JPWO2004097608A1 - リセット回路とディジタル通信装置 - Google Patents

リセット回路とディジタル通信装置 Download PDF

Info

Publication number
JPWO2004097608A1
JPWO2004097608A1 JP2005505871A JP2005505871A JPWO2004097608A1 JP WO2004097608 A1 JPWO2004097608 A1 JP WO2004097608A1 JP 2005505871 A JP2005505871 A JP 2005505871A JP 2005505871 A JP2005505871 A JP 2005505871A JP WO2004097608 A1 JPWO2004097608 A1 JP WO2004097608A1
Authority
JP
Japan
Prior art keywords
reset
signal
circuit
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005505871A
Other languages
English (en)
Other versions
JP4127283B2 (ja
Inventor
恭右 石川
恭右 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2004097608A1 publication Critical patent/JPWO2004097608A1/ja
Application granted granted Critical
Publication of JP4127283B2 publication Critical patent/JP4127283B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)

Abstract

リセットトリガ信号のプルアップ抵抗の定数調整を必要とせずに確実にリセット動作を行う。また、電源投入時にクロックが停止している場合でもリセットを解除する。通常動作中は、クロック停止検出信号CALMBがHとなりリセットトリガ信号CPURSTBはORゲート回路8によりマスクされる。通常動作中にクロックが停止してCALMBがLとなると、CPURSTBはORゲート回路6、8、ANDゲート回路10を通過してリセット出力信号RSTBとして出力される。電源動作投入時にクロックが停止している場合、つまり外部パワーオンリセット信号PRSTBがLからHへ変化した時にCALMBがLの場合、ラッチ回路2のから出力されるマスク信号MASKはHのままとなり、CPURSTBがLとなった場合でも、ORゲート回路6によりマスクされRSTBがアサートされたままとならない。

