WO2021207897A1 - 一种样本分析方法和装置 - Google Patents

一种样本分析方法和装置 Download PDF

Info

Publication number
WO2021207897A1
WO2021207897A1 PCT/CN2020/084550 CN2020084550W WO2021207897A1 WO 2021207897 A1 WO2021207897 A1 WO 2021207897A1 CN 2020084550 W CN2020084550 W CN 2020084550W WO 2021207897 A1 WO2021207897 A1 WO 2021207897A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
intensity
wavelength
optical information
Prior art date
Application number
PCT/CN2020/084550
Other languages
English (en)
French (fr)
Inventor
孙骁
郭文恒
司新春
武振兴
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
北京深迈瑞医疗电子技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 北京深迈瑞医疗电子技术研究院有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/084550 priority Critical patent/WO2021207897A1/zh
Priority to CN202080098181.XA priority patent/CN115244382A/zh
Publication of WO2021207897A1 publication Critical patent/WO2021207897A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Definitions

  • the invention relates to a sample analysis method and device.
  • the sample analysis device is a type of device used to analyze the biochemical characteristics of the sample. It is widely used in the clinical medical field to help medical staff diagnose the patient's condition. Take a blood coagulometer as an example.
  • the blood coagulometer can measure the clotting time of blood and the concentration or activity of related substances; the blood coagulometer can use optical methods to detect coagulation items. Light irradiates and analyzes the scattered or transmitted light to obtain optical information such as the absorbance of the solution, so as to obtain the solidification time or the concentration of the analyte.
  • the optical method detects coagulation items through the optical information of the light scattering, reflection or transmission of the reaction solution. Therefore, when the sample has interfering substances that change the nature of the light scattering, reflection or transmission of the reaction solution, this will affect the measurement. , Making the detection result inaccurate, and in severe cases, the detection result may not even be obtained at all.
  • the present invention mainly provides a sample analysis method and device.
  • an embodiment provides a sample analysis method, including:
  • the optical information corresponding to the light of specific wavelength and intensity is selected to analyze the sample.
  • the optical information corresponding to the light of a specific wavelength and intensity is selected to analyze the sample ,include:
  • the item of the test sample corresponds to the light of the matched dominant wavelength and dominant intensity
  • the interference content of the sample is less than the first threshold value
  • the main wavelength and main intensity light corresponding to the item of the measurement sample are selected. Analyze the sample with optical information;
  • the interference content of the sample is greater than the first threshold
  • the optical information corresponding to the light of multiple wavelengths and multiple intensities select the dominant wavelength and/or intensity greater than the main wavelength and/or intensity of the item whose wavelength is greater than the measurement sample.
  • the optical information corresponding to the main intensity light corresponding to the item of the measurement sample is analyzed to analyze the sample.
  • the interference content of the sample is greater than the first threshold and less than the second threshold
  • the optical information corresponding to the light of multiple wavelengths and multiple intensities select the item with a wavelength greater than that of the measurement sample Analyzing the sample with optical information corresponding to the light with the corresponding dominant wavelength and intensity equal to the dominant intensity corresponding to the item of the measurement sample;
  • the interference content of the sample is greater than the second threshold
  • the optical information corresponding to the multiple wavelengths and multiple intensities of light select the wavelength greater than the dominant wavelength corresponding to the item of the measurement sample and the intensity is greater than the measurement
  • the optical information corresponding to the main intensity light corresponding to the item of the sample is analyzed for the sample.
  • the interference content of the sample is greater than the first threshold, it is also determined whether the item of the measurement sample supports light of non-dominant wavelength for measurement.
  • the optical information corresponding to the light whose wavelength is equal to the dominant wavelength corresponding to the item of the measurement sample and whose intensity is greater than the dominant intensity corresponding to the item of the measurement sample is selected to analyze the sample.
  • the multiple wavelengths include: the first dominant wavelength (405nm) corresponding to the item determined by the chromogenic substrate method, the second dominant wavelength (575nm) corresponding to the item determined by the immunoturbidimetric method, and coagulation
  • the multiple intensities include at least a first intensity and a second intensity greater than the first intensity.
  • the light of multiple wavelengths and multiple intensities includes: light having a first dominant wavelength and a first intensity, light having a second dominant wavelength and a first intensity, light having a third dominant wavelength and a first intensity Intensity light, light having a fourth wavelength and first intensity, light having a first dominant wavelength and second intensity, light having a second dominant wavelength and second intensity, light having a third dominant wavelength and second intensity , Light with a fourth wavelength and a second intensity.
  • an embodiment provides a sample analysis device, including:
  • Preparation components used to prepare test samples required by the project through samples and reagents
  • Illumination component for irradiating the measurement sample with light of multiple wavelengths and multiple intensities
  • a light-receiving component configured to receive the output light signal of the measurement sample after being irradiated by the light-emitting component, so as to obtain optical information corresponding to the light of multiple wavelengths and multiple intensities;
  • the analysis component is used to select the optical information corresponding to the light of a specific wavelength and intensity from the optical information corresponding to the light of the multiple wavelengths and multiple intensities according to the interference content of the sample to analyze the sample.
  • the item of the measurement sample corresponds to light with matching dominant wavelength and dominant intensity
  • the analysis component selects the main wavelength and main intensity corresponding to the items of the measurement sample from the optical information corresponding to the light of the multiple wavelengths and multiple intensities Analyze the sample with optical information corresponding to the light;
  • the analysis component selects from the optical information corresponding to the multiple wavelengths and multiple intensities of the light, the wavelength is greater than the dominant wavelength and the main wavelength corresponding to the item of the measurement sample.
  • the sample is analyzed by optical information corresponding to light whose intensity is greater than the main intensity corresponding to the item of the measurement sample.
  • the analysis component selects the wavelength greater than the measured optical information from the optical information corresponding to the light of multiple wavelengths and multiple intensities.
  • the optical information corresponding to the main wavelength corresponding to the item of the sample and the intensity equal to the main intensity corresponding to the item of the test sample is analyzed;
  • the analysis component selects from the optical information corresponding to the light of multiple wavelengths and multiple intensities, the wavelength is greater than the dominant wavelength corresponding to the item of the measurement sample, and The optical information corresponding to the light whose intensity is also greater than the main intensity corresponding to the item of the measurement sample is analyzed for the sample.
  • the analysis component when the interference content of the sample is greater than the first threshold, the analysis component also determines whether the item of the measurement sample supports light of non-dominant wavelength for measurement. Among the optical information corresponding to light of multiple wavelengths and multiple intensities, select the optical information analysis corresponding to the light whose wavelength is equal to the main wavelength corresponding to the item of the measurement sample and whose intensity is greater than the main intensity corresponding to the item of the measurement sample The sample.
  • the multiple wavelengths include: the first dominant wavelength (405nm) corresponding to the item determined by the chromogenic substrate method, the second dominant wavelength (575nm) corresponding to the item determined by the immunoturbidimetric method, and coagulation
  • the multiple intensities include at least a first intensity and a second intensity greater than the first intensity.
  • the light of multiple wavelengths and multiple intensities includes: light having a first dominant wavelength and a first intensity, light having a second dominant wavelength and a first intensity, light having a third dominant wavelength and a first intensity Intensity light, light having a fourth wavelength and first intensity, light having a first dominant wavelength and second intensity, light having a second dominant wavelength and second intensity, light having a third dominant wavelength and second intensity , Light with a fourth wavelength and a second intensity.
  • an embodiment provides a computer-readable storage medium including a program that can be executed by a processor to implement the method described in any of the embodiments herein.
  • Figure 1 is a schematic diagram of the absorption spectra of the three interfering substances, hemoglobin, bilirubin and chyle, for light in each band range;
  • Fig. 2 is a schematic diagram of transmission response optical curves of a normal sample and a severe chyle sample according to an embodiment
  • FIG. 3 is a schematic structural diagram of a sample analysis device according to an embodiment
  • FIG. 4 is a schematic structural diagram of a sample analysis device of another embodiment
  • Figure 5 is a schematic diagram of the light provided by the illumination component during the illumination period
  • Figure 6 is another schematic diagram of the light provided by the illumination component during the illumination period
  • FIG. 7 is a schematic diagram of the structure of an illumination component according to an embodiment
  • FIG. 8 is a schematic diagram of the structure of a lighting component of another embodiment
  • FIG. 9 is a schematic diagram of a structure of a lighting component according to another embodiment.
  • FIG. 10 is a schematic diagram of a structure of a lighting component according to another embodiment.
  • FIG. 11 is a schematic structural diagram of a sample analysis device according to another embodiment.
  • FIG. 12 is a schematic flowchart of a sample analysis method according to an embodiment
  • FIG. 13 is a schematic flowchart of a sample analysis method according to another embodiment.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • the chromogenic substrate method usually uses 340nm-420nm violet or ultraviolet light, and the chromogenic substrate method is usually used to determine detection items such as antithrombin-III (AT-III or AT3).
  • the immunoturbidimetric method usually uses yellow-green light of 520nm-590nm, and the immunoturbidimetric method is usually used to determine detection items such as D-dimer (DD) and fibrin/fibrinogen degradation products (FDP).
  • the coagulation method usually uses red light or infrared light at 660nm-800nm.
  • the coagulation method is usually used to determine the coagulation time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB). ) And other test items.
  • HIL interference When there are interfering substances such as hemoglobin, bilirubin and chyle in the sample plasma, since these interfering substances absorb light strongly, they will interfere with the sample detection and lead to the detection result. Create a deviation.
  • hemoglobin, bilirubin, and chyle can be collectively referred to as HIL interference, where H refers to hemoglobin, I refers to bilirubin, and L refers to chyle.
  • Bilirubin and hemoglobin have obvious absorption peaks-bilirubin has a strong absorption at about 450nm Peak, hemoglobin has a strong absorption peak near 420nm, and the two have almost no absorption at wavelengths above 660nm, while chyle has absorbance in the entire visible spectrum, and the greater the wavelength, the smaller the absorbance, but even at 800nm, it is still There is a certain degree of absorbance.
  • these three interferences have strong absorption for small-wavelength light, especially light below 600nm, which greatly reduces the light transmittance of the mixture of sample and detection reagent, which can actually be received.
