JPH10226726A - シリケート化合物及びこれを含有する液状組成物 - Google Patents

シリケート化合物及びこれを含有する液状組成物

Info

Publication number
JPH10226726A
JPH10226726A JP3039397A JP3039397A JPH10226726A JP H10226726 A JPH10226726 A JP H10226726A JP 3039397 A JP3039397 A JP 3039397A JP 3039397 A JP3039397 A JP 3039397A JP H10226726 A JPH10226726 A JP H10226726A
Authority
JP
Japan
Prior art keywords
silicate compound
compound
organic
molecular weight
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3039397A
Other languages
English (en)
Other versions
JP3881076B2 (ja
Inventor
Seiichiro Tanaka
誠一朗 田中
Takeshi Sawai
毅 沢井
Kenji Oba
憲治 大庭
Hozumi Endo
穂積 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP03039397A priority Critical patent/JP3881076B2/ja
Priority to PCT/JP1997/001002 priority patent/WO1997035908A1/ja
Priority to KR1019980707557A priority patent/KR20000004954A/ko
Priority to US09/155,209 priority patent/US6291697B1/en
Priority to EP97907469A priority patent/EP0890597A1/en
Publication of JPH10226726A publication Critical patent/JPH10226726A/ja
Application granted granted Critical
Publication of JP3881076B2 publication Critical patent/JP3881076B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】 【課題】 耐汚染性、耐酸性、耐薬品性、耐候性、耐熱
性等の向上、あるいは鋳物用砂型等のバインダー用途
等、様々な用途への適用が可能であり、極めて有用な液
状組成物を供することのできる新規なシリケート化合物
を得る。 【解決手段】 重量平均分子量が2000〜40000
の範囲であり、かつ珪素原子に直結した水酸基/Si<
0.3モル倍である、特定の化学式で示されるシリケー
ト化合物。。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、シリケート化合物
及びこれを含有する液状組成物並びにこれらの硬化物に
関する。
【0002】
【従来技術】有機樹脂にアルコキシシリル基を導入する
ことにより、塗膜の硬度、耐酸性、耐候性等の改善が従
来より試みられている。更に近年、テトラエトキシシラ
ン、テトラメトキシシラン、メチルトリメトキシシラ
ン、エチルトリメトキシシラン、ジメチルジメトキシシ
ラン、ビニルトリメトキシシラン等のシリケート化合
物、あるいはこれらを部分加水分解縮合したオリゴマー
を単独でコーティング剤として用いたり、或いはこれら
を樹脂と配合して用いることが検討されている。本発明
者らは先に、それ自身で、或いは各種の樹脂、シランカ
ップラー等の有機成分と配合して極めて有用な硬化性組
成物を供することのできる、シラノール基を主体とした
反応性官能基を有する超微粒子を含有するサスペンジョ
ンを提案している(WO95/17349)。
【0003】
【発明の解決しようとする課題】しかしながら、上述の
サスペンジョンは、外観上は安定な液状を長期間保つも
のの、一定期間以上の保存をした液は、硬化して得られ
る塗膜の硬度、耐沸騰水性等の特性が低下してくる傾向
にあることが本発明者らの検討により判った。これは、
この物の有するシラノール基の反応性が高いため縮合反
応が徐々に進行し、シラノール基を主体とした反応性官
能基が低減するためと考えられ、より一層の安定化が図
れれば、非常に有用であると考えられた。
【0004】また、本発明者らは、それ自身では硬化物
とは成り難いが、重量平均分子量が600〜2200で
貯蔵安定性に優れたシリケート化合物も提供している
(特願平7−272433)。この物は、各種塗料等の
有機成分に数%〜数十%添加することで、得られる塗膜
の耐汚染性、耐候性、耐酸性等を向上させる効果が期待
できるものである。このようなシリケート化合物につい
ては、その分子量が大きいほど、塗料等の有機成分に添
加した場合に得られる塗膜の耐汚染性、耐候性、耐酸性
等の向上効果が顕著であることが見いだされ、より高分
子量のシリケート化合物の開発が望まれる。しかしなが
ら、このようなシリケート化合物をより高分子量とすべ
く重合度を上げていくと、粘度増加、さらにはゲル化が
起こり、安定な高分子量のシリケート化合物を得ること
はできなかった。
【0005】
【課題を解決するための手段】これらの課題を解決すべ
く、本発明者らは更に鋭意検討したところ、官能基の経
時変化が少なくかつ安定に液状で存在する、特定の分子
量範囲で表される高分子量かつ各種の樹脂等の有機成分
と配合して極めて有用な硬化組成物を提供するシリケー
ト化合物を得ることに成功し、本発明に到達した。すな
わち、本発明は、重量平均分子量が2000〜4000
0の範囲であり、かつ珪素原子に直結した水酸基/Si
<0.3モル倍である、下記の一般式で示すシリケート
化合物、
【化2】 等に存する。
【0006】
【発明の実施の形態】以下、本発明を詳細に説明する。
まず、本発明のシリケート化合物とは、以下の一般式で
表され、重量平均分子量が2000〜40000の範囲
であり、かつ珪素原子に直結した水酸基/Si<0.3
モル倍のものである。
【0007】
【化3】 (R1:メチル基又はエチル基、R2:R1と相異なる有機
基)
【0008】すなわち、シロキサン結合を主鎖とし、珪
素原子にR1O−基及び/又はR2O−基が結合している
化合物である。シロキサン結合は、直鎖状であると環状
であるを問わない。また、分岐を有していてもよい。R
1はメチル基又はエチル基であり、R2はR1と相異なる
有機基である。ここで、貯蔵安定性及び塗膜化した時の
塗膜特性の面から、重量平均分子量が2000〜400
00の範囲であることが重要であり、好ましくは200
0〜30000、更に好ましくは2000〜20000
の分子量範囲である。重量平均分子量が2000未満で
は、重合度が十分でなく、このシリケート化合物を単独
で塗膜化、又はこのシリケート化合物と後述する有機高
分子等の有機化合物と配合して得られる液状組成物を塗
膜化した場合の耐擦傷性、耐溶剤性、耐汚染性等の向上
効果の発現が乏しい。
【0009】一方、重量平均分子量が40000を超え
ると、得られたシリケート化合物の高分子量化が進み過
ぎるためか、高粘度化又はゲル化等の問題を生じ易く、
貯蔵安定性の低下が著しいものとなる。更に、本発明の
シリケート化合物では、珪素原子に直結した水酸基/S
i<0.3モル倍であることが重要である。水酸基/S
i≧0.3モル倍では塗膜化した際に塗膜特性が著しく
低下し、硬度、密着性等の発現が十分でない。おそら
く、珪素原子に直結した水酸基(シラノール基)が残存
している場合、アルコキシ基との脱アルコール縮合反応
によるシロキサンの生成、又はシラノール基相互の脱水
縮合反応によるシロキサンの生成を誘発し、経時的に高
分子量化及び官能基の減少を引き起こすため、この物を
塗膜化した場合の硬度、密着性等の塗膜特性の劣化を来
たすのではないかと推測される。
【0010】このため、本発明のシリケート化合物にお
いて、特に珪素原子に直結した水酸基/Si<0.3モ
ル倍、好ましくは0.2モル倍以下とすることにより、
液での組成変化が抑えられ、貯蔵安定性を大きく向上さ
せることが可能となったものと考えられる。この様にし
て得られたシリケート化合物は、慣性半径100Å以下
の微小粒子を形成させることができる。尚、微小粒子の
存在は、小角散乱X線等の手段で容易に確認できる。す
なわち、微小粒子の存在により、入射X線の回折強度分
布が、入射線方向に中心散乱と呼ばれる散漫な散乱、す
なわち小角X線散乱を示す散乱強度Iは、次のGuin
ierの式により与えられる。
【0011】I=C exp(−H2Rg2/3)(I:
散乱強度、H:散乱ベクトル(=2πsin2θ/
λ)、Rg:微小粒子の慣性半径、C:Const、
λ:入射X線波長、2θ:ひろがり角) 上記のGuinierの式の両辺の常用対数をとると、
logI=logC-(H2Rg2/3)となり、従って、微小粒子が
存在する場合、散乱強度を測定し、散乱ベクトルに対す
る両対数グラフをプロット(得られるプロットはギニエ
プロットと称される)し、傾きを求めることにより、微
小粒子の慣性半径を求めることができる。また、散乱強
度が十分にある場合は、散乱ベクトルのフーリエ変換に
より距離分布関数を求め、そのピーク位置から慣性半
径、ピーク幅から形状やそのバラツキを知ることができ
る。
【0012】本発明における慣性半径は、ギニエプロッ
トがほぼ直線で、その傾きから慣性半径が1つに定まる
場合は、この値をいうものとする。また、ギニエプロッ
トが曲線であり、その傾きからは慣性半径が1つに定ま
らない場合は、散乱ベクトルのフーリエ変換により距離
分布関数を求め、そのピーク位置から求めた慣性半径を
いうものとする。本発明のシリケート化合物において慣
性半径は100Å以下のものが好ましいが、特に好まし
くは60Å以下、更に好ましくは40Å以下、最も好ま
しくは30Åである。この範囲で硬化物とした際の、耐
汚染性付与の効果が最も著しい。本発明のシリケート化
合物においては、R1はメチル基又はエチル基である。
特にメチル基の場合、シリケート化合物を用いて得られ
る硬化物の硬度、耐薬品性等の特性が優れたものとな
る。シリケート化合物の反応性が高く高分子量化し易い
ためと考えられる。
【0013】しかしながら、特にR1 がメチル基の場合
すなわちSiにメトキシ基が結合している場合は、後述
する有機高分子等の有機化合物及び/又は無機粉体や顔
料成分を添加して塗料とした時に、これらとの反応性が
高いことに起因し、貯蔵時に経時的な粘度上昇を引き起
こすことがある。また、本発明のシリケート化合物は、
シロキサン重合度を高め、単独での貯蔵安定性を維持で
きる限界近くまで高分子量化した物であるため、後述す
る有機高分子等の有機化合物と配合して用いる場合に有
機化合物の種類によっては「相溶性の低下」から使用
上、問題を生じることがある。このときの「相溶性の低
下」とは、シリケート化合物と有機化合物が配合時に白
濁又は分液もしくは何れかが析出する様な状況であり、
このような場合には均一かつ透明な混合液が得られない
ため、これを塗膜化しても、透明な均一膜を得ることが
困難となる。
【0014】そこで、本発明者らは更に検討し、Siに
結合する基の一部もしくは全部をメトキシ基よりも反応
性が低く、かつ配合しようとする有機化合物と親和性の
良い官能基であるR2O−で置換することにより、前述
した塗料としたときの貯蔵時の増粘及び/又は種々の有
機高分子等の有機化合物との相溶性を改良できることを
見出したのである。つまり、シリケート化合物に有機化
合物を配合する場合には、以下説明するR2を適宜選択
することにより、シリケート化合物と有機化合物との相
溶性及び塗料における貯蔵安定性を向上させることがで
きるのである。すなわち、R2はR1と相異なる有機基で
ある。好ましくはR1をエステル交換して導入できる有
機基であればよく、具体的には1価もしくは2価のアル
コール類とエステル交換して得られる有機基、例えばア
ルキル基、アリール基、アラルキル基、アリル基、1−
メトキシ−2−エチル基、1−エトキシ−2−プロピル
基、1−メトキシ−2−プロピル基、2−メトキシエチ
ル基、2−エトキシエチル基、C25OC24OC24
−、CH324OC24−、C25OC24−、CH3
OC24−等が挙げられ、例えば特開平2−25668
7号公報に記載されている様な活性水素含有化合物を用
いてR1の一部または全部を置換したものでもよい。更
に、R2として複数種類の基を導入することも可能であ
る。
【0015】通常、これらR2の導入は、シリケート化
合物の官能基がR1だけでは配合する有機化合物及びそ
の溶剤成分と相溶しない場合に行えばよい。このときの
2の種類及びR1との比率は、配合する有機化合物との
相溶性および目的とする硬化物の特性から適宜選択すれ
ばよいが、一般的にはR2/R1が0〜5.0モル倍の範
囲である。好ましくは0.01〜1.0モル倍である。
2/R1の比率が5.0を超えると、シリケート化合物
を有機高分子等の有機化合物に配合してなる液状組成物
から得られる塗膜の硬度、耐擦傷性、耐汚染性等の特性
が低下してしまう。 このような本発明のシリケート化
合物を得るための方法は特に限定されず、いずれの方法
で得られた物も該当するが、例えば、以下に述べる本発
明の方法により本発明のシリケート化合物を得ることが
できる。
【0016】すなわち、Si(OR1)4で表されるテト
ラアルコキシシランに、通常1.1〜1.6モル倍量程
度の水を加え、所望の程度まで加水分解縮合反応を進行
させる。この反応は、触媒及び溶媒の存在下で行うこと
が好ましく、溶媒としてはR1OHを用いることが反応
の制御のし易さから好ましい。反応は、珪素原子に直結
した水酸基/Si<0.3モル倍、好ましくは0.2モ
ル倍以下、更に好ましくは0.1モル倍以下となるまで
行う。反応自体は、溶媒の還流下の様な加熱系又は室温
下で行ってもよく、通常、用いる触媒にもよるが還流下
で2〜6時間、室温で1〜3日間で珪素原子に直結した
水酸基/Si<0.3モル倍にすることが可能である。
【0017】また、≡Si(OR1)のR1をR2に置換す
る場合は、引き続きこの液に所定量のR2OHを添加し
た後、加温し副生するR1OH及び/又は溶媒のR1OH
を留去しながらエステル交換反応を進行させればよい。
このとき、用いるR2OHはR1OHよりも高沸点のもの
が留去によるロスが少なく、反応制御し易いため好まし
い。尚、溶媒がR1OHの場合で、これを留去すること
でシリケート化合物が高粘度になり過ぎ安定性が問題と
なる場合は、エステル交換しないような溶媒をエステル
交換反応の前もしくは後に添加して、安定化を図ること
も可能である。
【0018】このような溶媒としては、シリケート化合
物の有するアルコキシ基とエステル交換反応を起こさな
い溶媒、例えばエステル交換反応が可能な炭素に結合し
た水酸基を含む様なヒドロキシ化合物、又はカルボキシ
ル基を有する有機酸化合物以外の有機溶媒である。例え
ば、トルエン、キシレン、エチルベンゼン、ジエチルベ
ンゼン、ケロシン等の炭化水素類、酢酸n−プロピル、
酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル等
のエステル類、メチルn−ブチルケトン、メチルイソブ
チルケトン、ジエチルケトン等のケトン類、ジブチルエ
ーテル、ジオキサン等のエーテル類、エチレングリ コ
ールモノエチルエーテルアセテート、ジエチレングリコ
ールモノメチルエーテルアセテート、ジエチレングリコ
ールモノエチルエーテルアセテート、プロピレングリコ
ールモノメチルエーテルアセテート、プロピレングリコ
ールモノエチルエーテルアセテート等のグリコール誘導
体が挙げられる。
【0019】このように、比較的単純且つ容易な方法
で、しかも様々な用途に有用な本発明のシリケート化合
物を得ることかできるのである。本発明のシリケート化
合物とは、重量平均分子量が2000〜40000、か
つ珪素原子に直結した水酸基/Si<0.3モル倍であ
るものであり、小角散乱X線における慣性半径が100
Å以下とすることもできるものであることは前述のとお
りである。なお、上述した製造方法は、本発明のシリケ
ート化合物を得るための代表的な手法であり、他の方法
で本発明のシリケート化合物を得てもよいことは言うま
でもない。尚、本発明のシリケート化合物を有機溶剤を
含有する液状組成物とすれば更に貯蔵安定性が向上す
る。この場合、シリケート化合物の含有量は5〜95重
量%、好ましくは5〜70重量%程度が適当である。
【0020】こうして得られる本発明のシリケート化合
物は、高重合度でありながら貯蔵安定性は1年以上、透
明且つ組成変化のない液状態を保つことが可能である。
このように、従来存在したシリケート化合物とは違った
特徴を有する本発明のシリケート化合物は、例えば加水
分解溶液としてハードコートに用いることも可能であ
る。また、樹脂等の有機化合物を配合した液状組成物と
して用いることにより、得られる塗膜は、配合前の樹脂
等の有機化合物だけの塗膜に比べ、耐擦傷性、親水性付
与、耐汚染性、耐酸性、耐候性、耐熱性等の特性向上に
優れた効果を発現する。勿論、本発明のシリケート化合
物自体、あるいはこれに樹脂を配合した組成物を更に各
種の溶媒等で希釈して塗布液等の用途に用いることも可
能である。
【0021】ここで本発明のシリケート化合物に配合す
る有機化合物は、本発明のシリケート化合物と相溶可能
なものが好ましい。ここで相溶可能であるとは、これら
を配合した時に白濁又は分液もしくは何れかが析出する
様なことがなく、外観上均一かつ透明な混合液が得られ
ることをいう。すなわち、シリケート化合物が完全に溶
解しているものに限られるものではない。
【0022】このような有機化合物としては、例えば、
カルボキシル基、ヒドロキシル基、アルコキシ基等を有
するものが挙げられ、具体的には、例えば (I)シランカップラー(一般にはRSiX3 :Xは加
水分解性基、Rは有機基) (II)アルキルアルコキシシリコーン類 (III)アクリル樹脂、エポキシ樹脂、ポリエステル樹
脂、ウレタン樹脂等のポリマー類 (IV)1,4ブタンジオール、グリセリン、カテコー
ル、レゾルシン等の多価アルコール等が挙げられる。 より具体的には、例えば(I)のシランカップラーとし
ては、
【0023】
【化4】
【0024】等のメチルアクリレート系、
【0025】
【化5】
【0026】等のエポキシ系、
【0027】
【化6】H2NC36Si(OC253 、H2NC2
4NHC36Si(OCH33 、H2NCONHC36
Si(OC253 、等のアミン系、
【0028】
【化7】CH2=CHSi(OC253 、CH2=C
HSi(OCH33 、CH2=CHSi(OC24
CH33 、等のビニル系、
【0029】
【化8】HS−C36Si(OCH33 、HS−C3
6Si(OC253 、HS−C36Si(OC24
OCH33 、等のメルカプト系、等が挙げられる。
【0030】これらはいずれも好適に用いることができ
るが、コーティングを施す基材の種類又は目的とする膜
特性等により適宜、適応するシランカップラーを選択す
ることで、より密着性の優れたコーティングを得ること
ができる。また、(II)のアルキルアルコキシシリコー
ン類としては、
【化9】(CH3O)3Si-{OSi(CH32}n-{OS
i(OCH32}m−OCH3 n,m=1〜10 等が挙げられる。
【0031】(III)のポリマー類としては、 (1)アクリル樹脂 (a)
【化10】 (b)上記(a)構造にγーMTS(γーメタクリロキ
シプロピルトリメトキシシラン)を付加したもの
【0032】(2)エポキシ樹脂
【化11】
【0033】(3)ポリエステル樹脂
【化12】
【0034】(4)ポリウレタン樹脂
【化13】 等が挙げられる。
【0035】これらは、本発明のシリケート化合物と配
合し得る有機化合物の例示であり、本発明で用いること
のできる有機化合物はこれらに限られるものではなく、
目的に応じて適宜選択すればよく、上述したように、上
述したシリケート化合物と相溶し得るものであれば、い
ずれも好適に用いることができる。又、上記の有機化合
物を、目的に応じて2種以上併用することも勿論差し支
えない。例えば、エポキシ樹脂とエポキシ系シランカッ
プラー、アクリル樹脂とアクリル系シランカップラー、
ポリエステル樹脂とエポキシ系シランカップラー等、樹
脂成分とシランカップラーとを併用することにより、基
材との密着性が向上し、又樹脂成分とシリケート化合物
との相溶性が更に向上し、得られるコーティング膜の特
性がより優れたものとなる等の効果も期待できるため、
目的に応じ適時選択することができる。尚、併用に際し
ては、2種以上を予め配合しても、各々をシリケート化
合物に添加してもよい。
【0036】また、シリケート化合物と有機化合物との
配合は室温下または場合によっては加熱下で行っても構
わない。更に、必要に応じて、溶媒、分散媒、硬化触媒
等を添加することができる。有機化合物とシリケート化
合物との配合割合は、不揮発成分として通常、シリケー
ト化合物100重量部に対して、有機化合物1〜500
0重量部と広い範囲での使用で効果を発揮する。例え
ば、本発明のシリケート化合物の有する硬度、高耐熱性
等の特性の発現を重視する場合は、有機化合物は1〜4
00重量部の範囲が好ましい。この時の、配合液の不揮
発成分中のSiO2換算濃度は10〜95重量%の範囲
が好ましい。一方、有機化合物特に有機樹脂による柔軟
性、厚膜化等の特性を維持しながら、シリケート化合物
を添加剤的に用いることにより有機化合物が主成分であ
る塗膜等に低汚染性、耐候性、密着性等を付与すること
を重視する場合は、有機化合物は500〜5000重量
部の範囲で配合することが好ましい。この時の、配合液
の不揮発成分中のSiO2換算濃度は1〜10重量%が
好ましい。
【0037】なお、配合液中の各成分、特にシリケート
化合物と上述の反応性有機化合物は、縮合した状態で液
中に存在してもよいし、あるいは単に混合している状態
で存在してもよい。用途及び有機化合物の種類に応じ、
適宜選択すればよい。加熱、及び/又は副生するアルコ
ールを系外に除去することにより縮合反応を促進させる
こともできる。なお、本発明のシリケート化合物と上述
の有機化合物とを相溶状態とするには、各種の溶媒又は
分散媒を添加した液状組成物とすることにより、相溶状
態とすることも可能である。また、有機化合物の種類に
よっては本発明のシリケート化合物と配合した後に一定
時間放置、攪拌することにより相溶状態とすることもで
きる。
【0038】以上説明した本発明のシリケート化合物が
配合された液状組成物は、硬化されて各種の有用な硬化
物とすることができるものである。本発明のシリケート
化合物又は本発明の液状組成物を用いて各種粉体を処理
する場合の処理方法は、一般的な湿式法又は乾式法で行
うことができる。例えば、乾式法の場合はヘンシェルミ
キサー等の混合攪拌機付きで且つ乾燥可能な機器を用い
れば好適である。
【0039】原料粉体と所定量のシリケート化合物とを
仕込み、原料粉体表面が充分濡れるまで室温で攪拌し、
次に、攪拌を続けながら100〜150℃に加熱しシリ
ケート化合物の架橋反応を促進させ、且つ水分等の揮発
成分を蒸発させることにより表面処理された粉体を得る
ことができる。尚、所定量のシリケート化合物で原料粉
体が均一に濡れにくい場合は、シリケート化合物を水等
で希釈して用いてもよい。また、特にマトリクスとの親
和性を高める場合、原料粉体をシリケート化合物、特に
本発明のシリケート化合物あるいはこれを水等で希釈し
た液で予め原料粉体を表面処理し、必要に応じて乾燥等
を行った後、更に本発明の液状組成物で処理することも
できる。
【0040】本発明のシリケート化合物或いは液状組成
物は様々な基材との親和性に優れるので、処理の対象と
なる原料粉体も特に制限されず、例えばガラス、セメン
ト、コンクリート、鉄、銅、ニッケル、金、銀、アルミ
ニウム、希土類、コバルト等の金属、カーボンブラッ
ク、グラファイト、炭素繊維、活性炭、炭素中空球等の
炭素材、シリカ、アルミナ、酸化チタン、酸化ベリリウ
ム、酸化鉄、酸化亜鉛、酸化マグネシウム、酸化スズ、
酸化アンチモン、バリウムフェライト、ストロンチウム
フェライト等の酸化物、水酸化アルミニウム、水酸化マ
グネシウム等の水酸化物、炭酸カルシウム、炭酸マグネ
シウム等の炭酸塩、硫酸カルシウム等の硫酸塩、タル
ク、クレー、マイカ、ケイ酸カルシウム、ガラス、ガラ
ス中空球、ガラス繊維等のケイ酸塩、その他チタン酸カ
ルシウム、チタン酸ジルコン酸鉛、窒化アルミニウム、
炭化ケイ素、硫化カドミニウム等の各種無機粉体、木
粉、デンプン、各種有機顔料、ポリスチレン、ナイロン
等の有機物充填材等、汎用充填材であると導電性・電磁
波シールド性、磁性・遮音性・熱伝導性・遅燃性・難燃
性。耐磨耗性等付与の為の機能性充填材であるとを問わ
ず、本発明のシリケート化合物或いは珪素含有組成物で
処理することができる。そして、これらの原料粉体を本
発明のシリケート化合物或いは液状組成物で処理してな
る表面処理の成された粉体は、例えば油性塗料、合成樹
脂塗料、水溶性樹脂塗料、エマルジョン塗料、骨材入り
エマルジョン塗料、トラフィックペイント、パテ・コー
キング等の塗料、靴底、電線、タイヤ、工業用品、ベル
ト、ホース、ゴム引布、ゴム糊、粘着テープ、ラテック
ス、バックサイジング等のゴム製品、塗工用、内装用、
合成紙等の紙用途、PVC、ポリオレフィン、エポキシ
・フェノール、不飽和ポリエステル等の合成樹脂製品、
電気溶接棒、ガラス、酸中和、医薬品、食品、製糖、歯
磨、クレンザー、バンカーサンド、農薬、配合飼料、建
材等の各種充填材等に用いたり、充填材として繊維及び
樹脂成分に配合して成型し、FRP(FiberRei
nforced Plastic)とすることもでき
る。
【0041】また、本発明のシリケート化合物或いは液
状組成物を紙等の多孔質素材に含浸する場合は、これら
素材をシリケート化合物或いは液状組成物にティッピン
グした後乾燥すればよい。常温或いは加熱下、架橋反応
を進行させれば、難燃性、平滑性等の特性を付与するこ
とができる。本発明のシリケート化合物或いは液状組成
物を接着用途に用いる場合は、被接着面にシリケート化
合物或いは液状組成物を塗布し完全に硬化する前に被接
着面同士を圧着する。又は、予め被接着面を本発明のシ
リケート化合物又はその加水分解液等でプリコートして
おけば、更に接着強度が上がる。さらに、これらの本発
明の液状組成物、あるいは本発明のシリケート化合物は
それ自体で、あるいは更に顔料を添加して塗料とした
り、無機、有機の各種充填材を配合してなる硬化性組成
物とし、硬化させて複合材とすることもできる。
【0042】顔料としては、無機系顔料として鉛白等の
鉛化合物、亜鉛華、リトポン等の亜鉛化合物、酸化チタ
ン等のチタン化合物、オーレオリン、コバルトグリー
ン、セルリアンブルー2、コバルトブルー、コバルトバ
イオレット等のコバルト化合物、酸化鉄等の鉄化合物、
酸化クロム、クロム酸鉛、クロム酸バリウム等のクロム
化合物、硫酸カドミウム、硫セレン化カドミウム等のカ
ドミウム化合物、カーボンブラック等が挙げられる。ま
た、有機系顔料として水に不溶のフタロシアニン系、ジ
オキサジン系、アントラキノン系、キノフタロン系等の
有色化合物、又はこれらの金属含有化合物などが挙げら
れる。以上、列記した化合物以外でも本発明の液状組成
物を着色する目的で使用できる物であれば、何れも用い
ることができることは言うまでもない。これらは、単独
で用いたり、又は2種類以上を併用することも可能であ
る。
【0043】充填材としては、カーボンブラック、グラ
ファイト、炭素繊維等の炭素材、シリカ、アルミナ、酸
化マグネシウム等の酸化物、水酸化アルミニウム、水酸
化マグネシウム等の水酸化物、炭酸カルシウム、炭酸マ
グネシウム等の炭酸塩、硫酸カルシウム等の硫酸鉛、タ
ルク、クレー、マイカ、珪酸カルシウム、ガラス繊維等
の珪酸化合物などの無機物充填材。及びポリスチレン、
ポリエチレン、ポリプロピレン、ナイロン等の有機高分
子化合物、木粉、デンプンなどの有機物充填材等が挙げ
られる。これらは、単独で用いたり、又は2種類以上を
併用することも可能である。本発明のシリケート化合物
あるいは液状組成物にさらに顔料を添加した塗料とする
場合は、予め有機化合物に分散しておけば、均一に顔料
分散した珪素含有塗膜を容易に得ることができる。
【0044】
【実施例】以下、本発明を実施例により更に詳細に説明
する。 実施例1 〔シリケート化合物−1の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製2リットル四ツ口
丸底フラスコにテトラメトキシシラン608.2g、メ
タノール505.6gを仕込み5分攪拌した後、0.1
規定塩酸水8.16gと水78.4gの混合液を添加し
た。この時の、テトラメトキシシランに対する水の量は
1.2モル倍に相当する。その後、還流状態(65℃)
となるまで加熱し、還流下で4時間反応させた。このも
のを、室温まで放冷したのち取り出して液状で無色透明
なシリケート化合物−1、1197.6gを得た。この
シリケート化合物−1の分子量を、以下に示すGPC分
析から求めた。
【0045】〔GPC分析条件〕
【表1】 装 置 :Waters製 高温GPC 150C カ ラ ム :PLgel 500Å(5μ)1本+100Å(5μ)2本 温 度 :カラム40℃,注入口30℃,ポンプ30℃ 溶 媒 :クロロホルム 1.0ml/min 検 出 器 :RI検出器 32×1 RIU/FS 試 料 :クロロホルムで5重量%に希釈し、100μl注入 チャート速度 :5mm/min データ処理 :東ソー製 CP−8000 標準ポリスチレン及びテトラメトキシシラン・オリゴマ
ーを用いた、GPC検量線を図1に示す。この結果、シ
リケート化合物−1の重量平均分子量は2015あっ
た。また、微小粒子の慣性半径を、下記に示す小角散乱
X線分析により求めた。
【0046】〔小角散乱X線分析条件〕
【表2】 X線発生装置:理学電気社製 RU−200B(回転対陰極型) X 線 源 :Cu−Kα線 平板グラファイトインシデントモノクロメーター使用 電流、電圧 :50kV、200mA 光 学 系 :理学電機社製 Kratkyカメラ U−スリット 幅70μm 高さ15mm 検 出 器 :理学電機社製 PSPC 受光スリット 高さ8mm 積算時間 4000秒 チャンネル数 512(45.4ch/deg.) 試料から検出器までの距離:300mm この結果、シリケート化合物−1の慣性半径は、約5Å
であった。更に、珪素原子に直結した水酸基(シラノー
ル基)/Si原子のモル比は、以下に述べる方法で求め
ることができる。
【0047】本発明のシリケート化合物を示性式で示す
と、
【化14】SiOa(OH)b(OR1c(OR2d と、表すことができる。ここで、 (1)29Si−NMRにより、シロキサン結合している
O原子の数である、係数aの値を求める。 (2)13C−NMRにより、Si原子に結合しているメ
トキシ基等のアルコキシ基の数である、係数c及びdを
求める。 (3)珪素原子に直結した水酸基(シラノール基)であ
る係数bは、b=4−(2a+c+d) の関係式か
ら計算で求める。その結果、シリケート化合物−1の示
性式は SiO1.15(OH)0.05(OCH31.65 となり、シラノール基/Si=0.05モルであった。
又、このシリケート化合物−1について、密閉下で50
℃、45日間(室温換算約1年間相当)の加速保存試験
を実施したが、液粘度は当初の1.1cpから1.2c
p程度しか上昇せず、貯蔵安定性良好な液状物であっ
た。
【0048】実施例2 〔シリケート化合物−2の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製2リットル四ツ口
丸底フラスコにテトラメトキシシラン608.2g、メ
タノール491.2gを仕込み5分攪拌した後、0.1
規定塩酸水8.16gと水92.8gの混合液を添加し
た。この時の、テトラメトキシシランに対する水の量は
1.4モル倍に相当する。その後、還流状態(65℃)
となるまで加熱し、還流下で4時間反応させた。このも
のを、室温まで放冷したのち取り出して液状で無色透明
なシリケート化合物−2、1196gを得た。
【0049】このシリケート化合物−2を、実施例1と
同様に分子量をGPC分析、微小粒子の慣性半径を小角
散乱X線法で求めたところ、重量平均分子量が316
5、慣性半径は約8Åであった。また、同様にNMR法
で解析したところ、示性式は
【化15】SiO1.35(OH)0.06(OCH3)1.24 となり、シラノール基/Si=0.06モルであった。
又、このシリケート化合物−2について、密閉下で50
℃、45日間(室温換算約1年間相当)の加速保存試験
を実施したが、液粘度は当初の1.3cpから1.6c
p程度しか上昇せず、貯蔵安定性良好な液状物であっ
た。
【0050】実施例3 〔シリケート化合物−3の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製2リットル四ツ口
丸底フラスコにテトラメトキシシラン608.2g、メ
タノール476.8gを仕込み5分攪拌した後、0.1
規定塩酸水8.16gと水107.2gの混合液を添加
した。この時の、テトラメトキシシランに対する水の量
は1.6モル倍に相当する。その後、還流状態(65
℃)となるまで加熱し、還流下で4時間反応させた。こ
のものを、室温まで放冷したのち取り出して液状で無色
透明なシリケート化合物−3、1198gを得た。
【0051】このシリケート化合物−3を、実施例1と
同様に微小粒子の慣性半径を小角散乱X線法で求めたと
ころ、慣性半径は約15Åであった。また、同様にNM
R法で解析したところ、示性式は
【化16】SiO1.46(OH)0.08(OCH3)1.00 となり、シラノール基/Si=0.08モルであった。
又、このシリケート化合物−3について、密閉下で50
℃、30日間(室温換算約8ヶ月相当)の加速保存試験
を実施したが、液粘度は当初の2.3cpから2.7c
p程度しか上昇せず、貯蔵安定性良好な液状物であっ
た。
【0052】実施例4 〔シリケート化合物−4の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製1リットル四ツ口
丸底フラスコにテトラメトキシシラン381.0g、メ
タノール120.0gを仕込み5分攪拌した後、0.1
規定塩酸水5.0gと水49.0gの混合液を添加し
た。この時の、テトラメトキシシランに対する水の量は
1.2モル倍に相当する。その後、還流状態(65℃)
となるまで加熱し、還流下で4時間反応させた。その
後、これを約56℃まで冷却してキシレン382.5g
を添加した。さらに攪拌しながら徐々に加熱して、内温
が約135℃になるまでメタノール成分を留去させ、内
温を135℃で窒素ガスを吹き込み5時間保持した。そ
の後、冷却してメタノール含有量1wt%以下、キシレ
ン56.2wt%の液状で無色透明なシリケート化合物
−4、556.3gを得た。
【0053】このシリケート化合物−4を、実施例1と
同様に分子量をGPC分析、微小粒子の慣性半径を小角
散乱X線法で求めたところ、重量平均分子量が260
8、慣性半径は約6Åであった。また、同様にNMR法
で解析したところ、示性式は、
【化17】SiO1.17(OH)0.04(OCH3)1.62 となり、シラノール基/Si=0.04モルであった。
又、このシリケート化合物−4について、密閉下で50
℃、45日間(室温換算約1年間相当)の加速保存試験
を実施したが、液粘度は当初の2.0cpから2.2c
p程度しか上昇せず、貯蔵安定性良好な液状物であっ
た。
【0054】実施例5 〔シリケート化合物−5の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製1リットル四ツ口
丸底フラスコにテトラメトキシシラン304.0g、メ
タノール96.0gを仕込み5分攪拌した後、0.1規
定塩酸水4.0gと水39.0gの混合液を添加した。
この時の、テトラメトキシシランに対する水の量は1.
2モル倍に相当する。
【0055】その後、還流状態(65℃)となるまで加
熱し、還流下で4時間反応させた。このものを、室温ま
で放冷してジムロートコンデンサーをリービッヒコンデ
ンサーに取り替えた後、キシレン300.0g及び2−
フェノキシエタノール221.0g及びテトライソプロ
ポキシチタン0.12gを仕込み、攪拌しながら徐々に
加熱して、留出温度が約65℃でメタノールを留去させ
ながらエステル交換反応を進行させた。最終的には内温
を146℃、留出温度約144℃まで昇温した後、冷却
してキシレン119.5gを加えて、メタノール含有量
0.3wt%、未反応の2−フェノキシエタノール含有
量1.9wt%、キシレン40.5wt%の液状で無色
透明なシリケート化合物−5、590.2gを得た。
【0056】このシリケート化合物−5を、実施例1と
同様に分子量をGPC分析、微小粒子の慣性半径を小角
散乱X線法で求めたところ、重量平均分子量が265
0、慣性半径は約6Åであった。また、同様にNMR法
で解析したところ、示性式は
【化18】SiO1.11(OH)0.16(OCH3)0.89(OC2
4OC65)0.73 となり、シラノール基/Si=0.16モルであった。
又、このシリケート化合物−5について、密閉下で50
℃、45日間(室温換算約1年間相当)の加速保存試験
を実施したが、液粘度は当初の7.8cpから8.4c
p程度しか上昇せず、貯蔵安定性良好な液状物であっ
た。
【0057】実施例6 〔シリケート化合物−6の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製1リットル四ツ口
丸底フラスコにテトラメトキシシラン152.0g、メ
タノール122.8gを仕込み5分攪拌した後、0.1
規定塩酸水2.0gと水23.2gの混合液を添加し
た。この時の、テトラメトキシシランに対する水の量は
1.4モル倍に相当する。その後、これを約56℃まで
冷却してPGMAc(プロピレングリコールモニメチル
エーテルアセテート)313gを添加した。さらに攪拌
しながら徐々に加熱して、内温が約65℃でメタノール
を留去させた。最終的には内温を148℃、留出温度1
46℃まで昇温した後、冷却してメタノール含有量1w
t%以下、PGMAc約71wt%の液状で無色透明な
シリケート化合物−6、302gを得た。
【0058】このシリケート化合物−6を、実施例1と
同様に分子量をGPC分析で求めたところ、重量平均分
子量が16930であった。又、このシリケート化合物
−2について、密閉下で50℃、45日間(室温換算約
1年間相当)の加速保存試験を実施したが、液粘度は当
初の5.5cpから8.3cp程度しか上昇せず、貯蔵
安定性良好な液状物であった。
【0059】実施例7 〔シリケート化合物−7の合成〕攪拌器、ジムロートコ
ンデンサー、温度計を備えたガラス製1リットル四ツ口
丸底フラスコにテトラメトキシシラン152.0g、メ
タノール122.8gを仕込み5分攪拌した後、0.1
規定塩酸水2.0gと水23.2gの混合液を添加し
た。この時の、テトラメトキシシランに対する水の量は
1.4モル倍に相当する。その後、これを約55℃まで
冷却してキシレン313gを添加した。さらに攪拌しな
がら徐々に加熱して、内温が約65℃でメタノールを留
去させた。最終的には内温を146℃、留出温度144
℃まで昇温した後、冷却してメタノール含有量1wt%
以下、キシレン約71wt%の液状で無色透明なシリケ
ート化合物−7、299gを得た。
【0060】このシリケート化合物−7を、実施例1と
同様に分子量をGPC分析、微小粒子の慣性半径を小角
散乱X線法で求めたところ、重量平均分子量が2068
0、慣性半径は約39Åであった。又、このシリケート
化合物−7について、密閉下で50℃、28日の加速保
存試験を実施したが、液粘度は当初の1.7cpから
2.4cp程度しか上昇せず、貯蔵安定性良好な液状物
であった。
【0061】比較例1 〔シリケート化合物−6の合成〕テトラメトキシシラン
・オリゴマー(「MKCシリケートMS51」、三菱化
学(株)製)38.46g、エタノール53.0gを混
合した液に、アルミニウムトリスアセチルアセトネート
0.38g、を加え、室温下で攪拌して溶解した。次
に、水8.15gを添加し室温密閉化で3日間放置して
シリケート化合物−8、99.9gを得た。このシリケ
ート化合物−8の分子量を、以下に示すGPC分析から
求めた。
【0062】〔GPC分析条件〕
【表3】 装 置 :Waters製 高温GPC 150C カ ラ ム :PLgel 500Å(5μ)1本+100Å(5μ)2本 温 度 :カラム40℃,注入口30℃,ポンプ30℃ 溶 媒 :酢酸エチル 1.0ml/min 検 出 器 :RI検出器 −32×1 RIU/FS 試 料 :酢酸エチルで5重量%に希釈し、100μl注入 チャート速度 :5mm/min データ処理 :東ソー製 CP−8000
【0063】標準ポリプロピレングリコール及びテトラ
メトキシシラン・オリゴマーを用いた、GPC検量線を
図2に示す。この結果、シリケート化合物−8の重量平
均分子量は1040であった。また、微小粒子の慣性半
径を実施例1と同様に小角散乱X線法で求めたところ、
慣性半径は約6Åであった。また、同様にNMR法で解
析したところ、示性式は
【化19】 SiO1.15(OH)0.68(OCH3)0.37(OC25)0.65 となり、シラノール基/Si=0.68モルであった。
又、このシリケート化合物−8について、密閉下で50
℃での加速保存試験を実施したが、10日目にゲル化し
てしまった。
【0064】比較例2 〔シリケート化合物−8の溶媒置換〕ガラス製200m
l四ツ口丸底フラスコに攪拌器、温度計、リービッヒコ
ンデンサーを取り付けた簡単な単蒸留装置に、比較例1
で得られたシリケート化合物−6、50.0gとキシレ
ン40.0gを仕込み攪拌しながら徐々に加熱して、留
出温度が約65℃でメタノールを留去させていたとこ
ろ、内液が白濁すると共に全体がゲル化してしまった。 実施例8〜13 実施例1〜5及び比較例1で得られたシリケート化合物
−1〜5及び8と、有機高分子化合物とを配合した各々
の液状組成物の相溶性を表1に、またそれらの塗膜物性
を表2に示す。 実施例14〜25 実施例4で得られたシリケート化合物−4を、種々の有
機高分子化合物及びこれに酸化チタンを分散してエナメ
ル化した物に少量添加して、相溶性及び造膜性を確認し
た。結果を、表3に示す。
【0065】
【表4】
【0066】
【表5】
【0067】
【表6】
【0068】(塗膜作製条件) ・基板・・・・ガラス及びアルミニウム ・塗工・・・・150μmアプリケーター ・硬化条件・・150℃、2時間硬化 (塗膜物性評価方法) ・外 観 :目視観察及びヘイズメータによる△H値測
定(ガラス基板使用) ・鉛筆硬度:JIS K 5400塗料一般試験方法参
照 ・耐溶剤性:キシレンを含浸させた綿布で、塗膜表面を
往復100回ラビングした後、キズ又は溶出等を目視評
価。 ○:変化なし △:若干のキズ ×:キズ又は溶出 ・耐屈曲性:JIS K 5400塗料一般試験方法参
【0069】
【表7】
【0070】
【表8】
【0071】※−1 [エナメルA]アクリルシリコン樹脂/酸化チタンを固
形分換算で1/1重量比で分散した白色エナメル。 [エナメルB](ポリエステル樹脂+ブロックイソシア
ネート)/酸化チタンを固形分換算で1/1重量比で分
散した白色エナメル。 [エナメルC](フッ素樹脂+ブロックイソシアネート)
/酸化チタンを固形分換算で1/1重量比で分散した白
色エナメル。 [樹 脂 D]フッ素含有アクリルシリコン樹脂 [エナメルD]フッ素含有アクリルシリコン樹脂/酸化
チタンを固形分換算で1/1重量比で分散した白色エナ
メル。 [樹 脂 E]酢酸ビニル系アクリル樹脂 [エナメルE]酢酸ビニル系アクリル樹脂/酸化チタン
を固形分換算で1/1重量比で分散した白色エナメル。
【0072】
【式1】 ※−2
【0073】(塗膜作製条件) ・基板・・・・ブリキ ・塗工・・・・#30バーコータ(ドライ膜厚約20μ
m) ・硬化条件・・170℃、20分間の加熱硬化
【0074】
【発明の効果】本発明のシリケート化合物は、高重合度
でありながら貯蔵安定性は1年以上、透明且つ組成変化
のない液状態を保つことが可能である。例えば加水分解
溶液としてハードコートに用いたり、樹脂等の各種の有
機化合物との相溶性に優れるため、これと配合して得ら
れる液状組成物を硬化して得られる塗膜に、親水性付
与、耐汚染性、耐酸性、耐薬品性、耐候性、耐熱性等の
向上、あるいは鋳物用砂型等のバインダー用途等、様々
な用途への適用が可能であり、極めて有用な液状組成物
を供することのできる新規なシリケート化合物である。
【図面の簡単な説明】
【図1】実施例1における、標準ポリスチレン及びテト
ラメトキシシラン・オリゴマーを用いたGPC検量線を
示す図
【図2】比較例1における、標準ポリプロピレングリコ
ール及びテトラメトキシシラン・オリゴマーを用いた、
GPC検量線を示す図
───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 穂積 北九州市八幡西区黒崎城石1番1号 三菱 化学株式会社黒崎事業所内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 重量平均分子量が2000〜40000
    の範囲であり、かつ珪素原子に直結した水酸基/Si<
    0.3モル倍である、下記の一般式で示すシリケート化
    合物。 【化1】
  2. 【請求項2】 慣性半径が100Å以下であることを特
    徴とする請求項1記載のシリケート化合物。
  3. 【請求項3】 請求項1又は2に記載のシリケート化合
    物を含有する液状組成物。
  4. 【請求項4】 請求項1又は2記載のシリケート化合物
    と有機溶剤とを含有することを特徴とする液状組成物。
  5. 【請求項5】 請求項1又は2に記載のシリケート化合
    物を、これと相溶しうる有機化合物と配合してなる液状
    組成物。
  6. 【請求項6】 1又は2に記載のシリケート化合物に、
    粉体を配合してなる液状組成物。
  7. 【請求項7】 請求項4又は5に記載の液状組成物に、
    さらに粉体を配合してなる液状組成物。
  8. 【請求項8】 請求項4〜7のいずれか記載の液状組成
    物が硬化してなる硬化物。
JP03039397A 1996-03-25 1997-02-14 シリケート化合物及びこれを含有する液状組成物 Expired - Fee Related JP3881076B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03039397A JP3881076B2 (ja) 1997-02-14 1997-02-14 シリケート化合物及びこれを含有する液状組成物
PCT/JP1997/001002 WO1997035908A1 (fr) 1996-03-25 1997-03-25 Composes de siloxane, procede de preparation de ceux-ci et composition liquide ou entrent ces composes
KR1019980707557A KR20000004954A (ko) 1996-03-25 1997-03-25 실옥산화합물,그의제조방법및그를포함하는액체조성물
US09/155,209 US6291697B1 (en) 1996-03-25 1997-03-25 Siloxane compounds, process for preparing the same, and liquid composition containing the same
EP97907469A EP0890597A1 (en) 1996-03-25 1997-03-25 Siloxane compounds, process for preparing the same, and liquid composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03039397A JP3881076B2 (ja) 1997-02-14 1997-02-14 シリケート化合物及びこれを含有する液状組成物

Publications (2)

Publication Number Publication Date
JPH10226726A true JPH10226726A (ja) 1998-08-25
JP3881076B2 JP3881076B2 (ja) 2007-02-14

Family

ID=12302693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03039397A Expired - Fee Related JP3881076B2 (ja) 1996-03-25 1997-02-14 シリケート化合物及びこれを含有する液状組成物

Country Status (1)

Country Link
JP (1) JP3881076B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031464A (ja) * 2005-07-22 2007-02-08 Colcoat Kk アルキルシリケート縮合体の製造方法
JP2009149833A (ja) * 2007-11-28 2009-07-09 Shin Etsu Chem Co Ltd シリケートポリマー及びその製造方法、並びに該シリケートポリマーを含有するコーティング剤
JP2009263628A (ja) * 2008-03-31 2009-11-12 Arakawa Chem Ind Co Ltd ポリエステル樹脂組成物およびその硬化物
JP2011529973A (ja) * 2008-08-01 2011-12-15 シーナトゥール ゲーエムベーハー 生物学的活性ケイ酸
JP2012136647A (ja) * 2010-12-27 2012-07-19 Dainippon Printing Co Ltd コーティング剤及びこれを用いたコーティングフィルム
JP2013212611A (ja) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd 有機ガラス積層用フィルム
JP2016526073A (ja) * 2013-05-24 2016-09-01 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング 撥塵表面コーティングのための超分岐状ポリアルコキシシロキサン添加剤

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031464A (ja) * 2005-07-22 2007-02-08 Colcoat Kk アルキルシリケート縮合体の製造方法
JP2009149833A (ja) * 2007-11-28 2009-07-09 Shin Etsu Chem Co Ltd シリケートポリマー及びその製造方法、並びに該シリケートポリマーを含有するコーティング剤
JP2009263628A (ja) * 2008-03-31 2009-11-12 Arakawa Chem Ind Co Ltd ポリエステル樹脂組成物およびその硬化物
JP2011529973A (ja) * 2008-08-01 2011-12-15 シーナトゥール ゲーエムベーハー 生物学的活性ケイ酸
JP2012136647A (ja) * 2010-12-27 2012-07-19 Dainippon Printing Co Ltd コーティング剤及びこれを用いたコーティングフィルム
JP2013212611A (ja) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd 有機ガラス積層用フィルム
JP2016526073A (ja) * 2013-05-24 2016-09-01 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング 撥塵表面コーティングのための超分岐状ポリアルコキシシロキサン添加剤

Also Published As

Publication number Publication date
JP3881076B2 (ja) 2007-02-14

Similar Documents

Publication Publication Date Title
EP0757079B1 (en) Curable composition and process for producing the same
EP0771835B1 (en) Polyalkoxysiloxane and process for its production
WO1998036016A1 (fr) Composes polyalcoxysiloxane, procede de production de ceux-ci et composition de revetement les contenant
US6291697B1 (en) Siloxane compounds, process for preparing the same, and liquid composition containing the same
JP3560079B2 (ja) 硬化性組成物及びその製造方法
JP3881076B2 (ja) シリケート化合物及びこれを含有する液状組成物
JPH1060279A (ja) 硬化性ポリメチルシルセスキオキサン組成物
JPH10251516A (ja) シランオリゴマー組成物
JP3881071B2 (ja) シロキサン化合物及びこれを用いた液状組成物
JP3279015B2 (ja) コーティング用組成物
JPH09165450A (ja) 硬化性組成物及びその製造方法、並びに硬化物
JPH09110984A (ja) シリケート硬化物及びその製造方法
JPH08127751A (ja) コーティング液及びその製造方法
JPH09169847A (ja) ポリアルコキシポリシロキサン及びその製造方法並びにこれを用いた硬化性組成物
CN115485326A (zh) 官能化硅石颗粒及其用途
JPH09165451A (ja) シリケートオリゴマー及びその製造方法、並びにこれを用いた硬化性組成物
JP4009837B2 (ja) シリコーンコーティング剤、その製造方法及び硬化物
JP2006328424A (ja) シロキサン化合物及びこれを用いた液状組成物
JPH09169848A (ja) ポリシロキサン化合物及びその製造方法、並びにこれを用いた硬化性組成物
JP7093663B2 (ja) 硬化性樹脂組成物、及びその製造方法
JPH10212354A (ja) ポリアルコキシポリシロキサン及びその製造方法並びにこれを用いた硬化性組成物
JPH09165452A (ja) ポリメトキシポリシロキサン及びその製造方法、並びにこれを用いた硬化性組成物
JP6942849B1 (ja) 積層体
JPH08157742A (ja) コーティングされた無機粉体及びその製造方法、並びに無機粉体用コーティング剤及びその製造方法
JP3846813B2 (ja) ポリアルコキシシロキサン含有組成物及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Effective date: 20061109

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees