影響を顕著に受けた分析不能な検体に対して、試薬を添加して測定用試料を調製することがないので、試薬が無駄になるのを抑制することが可能となる。なお、信頼性の高い測定を行うことが困難な場合(本測定を中止する場合)として、第1光学的情報取得部240で検出した検体中に干渉物質が多量に存在することにより、検体を透過する光が遮られて、検体を透過する透過光を実質的に検出できない場合などが挙げられる。
そして、上記したステップS106の第2光学的情報取得部270による第2光学的情報の取得(本測定)の後、ステップS111において、第2光学的情報取得部270において測定された複数の第2光学的情報の中から、分析波長に設定されたメイン波長で測定した測定用試料の第2光学的情報が制御装置4の制御部4aに送信され、CPU401aにより分析される。たとえば、検体の検査項目が「PT」の場合には、まず、「PT」のメイン波長である660nmを有する光を照射して測定された第2光学的情報が制御装置4の制御部4aに送信される。その後、メイン波長で取得された第2光学的情報を受信したCPU401aが、その第2光学的情報に基づいて、分析結果を出力する。
また、同様にして、上記したステップS110の第2光学的情報取得部270による第2光学的情報の取得(本測定)の後、ステップS112において、第2光学的情報取得部270において測定された複数の第2光学的情報の中から、分析波長に設定されたサブ波長で測定した測定用試料の第2光学的情報が制御装置4の制御部4aに送信され、CPU401aにより分析される。具体的には、検体の検査項目が「PT」の場合には、まず、「PT」のサブ波長である800nmを有する光を照射して測定された第2光学的情報が制御装置4の制御部4aに送信される。その後、サブ波長で取得された第2光学的情報を受信したCPU401aが、その第2光学的情報に基づいて、分析結果を出力する。
そして、ステップS111およびステップS112の制御装置4のCPU401aによる分析が終了した後には、ステップS113において、CPU401aが上記ステップS111またはステップS112で得られた分析結果を制御装置4の表示部4bに表示する。このようにして、検体分析装置201の検体の分析動作が終了する。
ここで、干渉物質に関する定性判定について説明する。制御装置4の制御部4aは、受信したデジタル信号のデータ(第1光学的情報)を用いて、検体の吸光度を算出するとともに、検体中の干渉物質(乳び、ヘモグロビン、ビリルビン)の有無およびその濃度を算出する。具体的には、ランプユニット250(図22参照)から照射される4種類(405nm、575nm、660nmおよび800nm)の光を用いて取得された光学的な情報(第1光学的情報)に基づいて、制御装置4の制御部4aは、検体の吸光度を算出するとともに、干渉物質(乳び、ヘモグロビンおよびビリルビン)の有無およびその濃度を算出する。
そして、算出された検体中の干渉物質の有無およびその濃度に基づいて、干渉物質の定性判定が行われる。なお、この定性判定として、検体中に干渉物質が実質的に含まれていないことを示す陰性「−」、検体中に干渉物質が所定量含まれていることを示す弱陽性「+」、および、検体中に干渉物質が多量に含まれていることを示す強陽性「++」がある。このような定性判定の結果は、上記ステップS111またはステップS112で得られた分析結果とともに制御装置4の表示部4bに表示される。第2実施形態では、上記のように、制御装置4の制御部4aが、第1光学的情報取得部240で測定した第1光学的情報から算出したメイン波長及びサブ波長での吸光度を閾値と比較することにより、分析に用いる波長の選択、及び本測定を中止するか否かを判定する構成としたが、これに限定されるものではなく、上述のようにして得られた干渉物質の定性判定結果を用いて、分析に用いる波長の選択、及び本測定を中止するか否かを判定してもよい。405nmの波長を有する光は、図29〜図31に示すように、乳び、ヘモグロビンおよびビリルビンのいずれにも吸収される光である。すなわち、405nmの波長を有する光により測定された光学的な情報には、乳び、ヘモグロビンおよびビリルビンの影響が寄与している。また、575nmの波長を有する光は、ビリルビンには実質的に吸収されず、かつ、乳びおよびヘモグロビンに吸収される光である。つまり、575nmの波長を有する光により測定された光学的な情報には、乳びおよびヘモグロビンの影響が寄与している。そして、660nmおよび800nmの波長を有する光は、ビリルビンおよびヘモグロビンには実質的に吸収されず、かつ、乳びに吸収される光である。すなわち、660nmおよび800nmの波長を有する光により測定された光学的な情報には、乳びの影響が寄与している。また、図31に示すように、乳びは、低波長域の405nmから高波長域の800nmまでの波長の光を吸収しており、660nmの波長を有する光の方が、800nmの波長を有する光に比べて、乳びによる吸収が多い。つまり、800nmの波長を有する光で測定した光学的な情報の方が、660nmの波長を有する光で測定した光学的な情報より、乳びの影響が小さい。このような各干渉物質(乳び、ヘモグロビンおよびビリルビン)毎に吸収の大きい波長は異なっており、したがって、定性判定の結果、検体中に含まれる干渉物質の種類に応じて、分析に用いる波長の選択、及び本測定を中止するか否かを判定することができる。また、干渉物質毎の定性判定を行わなくても、測定波長毎に干渉物質の影響があるか否かを定性的に判定してもよい。この場合には、干渉物質の影響が実質的にないと判定された波長を分析に使用し、干渉物質の影響があると判定された波長を分析に用いないようにすればよい。
第2実施形態では、上記のように、第1光学的情報取得部240において検体に照射される光と、第2光学的情報取得部270において測定用試料に照射される光とを供給するランプユニット250を設けることによって、1つのランプユニット250で、第1光学的情報取得部240の検体および第2光学的情報取得部270の測定用試料の両方に光を供給することができる。これにより、第1光学的情報取得部240の検体および第2光学的情報取得部270の測定用試料に対して光を供給するためのランプユニット250を共通で用いることができるので、検体分析装置201が大型化するのを抑制することができる。