  • the light received is very small, which affects the accuracy and reliability of the optical method; sometimes the light that can be received is almost zero, which makes it impossible to identify the reaction process between the sample and the detection reagent.
  • One solution to the interference is to provide light in a wavelength band that will not be absorbed by the interference in the sample for detection. For example, provide a larger wavelength like 800nm light to illuminate the mixture of the sample and the detection reagent, as can be clearly seen from the figure , Hemoglobin and bilirubin have almost no absorption of light with wavelengths greater than 800nm, and chyle has relatively small absorption of light with wavelengths greater than 800nm. This scheme can effectively eliminate the influence of bilirubin and hemoglobin on the sample determination, but it will still affect chyle samples, especially retry chyle samples.
  • the above-mentioned scheme of switching large-wavelength light for measurement is not applicable to items such as the detection of the chromogenic substrate method, because from the detection principle, the chromogenic substrate method is due to the reaction of the sample and the detection reagent.
  • the detection reagent replaces the substance in the sample.
  • the replaced substance can only absorb in the range of ultraviolet and violet light. Therefore, generally only the violet light or ultraviolet light of 340nm-420nm mentioned above can be used, and light of other wavelength bands cannot be used.
  • the coagulation method and the immunoturbidimetric method not only use the light in the respective wavelength ranges mentioned above, but in theory, it is also possible to use light in other wavelength ranges for detection.
  • the applicant has researched and improved the above problems.
  • a sample analysis device is disclosed in some embodiments of the present invention.
  • the sample analysis device is an instrument used to analyze and measure samples.
  • a blood coagulation analyzer that is, the blood coagulometer mentioned in this article
  • the test procedure of a blood coagulation analyzer is generally as follows: complete the addition of samples, such as blood or plasma, and the addition of test reagents into a container, such as a reaction cup, to prepare a test sample (or called a mixture, a reaction solution, etc.), and then After the measurement sample is incubated, the reaction cup is placed in a preset position such as a sample detection position.
  • the coagulation analyzer can irradiate the measurement sample in the reaction cup with, for example, multi-wavelength light, and pass the coagulation method, immunoturbidimetric method or hair Color substrate method and other analysis to obtain the coagulation reaction curve of the measurement sample over time, so as to further calculate the coagulation time of the measurement sample or other coagulation-related performance parameters.
  • the sample analysis device in some embodiments includes a preparation component 10, an illumination component 30, a light receiving component 50, and an analysis component 70, which will be described in detail below.
  • the preparation part 10 is used to prepare a measurement sample required for the project from a sample and a reagent.
  • FIG. 4 is an embodiment of the preparation component 10.
  • the preparation component 10 may include a sample carrying component 11, a sample dispensing mechanism 12, a reagent carrying component 13, a reagent dispensing mechanism 14 and a reaction component 15.
  • the sample carrying member 11 is used to carry the sample.
  • the sample carrying component 11 may include a sample distribution module (SDM, Sample Delivery Module) and a front-end track; in other examples, the sample carrying component 11 may also be a sample tray—for example, as shown in Figure 4, the sample tray can It includes a plurality of sample positions where a reaction cup can be placed.
  • the sample tray can be arranged to a corresponding position by rotating its disk structure, such as a position for the sample dispensing mechanism 12 to aspirate the sample.
  • the sample dispensing mechanism 12 is used to aspirate the sample and discharge it into the reaction cup to be sampled.
  • the sample dispensing mechanism 12 may include a sample needle, and the sample needle performs a two-dimensional or three-dimensional movement in space through a two-dimensional or three-dimensional drive mechanism, so that the sample needle can move to aspirate the sample carried by the carrying member 11, and Move to the reaction cup to be added, and discharge the sample into the reaction cup.
  • the reagent carrying member 13 is used to carry reagents.
  • the reagent carrying member 13 may be a reagent disk, which is arranged in a disc-shaped structure and has multiple positions for carrying reagent containers.
  • the reagent carrying member 13 can rotate and drive the reagent container it carries to rotate. It is used to rotate the reagent container to a specific position, for example, a position where the reagent is sucked by the reagent dispensing mechanism 14.
  • the number of reagent carrying parts 13 may be one or more.
  • the reagent dispensing mechanism 14 is used to suck reagents and discharge them into the reaction cup to be added.
  • the reagent dispensing mechanism 14 may include a reagent needle.
  • the reagent needle moves in two or three dimensions through a two-dimensional or three-dimensional drive mechanism, so that the reagent needle can move to absorb the reagent carrying member 13
  • the loaded reagent and move to the reaction cup where the reagent is to be added, and discharge the reagent into the reaction cup.
  • the reaction part 15 is used to carry a container (for example, a reaction cup) containing a measurement sample prepared from a sample and a detection reagent.
  • the reaction part 15 is arranged in a disc-shaped structure, and has a plurality of placement positions for placing, for example, a reaction cup.
  • the reaction part 15 can rotate and drive the reaction cup in the placement position to rotate for use in the reaction plate.
  • the sample detection position can be set on the reaction component 15, that is, some placement positions on the reaction component 15 are sample detection positions; the sample detection position can also be set independently of the reaction component 15, that is, set at a certain position close to the reaction component 15, for example. Location. There can be one or more sample detection positions.
  • the illuminating part 30 is used to irradiate the measurement sample prepared by the preparation part 10 with light of multiple wavelengths and multiple intensities.
  • the above-mentioned light of various wavelengths and various intensities will be described below.
  • the aforementioned multiple wavelengths include: the first dominant wavelength corresponding to the item determined by the chromogenic substrate method, the second dominant wavelength corresponding to the item determined by the immunoturbidimetric method, and the corresponding item determined by the coagulation method.
  • the third dominant wavelength of and the fourth wavelength not less than the first dominant wavelength, the second dominant wavelength, and the third dominant wavelength.
  • the first dominant wavelength ranges from 340 nm to 420 nm
  • the second dominant wavelength ranges from 520 nm to 590 nm
  • the third dominant wavelength ranges from 660 nm to 800 nm.
  • the fourth wavelength may be 800 nm.
  • the aforementioned multiple intensities include at least a first intensity and a second intensity greater than the first intensity.
  • the light with multiple wavelengths and multiple intensities provided by the illuminating component 30 includes: light having a first dominant wavelength and a first intensity, light having a second dominant wavelength and a first intensity, and light having a third dominant wavelength and a first intensity.
  • These lights can be provided to the sample detection position in a time-sharing period during a light period, so as to illuminate the measurement sample.
  • Figure 5 is an example of this, where the first dominant wavelength is 405 nm, the first dominant wavelength is 575 nm, the third dominant wavelength is 660 nm, and the fourth wavelength is 880 nm.
  • the light with multiple wavelengths and multiple intensities provided by the illuminating component 30 includes: light having a first dominant wavelength and a first intensity, light having a second dominant wavelength and a first intensity, and light having a third dominant wavelength.
  • These lights can be provided to the sample detection position in a time-sharing period during a light period, so as to illuminate the measurement sample.
  • Fig. 6 is an example of this, where the first dominant wavelength is 405 nm, the first dominant wavelength is 575 nm, and the third dominant wavelength is 660 nm.
  • a multi-fiber bundle can be introduced to provide light to the multiple sample detection positions.
  • the illumination component 30 may include a light source 31 and a multi-fiber bundle 39, so that the light source 31 can provide light to multiple sample detection positions at the same time through the multi-fiber bundle 39.
  • the one-divided multi-fiber bundle 39 includes a plurality of optical fibers respectively corresponding to a plurality of sample detection positions, and each optical fiber is used to provide the light of the multiple wavelengths and multiple intensities to the corresponding sample detection position.
  • the light source 31 may include a first light source 32, a second light source 33, and a third light source 34.
  • the first light source 32 provides light of a first dominant wavelength
  • the second light source 33 provides light of a second dominant wavelength
  • the third light source 34 provides light of the third dominant wavelength
  • the light source 31 may further include a fourth light source 35 for providing light of the fourth wavelength.
  • some optical components for focusing such as focusing lenses, can be added between the light source 31 and the multi-fiber bundle 39; the multi-fiber bundle 39 and each sample detection position
  • a related collimating lens can also be added to improve the performance of the light directed to the sample detection position.
  • the lighting component 30 further includes a driving circuit 36, which is connected to the first light source 32, the second light source 33, the third light source 34, and the fourth light source 35 for providing a first driving current to drive the first light source.
  • a light source 32, a second light source 33, a third light source 34, and a fourth light source 35 generate light of a first intensity; and are also used to provide a first driving current to drive the first light source 32, the second light source 33, the third light source 34, and the The fourth light source 35 generates light of a second intensity, and the second driving current is greater than the first driving current.
  • the driving circuit 36 provides different driving currents to drive the first light source 32, the second light source 33, the third light source 34, and the fourth light source 35. Therefore, the lighting component 30 can provide the first main Light having a wavelength and a first intensity, light having a second dominant wavelength and a first intensity, light having a third dominant wavelength and a first intensity, light having a fourth wavelength and a first intensity, light having a first dominant wavelength and a first intensity Two-intensity light, light having a second dominant wavelength and second intensity, light having a third dominant wavelength and second intensity, light having a fourth wavelength and second intensity.
  • the light source 31 can also be implemented by a multi-wavelength light source 37 and a rotating filter 38.
  • the multi-wavelength light source 37 provides light of multiple wavelengths, such as light of a first dominant wavelength, light of a second dominant wavelength, light of a third dominant wavelength, and light of a fourth wavelength.
  • the multi-wavelength light source 37 may be realized by a halogen lamp.
  • the rotating filter 38 includes a filter and an attenuator.
  • the light component 30 is used to provide light of different wavelengths and different intensities in time sharing when the rotating filter 38 rotates.
  • Intensity of light light having a second dominant wavelength and first intensity, light having a third dominant wavelength and first intensity, light having a fourth wavelength and first intensity, light having a first dominant wavelength and second intensity , Light having a second dominant wavelength and second intensity, light having a third dominant wavelength and second intensity, light having a fourth wavelength and second intensity.
  • the light can be provided to a plurality of sample detection positions. It is understandable that some optical components, such as lens groups, can be added between the multi-wavelength light source 37 and the rotating filter 38 to improve the illuminating light performance.
  • the photoperiod involved in this article can be 0.1s.
  • the sample analysis device also provides an interference detection position, which will be further mentioned below.
  • the illumination component 30 can also provide illumination to the interference detection position, for example, through a multi-fiber bundle 59, so that the illumination component 30 irradiates the same light to the sample detection position and the interference detection position.
  • FIG. 10 is an example.
  • the purple LED provides 405nm light