Description

本発明は、プロセッサ等の汎用入出力ポート(PIOポート)から出力されたリセットトリガ信号を入力し、パッケージのプロセッサ等も含む周辺回路へリセット信号出力を行うリセット回路に関する。
無線基地局装置や交換機等の架構成をとるディジタル通信装置では、それぞれのパッケージに状態監視機能部が存在し、上位の状態監視機能部はこのパッケージの状態監視機能部を通じて常にパッケージの状態を監視している。例えば図5に示すディジタル通信装置では、複数のパッケージ128と、上位状態監視機能部27とが設けられていて、上位状態監視機能部27はパッケージ128の状態監視を行っている。また、各パッケージ128は、それぞれ、状態監視機能部20と、電源監視回路21と、プロセッサ22と、パワーオンリセット回路23と、クロック監視装置24と、リセット回路101と、ANDゲート回路26と、その他のデバイス25と、外部プルアップ抵抗29とを備えている。
状態監視機能部20は、パッケージ128の状態を上位状態監視機能部27に報告している。電源監視回路21は、パッケージ128の電源電圧を監視し、電源電圧が一定値以上の場合には外部パワーオンリセット信号PRSTBをハイレベル(以下Hと表示する。)とし、電源電圧が一定値より低い場合には外部パワーオンリセット信号PRSTBをロウレベル(以下Lと表示する。)としている。
プロセッサ22は、CPUまたはDSP(Digital Signal Processor)等の予め記憶されたプログラムにより処理を行うデバイスであり、パッケージ128内に設けられた各種デバイスの制御を行っている。そして、プロセッサ22は、パッケージ128の動作が不安定となったりパッケージの再設定が必要となったり、パッケージ128全体をリセット(初期化)しなければならないと判定した場合、PIOポートからリセットトリガ信号CPURSTBをリセット回路101に出力する。ここでは、リセットトリガ信号CPURSTBは、アクティブロウの信号である場合を用いて説明するため、プロセッサ22は、パッケージ128のリセットを行う場合には、通常はネゲートな状態のHであるリセットトリガ信号CPURSTBをアサートな状態のLとする動作を行う。
一般的に、信号線が有効(アクティブ)な状態にあることをアサートといい、無効(インアクティブ)な状態にあることをネゲートという。また、信号線を有効な状態にすることをアサートするといいい、無効な状態にすることをネゲートするという。
パワーオンリセット回路23は、電源監視回路21からの外部パワーオンリセット信号PRSTBに基づいてアクティブロウのリセット信号を生成してANDゲート回路26に出力している。
クロック監視装置24は、パッケージ128内の各回路に供給されているクロック信号の監視を行い、クロック信号が正常に動作している場合にはネゲートな状態のHとなり、クロック信号が停止している場合にはアサートな状態のLとなるクロック停止検出信号CALMBをリセット回路101に出力している。
リセット回路101は、プロセッサ22からのリセットトリガ信号CPURSTBがLとなると、一定期間Lとなるリセット出力信号RSTBを生成して出力している。
ANDゲート回路26は、パワーオンリセット回路23からのリセット信号と、リセット回路101からのリセット出力信号RSTBとの論理積を演算し、その演算結果を状態監視機能部20、プロセッサ22、その他のデバイス25に出力している。ここで、パワーオンリセット回路23からのリセット信号、リセット回路101からのリセット出力信号RSTBはいずれもアクティブロウの信号であるため、いずれかのリセット信号がアクティブであればANDゲート回路26の出力もアクティブであるLとなる。
このディジタル通信装置では、上位状態監視機能部27は、複数のパッケージ128にそれぞれ設けられた状態監視機能部20を通じて各パッケージ128の状態を監視している。
図5中のリセット回路101の構成を図6に示す。この従来のリセット回路101は、図6に示されるように、インバータ回路7、9と、リセット伸長回路3と、ANDゲート回路10とから構成されている。
インバータ回路7は、プロセッサ22からのリセットトリガ信号CPURSTBを反転して、リセット伸長回路3の入力端子INに出力している。
リセット伸長回路3は、インバータ回路7の出力の立ち上がりエッジを検出し、この立ち上がりエッジから一定時間だけHとなる信号を生成してOUT端子から出力している。また、リセット伸長回路3は、クロック停止検出信号CALMBを非同期クリア信号Cとして入力し、クロックが停止状態となりクロック停止検出信号CALMBがアサート状態であるLとなると、初期化されて出力端子OUTをLとする。
インバータ回路9は、リセット伸長回路3からの出力信号を反転した信号RSTB3をANDゲート回路10に出力している。
ANDゲート回路10は、インバータ回路9からの信号RSTB3と、CPURSTBと同じ論理の信号RSTB4との論理積演算を行い、その演算結果をリセット出力信号RSTBとして出力している。
図6におけるリセット伸長回路3の構成を図7に示す。リセット伸長回路3は入力信号IN(アクティブハイ)と外部入力クロックCLKと非同期クリア信号Cを入力とし、リセット伸長信号OUT(アクティブハイ)を出力する。非同期クリア信号Cは、リセット伸長回路3にとってはアクティブハイの信号であり、非同期クリア信号CがHの場合には、リセット伸長動作を行い、非同期クリア信号CがLの場合には、初期化されて出力端子OUTをLとする。
リセット伸長回路3は、微分回路31と、カウンタ回路32と、JK−フリップフロップ回路33とから構成されている。
微分回路31は、入力信号INと外部入力クロックCLKと非同期クリア信号Cを入力とし、入力信号INの立ち上がりエッジを検出し、外部入力クロックCLKに同期した1クロック幅のパルスをカウンタ回路32とJK−フリップフロップ回路33に出力する。
また、微分回路31は、D−フリップフロップ回路311と、D−フリップフロップ回路312と、インバータ回路313と、ANDゲート回路314とから構成されている。
D−フリップフロップ回路311は、入力信号INをD入力として入力し、外部入力クロックCLKを入力クロックとして使用し、非同期クリア信号Cを非同期クリア入力(アクティブハイ)とし、出力Qをインバータ回路313とANDゲート回路314に出力する。インバータ回路313はD−フリップフロップ回路311の出力を入力とし、その反転信号をD−フリップフロップ回路312へ出力する。D−フリップフロップ回路312は、インバータ回路313をD入力、CLKを入力クロック、外部入力Cを非同期クリアC入力(アクティブハイ)とし、出力QをANDゲート回路314へ出力する。ANDゲート回路314はD−フリップフロップ回路311、312の出力を入力として論理積演算を行い、その演算結果を微分回路31の出力とする。
カウンタ回路32は微分回路31の出力をLD入力、CLKを外部クロック入力、外部入力Cを非同期クリアC入力(アクティブハイ)とし、出力OUTをJK−フリップフロップ回路33のK入力へ出力する。カウンタ回路32は、非同期クリア信号CがHのときはカウンタ機能を初期化しOUTにLを出力する。また、非同期クリア信号CがLの時は、LD入力がHである時に外部クロック入力CLKの立ち上がりでカウンタに初期値をセットし、LD入力がLになったら外部クロック入力CLKの立ち上がり毎にカウントアップもしくはカウントダウンし、カウンタが設定値になった際にCLKの立ち上がりでOUT端子からHを出力する。
JK−フリップフロップ回路33は、J入力に微分回路31の出力、K入力にカウンタ回路32の出力OUT、CLKを入力クロック、非同期クリアC(アクティブハイ)に外部クリア入力Cを入力し、Q出力をリセット伸長回路3の出力OUTとする。
リセット伸長回路3の信号の流れは、外部入力INがLからHへの変化を微分回路31で検出しHパルスを出力し、そのHパルスを元にJK−フリップフロップ回路33が出力信号OUTをHに出力し、同時にカウンタ回路32のカウンタに初期値をセットする。カウンタ回路32に備えられた規定時間を経過すると、カウンタ回路32はHを出力し、その結果JK−フリップフロップ回路33がOUTにLにする。このようにして、リセット伸長回路3としては入力INの立ち上がりエッジから規定時間経過するまでOUTにHを出力するような動作をする。
このリセット伸長回路3の動作を図8のタイミングチャートを参照して説明する。