また、第2実施形態では、第1光学的情報取得部240において検体に照射される光と、第2光学的情報取得部270において測定用試料に照射される光とを供給するランプユニット250を設けることによって、第1光学的情報取得部240の検体および第2光学的情報取得部270の測定用試料に実質的に同質の光を供給することができる。これにより、第1光学的情報取得部240の検体から取得された第1光学的情報から、第2光学的情報取得部270の測定用試料から取得される第2光学的情報を正確に推定することができる。このため、検体から取得された第1光学的情報に基づいて、分析対象の第2光学的情報を複数の中から選択すれば、分析可能な検体が分析の対象から外れるのを抑制することができる。その結果、分析可能な検体の数を増加させることができる。
また、第2実施形態では、ランプユニット250に、ハロゲンランプ251と、ハロゲンランプ251から照射された光を第1光学的情報取得部240における検体に導く1本の分岐光ファイバ258と、ハロゲンランプ251から照射された光を第2光学的情報取得部270における測定用試料に導く11本の分岐光ファイバ257とを設けることによって、ハロゲンランプ251から照射された実質的に同質の光を容易に第1光学的情報取得部240および第2光学的情報取得部270の両方に誘導することができる。
また、第2実施形態では、5つの光透過特性(透過波長)のそれぞれ異なる光学フィルタ253b〜253fを有するフィルタ部253を設けることによって、複数の波長を有する光を、それぞれ、第1光学的情報取得部240および第2光学的情報取得部270に供給することができる。これにより、第1光学的情報取得部240において複数の波長を有する光を検体に照射することにより、複数の第1光学的情報を取得することができるとともに、第2光学的情報取得部270において複数の波長を有する光を検体に照射することにより、複数の第2光学的情報を取得することができる。その結果、検体に添加される試薬の種類や測定項目(PT(プロトロンビン時間)、APTT(活性化部分トロンボプラスチン時間)、Fbg(フィブリノーゲン量))によって測定用試料の測定に適切な波長が異なる場合でも、適切な波長で測定用試料を測定することができる。
また、第2実施形態の検体分析装置201で分析される検体の測定項目が「PT」の場合では、660nm(メイン波長)の波長を有する光を用いて取得された検体の吸光度が閾値(たとえば、2.0)より大きい場合で、かつ、800nmの波長(サブ波長)を有する光を用いて取得された検体の吸光度が閾値(たとえば、2.0)以下の場合に、ステップS113において、800nmの波長(サブ波長)を有する光を用いて取得された測定用試料の第2光学的情報を分析することによって、干渉物質(ヘモグロビンおよびビリルビン)の影響が実質的にない800nmの波長を用いて取得された第2光学的情報を分析することができる。その結果、第2光学的情報の分析時に干渉物質が検体中に存在することに起因する分析エラーが生じるのを抑制することができる。
また、第2実施形態では、660nm(メイン波長)の波長を有する光を用いて取得された検体の吸光度が閾値(たとえば、2.0)より大きい場合で、かつ、800nmの波長(サブ波長)を有する光を用いて取得された検体の吸光度が閾値(たとえば、2.0)より大きい場合に、ステップS111において測定を中止することによって、信頼性の高い結果を得ることができない検体に対して試薬を添加することがないので、試薬が無駄になるのを抑制することができる。また、信頼性の高い結果を得ることができない検体から第2光学的情報を取得することもないので、分析効率も向上させることができる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第1実施形態では、第2光学的情報取得部70の検出部72の増幅部76を、図8に示すように、所定のゲイン(増幅率)を有するアンプ(L)76aと、アンプ(L)76aよりも高いゲイン(増幅率)を有するアンプ(H)76bと、アンプ(L)76aからの電気信号をA/D変換器77に出力するか、アンプ(H)76bからの電気信号をA/D変換器77に出力するかを選択する切替スイッチ76cとにより構成する例について示したが、本発明はこれに限らず、図32に示す変形例のように、第2光学的情報取得部170の検出部172の増幅部176を、アンプ176aと、電子ボリューム176bとにより構成してもよい。この場合、増幅部176のアンプ176aは、コントローラ79からの制御信号を電子ボリューム176bに入力することによりアンプ176aのゲイン(増幅率)を調整することが可能なように構成されている。このような構成において、コントローラ79による電子ボリューム176bの制御を、ランプ部73におけるフィルタ部材73cの回転のタイミングに合わせて行えば、ランプ部73から照射される波長の異なる各々の光に対応する電気信号を、異なる複数のゲイン(増幅率)で増幅することができる。
また、上記第1実施形態では、5つの異なる波長の光を照射するランプ部と、2つの異なる増幅率によって電気信号を増幅する増幅部とを含む第2光学的情報取得部から10種類の光学的情報(デジタル信号のデータ)をすべて取得するとともに、第1光学的情報取得部からの第1光学的情報の分析結果に基づいて、取得された10種類の第2光学的情報から分析に適していると判断された第2光学的情報を選択して分析する例について示したが、本発明はこれに限らず、第2実施形態のフィルタ部253を任意の角度で停止させることができるようにすることによって、測定条件(取得条件)としてメイン波長、サブ波長および本測定中止のうち1つを選択するとともに、その選択された条件下で第2光学的情報を取得するようにしてもよい。図33は、第2実施形態の変形例による検体分析装置の検体分析動作の手順を示したフローチャートである。図33に示すフローチャートにおいて、ステップS206、S210、S211及びS212以外の処理については、図28に示した第2実施形態の処理と同様である。