  • the green LED provides 575nm light
  • the red LED provides 660nm light
  • the infrared LED provides 800nm light. They are combined by three dichroic mirrors and are coupled to a multi-fiber bundle.
  • a multi-fiber bundle 59 is divided into a plurality of small ends of optical fibers, one of which can be used to illuminate a second container (such as a colorimetric cell or a reaction cup) on the interference detection position to detect interference in the sample.
  • a second container such as a colorimetric cell or a reaction cup
  • the small end of the remaining optical fiber is used to illuminate the container (such as the reaction cup) that is located at the sample detection position and contains the measurement sample.
  • the LED light source in the picture can also be replaced with other types of light sources, such as LD Light source or halogen lamp, etc.
  • the light component 30 can also independently provide light to the sample detection position and the interference detection.
  • the above is some descriptions of the lighting component 30.
  • the light-receiving part 50 cooperates with the light-emitting part 30, and the light-receiving part 50 is used to receive the output light signal after the measurement sample is irradiated by the light-emitting part 30, such as reflected light, refracted light, and transmitted light, so as to obtain the multiple wavelengths and wavelengths.
  • Optical information corresponding to light of multiple intensities In one embodiment, the light receiving member 50 receives the light irradiated by the light emitting member 30 and transmitted through the measurement sample, so as to obtain optical information corresponding to the light of multiple wavelengths and multiple intensities.
  • the light-receiving component 50 may be realized by an optoelectronic component capable of converting optical signals into electrical signals.
  • an optoelectronic component may be a photodiode PD, a photomultiplier tube PMT, an avalanche photodiode APD, a charge coupled device CCD, a complementary metal oxide semiconductor CMOS, an image intensified detector ICCD, or an electron multiplying EMCCD.
  • each sample detection position can be equipped with a photoelectric component.
  • the analysis component 70 is used to select the optical information corresponding to the light of a specific wavelength and intensity from the optical information corresponding to the light of the multiple wavelengths and multiple intensities to analyze the sample according to the interference content of the sample.
  • the following describes how to obtain and determine the interference content of the sample.
  • the interference content of the sample can be judged by the detection information of the sample interference.
  • the sample interference detection information includes at least one of the absorbance or luminous flux of the sample to be tested; the absorbance of the sample to be tested represents the degree of light absorption by the sample to be tested when the sample is illuminated with light;
  • the absorbance of the test sample at the preset wavelength exceeds the preset absorbance threshold. For example, the absorbance of at least one of 405nm, 575nm, 660nm, and 800nm exceeds the corresponding absorbance threshold, which means that the interference of the test sample exceeds the preset absorbance threshold.
  • the luminous flux of the sample to be tested represents the degree to which the light can pass through the sample to be tested when the sample is illuminated with light, and the luminous flux of the sample to be tested can be the sample to be tested.
  • the sample analysis device may further include an interference detection component 80.
  • the interference detection component 80 includes at least one interference detection position and a detector 81 adjacent to the interference detection position.
  • the detector 81 can be realized by a component capable of converting an optical signal into an electrical signal, such as a photodetector, etc., specifically, it can be a photodiode PD, a photomultiplier tube PMT, an avalanche photodiode APD, a charge coupled device CCD, a complementary Metal oxide semiconductor CMOS, image intensified detector ICCD or electron multiplying EMCCD, etc.
  • the light component 30 is used to illuminate a second container (such as a reaction cup or a colorimetric cell, etc.) that is located at the interference detection position and at least contains a sample—for example, the light component 30 is irradiated with light of a first intensity; the detector 81 is used to receive The output light signal of the second container irradiated by the light component 30 to obtain interference detection information of the sample to be tested; the interference detection information is used to indicate the interference content of the sample to be tested.
  • a second container such as a reaction cup or a colorimetric cell, etc.
  • the introduction of the interference detection component 80 can detect the interferences of the sample to be tested, and obtain the detection information of the sample interferences.
  • the interference detection position may not be provided separately, but the interference detection of the sample to be tested is realized at the same time when the sample is measured at the sample detection position, which will be described in detail below.
  • the illuminating component 30 irradiates the container containing the measurement sample at the sample detection position by light of the first intensity
  • the light receiving component 50 is used to receive the output light signal of the container after being irradiated by the illuminating component 30 to obtain the The interference detection information of the sample to be tested
  • the interference detection information is used to determine the interference content of the sample to be tested.
  • the average luminous flux during the period of time after the container containing the measurement sample is placed in the sample detection position and before the start of the test can be used to obtain the interference detection information.
  • the reagent is triggered to start timing.
  • the mixture can be mixed and moved to the sample detection position within 3 seconds, and then the detection will start at the 10th second, between the 3rd and the 10th.
  • the light component 30 irradiates the container containing the measurement sample at the sample detection position by the first intensity of light, and the light receiving component 50 is used to receive the output light signal of the container after being irradiated by the light component 30—for example, during this period of time
  • the average luminous flux is the lowest light transmittance to obtain the interference detection information of the sample.
  • sample interference detection is an example of sample interference detection. It is understandable that those skilled in the art can also use other methods to detect sample interferences, for example, by taking a picture of the sample to be tested, obtaining an image of the sample to be tested, and then using Methods such as machine learning are used to analyze the image to obtain the interference detection information of the sample to be tested.
  • the following describes how the analysis component 70 selects an optical information analysis sample corresponding to light of a specific wavelength and intensity.
  • the items of the measurement sample correspond to light with matching dominant wavelength and dominant intensity.
  • the main wavelength matched by the item determined by the chromogenic substrate method is the first main wavelength mentioned above
  • the main wavelength matched by the item determined by the immunoturbidimetric method is the second main wavelength mentioned above and the item determined by the coagulation method.
  • the matched dominant wavelength is the third dominant wavelength mentioned above, etc., and their dominant intensity is the first intensity.
  • the analysis component 70 selects the optical information corresponding to the light of the multiple wavelengths and multiple intensities, and selects the main wavelength and main intensity corresponding to the items of the measurement sample.
  • the optical information corresponding to the light analyzes the sample.
  • the analysis component 70 selects from the optical information corresponding to the multiple wavelengths and multiple intensities of light, the wavelength is greater than the dominant wavelength and/ Or the optical information corresponding to the light whose intensity is greater than the main intensity corresponding to the item of the measurement sample is analyzed for the sample. For example, consider the item determined by the immunoturbidimetric method as an example.
  • the analysis component 70 can select the optical information corresponding to the light of the fourth wavelength and the first intensity to analyze the sample. It is also possible to select the optical information corresponding to the light of the second dominant wavelength and the second intensity to analyze the sample, or even to select the optical information corresponding to the light of the fourth wavelength and the second intensity to analyze the sample.
  • the interference content of the sample when the interference content of the sample is greater than the first threshold, it can be further subdivided into the following: the interference content of the sample is greater than the first threshold and less than the second threshold, and the interference content of the sample is greater than the second threshold.
  • the two cases will be described in detail below.
  • the analysis component 70 selects an item having a wavelength greater than that of the measurement sample from the optical information corresponding to the multiple wavelengths and multiple intensities of light
  • the optical information corresponding to the light with the corresponding dominant wavelength and intensity equal to the dominant intensity corresponding to the item of the measurement sample is analyzed for the sample. Let us still take the item determined by the immunoturbidimetric method as an example.
  • the analysis component 70 can select the optical information corresponding to the light of the fourth wavelength and the first intensity. Analyze the sample.
  • the analysis component 70 selects from the optical information corresponding to the multiple wavelengths and multiple intensities of the light, the wavelength is greater than the dominant wavelength corresponding to the item of the measurement sample.
  • the optical information corresponding to the light whose intensity is greater than the main intensity corresponding to the item of the measurement sample is analyzed to analyze the sample.
  • the analysis component 70 can select the optical information corresponding to the light of the fourth wavelength and the second intensity to analyze the sample.
  • the interference content of the sample When the interference content of the sample is greater than the first threshold and less than the second threshold, select the optical information analysis sample corresponding to the original light intensity and large wavelength light. When the interference content of the sample is greater than the second threshold, select large light intensity and large light intensity.
  • the optical information corresponding to the wavelength of the light to analyze the sample is of practical significance, because if the interference content of the sample is greater than the first threshold and less than the second threshold, the optical information corresponding to the light with large intensity and large wavelength is selected.
  • the light signal received by the light receiving part 50 may be oversaturated after the measurement sample is irradiated with light of large light intensity and large wavelength, on the contrary This will adversely affect the analysis sample; similarly, if the sample's interference content is greater than the second threshold, the optical information analysis sample corresponding to the original light intensity and the large wavelength of light is selected, because the sample's interference concentration is very high at this time, Then, after the original light intensity and large-wavelength light irradiates the measurement sample, it is possible that the light signal intensity received at the light receiving part 50 is very small, which has an adverse effect on the analysis sample.
  • the analysis component 70 when the interference content of the sample is greater than the first threshold, the analysis component 70 also determines whether the measurement sample item supports non-dominant wavelength light for measurement, and if not, the analysis component 70 From the optical information corresponding to the light of multiple wavelengths and multiple intensities, select the light whose wavelength is equal to the dominant wavelength corresponding to the item of the measurement sample and whose intensity is greater than the dominant intensity corresponding to the item of the measurement sample Analyze the sample with optical information.
  • the analysis unit 70 determines that the item does not support the measurement of light of non-dominant wavelength, so the analysis unit 70 selects the second wavelength
  • the sample is analyzed with optical information corresponding to the light of the second intensity.
  • sample analysis device of some embodiments of the present invention.
  • a sample analysis method is also disclosed in some embodiments of the present invention.