時刻T0においてリセットトリガ信号CPURSTBがアサートされると、次のクロックの立ち上がりである時刻T1において微分回路31のD−フリップフロップ回路311がFFOUT1にHを出力する。その時点でD−フリップフロップ回路312の出力FFOUT2はHのままであるので、微分回路31の出力であるCINはHを出力し始める。時刻T2にてFFOUT2はLとなるのでCINもLとなる。この時刻T2においてJK−フリップフロップ回路33のJ入力がHとなっているのでJK−フリップフロップ回路33の出力QはHとなり、RSTB1とリセット出力信号RSTBは時刻T2よりLとなり、リセット出力信号RSTBがアサートされたことになる。リセット出力信号RSTBがアサートされることでプロセッサ22のPIOポート出力は入力に初期化されるので、外部プルアップ抵抗29によりゆっくりとHへ遷移することになる。
図8中のリセットトリガ信号CPURSTBの斜線部はプルアップ抵抗29の定数やデバイスの静電容量によりHへ遷移する時間が異なることを示している。これにより、FFOUT1とFFOUT2も斜線部で示す時間ではHかLどちらでもとりうる状況となる。ただし、微分回路31の出力CINは必ず時刻T1から時刻T2の間だけHを出力するので、リセット伸長回路3としての動作に問題は発生しない。
時刻T3において、CINがLになるため、カウンタ回路32はカウントアップもしくはカウントダウンを開始する。時刻T4は、時刻T3よりカウンタ回路32により設定されている規定時間Td経過した時刻となる。この時刻T4において、リセット回路3に備えられたカウンタ回路32はタイムアウトし出力端子OUTにHを出力する。よって、時刻T5において、リセット伸長回路3に備えられたJK−フリップフロップ回路33の出力QがLとなり、リセット出力信号RSTBがHとなる。これにより、リセット伸長が停止することになる。
上記で説明した従来のリセット回路101では、プロセッサ22からのリセットトリガ信号CPURSTBを入力すると、内部に設けられたリセット伸長回路3により規定時間だけアサートな状態のLとなるリセット出力信号RSTBを生成して出力している。これは、その他のデイバス25等の正常なリセット動作を行うためには、リセット出力信号RSTBがLとなる最低限の時間が規定されているからであり、正常なリセット動作を保証するためにはこの規定時間以上リセット出力信号RSTBをLとしなければならないからである。
この状態監視機能部20は、上位状態監視機能部27に対してパッケージ128の状態を報告するものであるため、パッケージ128が故障しているときも動作し、パッケージ128の状態監視を継続して行う必要がある。ここで、故障状態とは、プロセッサ22等やリセット回路101へのクロックが停止しているような状況も含まれる。そのため、リセット回路101がリセット伸長動作を行っている最中にクロックが停止した場合には、クロック停止検出信号CALMBがLとなることによりリセット伸長回路3は初期化されて出力端子OUTがLとなってリセット回路101のリセット伸長が停止されるようになっている。
しかし、このようにクロックが停止したことによりリセット伸長回路3がリセットされた状態で、リセット動作が全く行えなくなってしまうと、プロセッサ22によるリセット動作が全く行えなくなってしまう。
そこで、従来のリセット回路101では、図6に示すように、リセットトリガ信号CPURSTBとインバータ回路9の出力とをANDゲート回路10に入力して、ANDゲート回路10の出力をリセット出力信号RSTBとして出力することにより、リセットトリガ信号信号RSTBがそのまま出力されるスルー出力を行うような回路構成となっていた。
このような構成とすることにより、クロックが停止しているときにもリセットトリガ信号CPURSTBをそのままスルーさせてリセット出力信号RSTBとして出力させることができる。しかし、このようにリセットトリガ信号CPURSTBをスルー出力させることにより、クロック入力が正常に行われているような時には以下に説明するような問題が発生する可能性がある。
一般的にPIOポートはプロセッサ等のリセット中は入力ポートになるため、ハイインピーダンス状態となる。そのため、PIOポートを出力ポートに設定してリセットトリガ信号を出力するために使用した場合、プロセッサがリセット中となっている際に、リセットトリガ信号がネゲートとなるレベルを規定するためプルアップ抵抗やプルダウン抵抗が接続されている。図5に示した従来技術では、Hがネゲートのレベルであるため、プルアップ抵抗29がリセットトリガ信号CPURSTBに接続されている。
プロセッサ22がリセットトリガ信号CPURSTBをアサートした瞬間にプロセッサ22自身にリセットが入力され、プロセッサ22はリセットトリガ信号CPURSTBのアサートを停止してしまうと、リセットトリガ信号CPURSTBはプルアップ抵抗29により時間をかけてネゲート状態になる。
しかし、図7に示したリセット伸長回路3では、入力信号INに対して、D−フリップフロップ311、312、カウンタ回路32、JK−フリップフロップ回路33が設けられているため、リセット伸長が正常に行われるためには、プロセッサ22にリセット信号が入力されてからリセットトリガ信号CPURSTBが最低でも2クロック分以上Lが確定するように、プルアップ抵抗29の定数を調整する必要がある。
プルアップ抵抗29の調整を行うことによりリセット伸長が正常に行われた場合のタイミングチャートを図9に示す。図9では、リセットトリガ信号RSTBがLとなった時刻T0から2クロック分経過する前の時刻T1、T2においてリセットトリガ信号RSTBはLが確保されている。そのため、リセット出力信号RSTBは時刻T0においてLとなってから規定時間経過後にHとなるという予定された動作を行うことになる。
しかし、プルアップ抵抗29の定数やデバイスの静電容量が小さいと、リセットトリガ信号CPURSTBがLである時間を2クロック分保証されない場合もあり得る。このような場合のタイミングチャートを図10および図11に示す。
図10は、リセットトリガ信号CPURSTBがLになってから、次にクロック信号の立ち上がりエッジが検出される前にHに戻ってしまったことにより、リセット伸長回路3がリセットトリガ信号CPURSTBを検出できずリセット伸長が行われなかった場合である。図11は、リセットトリガ信号CPURSTBがLである時間が2クロック分保証されないことにより、リセット出力に一旦ネゲートされてしまうような現象が発生した場合である。
図10では、時刻T0においてリセットトリガ信号CPURSTBがアサートの状態であるLになり時刻T1にはHと判定されるレベルに戻ってしまっている。そのため、ANDゲート回路10ではリセットトリガ信号CPURSTBがLとなったことが検出され時刻T0から時刻T1の間リセット出力信号RSTBはLとなっているが、リセット伸長回路3では、リセットトリガ信号CPURSTBがLとなったことは検出されずリセット伸長は行われていない。そのため、時刻T1にはリセットトリガ信号CPURSTBはネゲートされてしまって、リセット出力信号RSTBがLとなる時間が短くなり、デバイスが規定するリセット時間を満足することができなくなってしまう。
また、図11は、リセットトリガ信号CPURSTBがLとなってから1クロック経過までしかLと判定されるレベルを維持できなかった場合である。図11では、時刻T0においてリセットトリガ信号CPURSTBがアサートの状態であるLになり時刻T1においてはLレベルを維持しているが時刻T3ではLレベルを維持できなくなっている。そのため、リセット伸長は正常に行われず、リセットトリガ信号CPURSTBがHと判定されてしまった時刻T2においてリセット出力信号RSTBにが一旦ネゲートの状態であるHとなり時刻T3に再度Lとなってしまっている。
上記図10、図11のいずれの場合においても、リセット出力信号RSTBが規定時間アサートの状態であるHとなることが保証されていなため、デバイスによっては誤動作を起こしてしまい、場合によってはパッケージが予測不可能な動作をしてしまうことになる。そのため、従来のリセット回路101においては、プルアップ抵抗やプルダウン抵抗の定数調整を行って、リセットトリガ信号CPURSTBがLになってから2クロック経過までLが保証させるようにして上記のような問題が発生しないようにしていた。