ステップS103において、第1光学的情報取得部240で測定された第1光学的情報から算出したメイン波長での吸光度が閾値以下の場合には、ステップS104において、CPU401aは、第2光学的情報を取得するための分析波長をメイン波長に設定する。そして、ステップS105において、二次分注処理が行われ、測定用試料の調製が行われる。そして、測定用試料が収容された二次分注テーブル23のキュベット152が第2光学的情報取得部270のキュベット載置部271の挿入孔271aに移動される。ステップS206においては、第2光学的情報取得部270の検出部272によりキュベット152内の測定用試料に対して所定の条件下で光学的な測定(本測定)が行われることによって、測定用試料から所定の光学的な情報(第2光学的情報)が取得される。具体的には、分岐光ファイバ257から分析波長として設定されたメイン波長の光が照射されるようにフィルタ部253の回転が停止される。分岐光ファイバ257から照射され、キュベット152およびキュベット152内の測定用試料を透過したメイン波長の光は、光電変換素子272bによって検出される。そして、光電変換素子272bにより変換されたメイン波長の光に対応する電気信号がプリアンプ272cで増幅された後、増幅部76に入力される。
増幅部76では、プリアンプ272c(図27参照)からのメイン波長の光に対応する電気信号が、増幅率の高いアンプ(H)76bおよび通常の増幅率のアンプ(L)76aに各々入力される。そして、コントローラ79により切替スイッチ76cを制御することにより、アンプ(H)76b及びアンプ(L)76aのうち選択された一方により増幅された電気信号がA/D変換器77に出力される。これにより、分析に適した条件で取得された1種類の電気信号がA/D変換器77に出力される。そして、この電気信号は、A/D変換器77でデジタル信号に変換され、ロガー78に一時的に記憶された後、制御装置4の制御部4aに順次送信される。これにより、第2光学的情報取得部270によって測定用試料がメイン波長で測定されることによって得られた光学的な情報(第2光学的情報)の取得が完了する。
一方、ステップS107において、第1光学的情報取得部240で測定された第1光学的情報から算出したサブ波長での吸光度が閾値以下の場合には、ステップS108において、CPU401aは、第2光学的情報を取得するための分析波長をサブ波長に設定する。そして、ステップS109およびステップS210において、分析波長として設定されたサブ波長の光が分岐光ファイバ257から照射されるようにフィルタ部253の回転が停止され、第2光学的情報取得部270によって測定用試料がサブ波長で測定されることによって得られた光学的な情報(第2光学的情報)を取得する。
そして、上記したステップS206の第2光学的情報取得部270による第2光学的情報の取得(本測定)の後、ステップS211において、第2光学的情報取得部270において測定された複数の第2光学的情報が制御装置4の制御部4aに送信されて分析される。その後、メイン波長で取得された第2光学的情報を受信した制御部4aが、その第2光学的情報に基づいて、分析結果を出力する。
また、同様にして、上記したステップS210の第2光学的情報取得部270による第2光学的情報の取得(本測定)の後、ステップS212において、第2光学的情報取得部270において測定された複数の第2光学的情報が制御装置4の制御部4aに送信されて分析される。その後、サブ波長で取得された第2光学的情報を受信した制御部4aが、その第2光学的情報に基づいて、分析結果を出力する。
このようにすることにより、検体中の干渉物質(ヘモグロビン、ビリルビンおよび脂質)の種類や含有の度合いに応じて、制御装置の制御部が分析するのに適した第2光学的情報を得ることが可能となる。
なお、第2実施形態及び上記変形例では、ステップS103及びS107において、第1光学的情報から算出した吸光度を閾値と比較することにより、本測定における干渉物質の影響を判定しているが、これに限定されるものではなく、例えば、第1光学的情報を閾値と比較することにより、本測定における干渉物質の影響を判定する構成としてもよい。
上記した第1光学的情報取得部により取得された第1光学的情報の分析結果に応じて、第2光学的情報の取得条件を選択する場合において、第2光学的情報取得部の増幅部を、図8に示した上記第1実施形態と同様、所定のゲイン(増幅率)を有するアンプ(L)76aと、アンプ(L)76aよりも高いゲイン(増幅率)を有するアンプ(H)76bと、アンプ(L)76aからの電気信号をA/D変換器77に出力するか、アンプ(H)76bからの電気信号をA/D変換器77に出力するかを選択する切替スイッチ76cとにより構成してもよい。このように構成すれば、第1光学的情報取得部40により得られた第1光学的情報の分析結果に応じて、第2光学的情報を取得する際に、アンプ(L)76aまたはアンプ(H)76bのいずれかを選択することができる。これにより、検体中の干渉物質の種類や含有の度合いに応じて、制御装置4の制御部4aが分析するのに適した増幅率で第2光学的情報を取得することが可能となる。
また、上記した第1光学的情報取得部により取得された第1光学的情報の分析結果に応じて、第2光学的情報の取得条件を選択する場合において、第2光学的情報取得部の増幅部を、図32に示した上記第1実施形態の変形例と同様、アンプ176aと、電子ボリューム176bとにより構成してもよい。この場合、増幅部176のアンプ176aは、コントローラ79からの制御信号を電子ボリューム176bに入力することによりアンプ176aのゲイン(増幅率)を調整することが可能なように構成されている。このように構成しても、第1光学的情報取得部40により得られた第1光学的情報の分析結果に応じて、第2光学的情報を取得する際に、アンプ176aのゲイン(増幅率)を分析に適したゲインに調整することができる。
また、上記第1実施形態では、第1光学的情報取得部において、発光ダイオード(LED)により3つの異なる波長の光をキュベット内の検体に照射する例について示したが、本発明はこれに限らず、光ファイバなどを用いて第2光学的情報取得部のランプ部から異なる波長の光をキュベット内の検体に照射するようにしてもよい。
また、上記第2実施形態では、凝固時間法を用いて検体(測定用試料)の光学的な測定(本測定)を行う例を示したが、本発明はこれに限らず、凝固時間法以外の合成基質法や免疫比濁法などを用いて検体(測定用試料)の光学的な測定を行ってもよい。
また、上記第1および第2実施形態では、検出機構部と制御装置とを別個に設ける例を示したが、本発明はこれに限らず、制御装置の機能を検出機構部に設けてもよい。

Claims (18)

  1. 検体容器(150)に収容されている検体を吸引し、第1容器(153)に分取するステップと、
    前記第1容器中の前記検体に対して光学測定を行うステップと、
    前記検体を第2容器(154)に分取し、第2容器にて検体と試薬とを混和して測定用試料を調製するステップと、
    前記検体の光学測定の結果に応じて、前記測定用試料に対して分析を行うステップとを備えた、検体分析方法。
  2. 前記検体の光学測定の結果に応じて、前記検体から調製された前記測定用試料に対して分析を行うか否かを判断するステップをさらに備え、
    前記測定用試料の分析を行うステップでは、前記検体の光学測定の結果に応じて、前記測定用試料に対して分析を行うと判断した場合に、前記測定用試料に対して分析を行う、請求項1に記載の検体分析方法。
  3. 前記測定用試料の分析を行うステップでは、前記検体の光学測定の結果が第1の範囲にある場合には、前記測定用試料を第1の分析手法で分析し、前記検体の光学測定の結果が第2の範囲にある場合には、前記測定用試料を第2の分析手法で分析する、請求項1に記載の検体分析方法。
  4. 前記測定用試料を調製するステップでは、前記第1容器に収容された検体を前記第2容器へ分取する、請求項1〜3のいずれか1項に記載の検体分析方法。
  5. 検体容器に収容されている検体を吸引し、第1容器に分取する第1分取部(30)と、
    前記第1容器に分取された前記検体に対して光学測定を行う光学測定部(40、240)と、
    前記検体を第2容器に分取する第2分取部(50)と、
    前記第2容器にて検体と試薬とを混和して測定用試料を調製する試料調製部(50)と、
    前記測定用試料を分析する分析部と、
    前記検体の光学測定の結果に応じて、前記分析部による分析動作を制御する制御部(4)とを備えた、検体分析装置。
  6. 前記制御部は、前記検体の光学測定の結果に応じて、前記分析部による分析の実行の有無を制御する、請求項5に記載の検体分析装置。
  7. 前記制御部は、前記検体の光学測定の結果が第1の範囲にある場合には、第1の分析条件で前記分析部での分析を実行し、前記検体の光学測定の結果が第2の範囲にある場合には、第2の分析条件で前記分析部での分析を実行するように制御する、請求項5に記載の検体分析装置。
  8. 前記第2分取部は、前記第1容器に収容された検体を前記第2容器へ分取する、請求項5〜7のいずれか1項に記載の検体分析装置。
  9. 前記制御部は、前記検体の光学測定の結果に応じて、前記第2容器への前記検体の分取を実行させるか否かを制御する、請求項5〜7のいずれか1項に記載の検体分析装置。
  10. 前記第1分取部は、前記検体容器に挿入して前記検体を吸引するための管(35)を含み、
    前記検体容器は、前記検体容器の開口部を閉鎖するための蓋(152)を含み、
    前記第1分取部は、前記管を前記蓋に貫通させることにより前記検体容器内の前記検体を吸引する、請求項5〜7のいずれか1項に記載の検体分析装置。
  11. 前記分析部は、前記測定用試料に対して複数の条件下で情報を取得するとともに、前記検体の光学測定の結果に応じて、前記取得した複数の情報から分析に適した情報を選択して分析を行う、請求項5〜7のいずれか1項に記載の検体分析装置。
  12. 前記分析部は、前記測定用試料に対して光を照射するための光源(73、250)を含み、前記光源から前記測定用試料に光を照射して前記測定用試料から光学的情報を取得するとともに、前記光学的情報を分析することにより分析結果を得る、請求項5〜7のいずれか1項に記載の検体分析装置。
  13. 前記光学測定部(240)は、前記分析部の光源(250)を使用して光学測定を行う、請求項12に記載の検体分析装置。
  14. 前記光源は、複数の波長の光を出射可能である、請求項12に記載の検体分析装置。
  15. 前記分析部は、
    前記測定用試料から得られる光を電気信号に変換する光電変換素子(74)と、
    前記光電変換素子により得られた前記電気信号を増幅するアンプ(75、76a、76b、176a)とをさらに含む、請求項12に記載の検体分析装置。
  16. 前記アンプは、第1の増幅率を有する第1アンプ(76a)と、前記第1アンプの第1の増幅率とは異なる第2の増幅率を有する第2アンプ(76b)とを含む、請求項15に記載の検体分析装置。
  17. 前記アンプの増幅率を第1の増幅率と第2の増幅率とに変化させる増幅率調整部(176b)をさらに備える、請求項15に記載の検体分析装置。
  18. 前記分析部は、
    複数の波長の光を出射可能な光源(73)と、
    複数の増幅率で増幅可能なアンプ(76a、76b)とを含み、
    前記分析部での前記第1の分析条件および前記第2の分析条件は、それぞれ、前記光学測定の結果に応じて、前記光源の複数の波長および前記アンプの複数の増幅率から選択される、請求項7に記載の検体分析装置。
JP2007510430A 2005-03-29 2006-03-23 検体分析装置 Active JP4999679B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510430A JP4999679B2 (ja) 2005-03-29 2006-03-23 検体分析装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005093692 2005-03-29
JP2005093692 2005-03-29
JP2007510430A JP4999679B2 (ja) 2005-03-29 2006-03-23 検体分析装置
PCT/JP2006/305813 WO2006104006A1 (ja) 2005-03-29 2006-03-23 検体分析方法および検体分析装置