  • the sample analysis method in some embodiments includes the following steps:
  • Step 100 Prepare the measurement samples required by the project from the samples and reagents.
  • Step 200 irradiate the measurement sample with light of multiple wavelengths and multiple intensities to obtain optical information corresponding to the light of multiple wavelengths and multiple intensities.
  • the multiple wavelengths involved in step 200 include: the first dominant wavelength corresponding to the item determined by the chromogenic substrate method, the second dominant wavelength corresponding to the item determined by the immunoturbidimetric method, and the second dominant wavelength corresponding to the item determined by the coagulation method.
  • the third dominant wavelength corresponding to the item and the fourth wavelength not less than the first dominant wavelength, the second dominant wavelength, and the third dominant wavelength.
  • the first dominant wavelength ranges from 340 nm to 420 nm
  • the second dominant wavelength ranges from 520 nm to 590 nm
  • the third dominant wavelength ranges from 660 nm to 800 nm.
  • the fourth wavelength may be 800 nm.
  • the multiple intensities involved in step 200 include at least a first intensity and a second intensity greater than the first intensity.
  • the light of multiple wavelengths and multiple intensities provided in step 200 includes: light having a first dominant wavelength and a first intensity, light having a second dominant wavelength and a first intensity, and light having a third dominant wavelength.
  • Two-intensity light light with a fourth wavelength and a second intensity.
  • the light of multiple wavelengths and multiple intensities provided in step 200 includes: light having a first dominant wavelength and a first intensity, light having a second dominant wavelength and a first intensity, and light having a third dominant wavelength. And light of a first intensity, light having a first dominant wavelength and a second intensity, light having a second dominant wavelength and a second intensity, light having a third dominant wavelength and a second intensity. These lights can be provided to the sample detection position in a time-sharing period during a light period, so as to illuminate the measurement sample.
  • Step 300 According to the interference content of the sample, from the optical information corresponding to the light of multiple wavelengths and multiple intensities, select the optical information corresponding to the light of a specific wavelength and intensity to analyze the sample. How to detect the interference content of the sample has been explained in detail above, so I will not repeat it here. The following describes how to select the optical information analysis sample corresponding to light of a specific wavelength and intensity in step 300.
  • the items of the measurement sample correspond to light with matching dominant wavelength and dominant intensity.
  • the main wavelength matched by the item determined by the chromogenic substrate method is the first main wavelength mentioned above
  • the main wavelength matched by the item determined by the immunoturbidimetric method is the second main wavelength mentioned above and the item determined by the coagulation method.
  • the matched dominant wavelength is the third dominant wavelength mentioned above, etc., and their dominant intensity is the first intensity.
  • step 300 selects the main wavelength and main intensity light corresponding to the item of the measurement sample from the optical information corresponding to the multiple wavelengths and multiple intensities.
  • the corresponding optical information analyzes the sample.
  • step 300 selects from the optical information corresponding to the multiple wavelengths and multiple intensities of the light, the dominant wavelength and/or the dominant wavelength corresponding to the item whose wavelength is greater than the measurement sample.
  • the optical information corresponding to the light whose intensity is greater than the main intensity corresponding to the item of the measurement sample is analyzed for the sample. For example, consider the item determined by the immunoturbidimetric method as an example.
  • the analysis component 70 can select the optical information corresponding to the light of the fourth wavelength and the first intensity to analyze the sample. It is also possible to select the optical information corresponding to the light of the second dominant wavelength and the second intensity to analyze the sample, or even to select the optical information corresponding to the light of the fourth wavelength and the second intensity to analyze the sample.
  • the interference content of the sample when the interference content of the sample is greater than the first threshold, it can be further subdivided into the following: the interference content of the sample is greater than the first threshold and less than the second threshold, and the interference content of the sample is greater than the second threshold.
  • the two cases will be described in detail below.
  • step 300 selects from the optical information corresponding to the multiple wavelengths and multiple intensities of light that corresponds to the item whose wavelength is greater than the measurement sample
  • the sample is analyzed by optical information corresponding to light having a dominant wavelength and an intensity equal to the dominant intensity corresponding to the item of the measurement sample. Let us still take the item determined by the immunoturbidimetric method as an example.
  • step 300 can select the optical information analysis corresponding to the light of the fourth wavelength and the first intensity. The sample.
  • step 300 selects from the optical information corresponding to the multiple wavelengths and multiple intensities of the light, the wavelength is greater than the dominant wavelength and the intensity corresponding to the item of the measurement sample.
  • the optical information corresponding to the light whose main intensity is greater than the main intensity corresponding to the item of the measurement sample is analyzed for the sample. Let us still take the immunoturbidimetric method as an example.
  • step 300 can select the optical information corresponding to the light of the fourth wavelength and the second intensity to analyze the sample.
  • the interference content of the sample When the interference content of the sample is greater than the first threshold and less than the second threshold, select the optical information analysis sample corresponding to the original light intensity and large wavelength light. When the interference content of the sample is greater than the second threshold, select large light intensity and large light intensity.
  • the optical information corresponding to the wavelength of the light to analyze the sample is of practical significance, because if the interference content of the sample is greater than the first threshold and less than the second threshold, the optical information corresponding to the light with large intensity and large wavelength is selected.
  • the light signal received by the light receiving part 50 may be oversaturated after the measurement sample is irradiated with light of large light intensity and large wavelength, on the contrary This will adversely affect the analysis sample; similarly, if the sample's interference content is greater than the second threshold, the optical information analysis sample corresponding to the original light intensity and the large wavelength of light is selected, because the sample's interference concentration is very high at this time, Then, after the original light intensity and large-wavelength light irradiates the measurement sample, it is possible that the light signal intensity received at the light receiving part 50 is very small, which has an adverse effect on the analysis sample.
  • step 300 when the interference content of the sample is greater than the first threshold, step 300 also determines whether the item of the measurement sample supports light of non-dominant wavelength for measurement. If not, step 300 starts from In the optical information corresponding to light of multiple wavelengths and multiple intensities, select the optical information corresponding to light whose wavelength is equal to the dominant wavelength corresponding to the item of the measurement sample and whose intensity is greater than the dominant intensity corresponding to the item of the measurement sample Information analysis of the sample.
  • step 300 determines that the item does not support the measurement of light with non-dominant wavelengths. Therefore, step 300 selects the second wavelength and the first wavelength. The optical information corresponding to the two-intensity light is analyzed for the sample.
  • FIG. 13 in a specific embodiment of the sample analysis method, it may include the following steps:
  • Step 100 Prepare the measurement samples required by the project from the samples and reagents.
  • Step 200 irradiate the measurement sample with light of multiple wavelengths and multiple intensities to obtain optical information corresponding to the light of multiple wavelengths and multiple intensities.
  • Step 310 Determine whether the interference content of the sample is less than a first threshold.
  • Step 312 When the interference content of the sample is less than the first threshold, select the main wavelength and main intensity corresponding to the items of the test sample from the optical information corresponding to the multiple wavelengths and multiple intensities.
  • the optical information corresponding to the light analyzes the sample.
  • Step 314 When the interference content of the sample is greater than the first threshold, continue to determine whether the item of the measurement sample supports light of non-dominant wavelength for measurement. When the measurement sample item does not support non-dominant wavelength light for measurement, then step 316 is performed. On the contrary, when the measurement sample item supports non-dominant wavelength light for measurement, step 318 is performed.
  • Step 316 When the item of the measurement sample does not support light of non-dominant wavelength for measurement, from the optical information corresponding to the light of multiple wavelengths and multiple intensities, select the item whose wavelength is equal to that of the measurement sample.
  • the sample is analyzed by optical information corresponding to light having a dominant wavelength and an intensity greater than the dominant intensity corresponding to the item of the measurement sample.
  • Step 318 When the measurement sample item supports non-dominant wavelength light for measurement, it is further judged whether the interference content of the sample is greater than the second threshold.
  • Step 320 When the interference content of the sample is greater than the second threshold value, select the wavelength greater than the dominant wavelength corresponding to the item of the test sample from the optical information corresponding to the multiple wavelengths and multiple intensities of light The optical information corresponding to the light whose intensity is equal to the main intensity corresponding to the item of the measurement sample is analyzed for the sample.
  • Step 322 When the interference content of the sample is greater than the second threshold, from the optical information corresponding to the light of multiple wavelengths and multiple intensities, select a wavelength greater than the dominant wavelength and intensity corresponding to the item of the measurement sample.
  • the optical information corresponding to the light whose main intensity is greater than the main intensity corresponding to the item of the measurement sample is analyzed for the sample.
  • any tangible, non-transitory computer-readable storage medium can be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD to ROM, DVD, Blu Ray disks, etc.), flash memory and/or the like .
  • These computer program instructions can be loaded on a general-purpose computer, a special-purpose computer, or other programmable data processing equipment to form a machine, so that these instructions executed on the computer or other programmable data processing device can generate a device that realizes the specified function.
  • These computer program instructions can also be stored in a computer-readable memory, which can instruct a computer or other programmable data processing equipment to operate in a specific manner, so that the instructions stored in the computer-readable memory can form a piece of Manufactured products, including realizing devices that realize designated functions.
  • Computer program instructions can also be loaded on a computer or other programmable data processing equipment, thereby executing a series of operation steps on the computer or other programmable equipment to produce a computer-implemented process, so that the execution of the computer or other programmable equipment Instructions can provide steps for implementing specified functions.
  • Coupled refers to physical connection, electrical connection, magnetic connection, optical connection, communication connection, functional connection and/or any other connection.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种样本分析方法和装置,通过样本和试剂制备项目所需的测定试样,用多种波长和多种强度的光照射所述测定试样,以获取与所述多种波长和多种强度的光相对应的光学信息,根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本。