上記で説明した問題とは別に、従来のリセット回路101では、電源投入時にクロックが停止している場合にも問題が発生する。電源投入時にクロックが存在していれば、その後クロックが停止した場合であっても、プロセッサ等のPIOポートの入出力設定やデータ値が不定になることはなく、リセット出力信号RSTBにリセットトリガ信号CPURSTBをスルー出力してもリセット出力信号RSTBがL固定になることはない。しかし、故障等により電源投入時にクロックが停止しているような状況では、プロセッサ22では、PIOポート周辺回路が確実に初期化されず不定状態となる。そのため、本来であればPIOポートは、リセット中はハイインピーダンス設定になるべきところが、出力モードとなりリセット回路101へリセットトリガ信号CPURSTBをアサートした状態のまま、つまりLのまま固定されてしまう可能性がある。図12にこの場合のタイミングチャートを示す。
図12では、クロック停止検出信号CALMBがLつまりクロック信号が停止した状態で電源投入が行われリセットトリガ信号CPURSTBがLのまま固定してしまっている。このような状態となると、図6に示したような従来のリセット回路101では、リセットトリガ信号CPURSTBが直接ANDゲート回路10に入力されているため、リセット出力信号RSTBもL固定となりアサートの状態のままとなる。そのため、状態監視機能部20に入力されるリセット信号もアサートの状態のままとなり、上位状態監視機能部27にクロック信号の停止を報告することができない。
従来からリセット信号を生成するためのリセット回路として様々な回路構成が提案されている。例えば、システムを構成している各種回路に供給するリセット信号のタイミングをずらすことにより動作不良の発生を防止するようなリセット回路等も提案されている(例えば、特開2001−142792号公報参照。)。しかし、上述したような問題を解決することができるようなリセット回路は提案されていなかった。
上述した従来のリセット回路では、下記のような問題点を有していた。
(1)プロセッサにリセット信号が入力されてからリセットトリガ信号が最低でも2クロック分以上アサートな状態であると判定されなければ正常なリセット伸長動作を行うことができないため、リセットトリガ信号に接続するプルアップ抵抗の定数を調整する必要がある。
(2)クロック信号が停止した状態で電源投入が行われリセットトリガ信号がアサートの状態のままとなってしまった場合、状態監視機能部もリセット状態となってしまい上位状態監視機能部にクロック信号の停止を報告することができない。
本発明の目的は、リセット回路のクロックが停止した際にはリセットトリガ信号のスルー出力をしたり、リセット伸長中にクロックが停止した時にはリセット伸長を停止したりする機能を残したまま、リセットトリガ信号のプルアップ抵抗やプルダウン抵抗の定数調整の必要性をなくし、確実にリセット動作を行うことができるリセット回路を提供することである。
また、本発明の他の目的は、電源投入時にクロックが停止していてプロセッサ等のPIOポートが出力モードとなりリセットトリガ信号をアサートの状態にしたままとなってしまったような場合でも、リセットが解除されるようにして状態監視機能部が動作可能となるリセット回路を提供することである。
上記目的を達成するために、本発明は、プロセッサの汎用入出力ポートから出力されたリセットトリガ信号を入力して、前記プロセッサも含む他の回路へリセット出力信号を生成して出力するリセット回路であって、
現在の電源状態を示す外部パワーオンリセット信号が電源オンであることを示した後に、クロックの動作状態を示すクロック停止検出信号がクロックが正常に動作していることを最初に示すまで、入力された前記リセットトリガ信号をマスクする第1のマスク手段と、
前記第1のマスク手段から入力されたリセットトリガ信号がアサートの状態となる際のエッジを検出し、該エッジから一定時間だけアサートの状態となる信号を生成して出力するリセット伸長回路と、
前記外部パワーオンリセット信号が電源オフであることを示した場合、または前記クロック停止検出信号がクロックが停止していることを示した場合のいずれかの場合に、前記リセット伸長回路を初期化する初期化手段と、
前記クロック停止検出信号がクロックが正常に動作していることを示している場合に、前記第1のマスク手段からのリセットトリガ信号をマスクする第2のマスク手段と、
前記リセット伸長回路からの信号と前記第2のマスク手段からのリセットトリガ信号のいずれかがアサートの状態の場合に、前記リセット出力信号をアサートの状態とするリセット出力信号生成手段とを備えている。
本発明によれば、クロック停止検出信号がクロックが正常に動作していることを示している場合には、第2のマスク手段により第1のマスク手段から出力されたリセットトリガ信号をマスクするようにしているので、通常動作中はリセット伸長回路がリセットトリガ信号がアサートの状態となったことを検出できた場合にのみリセット出力信号をアサートの状態とする。そのため、リセット信号がアサートされた後、短期間ではあるが一時的にネゲートされ、その後またアサートされるようなリセット伸長が行われることを防いで、確実に規定時間リセット信号をアサートすることができる。その結果、外部プルアップ抵抗もしくはプルダウン抵抗の定数やデバイスの静電容量に関係なく、確実にプロセッサ等のPIOポートより入力されるリセットトリガ信号を検出しリセット信号を伸長できる。それにより、従来回路で発生する可能性がある短期間のネゲートにより、パッケージが予測不可能な動作が発生するのを防ぐことができる。
また、電源投入時にクロックが停止していたような場合には前記第1のマスク手段によりリセットトリガ信号をマスクすることができるので、電源投入時にクロックが入らないことによりプロセッサ等がPIOポート周辺の回路を正常に初期化できず、入出力設定および出力値が不定状態で固定してしまっても、リセット出力信号をネゲートさせ、パッケージの状態監視機能部を動作させることが可能となる。
また、前記第1のマスク手段を、クロックが正常に動作していることを示す場合にハイレベルとなり、クロックが停止している場合にロウレベルとなる前記クロック停止検出信号を入力し、該クロック停止検出信号の反転信号を出力するインバータ回路と、
前記外部パワーオンリセット信号をリセット入力とし、前記インバータ回路からの出力を入力端子から入力とし、前記外部パワーオンリセット信号が電源オフであることを示すロウレベルの場合には、前記入力端子に入力された値に関係なく、ハイレベルの信号を出力端子から出力し、前記リセット入力がハイレベルの場合には、前記入力端子にロウレベルの信号が一度でも入力されると前記出力端子にロウレベルの信号を出力し続けるラッチ回路と、
アサートの状態の場合にはロウレベルとなる前記リセットトリガ信号と、前記ラッチ回路の出力端子から出力された信号を入力して論理和演算を行い、該演算結果を出力するORゲート回路とから構成するようにしてもよい。
さらに、前記第2のマスク手段を、前記ORゲート回路からの出力と、前記クロック停止検出信号との論理和演算を行い、該演算結果を前記リセット出力生成手段に出力する論理和演算手段により構成するようにしてもよい。
さらに、前記初期化手段を、前記外部パワーオンリセット信号と前記クロック停止検出信号を入力として論理積の反転の演算を行い、該演算結果を前記リセット伸長回路の非同期クリア入力へ出力するNANDゲート回路5により構成するようにしてもよい。
図1は、本発明の一実施形態のリセット回路1を備えたディジタル通信装置の構成を示すブロック図である。
図2は、図1中のリセット回路1の構成を示す回路図である。
図3は、本実施形態のリセット回路1の動作を示すタイミングチャートである。
図4は、本実施形態のリセット回路1の動作を示すタイミングチャートである。
図5は、従来のリセット回路101を備えたディジタル通信装置の構成を示すブロック図である。
図6は、図5中のリセット回路101の構成を示す回路図である。
図7は、図6中のリセット伸長回路3の構成を示す回路図である。
図8は、リセット伸長回路3の動作を示すタイミングチャートである。
図9は、従来のリセット回路においてリセット伸長が正常に行われた場合の動作を示すタイミングチャートである。
図10は、従来のリセット回路においてリセット伸長が正常に行われなかった場合の動作を示すタイミングチャートである。
図11は、従来のリセット回路においてリセット伸長が正常に行われなかった場合の動作を示すタイミングチャートである。