Publications (2)

Publication Number Publication Date
JPWO2006104006A1 true JPWO2006104006A1 (ja) 2008-09-04
JP4999679B2 JP4999679B2 (ja) 2012-08-15

Family

ID=37053264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510430A Active JP4999679B2 (ja) 2005-03-29 2006-03-23 検体分析装置

Country Status (5)

Country Link
US (4) US8545760B2 (ja)
EP (1) EP1867997B1 (ja)
JP (1) JP4999679B2 (ja)
CN (2) CN103941027B (ja)
WO (1) WO2006104006A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845363B1 (en) * 2006-03-16 2014-08-06 Sysmex Corporation Sample analyzer
JP4875391B2 (ja) * 2006-03-30 2012-02-15 シスメックス株式会社 検体分析装置
EP3432002B1 (en) * 2008-03-31 2023-11-08 Sysmex Corporation Blood coagulation analyzer and blood coagulation analysis method
EP2264465B1 (en) * 2008-03-31 2019-09-11 Sysmex Corporation Sample preparation apparatus, sample preparation method and cell analysis apparatus
AU2009201799A1 (en) * 2008-05-23 2009-12-10 Aristocrat Technologies Australia Pty Limited A method of gaming, a game controller and a gaming system
WO2010055890A1 (ja) * 2008-11-17 2010-05-20 株式会社日立ハイテクノロジーズ 自動分析装置
JP5021010B2 (ja) * 2009-08-18 2012-09-05 あおい精機株式会社 検体処理装置及び検体処理方法
US20130046293A1 (en) * 2010-03-09 2013-02-21 Keio University System for preventing blood charring at laser beam emitting site of laser catheter
JP5478360B2 (ja) * 2010-05-20 2014-04-23 株式会社日立ハイテクノロジーズ 自動分析装置
JPWO2012036296A1 (ja) * 2010-09-17 2014-02-03 ユニバーサル・バイオ・リサーチ株式会社 カートリッジおよび自動分析装置
JP5822534B2 (ja) * 2011-05-13 2015-11-24 株式会社日立ハイテクノロジーズ 自動分析装置
JP5474903B2 (ja) * 2011-09-28 2014-04-16 あおい精機株式会社 検査前処理装置、検査前処理方法、及び検体処理装置
CA2882339C (en) * 2012-08-20 2020-08-18 Siemens Healthcare Diagnostics Inc. Ascertaining specimen container characteristics while in transit
JP6180745B2 (ja) * 2013-01-30 2017-08-16 株式会社日立ハイテクノロジーズ 核酸分析装置
EP2972402B1 (en) * 2013-03-15 2023-12-20 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US20140271369A1 (en) * 2013-03-15 2014-09-18 Abbott Laboratories System and Method for Processing Both Clinical Chemistry and Immunoassay Tests
US10094842B2 (en) * 2014-10-17 2018-10-09 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Automatic biochemical analyzer
WO2016120779A1 (en) * 2015-01-26 2016-08-04 Bacterioscan Ltd. Laser-scatter measurement instrument having carousel-based fluid sample arrangement
WO2016130962A1 (en) 2015-02-13 2016-08-18 Abbott Laboratories Automated storage modules for diagnostic analyzer liquids and related systems and methods
CA2976652A1 (en) 2015-02-27 2016-09-01 Hycor Biomedical, Llc Apparatuses and methods for suspending and washing the contents of a plurality of cuvettes
WO2016210413A1 (en) 2015-06-26 2016-12-29 Abbott Laboratories Reaction vessel moving member for moving reaction vessels from a processing track to a rotating device in a diagnostic analyzer
WO2016210420A1 (en) 2015-06-26 2016-12-29 Abbott Laboratories Reaction vessel exchanger device for a diagnostic analyzer
US11815446B2 (en) 2016-01-28 2023-11-14 Siemens Healthcare Diagnostics Inc. Methods and apparatus for characterizing a specimen container and specimen
WO2017143182A2 (en) 2016-02-17 2017-08-24 Becton, Dickinson And Company Automated sample preparation system for diagnostic testing of same
EP3446129B1 (en) 2016-04-22 2024-02-14 Becton, Dickinson and Company Automated diagnostic analyzer and method for its operation
CN115754323A (zh) 2016-04-22 2023-03-07 贝克顿·迪金森公司 自动化诊断分析仪和用于自动化诊断分析仪的操作的方法
RU2762936C2 (ru) 2016-10-28 2021-12-24 Бекман Каултер, Инк. Система оценки подготовки вещества
JP7012719B2 (ja) 2016-11-14 2022-02-14 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド パターン照明を用いて試料を特徴付ける方法及び装置
US11815519B2 (en) 2017-07-19 2023-11-14 Siemens Healthcare Diagnostics Inc. Stray light compensating methods and apparatus for characterizing a specimen
CN107315094B (zh) * 2017-07-27 2023-12-01 深圳传世生物医疗有限公司 凝血分析仪及凝血分析方法
JP7324757B2 (ja) * 2018-01-10 2023-08-10 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド 訓練が低減されたニューラルネットワークを使用したバイオ流体検体の特徴付けのための方法および装置
US10890524B2 (en) * 2018-06-05 2021-01-12 Fenwal, Inc. Discerning between the presence of red blood cells and free hemoglobin in a biological fluid
CN112912712B (zh) * 2018-11-21 2023-11-21 北京迈瑞医疗器械有限公司 样本吸光度差的测量方法、样本分析仪和存储介质
CN109900539B (zh) * 2019-03-15 2021-07-20 遵义医学院附属医院 一种hpv检测实验用仿生型试剂批量添加及混匀装置
CN113099104B (zh) * 2020-01-09 2023-06-27 博泰车联网科技(上海)股份有限公司 用于采集图像的方法、电子设备、计算机存储介质和车辆
WO2021207898A1 (zh) * 2020-04-13 2021-10-21 深圳迈瑞生物医疗电子股份有限公司 一种样本分析装置及方法
WO2021207897A1 (zh) * 2020-04-13 2021-10-21 深圳迈瑞生物医疗电子股份有限公司 一种样本分析方法和装置
US20230306614A1 (en) * 2022-03-28 2023-09-28 Darvis Inc. System and method for tracking surgical kit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234095B2 (ja) * 1979-04-28 1987-07-24 Nippon Electron Optics Lab
JPH06347466A (ja) * 1993-03-22 1994-12-22 Nittec Co Ltd 容器の移送方法
JPH07280814A (ja) * 1994-04-14 1995-10-27 Hitachi Ltd 検体検査自動化システム
JPH0894636A (ja) * 1994-09-21 1996-04-12 Toa Medical Electronics Co Ltd 検体の自動分析方法および装置
JPH08114600A (ja) * 1994-10-19 1996-05-07 Hitachi Ltd 生体試料分析システム

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609042A (en) 1968-05-13 1971-09-28 Hitachi Ltd Optical measuring apparatus for sampling material, making a flame test, and comparing the light from an unknown concentration with that from two known concentrations
GB1603821A (en) 1977-04-15 1981-12-02 Johnson Matthey Co Ltd Catalysts for the production of formaldehyde
JPS5630650A (en) 1979-08-22 1981-03-27 Hitachi Ltd Automatic chemical analyzer
EP0041366B1 (en) 1980-05-30 1986-09-10 Hitachi, Ltd. Method for operating an apparatus for analysing samples optically
JPS5782769A (en) 1980-11-10 1982-05-24 Hitachi Ltd Automatic analyzing device
ES275136Y (es) 1981-07-20 1984-10-01 American Hospital Supply Corporation Dispositivo de anclaje para peldanos en piezas de hormigon o similares.
JPS5970946A (ja) 1982-10-15 1984-04-21 Toshiba Corp 吸光度測定装置
JPS59100862A (ja) 1982-12-01 1984-06-11 Hitachi Ltd 自動分析装置
JPS6182272A (ja) 1984-09-29 1986-04-25 Hitachi Ltd ベクトル処理装置
JPS6182272U (ja) * 1984-11-02 1986-05-31
JPS61241639A (ja) 1985-04-19 1986-10-27 Hitachi Ltd 反応試料分析装置
US4774055A (en) 1985-06-26 1988-09-27 Japan Tectron Instruments Corporation Automatic analysis apparatus
DE3680317D1 (de) * 1986-01-31 1991-08-22 Nittec Koganei Kk Automatischer analysenapparat.
WO1988002120A1 (en) * 1986-09-16 1988-03-24 Nittec Co., Ltd Automatic analyzer
US5698450A (en) 1986-10-14 1997-12-16 Ringrose; Anthony Method for measuring antigens or antibodies in biological fluids
JPH01145552A (ja) 1987-12-02 1989-06-07 Olympus Optical Co Ltd 自動分析装置
JPH01287466A (ja) * 1988-05-16 1989-11-20 Toshiba Corp 自動化学分析装置
JPH0758263B2 (ja) 1988-08-26 1995-06-21 株式会社日立製作所 自動蛍光光度計を用いる分析方法
JPH02223859A (ja) 1989-02-25 1990-09-06 Shimadzu Corp 生化学分析方法
JP2649409B2 (ja) * 1989-03-14 1997-09-03 株式会社日立製作所 臨床検査用の自動分析方法
US5646046A (en) * 1989-12-01 1997-07-08 Akzo Nobel N.V. Method and instrument for automatically performing analysis relating to thrombosis and hemostasis
JP2825331B2 (ja) * 1990-09-21 1998-11-18 株式会社日立製作所 自動分析装置
JPH04348258A (ja) * 1991-05-27 1992-12-03 Kowa Co 多チャンネル光学測定装置
US5376313A (en) * 1992-03-27 1994-12-27 Abbott Laboratories Injection molding a plastic assay cuvette having low birefringence
JPH06265554A (ja) * 1993-03-11 1994-09-22 Daikin Ind Ltd 血液生化学成分の分析方法およびその装置
US5734468A (en) * 1995-08-18 1998-03-31 Beckman Instruments, Inc. Probe and method for determining serum indices of a serum sample
US6353471B1 (en) 1995-10-10 2002-03-05 Cme Telemetrix Inc. Method and apparatus for non-destructive screening of specimen integrity
WO1997019340A1 (en) * 1995-11-21 1997-05-29 Cme Telemetrix Inc. Apparatus and method for rapid spectrophotometric pre-test screen of specimen for a blood analyzer
US5745243A (en) 1996-11-15 1998-04-28 Optical Solutions, Inc. Photometer apparatus
JPH10170444A (ja) 1996-12-06 1998-06-26 Hamamatsu Photonics Kk 光測定装置
JPH10274656A (ja) 1997-03-28 1998-10-13 Kdk Corp グルコース濃度の測定方法
DE10011529T1 (de) * 1998-05-01 2011-09-01 Gen-Probe Incorporated Automatisches Diagnoseanalysegerät und Verfahren
JP3558898B2 (ja) 1998-11-05 2004-08-25 株式会社日立製作所 自動分析装置及び自動分析方法
US6388750B1 (en) 1998-12-17 2002-05-14 Beckman Coulter, Inc. Device and method for preliminary testing a neat serum sample in a primary collection tube
JP4451539B2 (ja) * 1999-05-11 2010-04-14 シスメックス株式会社 自動分析装置および自動分析装置用容器供給装置
US6797518B1 (en) 2000-09-11 2004-09-28 Ortho-Clinical Diagnostics, Inc. Analysis method with sample quality measurement
US20030026773A1 (en) 2001-06-26 2003-02-06 The Procter & Gamble Company Anhydrous liquid antiperspirant emulsions
US7402282B2 (en) * 2001-07-20 2008-07-22 Ortho-Clinical Diagnostics, Inc. Auxiliary sample supply for a clinical analyzer
US8326388B2 (en) 2002-10-31 2012-12-04 Toshiba Medical Systems Corporation Method and apparatus for non-invasive measurement of living body characteristics by photoacoustics
JP4234393B2 (ja) * 2002-10-31 2009-03-04 株式会社東芝 生体情報計測装置
JP4491277B2 (ja) 2004-05-21 2010-06-30 株式会社日立ハイテクノロジーズ 試料分析装置
EP1802959A1 (en) * 2004-10-11 2007-07-04 Thermo Fisher Scientific Oy Method for automatically detecting factors that disturb analysis by a photometer
JP4881855B2 (ja) 2005-03-29 2012-02-22 シスメックス株式会社 検体分析方法および検体分析装置
EP1845363B1 (en) 2006-03-16 2014-08-06 Sysmex Corporation Sample analyzer
JP6234095B2 (ja) 2013-07-16 2017-11-22 キヤノン株式会社 液体吐出ヘッド及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234095B2 (ja) * 1979-04-28 1987-07-24 Nippon Electron Optics Lab
JPH06347466A (ja) * 1993-03-22 1994-12-22 Nittec Co Ltd 容器の移送方法
JPH07280814A (ja) * 1994-04-14 1995-10-27 Hitachi Ltd 検体検査自動化システム
JPH0894636A (ja) * 1994-09-21 1996-04-12 Toa Medical Electronics Co Ltd 検体の自動分析方法および装置
JPH08114600A (ja) * 1994-10-19 1996-05-07 Hitachi Ltd 生体試料分析システム

Also Published As

Publication number Publication date
US20150211995A1 (en) 2015-07-30
CN101151534A (zh) 2008-03-26
US8545760B2 (en) 2013-10-01
US9316583B2 (en) 2016-04-19
EP1867997A4 (en) 2014-01-01
US20140004612A1 (en) 2014-01-02
US9028756B2 (en) 2015-05-12
US20160195560A1 (en) 2016-07-07
WO2006104006A1 (ja) 2006-10-05
US10261016B2 (en) 2019-04-16
EP1867997B1 (en) 2015-04-29
JP4999679B2 (ja) 2012-08-15
US20080020481A1 (en) 2008-01-24
CN103941027B (zh) 2016-09-07
EP1867997A1 (en) 2007-12-19
CN103941027A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
JP4999679B2 (ja) 検体分析装置
JP4881855B2 (ja) 検体分析方法および検体分析装置
US11262346B2 (en) Blood coagulation analyzer having a plurality of light sources and a plurality of measurement sections
US8064061B2 (en) Sample analyzer and sample analyzing method
US7842509B2 (en) Blood analyzer and blood analyzing method
US10101348B2 (en) Sample analyzer
US7760340B2 (en) Sample analyzer
EP3267203A1 (en) Sample analyzer
JP4986487B2 (ja) 血液凝固時間測定装置
JP4758793B2 (ja) 試料分析方法および試料分析装置
JP5312834B2 (ja) 血液凝固分析装置、血液凝固分析方法、及び、コンピュータプログラム
CN115280155A (zh) 一种样本分析装置及方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250