Description

一种样本分析方法和装置 技术领域
本发明涉及一种样本分析方法和装置。
背景技术
样本分析装置是用于分析样本的生化特性的一类装置,它被广泛地应用于临床医疗领域,以帮助用于医护人员对病人的病情进行诊断。以血凝仪为例,血凝仪能够测定血液凝固时间和所含相关物质的浓度或活性;血凝仪可以采用光学法检测凝血项目,具体地,血凝仪向反应过程中反应杯溶液进行光照射并对散射或者透射光进行分析得到溶液的吸光度等光学信息,以此得到凝固时间或者待测物浓度等。
光学法是通过反应溶液对光的散射、反射或透射的光学信息来检测凝血项目,因而当样本有干扰物质使得反应溶液对光的散射、反射或透射的性质发生变化,这会对测量造成影响,使得检测结果不准确,严重情况下,甚至根本得不到检测结果。
发明概述
技术问题
本发明主要提供一种样本分析方法和装置。
问题的解决方案
技术解决方案
根据第一方面,一种实施例中提供一种样本分析方法,包括:
通过样本和试剂制备项目所需的测定试样;
用多种波长和多种强度的光照射所述测定试样,以获取与所述多种波长和多种强度的光相对应的光学信息;
根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本。
一实施例中,所述根据样本的干扰物含量,从所述多种波长和多种强度的光相 对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本,包括:
测定试样的项目对应有相匹配的主波长和主强度的光;
当样本的干扰物含量小于第一阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本;
当样本的干扰物含量大于第一阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长和/或强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
一实施例中,当样本的干扰物含量大于第一阈值且小于第二阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本;
当样本的干扰物含量大于第二阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
一实施例中,当样本的干扰物含量大于第一阈值时,还判断测定试样的项目是否支持非主波长的光进行测定,若不支持,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
一实施例中,所述多种波长包括:发色底物法测定的项目所对应的第一主波长(405nm)、免疫比浊法测定的项目所对应的第二主波长(575nm)、凝固法测定的项目所对应的第三主波长(660nm)和大于所述第一主波长、第二主波长和第三主波长的第四波长(800nm)。
一实施例中,所述多种强度至少包括第一强度和大于所述第一强度的第二强度。
一实施例中,所述多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具 有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。
根据第二方面,一种实施例中提供一种样本分析装置,包括:
制备部件,用于通过样本和试剂制备项目所需的测定试样;
光照部件,用于用多种波长和多种强度的光照射所述测定试样;
受光部件,用于接收所述测定试样被所述光照部件照射后的输出光信号,以获取与所述多种波长和多种强度的光相对应的光学信息;
分析部件,用于根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本。
一实施例中,测定试样的项目对应有相匹配的主波长和主强度的光;
当样本的干扰物含量小于第一阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本;
当样本的干扰物含量大于第一阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长和/或强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
一实施例中,当样本的干扰物含量大于第一阈值且小于第二阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本;
当样本的干扰物含量大于第二阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
一实施例中,当样本的干扰物含量大于第一阈值时,所述分析部件还判断测定 试样的项目是否支持非主波长的光进行测定,若不支持,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
一实施例中,所述多种波长包括:发色底物法测定的项目所对应的第一主波长(405nm)、免疫比浊法测定的项目所对应的第二主波长(575nm)、凝固法测定的项目所对应的第三主波长(660nm)和不小于所述第一主波长、第二主波长和第三主波长的第四波长(800nm)。
一实施例中,所述多种强度至少包括第一强度和大于所述第一强度的第二强度。
一实施例中,所述多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。
根据第三方面,一种实施例提供一种计算机可读存储介质,包括程序,所述程序能够被处理器执行以实现本文任一实施例所述的方法。
发明的有益效果
对附图的简要说明
附图说明
图1为为血红蛋白、胆红素和乳糜这三种干扰物对各波段范围的光的吸收光谱示意图;
图2为一种实施例的正常样本和重度乳糜样本的透射反应光学曲线示意图;
图3为一种实施例的样本分析装置的结构示意图;
图4为另一种实施例的样本分析装置的结构示意图;
图5为光照部件在光照周期内提供的光的一种示意图;
图6为光照部件在光照周期内提供的光的另一种示意图;
图7为一种实施例的光照部件的结构示意图;
图8为另一种实施例的光照部件的结构示意图;
图9为又一种实施例的光照部件的结构示意图;
图10为还一种实施例的光照部件的结构示意图;
图11为又一种实施例的样本分析装置的结构示意图;
图12为一种实施例的样本分析方法的流程示意图;
图13为另一种实施例的样本分析方法的流程示意图。
发明实施例
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
凝血的光学法测定中,一般又可以具体分为三种方法:凝固法、免疫比浊法和发色底物法。发色底物法通常采用340nm-420nm的紫光或紫外光,发色底物法通常用于测定诸如抗凝血酶-III(AT-III或者AT3)等检测项目。免疫比浊法通常采用520nm-590nm的黄绿光,免疫比浊法通常用于测定诸如D-二聚体(DD)、纤 维蛋白/纤维蛋白原降解产物(FDP)等检测项目。凝固法通常采用660nm-800nm的红光或红外光,凝固法通常用于测定诸如凝血梅原时间(PT)、活化部分凝血活酶时间(APTT)、凝血酶时间(TT)和纤维蛋白原(FIB)等检测项目。
不论是凝固法、免疫比浊法还是发色底物法,在凝血的光学法测定中,当样本中有干扰物时,会对检测造成干扰。一般正常的血浆样本呈淡黄色,几乎是透明的,但有些患者由于患有疾病等原因,出现黄疸、溶血或脂血等症状,导致其血浆呈棕黄色、微红色或乳白色。黄疸症状说明样本中有胆红素这种干扰物,溶血症状说明样本中有血红蛋白这种干扰物,脂血症状说明样本中有乳糜这种干扰物。三种干扰物的吸收光谱不同,当样本血浆中有诸如血红蛋白、胆红素和乳糜等干扰物时,由于这些干扰物对光有较强烈的吸收,因此会对样本检测造成干扰,导致检测结果产生偏差。一般可以将血红蛋白、胆红素和乳糜统称为HIL干扰,其中H指血红蛋白,I指胆红素,L指乳糜。胆红素、血红蛋白、乳糜,三种干扰物质呈现不同的颜色,其吸收光谱如图1所示:胆红素和血红蛋白有明显的吸收峰——胆红素在450nm左右处有较强的吸收峰,血红蛋白在420nm附近有较强的吸收峰,二者在660nm以上的波长几乎没有吸收,而乳糜则在全部可见光谱都有吸光度,且波长越大吸光度越小,但即使在800nm处,依然有一定的吸光度。因此从图中可以看到,这三种干扰物对于小波段的光——尤其是600nm以下的光具有较强的吸收,这使得样本与检测试剂的混合物的透光率大大降低,实际可以接收到的光很小,影响到光学法测定的准确性和可靠性;有时候可以接收到的光甚至几乎为零,导致无法识别样本与检测试剂的反应过程。
解决干扰物的一个方案是,提供不会被样本中干扰物吸取的波段的光来进行检测,例如提供更大波长像800nm的光来照射样本与检测试剂的混合物,从图中可以明显看出,血红蛋白和胆红素对波长大于800nm的光几乎没有吸收,而乳糜对于波长大于800nm的光的吸收也相对较小。这种方案可以有效排除胆红素和血红蛋白对样本测定的影响,但是对于乳糜样本,尤其是重试乳糜样本,还是会有影响。因为虽然乳糜对于波长大于800nm的光的吸收相对较小,但是相对来讲,对于检测结果要求比较精确的场合,乳糜对光的这些吸收仍然是不可忽略的;另外,当样本中乳糜的浓度比较高时,即使是检测结果准确度要求一般的场合 (例如体检测试等),乳糜对光的这些吸收仍然是不可忽略的,乳糜仍会严重影响到检测结果的准确性;正常样本和重度乳糜样本的透射反应光学曲线如图2所示,图2中横坐标是时间,单位为秒,纵坐标为透射光电探测器接收到的光通量。从图2可以看到,对于重度乳糜的样本,由于其透过率过低,导致反应从始至终其光通量几乎一直为零,基本没有光透过——即待测物吸光度过大,超过了检测光学传感器的最大吸光度测试范围。
另外,上述切换大波长的光来测定的方案,对于诸如采用发色底物法来检测的项目是不适用的,因为从检测原理上看,发色底物法是由于样本和检测试剂反应后,检测试剂将样本中物质置换出来,该置换出来的物质只有在紫外和紫光范围有吸收,所以一般只能采用上述提及的340nm-420nm的紫光或紫外光,不能采用其他波段的光,而凝固法和免疫比浊法波除了采用上述提及的各自的波段范围的光外,理论上还可以采用其他波段范围的光来用于检测。
申请人对上述问题进行了研究和改进,申请人提出了增加光强这一维度,来解决干扰物对光学法检测的影响;根据样本中干扰物含量的不同,选择切换大波长和/或增加光强,来解决干扰物对样本检测的影响。下面具体说明。
本发明一些实施例中公开了一种样本分析装置。样本分析装置是用于分析和测定样本的仪器。不妨以凝血分析仪(也即本文中提及的血凝仪)为例,对样本分析装置的测试流程进行一个举例说明。凝血分析仪的测试流程一般如下:向容器例如反应杯中完成样本例如血液或血浆的加样、检测试剂的加样,以制备成测定试样(或者称为混合物、反应液等),再对测定试样进行孵育后,将反应杯放置于预设位置例如样本检测位,凝血分析仪能够向反应杯中的测定试样照射例如多波长的光,并通过凝固法、免疫比浊法或发色底物法等解析,来得到测定试样随着时间变化的凝固反应曲线,从而进一步计算出测定试样的凝固时间或其他凝血相关性能参数。
请参照图3,一些实施例中的样本分析装置包括制备部件10、光照部件30、受光部件50和分析部件70,下面具体说明。
制备部件10用于通过样本和试剂制备项目所需的测定试样。
图4为制备部件10的一个实施例,制备部件10可以包括样本承载部件11、样本 分注机构12、试剂承载部件13、试剂分注机构14和反应部件15。样本承载部件11用于承载样本。一些例子中样本承载部件11可以包括样本分配模块(SDM,Sample Delivery Module)及前端轨道;另一些例子中,样本承载部件11也可以是样本盘——例如图4就是这样的例子,样本盘可以包括多个可以放置诸如反应杯的样本位,样本盘通过转动其盘式结构,可以将样本调度到相应位置,例如供样本分注机构12吸取样本的位置。样本分注机构12用于吸取样本并排放到待加样的反应杯中。例如样本分注机构12可以包括样本针,样本针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而样本针可以移动去吸取样本承载部件11所承载的样本,以及移动到待加样的反应杯,并向反应杯排放样本。试剂承载部件13用于承载试剂。在一实施例中,试剂承载部件13可以为试剂盘,试剂盘呈圆盘状结构设置,具有多个用于承载试剂容器的位置,试剂承载部件13能够转动并带动其承载的试剂容器转动,用于将试剂容器转动到特定的位置,例如被试剂分注机构14吸取试剂的位置。试剂承载部件13的数量可以为一个或多个。试剂分注机构14用于吸取试剂并排放到待加试剂的反应杯中。在一实施例中,试剂分注机构14可以包括试剂针,试剂针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而试剂针可以移动去吸取试剂承载部件13所承载的试剂,以及移动到待加试剂的反应杯,并向反应杯排放试剂。反应部件15用于承载装有由样本和检测试剂制备而成的测定试样的容器(例如反应杯)。一个例子中,反应部件15呈圆盘状结构设置,具有多个用于放置例如反应杯的放置位,反应部件15能够转动并带动所述放置位中的反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的混合液。孵育完成的测定试样会被调度到样本检测位上进行光学检测。样本检测位可以被设置于反应部件15上,即反应部件15上的一些放置位为样本检测位;样本检测位也可以独立于反应部件15而设置,即设置在例如靠近反应部件15的某一位置。样本检测位可以有一个或多个。
光照部件30用于用多种波长和多种强度的光照射由制备部件10所制备的测定试样。下面对上述的多种波长和多种强度的光进行说明。
一些实施例中,上述的多种波长包括:发色底物法测定的项目所对应的第一主 波长、免疫比浊法测定的项目所对应的第二主波长、凝固法测定的项目所对应的第三主波长和不小于所述第一主波长、第二主波长和第三主波长的第四波长。在一些较优的实施例中,第一主波长的范围是340nm-420nm、第二主波长的范围是520nm-590nm、第三主波长的范围是660nm-800nm。在一些实施例中,第四波长可以取值为800nm。
一些实施例中,上述的多种强度至少包括第一强度和大于所述第一强度的第二强度。
因此,一些实施例中,光照部件30提供的多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。这些光可以在一个光照周期内被分时提供给样本检测位,从而用来照射测定试样。如图5就是这样的一个例子,其中第一主波长取值为405nm,第一主波长取值为575nm,第三主波长取值为660nm,第四波长取值为880nm。
另一些实施例中,光照部件30提供的多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光。这些光可以在一个光照周期内被分时提供给样本检测位,从而用来照射测定试样。如图6就是这样的一个例子,其中第一主波长取值为405nm,第一主波长取值为575nm,第三主波长取值为660nm。
对于设有多个样本检测位的样本分析装置而言,为了简化结构,可以引入一分多光纤束来向多个样本检测位提供光照。一些实施例中,请参照图7,光照部件30可以包括光源31和一分多光纤束39,这样光源31通过一分多光纤束39就可以同时给多个样本检测位提供光,具体地,一分多光纤束39包括多个分别与多个样本检测位对应的光纤,每根光纤用于向对应的样本检测位提供所述多种波长和多种强度的光。
请参照图8,一些实施例中光源31可以包括第一光源32、第二光源33及第三光源34,第一光源32提供第一主波长的光,第二光源33提供第二主波长的光,第三光源34提供第三主波长的光,光源31还可以包括第四光源35,用于提供第四波长的光。可以理解地,为了改善光的性能,可以在光源31和一分多光纤束39之间还增加用于聚焦的一些光学组件,例如聚焦透镜等;在一分多光纤束39与各样本检测位之间也可以增加相关的准直透镜来改善射向样本检测位的光的性能。一些实施例中,光照部件30还包括驱动电路36,驱动电路36与所述第一光源32、第二光源33、第三光源34及第四光源35连接,用于提供第一驱动电流驱动第一光源32、第二光源33、第三光源34和第四光源35产生第一强度的光;以及还用于提供第一驱动电流驱动第一光源32、第二光源33、第三光源34和第四光源35产生第二强度的光,第二驱动电流大于第一驱动电流。这样,通过驱动电路36提供不同驱动电流来驱动第一光源32、第二光源33、第三光源34及第四光源35,因此光照部件30就可以在一个光照周期内分时提供具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。
请参照图9,另一些实施例中,光源31也可以通过多波长光源37和旋转滤光片38来实现。多波长光源37提供多个波长的光,例如第一主波长的光、第二主波长的光、第三主波长的光和第四波长的光。一些例子中,多波长光源37可以采用卤素灯来实现。旋转滤光片38包括滤光片和衰减片,光照部件30用于在旋转滤光片38转动时,分时提供不同波长及不同强度的光,例如分时提供具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。接着,再通过一分多光纤束59,可以将光提供给多个样本检测位。可以理解地,多波长光源37和旋转滤光片38之间还可以增加一些改善照射光性能的光部组件,例如透镜组等。
本文中所涉及的光照周期可以为0.1s。
一些例子中,样本分析装置还提供干扰物检测位,这在下文还会进一步提及。光照部件30也可以向干扰物检测位提供光照,例如通过一分多光纤束59,使得光照部件30向样本检测位和干扰物检测位照射的光是一样的,图10就是一个例子。图中紫光LED提供405nm的光、绿光LED提供575nm的光、红光LED提供660nm的光、红外LED提供800nm的光,它们通过三个二色镜合束,共同耦合至一分多光纤束59的光纤中,一分多光纤束59分成多个光纤小端,其中一个可以用于照射干扰检测位上的第二容器(例如比色池或反应杯),用来检测样本中干扰物,例如干扰物的种类和含量,其余的光纤小端用来照射位于样本检测位且装有测定试样的容器(例如反应杯),当然图中LED光源也可以更换为其他类型的光源,例如LD光源或卤素灯等。一些例子中,光照部件30也可以独立地向样本检测位和干扰物检测提供光照。
以上是对光照部件30的一些说明。受光部件50与光照部件30配合,受光部件50用于接收测定试样被光照部件30照射后的输出光信号——例如反射光、折射光和透射光等,以获取与所述多种波长和多种强度的光相对应的光学信息。在一个实施例中,受光部件50是接收光照部件30照射并透过所述测定试样后的光,从而获取与所述多种波长和多种强度的光相对应的光学信息。
一些实施例中,受光部件50可以由能够将光信号转换为电信号的光电部件来实现。具体地,这样的光电部件可以是光电二极管PD、光电倍增管PMT、雪崩光电二极管APD、电荷耦合器件CCD、互补金属氧化物半导体CMOS、像增强型探测器ICCD或电子倍增型EMCCD。对于设有多个样本检测位的样本分析装置而言,可以为每个样本检测位配备一个光电部件。
分析部件70用于根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本。这里涉及到两个环节,一是如何获取样本的干扰物含量,二是如何选择特定波长和强度的光所对应的光学信息分析所述样本,下面分别说明。
下面对如何获取并判断样本的干扰物含量进行说明。
本文中可以通过样本干扰物检测信息来判断样本的干扰含量。一些实施例中, 样本干扰物检测信息包括待测样本的吸光度或光通量至少其中之一;待测样本的吸光度,代表了用光照射待测样本时,待测样本对光的吸收程度;如果待测样本对预设波长的吸光度超过预设的吸光度阈值,例如对405nm、575nm、660nm、800nm至少其中之一的吸收度超过相应的吸光度阈值,则表示该待测样本的干扰物超过所述预设阈值,需要通过提高光强或其它方式进行抗干扰检测;待测样本的光通量代表了用光照射待测样本时,光能够通过待测样本的程度,待测样本的光通量可以是对待测样本进行正式凝血项目的检测之前检测到的初始光通量;如果待测样本的初始光通量低于预设的光通量阈值,则表示该待测样本的干扰物超过所述预设阈值,需要通过提高光强的方式进行抗干扰检测。
下面通过一些具体例子来说明。请参照图11,一些实施例中,样本分析装置还可以包括干扰物检测部件80。一些实施例中,干扰物检测部件80包括至少一个干扰物检测位及与干扰物检测位相邻的检测器81。检测器81可以是由能够将光信号转换为电信号的部件来实现,例如光电探测器等,具体地,可以是光电二极管PD、光电倍增管PMT、雪崩光电二极管APD、电荷耦合器件CCD、互补金属氧化物半导体CMOS、像增强型探测器ICCD或电子倍增型EMCCD等。光照部件30用于照射位于干扰物检测位且至少装有样本的第二容器(例如反应杯或比色池等)——例如光照部件30通过第一强度的光照射;检测器81用于接收上述第二容器被光照部件30照射后的输出光信号,以得到待测样本的干扰物检测信息;该干扰物检测信息用于指示待测样本的干扰物含量。
引入干扰检测部件80,可以对待测样本进行干扰物的检测,获得样本干扰物检测信息。在另一些实施例中,还可以不另设干扰物检测位,而是在样本检测位测定样本的同时实现对待测样本的干扰物检测,下面具体说明。
一些实施例中,光照部件30通过第一强度的光照射在样本检测位装有测定试样的容器,受光部件50用于接收该容器被光照部件30照射后的输出光信号,以得到所述待测样本的干扰物检测信息;该干扰物检测信息用于判断所述待测样本的干扰物的含量。具体地,可以利用装有测定试样的容器被放置到样本检测位后且开始测试前的这段时间的平均光通量来获取干扰物检测信息。一个例子中,在样本被加入最后一步触发试剂开始计时,一般3s内可以完成将对混合物的混 匀以及移动到样本检测位,然后在第10s开始进行检测,在第3s到第10s这之间的7s,光照部件30通过第一强度的光照射在样本检测位装有测定试样的容器,受光部件50用于接收该容器被光照部件30照射后的输出光信号——例如这段时间的平均光通量最最低透光量,以得到样本的干扰物检测信息。
以上是对样本干扰物检测的一些实施例,可以理解地,本领域技术人员还可以采用其他方式来对样本干扰物进行检测,例如通过对待测样本进行拍照,获取待测样本的图像,然后通过诸如机器学习等方式对图像进行分析,得到待测样本的干扰物检测信息。
下面对分析部件70如何选择特定波长和强度的光所对应的光学信息分析样本进行说明。
测定试样的项目对应有相匹配的主波长和主强度的光。例如发色底物法测定的项目所匹配的主波长为上文中的第一主波长,免疫比浊法测定的项目所匹配的主波长为上文中的第二主波长、凝固法测定的项目所匹配的主波长为上文中的第三主波长等,它们的主强度都为第一强度。
当样本的干扰物含量小于第一阈值时,则分析部件70从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本。
当样本的干扰物含量大于第一阈值时,则分析部件70从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长和/或强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。例如,不妨以免疫比浊法测定的项目为例,当样本的干扰物含量大于第一阈值时,则分析部件70可以选择第四波长和第一强度的光所对应的光学信息分析所述样本,也可以选择第二主波长和第二强度的光所对应的光学信息分析所述样本,甚至还可以选择第四波长和第二强度的光所对应的光学信息分析所述样本。
一些实施例中,在样本的干扰物含量大于第一阈值的情况,又可以再具体细分成样本的干扰物含量大于第一阈值且小于第二阈值和样本的干扰物含量大于第二阈值这两种情况,下面具体说明。
当样本的干扰物含量大于第一阈值且小于第二阈值时,则所述分析部件70从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。不妨仍以免疫比浊法测定的项目为例,当样本的干扰物含量大于第一阈值且小于第二阈值时,则分析部件70可以选择第四波长和第一强度的光所对应的光学信息分析所述样本。
当样本的干扰物含量大于第二阈值时,则所述分析部件70从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。不妨仍以免疫比浊法测定的项目为例,当样本的干扰物含量大于第二阈值时,则分析部件70可以选择第四波长和第二强度的光所对应的光学信息分析所述样本。
在样本的干扰物含量大于第一阈值且小于第二阈值时选择原光强和大波长的光所对应的光学信息分析样本,在样本的干扰物含量大于第二阈值时选择大光强和大波长的光所对应的光学信息分析样本,这是具有现实意义的,因为如果在在样本的干扰物含量大于第一阈值且小于第二阈值时选择大光强和大波长的光所对应的光学信息分析样本,由于此时样本的干扰物浓度并不是非常高,那么大光强和大波长的光照射测定试样后有可能在受光部件50那边接收到的光信号是过饱和的,反而对分析样本产生不利影响;类似地,如果在样本的干扰物含量大于第二阈值时选择原光强和大波长的光所对应的光学信息分析样本,由于此时样本的干扰物浓度非常高,那么原光强和大波长的光照射测定试样后有可能在受光部件50那边接收到的光信号强度是非常少的,这对分析样本产生不利影响。
如上所述,也有一些项目不支持除主波长外其他波长的光的测定,典型地像发色底物法的项目,只能由第一主波长的光来进行测定,无法切换为更大的波长的光来测定。考虑到这种情况,一些实施例中,当样本的干扰物含量大于第一阈值时,分析部件70还判断测定试样的项目是否支持非主波长的光进行测定,若不支持,则分析部件70从所述多种波长和多种强度的光相对应的光学信息中 ,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。不妨仍以发色底物法测定的项目为例,当样本的干扰物含量大于第一阈值时,则分析部件70判断项目不支持非主波长的光进行测定,因此分析部件70选择第二波长和第二强度的光所对应的光学信息分析所述样本。
以上就是本发明一些实施例的样本分析装置的说明。本发明一些实施例中还公开了一种样本分析方法。
请参照图12,一些实施例中的样本分析方法包括以下步骤:
步骤100:通过样本和试剂制备项目所需的测定试样。
步骤200:用多种波长和多种强度的光照射所述测定试样,以获取与所述多种波长和多种强度的光相对应的光学信息。
一些实施例中,步骤200中涉及的多种波长包括:发色底物法测定的项目所对应的第一主波长、免疫比浊法测定的项目所对应的第二主波长、凝固法测定的项目所对应的第三主波长和不小于所述第一主波长、第二主波长和第三主波长的第四波长。在一些较优的实施例中,第一主波长的范围是340nm-420nm、第二主波长的范围是520nm-590nm、第三主波长的范围是660nm-800nm。在一些实施例中,第四波长可以取值为800nm。
一些实施例中,步骤200中涉及的多种强度至少包括第一强度和大于所述第一强度的第二强度。
因此,一些实施例中,步骤200提供的多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。这些光可以在一个光照周期内被分时提供给样本检测位,从而用来照射测定试样。如上文图5就是这样的一个例子。
另一些实施例中,步骤200提供的多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的 光、具有第三主波长和第二强度的光。这些光可以在一个光照周期内被分时提供给样本检测位,从而用来照射测定试样。
步骤300:根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本。如何检测样本的干扰物含量,在上文中已有详细说明,在此不再赘述。下面对步骤300如何选择特定波长和强度的光所对应的光学信息分析样本进行说明。
测定试样的项目对应有相匹配的主波长和主强度的光。例如发色底物法测定的项目所匹配的主波长为上文中的第一主波长,免疫比浊法测定的项目所匹配的主波长为上文中的第二主波长、凝固法测定的项目所匹配的主波长为上文中的第三主波长等,它们的主强度都为第一强度。
当样本的干扰物含量小于第一阈值时,则步骤300从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本。
当样本的干扰物含量大于第一阈值时,则步骤300从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长和/或强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。例如,不妨以免疫比浊法测定的项目为例,当样本的干扰物含量大于第一阈值时,则分析部件70可以选择第四波长和第一强度的光所对应的光学信息分析所述样本,也可以选择第二主波长和第二强度的光所对应的光学信息分析所述样本,甚至还可以选择第四波长和第二强度的光所对应的光学信息分析所述样本。
一些实施例中,在样本的干扰物含量大于第一阈值的情况,又可以再具体细分成样本的干扰物含量大于第一阈值且小于第二阈值和样本的干扰物含量大于第二阈值这两种情况,下面具体说明。
当样本的干扰物含量大于第一阈值且小于第二阈值时,则步骤300从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。不妨仍以免疫比浊法测定的项目为例,当样本的干扰物含量大 于第一阈值且小于第二阈值时,则步骤300可以选择第四波长和第一强度的光所对应的光学信息分析所述样本。
当样本的干扰物含量大于第二阈值时,则步骤300从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。不妨仍以免疫比浊法测定的项目为例,当样本的干扰物含量大于第二阈值时,则步骤300可以选择第四波长和第二强度的光所对应的光学信息分析所述样本。
在样本的干扰物含量大于第一阈值且小于第二阈值时选择原光强和大波长的光所对应的光学信息分析样本,在样本的干扰物含量大于第二阈值时选择大光强和大波长的光所对应的光学信息分析样本,这是具有现实意义的,因为如果在在样本的干扰物含量大于第一阈值且小于第二阈值时选择大光强和大波长的光所对应的光学信息分析样本,由于此时样本的干扰物浓度并不是非常高,那么大光强和大波长的光照射测定试样后有可能在受光部件50那边接收到的光信号是过饱和的,反而对分析样本产生不利影响;类似地,如果在样本的干扰物含量大于第二阈值时选择原光强和大波长的光所对应的光学信息分析样本,由于此时样本的干扰物浓度非常高,那么原光强和大波长的光照射测定试样后有可能在受光部件50那边接收到的光信号强度是非常少的,这对分析样本产生不利影响。
如上所述,也有一些项目不支持除主波长外其他波长的光的测定,典型地像发色底物法的项目,只能由第一主波长的光来进行测定,无法切换为更大的波长的光来测定。考虑到这种情况,一些实施例中,当样本的干扰物含量大于第一阈值时,步骤300还判断测定试样的项目是否支持非主波长的光进行测定,若不支持,则步骤300从所述多种波长和多种强度的光相对应的光学信息中,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。不妨仍以发色底物法测定的项目为例,当样本的干扰物含量大于第一阈值时,则步骤300判断项目不支持非主波长的光进行测定,因此步骤300选择第二波长和第二强度的光所对应的光学信息分 析所述样本。
综上所述,请参照图13,样本分析方法的一个具体实施例中,其可以包括以下步骤:
步骤100:通过样本和试剂制备项目所需的测定试样。
步骤200:用多种波长和多种强度的光照射所述测定试样,以获取与所述多种波长和多种强度的光相对应的光学信息。
步骤310:判断样本的干扰物含量是否小于第一阈值。
步骤312:当样本的干扰物含量小于第一阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本。
步骤314:当样本的干扰物含量大于第一阈值时,继续判断测定试样的项目是否支持非主波长的光进行测定。当测定试样的项目不支持非主波长的光进行测定,则进行步骤316,反之,当测定试样的项目支持非主波长的光进行测定,则进行步骤318。
步骤316:当测定试样的项目不支持非主波长的光进行测定,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
步骤318:当测定试样的项目支持非主波长的光进行测定,则进一步判断样本的干扰物含量是否大于第二阈值。
步骤320:当样本的干扰物含量大不于第二阈值,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
步骤322:当样本的干扰物含量大于第二阈值,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD至ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素, 或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应仅由权利要求确定。

Claims (15)

  1. 一种样本分析方法,其特征在于,包括:
    通过样本和试剂制备项目所需的测定试样;
    用多种波长和多种强度的光照射所述测定试样,以获取与所述多种波长和多种强度的光相对应的光学信息;
    根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本。
  2. 如权利要求1所述的样本分析方法,其特征在于,所述根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所对应的光学信息分析所述样本,包括:
    测定试样的项目对应有相匹配的主波长和主强度的光;
    当样本的干扰物含量小于第一阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本;
    当样本的干扰物含量大于第一阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长和/或强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
  3. 如权利要求2所述的样本分析方法,其特征在于,当样本的干扰物含量大于第一阈值且小于第二阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本;
    当样本的干扰物含量大于第二阈值时,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光 所对应的光学信息分析所述样本。
  4. 如权利要求2或3所述的样本分析方法,其特征在于,当样本的干扰物含量大于第一阈值时,还判断测定试样的项目是否支持非主波长的光进行测定,若不支持,则从所述多种波长和多种强度的光相对应的光学信息中,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
  5. 如权利要求1所述的样本分析方法,其特征在于,所述多种波长包括:发色底物法测定的项目所对应的第一主波长(405nm)、免疫比浊法测定的项目所对应的第二主波长(575nm)、凝固法测定的项目所对应的第三主波长(660nm)和大于所述第一主波长、第二主波长和第三主波长的第四波长(800nm)。
  6. 如权利要求1或5所述的样本分析方法,其特征在于,所述多种强度至少包括第一强度和大于所述第一强度的第二强度。
  7. 如权利要求6所述的样本分析方法,其特征在于,所述多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。
  8. 一种样本分析装置,其特征在于,包括:
    制备部件,用于通过样本和试剂制备项目所需的测定试样;
    光照部件,用于用多种波长和多种强度的光照射所述测定试样;
    受光部件,用于接收所述测定试样被所述光照部件照射后的输出光信号,以获取与所述多种波长和多种强度的光相对应的光学信息;
    分析部件,用于根据样本的干扰物含量,从所述多种波长和多种强度的光相对应的光学信息中,选择其中特定波长和强度的光所 对应的光学信息分析所述样本。
  9. 如权利要求8所述的样本分析装置,其特征在于,测定试样的项目对应有相匹配的主波长和主强度的光;
    当样本的干扰物含量小于第一阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择测定试样的项目所对应的主波长和主强度的光所对应的光学信息分析所述样本;
    当样本的干扰物含量大于第一阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长和/或强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
  10. 如权利要求9所述的样本分析装置,其特征在于,当样本的干扰物含量大于第一阈值且小于第二阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度等于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本;
    当样本的干扰物含量大于第二阈值时,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长大于测定试样的项目所对应的主波长且强度也大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
  11. 如权利要求9或10所述的样本分析装置,其特征在于,当样本的干扰物含量大于第一阈值时,所述分析部件还判断测定试样的项目是否支持非主波长的光进行测定,若不支持,则所述分析部件从所述多种波长和多种强度的光相对应的光学信息中,选择波长等于测定试样的项目所对应的主波长且强度大于测定试样的项目所对应的主强度的光所对应的光学信息分析所述样本。
  12. 如权利要求8所述的样本分析装置,其特征在于,所述多种波长包括:发色底物法测定的项目所对应的第一主波长(405nm)、免疫 比浊法测定的项目所对应的第二主波长(575nm)、凝固法测定的项目所对应的第三主波长(660nm)和不小于所述第一主波长、第二主波长和第三主波长的第四波长(800nm)。
  13. 如权利要求8或12所述的样本分析装置,其特征在于,所述多种强度至少包括第一强度和大于所述第一强度的第二强度。
  14. 如权利要求13所述的样本分析装置,其特征在于,所述多种波长和多种强度的光包括:具有第一主波长和第一强度的光、具有第二主波长和第一强度的光、具有第三主波长和第一强度的光、具有第四波长和第一强度的光、具有第一主波长和第二强度的光、具有第二主波长和第二强度的光、具有第三主波长和第二强度的光、具有第四波长和第二强度的光。
  15. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求1至7中任一项所述的方法。
PCT/CN2020/084550 2020-04-13 2020-04-13 一种样本分析方法和装置 WO2021207897A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/084550 WO2021207897A1 (zh) 2020-04-13 2020-04-13 一种样本分析方法和装置
CN202080098181.XA CN115244382A (zh) 2020-04-13 2020-04-13 一种样本分析方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084550 WO2021207897A1 (zh) 2020-04-13 2020-04-13 一种样本分析方法和装置

Publications (1)

Publication Number Publication Date
WO2021207897A1 true WO2021207897A1 (zh) 2021-10-21

Family

ID=78083597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084550 WO2021207897A1 (zh) 2020-04-13 2020-04-13 一种样本分析方法和装置

Country Status (2)

Country Link
CN (1) CN115244382A (zh)
WO (1) WO2021207897A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577743A (zh) * 2022-05-05 2022-06-03 深圳市帝迈生物技术有限公司 样本中的干扰物确定方法及装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029103A1 (en) * 2002-08-08 2004-02-12 Robinson Mark R. Discrimination of cells using chemical characteristics
CN1682105A (zh) * 2002-07-17 2005-10-12 微粒筛分系统公司 对颗粒进行光学计数、测量尺寸的高灵敏传感器及方法
US20070222973A1 (en) * 2006-03-16 2007-09-27 Susumu Hoshiko Sample analyzer
US20070229830A1 (en) * 2006-03-30 2007-10-04 Sysmex Corporation Sample analyzer and sample analyzing method
CN101097222A (zh) * 2006-06-30 2008-01-02 希森美康株式会社 试样分析仪
CN101151534A (zh) * 2005-03-29 2008-03-26 希森美康株式会社 标本分析方法及标本分析装置
CN101151521A (zh) * 2005-03-29 2008-03-26 希森美康株式会社 试样分析方法及试样分析装置
CN105938090A (zh) * 2016-05-20 2016-09-14 璁告椽 一种多光谱检测混合液体的混合比例的方法及其设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1682105A (zh) * 2002-07-17 2005-10-12 微粒筛分系统公司 对颗粒进行光学计数、测量尺寸的高灵敏传感器及方法
US20040029103A1 (en) * 2002-08-08 2004-02-12 Robinson Mark R. Discrimination of cells using chemical characteristics
CN101151534A (zh) * 2005-03-29 2008-03-26 希森美康株式会社 标本分析方法及标本分析装置
CN101151521A (zh) * 2005-03-29 2008-03-26 希森美康株式会社 试样分析方法及试样分析装置
US20070222973A1 (en) * 2006-03-16 2007-09-27 Susumu Hoshiko Sample analyzer
US20070229830A1 (en) * 2006-03-30 2007-10-04 Sysmex Corporation Sample analyzer and sample analyzing method
CN101097222A (zh) * 2006-06-30 2008-01-02 希森美康株式会社 试样分析仪
CN105938090A (zh) * 2016-05-20 2016-09-14 璁告椽 一种多光谱检测混合液体的混合比例的方法及其设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577743A (zh) * 2022-05-05 2022-06-03 深圳市帝迈生物技术有限公司 样本中的干扰物确定方法及装置、设备及存储介质

Also Published As

Publication number Publication date
CN115244382A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US11022558B2 (en) Coagulation analyzer and coagulation analysis method
JP4881855B2 (ja) 検体分析方法および検体分析装置
US8064061B2 (en) Sample analyzer and sample analyzing method
JP4999679B2 (ja) 検体分析装置
US7842509B2 (en) Blood analyzer and blood analyzing method
CA2802531C (en) Increase of usable dynamic range in photometry
EP2466292B1 (en) System for performing scattering and absorbance assays
WO2021207897A1 (zh) 一种样本分析方法和装置
CN112955742B (zh) 一种血样分析方法及凝血分析仪
WO2021207898A1 (zh) 一种样本分析装置及方法
JP2001208745A (ja) 食品状態評価方法及び食品状態評価装置
WO2021207896A1 (zh) 一种样本分析装置及方法
AU2011340895B2 (en) Quantifying nucleic acid in samples
JP7206570B2 (ja) 分析装置
CN111272678A (zh) 一种样本检测方法、凝血分析仪及存储介质
CN111413327A (zh) 双模式检测系统和双模式检测方法
WO2021207871A1 (zh) 一种抗干扰检测方法及样本分析仪
JPH02280033A (ja) 測色検査装置
CN115718094A (zh) 试样分析设备及试样分析方法
JP2006098229A (ja) 生化学分析装置
KR20180077820A (ko) 혈구 분석 장치 및 그의 검체 및 검체용기 감지방법
JPH02130472A (ja) 血液分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930774

Country of ref document: EP

Kind code of ref document: A1