図12は、従来のリセット回路においてクロックが停止した状態で電源投入された場合の動作を示すタイミングチャートである。
次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は本実施形態の一実施形態のリセット回路を備えた架構成のディジタル通信装置の構成を示すブロック図である。図1において、図5中の構成要素と同一の構成要素には同一の符号を付し、説明を省略するものとする。
本実施形態におけるディジタル通信装置には、複数のパッケージ28と、上位状態監視機能部27とが設けられている。また、各パッケージ28は、それぞれ、状態監視機能部20と、電源監視回路21と、プロセッサ22と、パワーオンリセット回路23と、クロック監視装置24と、リセット回路1と、ANDゲート回路26と、その他のデバイス25と、外部プルアップ抵抗29とを備えている。
本実施形態におけるパッケージ28は、図5に示したパッケージ128と比較して、リセット回路101がリセット回路1に置き換えられ、リセット回路1には、リセットトリガ信号CPURSTBとクロック停止検出信号CALMBに加えて、外部パワーオンリセット信号PRSTBが入力されている点が異なっている。
本実施形態のリセット回路1は、以下の3つの機能を有する。1番目の機能は、通常動作時にPIOポートより入力されるリセットトリガ信号CPURSTBの立ち下がりエッジの有無を調べ、立ち下がりエッジを検出すると規定時間アサートの状態が保証されたリセット出力信号RSTBを確実に出力する機能である。
また、2番目の機能は、クロックが停止した際にクロック監視装置24より入力されるクロック停止検出信号CALMB(アクティブロウ)を入力することによりリセット伸長を停止しCPURSTBリセットトリガ信号そのものをリセット出力信号RSTBとして出力するスルー出力機能である。
3番目の機能は、電源投入時つまり電源監視回路21より入力される外部パワーオンリセット信号PRSTB(アクティブロウ)がLの時にクロック停止検出信号CALMBがLとなっている場合にはリセットトリガ信号CPURSTBそのものをマスクし、PIOポートの不定状態をリセットトリガ信号CPURSTB入力として使用してしまうことでリセット出力信号RSTBをアサートし続けるような場合を回避するような機能である。
上記で説明した3つの機能により、状態監視機能部20が継続してリセット状態となってしまうことを防いで、上位状態監視機能部27が、パッケージ28の状態監視ができなくなることを防ぐことができる。
次に、本実施形態におけるリセット回路1の構成を図2に示す。図2において、図6中の構成要素と同一の構成要素には同一の符号を付し、説明を省略するものとする。
本実施形態のリセット回路1は、図6に示した従来のリセット回路101に対して、ラッチ回路2と、インバータ回路4と、NANDゲート回路5と、ORゲート回路6、8とが新たに設けられた構成となっている。
リセット回路1は、プロセッサ22のPIOポート出力であるリセットトリガ信号CPURSTBと外部パワーオンリセット信号PRSTBとクロック停止検出信号CALMBと外部クロックCLKを入力とし、リセット出力信号RSTBを出力する。
インバータ回路4は、クロック停止検出信号CALMBを入力とし、ラッチ回路2の入力INBへクロック停止検出信号CALMBの反転信号を出力する。
ラッチ回路2は、外部パワーオンリセット信号PRSTBをリセット入力とし、インバータ回路4の出力を入力端子INBに入力し、出力端子OUTBからの出力をORゲート回路6に出力する。このラッチ回路2はリセット入力がLの場合には、入力端子INBの入力値に関係なく、出力端子OUTBにHの信号を強制的に出力(初期化)し、リセット入力がHの場合には、入力端子INBにLが一度でも入力されると出力端子OUTBにLを出力し続けるような動作を行う。このような動作を行うラッチ回路2は、当業者にとってよく知られており、また本発明とは直接関係しないので、その詳細な構成は省略する。
ORゲート回路6は、リセットトリガ信号CPURSTBとラッチ回路2の出力端子OUTBからの出力を入力して論理和演算を行い、その演算結果をインバータ回路7とORゲート回路8に入力する。このORゲート回路6が設けられていることにより、ラッチ回路2の出力端子OUTBからの出力がHの場合にはリセットトリガ信号CPURSTBはマスクされることになる。
つまり、ラッチ回路2とORゲート回路6およびインバータ回路4が設けられたことにより、外部パワーオンリセット信号PRSTBがアサート中は出力端子OUTBにHを出力することでリセットトリガ信号CPURSTBをマスクし、外部パワーオンリセット信号PRSTBがネゲートされてから一度でもクロック停止検出信号CALMBがHになるまで、つまりクロックの存在が確認されるまではリセットトリガ信号CPURSTBを電源投入から継続的にマスクし、マスク解除後はリセットトリガ信号CPURSTBをスルーするような構成となっている。
インバータ回路4、ラッチ回路2、ORゲート回路6は、現在の電源状態を示すパワーオンリセット信号PRSTBが電源オンであることを示すHとなった後に、クロックの動作状態を示すクロック停止検出信号CALMBがクロックが正常に動作していることを示すHに最初になるまで、入力されたリセットトリガ信号CPURSTBをマスクする第1のマスク手段として機能する。
NANDゲート回路5は、外部パワーオンリセット信号PRSTBとクロック停止検出信号CALMBを入力として論理積の反転の演算を行い、その演算結果をリセット伸長回路3の非同期クリア入力Cへ出力する。外部パワーオンリセット信号PRSTBとクロック停止検出信号CALMBのいずれかがLになった際にはNANDゲート回路5はHを出力し、リセット伸長回路3の動作を初期化することになる。つまり、NANDゲート回路5は、電源電圧が一定値以下となったかクロックが停止したかいずれかが検出された場合には、リセット伸長回路3の初期化手段として機能する。
インバータ回路7は、ORゲート回路6の出力を入力とし、その反転信号をリセット伸長回路3の入力INへ出力する。
リセット伸長回路3は、インバータ回路7の出力を入力IN、クロックに外部入力クロックCLK、非同期クリア入力C(アクティブハイ)にNANDゲート回路5の出力を非同期クリア入力とし、出力OUTをインバータ回路9に入力する。リセット伸長回路3は電源投入時もしくはクロック停止時(外部パワーオンリセット信号PRSTBがLもしくはクロック停止検出信号CALMBがL)には、リセット伸長を停止し出力端子OUTにLを出力し、外部パワーオンリセット信号PRSTBがHでかつクロック停止検出信号CALMBがHである時(通常動作時)には、入力端子INがHからLへ変化した2クロック目の立ち上がりで出力端子OUTにHを出力し、その時点からリセット伸長回路3に備えるカウンタ回路32にセットされた規定時間経過すると出力端子OUTにLを出力する。
インバータ回路9は、リセット伸長回路3の出力端子OUTからの出力を入力とし、その反転信号をANDゲート回路10へ出力する。
ORゲート回路8は、ORゲート回路6からの出力と、クロック停止検出信号CALMBとの論理和演算を行い、その演算結果をRSTB2としてANDゲート回路10に出力している。ORゲート回路8は、クロック停止検出信号CALMBがクロックが停止していることを示しているHの場合に、ORゲート回路6からのリセットトリガ信号をマスクする第2のマスク手段として機能する。
ANDゲート回路10は、ORゲート回路8の出力とインバータ回路9の出力を入力として論理積演算を行い、その演算結果をリセット回路1のリセット出力信号RSTBとして出力する。ANDゲート回路10は、リセット伸長回路3からの信号とORゲート回路8からのリセットトリガ信号のいずれかがアサートの状態の場合に、リセット出力信号RSTBをアサートの状態とするリセット出力信号生成手段として機能する。
次に、本実施形態のリセット回路1の動作を、通常動作時、通常動作中にクロックが停止した場合、電源投入時にクロック入力が停止している場合に分け、それぞれ図面を参照して詳細に説明する。
(1)先ず、通常動作時の動作について説明する。
パッケージ28内において何の異常も発生していない通常動作時には、外部パワーオンリセット信号PRSTBがH、かつクロック停止検出信号CALMBがHとなっている。つまり通常にパワーオンリセットが入力されてその後解除され、クロックが正常に入力されているような場合が通常動作時である。この通常動作時では、外部パワーオンリセット信号PRSTBがHとなっていて、クロック停止検出信号CALMBがHつまりインバータ回路4の出力がLとなっているので、ラッチ回路2の出力OUTBはLとなっている。そのため、ORゲート回路6はリセットトリガ信号CPURSTBをそのまま出力している。そして、ORゲート回路8には、Hのクロック停止検出信号CALMBが入力されているので、ORゲート回路8の出力RSTB2はリセットトリガ信号CPURSTBの状態に関わらずHとなっている。
ここで、プロセッサ22のPIOポートからリセット回路1にリセットトリガ信号CPURSTBがアサートされると、ORゲート回路6の出力がLとなる。そのため、インバータ回路7の出力はHとなり、リセット伸長回路3の入力端子INにはHが入力される。
リセット伸長回路3では、リセットトリガ信号CPURSTBのHからLへの変化をCLKの立ち上がりで検出し、リセット伸長回路3の出力端子OUTにHを出力する。リセットトリガ信号CPURSTBのHからLへの変化により、リセット伸長回路3に備えられたカウンタ回路32がカウントアップもしくはカウントダウンを開始し、規定時間経過すると出力端子OUTにはLが出力される。
最後にANDゲート回路10により、リセットトリガ信号CPURSTBのHからLへの変化から規定時間経過後までリセット出力信号RSTBにLを出力する。つまり、リセット伸長回路3がリセット伸長を開始するまでは、リセット出力信号RSTBをアサートしないようにして、微分回路31が立ち上がりエッジを検出できなかったり、一度リセット出力信号RSTBがアサートしたのに一時的にネゲートして再度アサートしたりするような現象を防ぎ、確実にリセット出力信号RSTBをアサートするようにしている。
このように、リセット伸長回路3がリセットトリガ信号CPURSTBの入力を検出してからリセット出力信号RSTBがLになるので、リセット出力信号RSTBに一瞬ネゲートになる等の不安定な動作を起こすことがない。また、確実にリセット伸長回路3がリセットトリガ信号CPURSTBを検出するまではプロセッサ22等にリセットが入力されないことになり、従来ではプルアップ抵抗29の定数変更が必要であったが、本実施形態のリセット回路1によりばプルアップ抵抗の定数の調整が不要となる。
(2)次に、通常動作中にクロックが停止した場合の動作について説明する。
通常動作中にクロックが停止した場合、つまり外部パワーオンリセット信号PRSTBがHで、クロック停止検出信号CALMBがLになった場合、NANDゲート回路5の出力はLからHとなる。そのため、リセット伸長回路2のクリア信号CにHがアサートされ、リセット伸長回路2は初期化され出力OUTはLとなり、RSTB1はH固定になる。また、ラッチ回路2の出力OUTBもL固定となる。このとき、リセットトリガ信号CPURSTBにLが入力されると、ラッチ回路2の出力はLであるため、ORゲート回路6の出力もLとなる、また、クロックが停止したことによりクロック停止検出信号CALMBもLとなっているため、ORゲート回路8の出力もLとなる。
つまり、リセットトリガ信号CPURSTBは、ORゲート回路6、8を通過してANDゲート回路10に入力され、そのままリセット出力信号RSTBとして出力される。つまり、クロックが停止している際には、リセットトリガ信号CPURSTBはそのままスルーしてリセット出力信号RSTBに出力されることになる。スルー出力がリセット出力信号RSTBにアサートされた瞬間にプロセッサ22はリセットが入力されるので、その後のリセットトリガ信号CPURSTBはプルアップ抵抗29により緩やかにHになる。
通常動作中にクロックが停止した場合のリセット回路1の動作を図3のタイミングチャートに示す。
先ず、クロック停止検出信号CALMBがLであるので、リセット伸長回路3は初期化状態を継続するためRSTB1はクロックが停止している際には常にHとなる。また、ラッチ回路2よりマスク信号MASKにはLが出力されるのでORゲート回路6はスルー設定となり、クロック停止検出信号CALMBがLであることによりORゲート回路8もスルー設定となる。よって、時刻T0においてリセットトリガ信号CPURSTBがアサートされると即座にリセット出力信号RSTBがLとなり、リセットトリガ信号信号RSTBをアサートしているプロセッサ22も含めたパッケージ28内の各デバイスにリセットがかけられる。リセット出力信号RSTBがアサートされることによりプロセッサ22のPIOポート出力は入力に初期化されるので、外部プルアップ抵抗29によりゆっくりとHへ遷移することになる。時刻T1はリセット回路1がリセットトリガ信号CPURSTBをHと認識できるレベルになった時刻とし、この時刻T1にてリセット出力信号RSTBはHとなる。この時刻T1はプルアップ抵抗29の定数やデバイスの静電容量等により異なる。
(3)最後に、電源投入時にクロック入力が停止している場合について説明する。図4のタイミングチャートを参照して説明する。
外部パワーオンリセット信号PRSTBが、時刻T0においてLからHへ変化した時に、クロック停止検出信号CALMBがLの場合、つまり、故障等により電源投入時より継続的にクロック入力が停止しているような状況では、ラッチ回路2の出力端子OUTBから出力されるマスク信号MASKはHのままとなる。よって、マスク信号MASKによりリセットトリガ信号CPURSTBはORゲート回路6にてマスクされる形になる。また、NAND回路5の出力はHとなり、リセット伸長回路3のクリア信号CにはHが入力されるため、出力OUTはLに初期化される。
よって、例えプロセッサ22のPIOポートが出力ポートになってしまい、リセットトリガ信号CPURSTBがアサートされたままの状態となった場合でも、ORゲート回路6によりマスクされリセット出力信号RSTBがアサートされたままとならず、ネゲートされたままとなる。よって、電源投入時に既にクロックが停止しているような場合でも、状態監視部20のリセットを解除することができる。
上記(1)〜(3)で説明した動作が行われることにより、本実施形態によれば、プロセッサ22のPIOポート出力をリセットトリガ信号CPURSTBとして入力にしているリセット回路1において、通常動作時においては、プルアップ抵抗29の定数を調整することなく確実にリセット伸長を行ってリセット出力信号RSTBとしてパッケージ28内の各デバイスの初期化動作を行うことができる。また、通常動作時にクロックが停止した際にはリセット伸長を停止しリセットトリガ信号入力そのものを出力し、電源投入時にクロックが停止しているような時にはにはリセットトリガ信号入力そのものをマスクし、PIOポートの不定状態をリセットトリガ信号入力として使用してしまうことを回避するような機能を持つリセット回路を実現することができる。
本実施形態では、リセットトリガ信号CPURSTB、外部パワーオンリセット信号PRSTB、クロック停止検出信号CALMB等はアクティブロウである場合を用いて説明したが、本発明はこれに限定されるものではなく、各種信号はアクティブロウ、アクティブハイをどのように選択した場合でも同様に本発明を適用することができるものである。
以上説明したように、本発明によれば、下記のような効果を得ることができる。
(1)外部プルアップ抵抗もしくはプルダウン抵抗の定数やデバイスの静電容量に関係なく、確実にプロセッサ等のPIOポートより入力されるリセットトリガ信号を検出しリセット信号を伸長できる。また、リセット信号がアサートされた後、短期間ではあるが一時的にネゲートされ、その後またアサートされるようなリセット伸長は行わずに、確実に規定時間リセット信号をアサートすることができる。このため、従来回路で発生する可能性がある短期間のネゲートにより、パッケージが予測不可能な動作が発生するのを防ぐことができる。
(2)クロックが停止した際にはリセット伸長を停止し、リセットトリガ信号を伸長しないスルー信号を出力する機能を持たせる。それと同時に、電源投入時にクロックが停止していたような場合にはリセットトリガ信号をマスクすることで、電源投入時にクロックが入らないことによりプロセッサ等がPIOポート周辺の回路を正常に初期化できず、入出力設定および出力値が不定状態で固定してしまっても、リセット回路にてプロセッサ等のPIOポートからの入力をマスクすることでリセット信号をネゲートさせ、パッケージの状態監視機能部を動作させることができる。

Claims (10)

  1. プロセッサの汎用入出力ポートから出力されたリセットトリガ信号を入力して、前記プロセッサも含む他の回路へリセット出力信号を生成して出力するリセット回路であって、
    現在の電源状態を示す外部パワーオンリセット信号が電源オンであることを示した後に、クロックの動作状態を示すクロック停止検出信号がクロックが正常に動作していることを最初に示すまで、入力された前記リセットトリガ信号をマスクする第1のマスク手段と、
    前記第1のマスク手段から入力されたリセットトリガ信号がアサートの状態となる際のエッジを検出し、該エッジから一定時間だけアサートの状態となる信号を生成して出力するリセット伸長回路と、
    前記外部パワーオンリセット信号が電源オフであることを示した場合、または前記クロック停止検出信号がクロックが停止していることを示した場合のいずれかの場合に、前記リセット伸長回路を初期化する初期化手段と、
    前記クロック停止検出信号がクロックが正常に動作していることを示している場合に、前記第1のマスク手段からのリセットトリガ信号をマスクする第2のマスク手段と、
    前記リセット伸長回路からの信号と前記第2のマスク手段からのリセットトリガ信号のいずれかがアサートの状態の場合に、前記リセット出力信号をアサートの状態とするリセット出力信号生成手段と、を備えたリセット回路。
  2. 前記第1のマスク手段が、
    クロックが正常に動作していることを示す場合にハイレベルとなり、クロックが停止している場合にロウレベルとなる前記クロック停止検出信号を入力し、該クロック停止検出信号の反転信号を出力するインバータ回路と、
    前記外部パワーオンリセット信号をリセット入力とし、前記インバータ回路からの出力を入力端子から入力とし、前記外部パワーオンリセット信号が電源オフであることを示すロウレベルの場合には、前記入力端子に入力された値に関係なく、ハイレベルの信号を出力端子から出力し、前記リセット入力がハイレベルの場合には、前記入力端子にロウレベルの信号が一度でも入力されると前記出力端子にロウレベルの信号を出力し続けるラッチ回路と、
    アサートの状態の場合にはロウレベルとなる前記リセットトリガ信号と、前記ラッチ回路の出力端子から出力された信号を入力して論理和演算を行い、該演算結果を出力するORゲート回路とから構成される請求の範囲第1項記載のリセット回路。
  3. 前記第2のマスク手段が、前記ORゲート回路からの出力と、前記クロック停止検出信号との論理和演算を行い、該演算結果を前記リセット出力生成手段に出力する論理和演算手段により構成される請求の範囲第2項記載のリセット回路。
  4. 前記初期化手段が、前記外部パワーオンリセット信号と前記クロック停止検出信号を入力として論理積の反転の演算を行い、該演算結果を前記リセット伸長回路の非同期クリア入力へ出力するNANDゲート回路により構成される請求の範囲第2項記載のリセット回路。
  5. 前記初期化手段が、前記外部パワーオンリセット信号と前記クロック停止検出信号を入力として論理積の反転の演算を行い、該演算結果を前記リセット伸長回路の非同期クリア入力へ出力するNANDゲート回路により構成される請求の範囲第3項記載のリセット回路。
  6. プロセッサがそれぞれ設けられた複数のパッケージと、前記複数のパッケージの状態監視を行っている上位状態監視機能部とを備えたディジタル通信装置であって、
    前記複数のパッケージが、それぞれ、
    当該パッケージの状態を前記上位状態監視機能部に報告する状態監視機能部と、
    当該パッケージの電源電圧を監視し、電源電圧が一定値以上の場合には外部パワーオンリセット信号をネゲート状態とし、電源電圧が一定値より低い場合には外部パワーオンリセット信号をアサート状態とする電源監視回路と、
    当該パッケージの動作が不安定となった場合又は当該パッケージの再設定が必要になった場合、汎用入出力ポートを用いて当該パッケージ初期化を行うためのリセットトリガ信号を出力するプロセッサと、
    当該パッケージ内の各回路に供給されているクロック信号の監視を行い、該クロック信号が正常に動作している場合にはネゲートな状態となり、該クロック信号が停止している場合にはアサートな状態となるクロック停止検出信号を出力するクロック監視装置と、
    前記パワーオンリセット信号がネゲート状態となった後に、前記クロック停止検出信号が最初にネゲート状態となるまで、入力された前記リセットトリガ信号をマスクする第1のマスク手段と、前記第1のマスク手段から入力されたリセットトリガ信号がアサートの状態となる際のエッジを検出し、該エッジから一定時間だけアサートの状態となる信号を生成して出力するリセット伸長回路と、前記パワーオンリセット信号がアサート状態となった場合、または前記クロック停止検出信号がアサート状態となった場合のいずれかの場合に、前記リセット伸長回路を初期化する初期化手段と、前記クロック停止検出信号がアサート状態となった場合に、前記第1のマスク手段からのリセットトリガ信号をマスクする第2のマスク手段と、前記リセット伸長回路からの信号と前記第2のマスク手段からのリセットトリガ信号のいずれかがアサートの状態の場合に、リセット出力信号をアサートの状態とするリセット出力信号生成手段とから構成され、前記プロセッサも含む他の回路へ前記リセット出力信号を生成して出力するリセット回路と、を備えたディジタル通信装置。
  7. 前記第1のマスク手段が、
    クロックが正常に動作していることを示す場合にハイレベルとなり、クロックが停止している場合にロウレベルとなる前記クロック停止検出信号を入力し、該クロック停止検出信号の反転信号を出力するインバータ回路と、
    前記外部パワーオンリセット信号をリセット入力とし、前記インバータ回路からの出力を入力端子から入力とし、前記外部パワーオンリセット信号が電源オフであることを示すロウレベルの場合には、前記入力端子に入力された値に関係なく、ハイレベルの信号を出力端子から出力し、前記リセット入力がハイレベルの場合には、前記入力端子にロウレベルの信号が一度でも入力されると前記出力端子にロウレベルの信号を出力し続けるラッチ回路と、
    アサートの状態の場合にはロウレベルとなる前記リセットトリガ信号と、前記ラッチ回路の出力端子から出力された信号を入力して論理和演算を行い、該演算結果を出力するORゲート回路とから構成される請求の範囲第6項記載のディジタル通信装置。
  8. 前記第2のマスク手段が、前記ORゲート回路からの出力と、前記クロック停止検出信号との論理和演算を行い、該演算結果を前記リセット出力生成手段に出力する論理和演算手段により構成される請求の範囲第7項記載のディジタル通信装置。
  9. 前記初期化手段が、前記外部パワーオンリセット信号と前記クロック停止検出信号を入力として論理積の反転の演算を行い、該演算結果を前記リセット伸長回路の非同期クリア入力へ出力するNANDゲート回路により構成される請求の範囲第7項記載のディジタル通信装置。
  10. 前記初期化手段が、前記外部パワーオンリセット信号と前記クロック停止検出信号を入力として論理積の反転の演算を行い、該演算結果を前記リセット伸長回路の非同期クリア入力へ出力するNANDゲート回路により構成される請求の範囲第8項記載のディジタル通信装置。
JP2005505871A 2003-04-25 2004-04-23 リセット回路とディジタル通信装置 Expired - Fee Related JP4127283B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003121721 2003-04-25
JP2003121721 2003-04-25
PCT/JP2004/005859 WO2004097608A1 (ja) 2003-04-25 2004-04-23 リセット回路とディジタル通信装置

Publications (2)

Publication Number Publication Date
JPWO2004097608A1 true JPWO2004097608A1 (ja) 2006-07-13
JP4127283B2 JP4127283B2 (ja) 2008-07-30

Family

ID=33410051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505871A Expired - Fee Related JP4127283B2 (ja) 2003-04-25 2004-04-23 リセット回路とディジタル通信装置

Country Status (6)

Country Link
US (1) US7239187B2 (ja)
EP (1) EP1619573B1 (ja)
JP (1) JP4127283B2 (ja)
CN (1) CN1781066B (ja)
HK (1) HK1082820A1 (ja)
WO (1) WO2004097608A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083598B2 (en) 2002-08-27 2006-08-01 Jan Liska Transcutan catheter assembly
JP4308735B2 (ja) * 2004-09-06 2009-08-05 Okiセミコンダクタ株式会社 半導体回路
US7586350B2 (en) * 2005-09-28 2009-09-08 Hynix Semiconductor Inc. Circuit and method for initializing an internal logic unit in a semiconductor memory device
JP4750564B2 (ja) * 2006-01-26 2011-08-17 富士通セミコンダクター株式会社 リセット信号生成回路
US8400745B1 (en) * 2008-04-30 2013-03-19 Netapp, Inc. Fuse apparatus
CN101359904B (zh) * 2008-07-25 2010-06-02 北京航空航天大学 一种防止恒复位的多路互隔离复位电路
CN101861599B (zh) 2008-09-17 2012-07-04 松下电器产业株式会社 图像处理装置、摄像装置、评价装置、图像处理方法以及光学系统评价方法
EP2596412B1 (en) * 2010-07-20 2018-01-03 NXP USA, Inc. Electronic circuit, safety critical system, and method for providing a reset signal
JP5501320B2 (ja) * 2011-09-30 2014-05-21 京セラドキュメントソリューションズ株式会社 電子回路
CN104850203B (zh) * 2015-06-10 2019-02-05 联想(北京)有限公司 一种电子设备复位方法及电子设备
DE102016200245B3 (de) * 2016-01-12 2016-09-29 Siemens Aktiengesellschaft Verfahren zur Einstellung der Pull-Widerstände eines elektronischen Bausteins
CN107463236B (zh) * 2017-08-28 2023-05-12 珠海格力电器股份有限公司 一种复位检测电路和复位检测方法
US11269707B2 (en) 2019-12-30 2022-03-08 Micron Technology, Inc. Real-time trigger to dump an error log
US11269708B2 (en) 2019-12-30 2022-03-08 Micron Technology, Inc. Real-time trigger to dump an error log
CN113467591B (zh) * 2021-07-08 2023-04-11 南昌华勤电子科技有限公司 复合信号复位电路、方法及服务器
US11681324B2 (en) * 2021-10-01 2023-06-20 Achronix Semiconductor Corporation Synchronous reset deassertion circuit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792793B2 (ja) 1987-04-17 1995-10-09 富士通テン株式会社 マイクロコンピユ−タ
JPH04218822A (ja) * 1990-12-19 1992-08-10 Sony Corp 機器制御用のマイクロプロセッサ
JP2776093B2 (ja) * 1991-10-24 1998-07-16 日本電気株式会社 リセット回路
US5323066A (en) 1992-06-01 1994-06-21 Motorola, Inc. Method and apparatus for performing power on reset initialization in a data processing system
JPH06175751A (ja) 1992-12-08 1994-06-24 Toshiba Corp Cpuリセット回路
JPH07319588A (ja) * 1994-05-27 1995-12-08 Fujitsu Denso Ltd 暴走防止制御方式
DE19627362C2 (de) * 1996-07-06 1998-11-26 Bosch Gmbh Robert Schaltung zur Initialisierung und Überwachung eines Mikroprozessors
JPH1097340A (ja) * 1996-09-20 1998-04-14 Toshiba Corp 携帯型情報機器
US5912570A (en) * 1997-01-08 1999-06-15 Nokia Mobile Phones Limited Application specific integrated circuit (ASIC) having improved reset deactivation
JPH10289031A (ja) * 1997-04-11 1998-10-27 Nec Gumma Ltd コンピュータ
JPH11150451A (ja) * 1997-11-14 1999-06-02 Nec Corp 非同期リセット回路
WO1999060804A1 (en) * 1998-05-18 1999-11-25 Leviton Manufacturing Co., Inc. Network based electrical control system with distributed sensing and control
JP2001142792A (ja) 1999-11-17 2001-05-25 Ricoh Co Ltd リセット信号発生回路
JP2002108510A (ja) 2000-09-28 2002-04-12 Toshiba Microelectronics Corp リセット回路
JP2002189706A (ja) * 2000-12-21 2002-07-05 Nec Miyagi Ltd 通信装置の分散型初期設定システム及び方法
JP4007027B2 (ja) * 2002-03-19 2007-11-14 日本電気株式会社 パワーオンリセット回路

Also Published As

Publication number Publication date
US7239187B2 (en) 2007-07-03
EP1619573A1 (en) 2006-01-25
EP1619573B1 (en) 2014-01-08
CN1781066A (zh) 2006-05-31
HK1082820A1 (en) 2006-06-16
EP1619573A4 (en) 2010-07-14
WO2004097608A1 (ja) 2004-11-11
CN1781066B (zh) 2010-05-26
JP4127283B2 (ja) 2008-07-30
US20060033541A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US7239187B2 (en) Reset circuit and digital communication apparatus
KR20100063665A (ko) 지연 회로
JP2008085592A (ja) 半導体集積回路装置
EP1237282B1 (en) Circuit for the detection of clock signal period abnormalities
JP2006197564A (ja) 信号選択回路およびリアルタイムクロック装置
EP3644513B1 (en) Pad protection in an integrated circuit
JP4007027B2 (ja) パワーオンリセット回路
KR100309233B1 (ko) 싱글-엔드-제로 수신기 회로
WO2016098593A1 (ja) 電源監視回路、パワーオンリセット回路、および半導体装置
US20110096880A1 (en) Lossless Transfer Of Events Across Clock Domains
CN108055022B (zh) 一种带抗振荡结构的rs触发器电路
EP2241008B1 (en) System and method of conditional control of latch circuit devices
US6566924B2 (en) Parallel push algorithm detecting constraints to minimize clock skew
JP2009038128A (ja) 半導体集積回路装置
TWI749979B (zh) 控制電路及操作系統
EP3812874B1 (en) Glitch-free clock multiplexer
US20220149844A1 (en) Control circuit and corresponding method
JP2001216047A (ja) 遅延調整回路
KR100468677B1 (ko) 리셋 신호 인터페이스 장치 및 방법
KR100266627B1 (ko) 파워다운회로
KR20030049442A (ko) 리셋 회로
JP2003216267A (ja) クロック断検出回路
CN114696809A (zh) 信号产生电路及操作系统
US20060279331A1 (en) Tri-state output logic with zero quiescent current by one input control
KR20010019864A (ko) 마이크로 컨트롤러용 저전압 리셋 회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees