JPH09138208A - ガスセンサ - Google Patents

ガスセンサ

Info

Publication number
JPH09138208A
JPH09138208A JP7321079A JP32107995A JPH09138208A JP H09138208 A JPH09138208 A JP H09138208A JP 7321079 A JP7321079 A JP 7321079A JP 32107995 A JP32107995 A JP 32107995A JP H09138208 A JPH09138208 A JP H09138208A
Authority
JP
Japan
Prior art keywords
film
glass
gas
content
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7321079A
Other languages
English (en)
Other versions
JP3570644B2 (ja
Inventor
Yoshinobu Matsuura
吉展 松浦
Toru Nomura
徹 野村
Daisuke Matsuda
大輔 松田
Hiroki Fujimori
裕樹 藤森
Masanori Kiko
真紀 木虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP32107995A priority Critical patent/JP3570644B2/ja
Priority to KR1019960052127A priority patent/KR970028546A/ko
Priority to KR1019960052926A priority patent/KR100408599B1/ko
Priority to US08/747,287 priority patent/US5759367A/en
Priority to CN96120562A priority patent/CN1093635C/zh
Priority to CA002190232A priority patent/CA2190232C/en
Publication of JPH09138208A publication Critical patent/JPH09138208A/ja
Application granted granted Critical
Publication of JP3570644B2 publication Critical patent/JP3570644B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/129Diode type sensors, e.g. gas sensitive Schottky diodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

(57)【要約】 【目的】 パルス駆動ガスセンサの耐久性を増し、抵抗
値を小さくし、かつ抵抗値のばらつきを減少させる。 【構成】 ヒータ膜に絶縁ガラスを積層し、ガラス上に
感ガス膜を積層する。ガラス中のMgO含有量を0.1
wt%以下とし、冷間で吸着水にMgが溶出し、検出電
圧で陰極に析出するのを防止する。

Description

【発明の詳細な説明】
【0001】
【発明の利用分野】この発明は金属酸化物半導体ガスセ
ンサや固体電解質ガスセンサに関する。この明細書で
は、ガスはCO,H2,イソブタンやプロパン,CH4,
NOx,O2,O3,H2S等の本来のガスの他に,水蒸
気をも含むものとする。
【0002】
【従来技術】出願人は、アルミナ等の基板上に断熱ガラ
ス膜とヒータ膜,絶縁膜,感ガス膜を積層したガスセン
サを提案した(特開平1−313751号)。絶縁膜は
例えば膜厚10μm程度とし、ガラスあるいはガラスと
シリカやアルミナ等の非ガラス質セラミック粒子との混
合物とする。また基板がシリカ等の熱伝導率の低いセラ
ミックの場合、断熱ガラスを設ける必要はない(特開平
6−34732号)。
【0003】このガスセンサは、感ガス膜,例えばSn
O2等の金属酸化物半導体膜やプロトン導電体等の固体
電解質膜をパルス的に加熱するのに適している。即ちヒ
ータ膜から基板への熱損失を断熱膜で減少させ、ヒータ
膜と感ガス膜を薄い絶縁膜を介して積層し、両者間の熱
伝導を容易にする。この条件でヒータ膜をパルス的に加
熱すると、感ガス膜をパルス的に加熱でき、ガスセンサ
の消費電力を例えば20〜1mW程度に減少させること
ができる。
【0004】出願人は、このようなガスセンサの特性が
不安定であることを見い出した。感ガス膜が金属酸化物
半導体膜であり、検出目標がCOであるとして説明する
と、CO中での抵抗値が経時的に増加し、また金属酸化
物半導体の温度特性が経時的に変化することを見い出し
た。実験の結果,金属酸化物半導体膜の特性の変化は高
温・高湿の雰囲気で急激に進行し、またパルス加熱を行
わない期間に検出電圧を金属酸化物半導体膜に加えると
著しくなることを見い出した。
【0005】
【発明の課題】この発明の課題は、基板上にヒータ膜と
絶縁膜と感ガス膜とを積層したガスセンサの特性変動を
減少させることにある(請求項1〜6)。この発明での
副次的課題は、ヒータ膜と感ガス膜間の絶縁破壊をより
確実に防止することにある(請求項4,5)。
【0006】
【発明の構成】この発明は、基板上にヒータ膜とガラス
成分を含む絶縁膜と感ガス膜とを積層したガスセンサに
おいて、前記絶縁膜中の感ガス膜側でのガラス成分のM
g含有量を、MgO換算で2wt%以下、好ましくは
1.5wt%以下,最も好ましくは0.1wt%以下とし
たことを特徴とする。この明細書においてMg含有量は
ガラス成分に対してMgOに換算して定め、単位はwt
%あるいはwtppmとする。
【0007】この発明において重要なことはMgによる
感ガス膜の汚染を防止することであり、仮に絶縁膜が感
ガス膜側の上層とヒータ膜側の下層の2層からなる場
合、上層中のMg含有量を小さくすれば良く、下層のM
g含有量を特に制限する必要はない。また絶縁膜には実
施例に示す単純なガラス膜以外に、ガラスと非ガラス質
のセラミック粒子、例えばシリカやアルミナ,ムライト
との混合物を用いることができる。このような場合、ガ
ラスがセラミック粒子とセラミック粒子との間に介在
し、セラミック粒子はガラスに被覆されて不活性とな
る。従ってセラミック粒子中のMg含有量は特に重要で
はなく、また絶縁膜の表面は大部分ガラスで覆われるの
で、ガラス成分中のMg含有量のみを考えれば良い。
【0008】ガラスの組成は様々であり、一般的に定め
ることは難しい。ガラスの軟化点を600〜1000℃
程度の扱い易い温度とするため、ガラスがSiO2とA
l2O3とROとを含むことが好ましい。例えば単味のシ
リカガラスは軟化点が高く、Al2O3とROを添加して
軟化点を低下させることが好ましい。なおRはCa,S
r,Baからなる群の少なくとも一員の元素で、アルカ
リ土類としてこれらの元素を用い、Ca,Sr,Baを
単にアルカリ土類と呼ぶことがある。SiO2,Al2O
3,ROの重量比は、3成分の重量比の合計を100と
して、例えば10〜70:1〜40:10〜50とし、
これ以外にZnO,TiO2,ZrO2等の遷移金属酸化
物を含んでも良い。TiO2,ZrO2はSiO2への置
換材料で、ZnOはアルカリ土類酸化物と同様にガラス
の軟化点を低下させる。また金属元素として、LaやC
e等のランタニドやGa,In,Tl,Ge,Sn,P
b等の典型金属元素を含んでも良い。但しPbは加熱す
ると感ガス膜中に拡散し易く好ましくはない。これ以外
の半金属としてBを添加しても良く、BはB2O3に換算
して例えば0〜20wt%添加する。これ以外にガラス
にハロゲンやAs,Sb等の様々な元素を添加しても良
く、組成は様々である。ガラスはMg含有量が低く、軟
化点が600〜1000℃程度、より好ましくは700
〜900℃であることが好ましい。Mgによる感ガス膜
の被毒の機構は、感ガス膜中の電界によるマイグレーシ
ョンで、アルカリ金属はMgと同様にマイグレーション
し易いため好ましくない。さらにBeは有毒で好ましく
ない。
【0009】好ましいガラスの組成は、例えばSiO2
とAl2O3とROの合計含有量を40−100wt%、
SiO2とAl2O3とROの相対組成が例えば10〜7
0:1〜40:10〜50で、3者の合計量を100と
する。ガラスの残余成分は、例えば遷移金属酸化物を0
〜30wt%,ランタニド酸化物を0〜20wt%,B
2O3を例えば0〜20wt%,Ga,In,Tl,G
e,Sn,Pbからなる群の少なくとも一員の元素の酸
化物を0〜20wt%とする。残余は例えばハロゲンや
As,Sb等の雑多な不純物で、例えば5wt%以下と
する。そして感ガス膜側でのガラス成分のMgO含有量
を2wt%以下、好ましくは1.5wt%以下,最も好
ましくは0.1wt%以下とする。好ましくは、アルカ
リ金属酸化物の含有量を、感ガス膜側のガラス成分に対
して0.5wt%以下とし、Beは痕跡量にとどめ、P
bOは1wt%以下、好ましくは1000wtppm以
下とする。
【0010】絶縁膜は好ましくはヒータ膜側の下層と感
ガス膜の上層との少なくとも2層で構成し、少なくとも
上層について、好ましくは上層,下層の双方について、
ガラス成分中のMg含有量をMgO換算で2wt%以
下、好ましくは1.5wt%以下、最も好ましくは10
00wtppm以下とする。
【0011】
【発明の作用と効果】発明者は、パルス駆動型ガスセン
サの経時劣化の機構を検討し、絶縁ガラスから感ガス膜
へのMgイオンの混入により劣化が生じることを見い出
した。感ガス膜が金属酸化物半導体であるとして説明す
ると、経時劣化は乾燥期には小さく(図6)、湿潤期に
は大きい(図7)。次にセンサを高温高湿の雰囲気でエ
ージングすると、24時間程度でセンサ抵抗は急激に増
加する(表4)。センサの劣化は検出電圧を常時加える
ものでは著しく、検出電圧をヒータパルスに同期させ検
出電圧を加える時間を短くすると減少する(表4)。ま
た検出電圧を常時加えヒータパルスを加えないモード
で、センサの劣化は最も著しくなる(表4)。
【0012】劣化したセンサの感ガス膜を元素分析する
と、陰極にMgイオンが偏析していることが見い出され
た。Mgイオンは絶縁ガラスから感ガス膜に拡散したも
ので、他に発生源は無かった。これ以外の絶縁ガラスか
ら拡散した不純物としてZnイオンを検出したが、この
程度の量のZnイオンはセンサ特性に影響を与えなかっ
た。従って劣化の原因は絶縁ガラスから感ガス膜へ拡散
したMgイオンであり、センサが室温付近まで冷却した
期間にMgイオンが絶縁ガラスから吸着水へ溶出し、検
出電圧により陰極側に偏析してセンサ特性を劣化させた
ものと推定できる。このことは、乾燥時にはセンサの劣
化は小さいが湿潤期には大きいことと対応する。また高
温高湿の雰囲気でセンサの劣化が著しく進行することと
も対応する。さらに検出電圧を常時加えると劣化が著し
く、検出電圧をヒータパルスと同期させると劣化が減少
することとも対応する。Mgイオンの移動機構として
は、室温付近で吸着水中に溶出したMgイオンが検出電
圧により冷間で徐々に移動するものと、溶出したMgイ
オンがパルス加熱時に急激に移動するものの、2種類が
考えられる。しかし劣化の程度はパルス加熱を行わない
もので著しく、このことから劣化は冷間で進行すること
が確実である。
【0013】これらの知見を総合すると、絶縁ガラス中
のMg含量を減少させれば、パルス駆動型ガスセンサの
劣化を防止できることが予想される。そして実験(表
6)は予想通りの結果を示した。またMgO含有量が1
wt%のガラスと5wt%や20wt%のガラスとの間
には、センサの特性に大差が有り、かつMgO含有量が
1wt%と100wtppmとの間のセンサ特性の差は
小さいことが判明した。このことは1wt%程度のMg
Oはガラス内に安定に存在して溶出しないことを示して
いる。そこでMgO含有量は2wt%以下とし、より好
ましくは1.5wt%以下、最も好ましくは0.1wt%
以下とする。さらに劣化の防止は、センサの抵抗値を減
少させかつ抵抗値ばらつきを小さくするとの副次的効果
を有している。ここでは感ガス膜が金属酸化物半導体膜
であるとしたが、例えば固体電解質膜の場合、固体電解
質内の起電力により溶出したMgイオンが移動し、金属
酸化物半導体膜と同様の劣化が進行する。その場合に
は、感ガス膜の内部での電界の向きが逆で陰極ではなく
陽極側にMgイオンが偏析する。
【0014】発明者は、Mgイオンを含まない絶縁ガラ
スを用いると、絶縁ガラスとヒータ膜との間の絶縁強度
が低下することを見い出した。これはMgイオンを含ま
ないガラスでは泡抜きが難しく、絶縁ガラス内に連続気
孔等の導電路が生じるためと考えられる。これに対して
絶縁膜を2層にすれば、絶縁膜を貫通する連続気孔を減
らし、絶縁強度を向上できることが判明した。
【0015】
【実施例】図1〜図14に、実施例と関連するデータと
を示す。ガスセンサの構造は図1〜図3に示し、図にお
いて、2はアルミナ,シリカ,ムライト等の絶縁基板で
ある。4は断熱ガラス膜で、シリカガラスや混成ハイブ
リッドIC,サーマルヘッド等へのオーバーコートガラ
ス等を用いる。基板2がシリカ等の熱伝導率の小さな材
質の場合、断熱ガラス4は不要である。6はヒータ膜
で、RuO2膜やPt膜等を用い、薄膜でも厚膜でも良
く、ここでは膜厚約10μmのRuO2膜を用いた。
8,10はAu膜からなるヒータ電極である。
【0016】12は絶縁膜で、膜厚は例えば5〜20μ
m程度とし、好ましくは図3に示すように下層13と上
層14の2層で構成する。これはヒータ膜6と感ガス膜
16との絶縁強度を増すためで、2層にすることにより
ヒータ膜6から感ガス膜16まで貫通した連続気孔を除
き、絶縁強度を増す。絶縁膜12は上層14,下層13
ともガラスで構成したが、シリカやアルミナ,ムライト
等の非ガラス質セラミック粒子を混入し、ガラスとセラ
ミックとの混合層としても良い。絶縁層12のガラス含
有量は好ましくは20〜100wt%とする。感ガス膜
16へのMg汚染を防止する上で重要なのは、上層14
でガラス成分中のMg含有量をMgO換算で2wt%以
下,好ましくは1.5wt%以下,最も好ましくは10
00wtppm以下にすることである。下層13はMg
含有量(以下,ガラスに関してMgO換算で含有量を示
し,他の成分も同様の表記法で含有量を示す)が2wt
%超でも良いが、好ましくは下層13,上層14とも同
一の材質を用い、MgO含有量を2wt%以下,より好
ましくは1.5wt%以下,最も好ましくは1000w
tppm以下とする。
【0017】絶縁膜12は上層14のMgO含有量を2
wt%以下とすること以外に、軟化点が600〜100
0℃,より好ましくは700〜900℃程度のガラスを
用い、成膜時のヒータ膜6やAu電極8,10の損傷を
防止することが好ましい。また軟化点の下限は、ヒータ
膜6の最高発熱温度(300〜450℃)より充分高い
ものが好ましく、この点から600℃以上,より好まし
くは700℃以上とする。軟化点の範囲に制限が生じる
ので、絶縁膜12に用い得るガラス組成にも制限が生じ
る。例えばシリカガラスは軟化点が1500℃程度で、
不純物添加により軟化点を1200℃付近まで下げるこ
とができるが、高温用のガスセンサにしか用いられな
い。なおシリカガラスを特に排除するものではない。軟
化点を適切な範囲にとどめることから、ガラス組成はS
iO2とAl2O3とRO(RはCa,Sr,Baからな
る群の少なくとも一員で、以下これをアルカリ土類と呼
ぶことがある)を主成分とするものに限られる。軟化点
が700〜900℃のSiO2−Al2O3−RO系の実
用ガラスは、3者の組成が合計重量を100として、重
量比で10〜70:1〜40:10〜50となる。なお
実施例でアルカリ土類として用いたのはCaとBaであ
るが、何れも感ガス膜への汚染をもたらさずまた感ガス
膜の特性に影響しなかったので、CaとBaの中間の性
質のSrが用い得ることは明らかである。
【0018】実用ガラスには多種多様な組成が知られて
おり、軟化点が700〜900℃程度でSiO2−Al2
O3−RO系のガラスには、例えばZnO,ZrO2,T
iO2等の遷移金属酸化物を添加しても良い。ZnOは
ROと同様の役割を果たし、その添加量は例えば0〜2
5wt%である。発明者はZnOが上層14から感ガス
膜16へ一部移動し、感ガス膜16を汚染することを見
い出した。しかし感ガス膜16の特性に不純物のZnO
は影響せず、ZnOは感ガス膜16を汚染するが、特性
には影響しないことが判明した。ZrO2やTiO2等は
SiO2を置換する成分で、例えば添加量は例えば0〜
15wt%である。そしてこれ以外にガラスにMnやF
e,Cu等を添加することは常法であり、これらの遷移
金属を添加しても良い。ガラス中の遷移金属含有量はそ
の酸化物に換算して0〜30wt%が好ましい。ガラス
にはAl2O3の置換体として、B2O3を添加することが
周知である。B2O3はアルカリで腐食され易いが、発明
者は別の実験(詳細は省略)で、絶縁膜12中のB2O3
が感ガス膜16の特性に影響しないことを確認した。即
ちB2O3 30wt%含有のガラスを絶縁膜12に用
い、NH3含有雰囲気下で絶縁膜12を表面がぼろぼろ
になるまで風化させた。この状態でも、感ガス膜16の
特性は変化しなかった。そこで絶縁膜12の風化を抑制
するため、B2O3含有量は0〜20wt%が好ましい。
ガラスには例えばGe,Sn等の典型金属元素を加える
ことが周知で、例えばSnO2からなる感ガス膜に対し
て、ガラスが不純物としてSn元素を含むことは全く問
題が無い。通常用いられる典型金属元素はGa,In,
Sn,Ge,Tl,Pbで、これらの添加量は酸化物換
算で0〜20wt%とする。この内Pbは、感ガス膜1
6の成膜時の加熱で感ガス膜を汚染することが別の実験
で判明したので。、Pb含有量はPbO換算で1wt%
以下、より好ましくは1000wtppm以下とする。
【0019】実用ガラスには、これ以外にLaやCe等
のランタニド元素を添加することが知られており、これ
らは主としてAl2O3の置換体である。ランタニド元素
の添加量は3価の酸化物換算で0〜20wt%が好まし
い。これ以外にガラスにはハロゲンやAs,Sb等の雑
多な不純物を添加することができ、これらの合計含有量
はハロゲンを単体にAsやSbを3価の酸化物に換算し
て5wt%以下が好ましい。また別の実験でNa等のア
ルカリ金属は感ガス膜16を汚染することが判明したの
で、アルカリ金属はその酸化物に換算して0.5wt%
以下,より好ましくは0.1wt%以下とする。またB
eは痕跡量にとどめる。
【0020】以上のことをまとめると、上層14に好ま
しいガラス組成は以下のようになり、また下層13も同
じ組成が好ましい。 (SiO2a−Al2O3b−ROc)1-d−M1Oe−M2Of−
Ln2O3g−B2O3h−Xi M1は遷移金属酸化物、M2は典型金属酸化物,Ln2O3
はランタニド酸化物,Xは上記以外の不純物で,MgO
含有量は2wt%以下で、好ましくは1.5wt%以
下、最も好ましくは0.1wt%以下,アルカリ金属酸
化物含有量は好ましくは0.5wt%以下で、より好ま
しくは0.1wt%以下、PbO含有量は好ましくは1
wt%以下で、より好ましくは0.1wt%以下、Be
Oは痕跡量,a〜iを重量比単位として、組成の合計を1
00に保ち、aは10〜70,bは1〜40,cは10
〜50,dは0〜0.5,eは0〜30,より好ましく
は0〜20,fは0〜20,より好ましくは0〜10,
gは0〜20,より好ましくは0〜10,hは0〜2
0,より好ましくは0〜10,iは0〜5とする。
【0021】16はSnO2,In2O3,WO3,ZnO
等の金属酸化物半導体膜やプロトン導電体等の固体電解
質からなる感ガス膜で、薄膜でも厚膜でも良いが、実施
例では厚さ10μmのSnO2膜を用いた。18,20
はAu膜を用いた検出電極,22〜28は電極パッドで
ある。
【0022】
【駆動回路】図4,図5にガスセンサの駆動回路を示
す。図4において、30はガスセンサを現し,Rsは感
ガス膜16の抵抗を,RHはヒータ膜6の抵抗を現す。
RHは室温で30Ω程度で最高加熱温度で20Ω程度
で、感ガス膜16の温度は感ガス膜16の代わりに配置
したサーミスタ膜の抵抗値から測定した。32は例えば
5Vの電源,34はマイクロコントローラで、36はヒ
ータ膜6をパルス駆動するためのスイッチ,RLは負荷
抵抗である。
【0023】ガスセンサ30は図5のように駆動し、例
えば1秒周期で8m秒〜16m秒程度スイッチ36をオ
ンし、検出電圧(例えば5V)はヒータパルスに同期し
て印加する、あるいは常時印加しておく。好ましいの
は、検出電圧をパルスに同期させ、センサ出力VRL(負
荷抵抗RLへの出力)を測定できるだけの幅でパルス的
に加えることである。従って検出電圧のパルス幅は、ヒ
ータパルスの幅よりも短くても良い。ヒータパルスを加
えると出力VRLは図5の上部のように変化し、適当なタ
イミング(実施例ではヒータパルス印加から約2m秒
後)でサンプリングする。感ガス膜16の最高温度はヒ
ータパルスが幅が8m秒で約300℃,16m秒で約4
50℃である。
【0024】
【試験例】以下の組成のガラスを用いて、実施例1〜3
のガスセンサと、比較例1,2のガスセンサを調製し
た。
【0025】
【表1】 ガラス組成 組成 実施例1 実施例2 実施例3 比較例1 比較例2 SiO2 40 60 50 45 43 Al2O3 5 2 4 4 15 CaO 1 15 20 10 10 BaO 35 18 痕跡 4 15 SrO 痕跡 痕跡 痕跡 痕跡 痕跡 ZnO 15 1 20 20 10 B2O3 痕跡 痕跡 3 痕跡 痕跡 TiO2 痕跡 痕跡 痕跡 痕跡 痕跡 Ce2O3 2 2 痕跡 痕跡 痕跡 ハロゲン 痕跡 痕跡 痕跡 痕跡 痕跡 MgO 0.01 0.01 1 15 5 アルカリ金属 0.05 0.05 0.2 0.05 0.05 Pb 0.02 0.02 0.03 0.02 0.02 痕跡量不純物 2 2 3 17 7 とMgOの合計 * 組成の単位は重量%,絶縁膜12は1層で膜厚10μm.アルカリ金属 の大部分はNaとK,ハロゲンの大部分はClとBr,ハロゲン以外の成分は酸 化物に換算して表示.絶縁膜12の焼成温度は750℃.各ガラスに付いて、各種 痕跡量不純物とMgO,アルカリ金属酸化物,ハロゲン,PbOを、1wt%以 上の成分に加えると100%となる。. * SnO2膜(Pt1wt%添加)は10μm厚に成膜後600℃焼成.
【0026】実施例1,2のセンサは特性面で同等,比
較例1,2のセンサも特性面で同等であったので、以下
では実施例1のセンサと比較例1のセンサを対比して説
明する。また図6〜図9のデータは、実施例を開発する
前に比較例のセンサのみを製造して測定したものであ
る。センサ30の駆動条件は特に指摘しない限り、検出
電圧VC(5V)を常時加え、毎秒1回8m秒のヒータ
パルス(5V)を加えるもので、この条件でセンサ30
を常時駆動する。
【0027】図6は1995年2月13日から7週間の
経時特性で、センサは比較例1で、センサ数は13個、
乾燥期における平均的な経時特性である。図7は比較例
1のセンサの1995年6月12日から8週間の経時特
性で、センサ数は10個である。湿潤期(図7)と乾燥
期(図6)を比較すると、湿潤期の方が経時変化は著し
く、経時変化によりセンサは一般的に高抵抗化する。図
8,図9は1〜4週間程度でセンサ抵抗が著しく増加し
た例で、高抵抗化の程度は3倍(図8,センサ数6個)
ないし10倍弱(図9,センサ数5個)に達している。
図8,図9の現象を発見したためセンサの通電装置を検
査すると、制御用のマイクロコントローラ34が図示の
期間内で暴走していた形跡が見い出された。暴走の内容
は、マイクロコントローラの構造から、ヒータパルスV
Hがオフし、検出電圧VCが常時加わり続けるものであっ
たと推定した。また暴走が生じた時期は図8で95年7
月頃,図9で95年4月頃であった。これらのことか
ら、センサの経時変化は湿潤期において著しく、ヒータ
パルスを加えないと急激に進行することが判明した。
【0028】図10は、異常高抵抗化(図8,図9の現
象)を経験したセンサ(比較例1及び2)と、実施例1
のセンサの、ヒータパルス印加時のセンサ抵抗を示すも
のである。雰囲気はCO100ppmで,8m秒間のヒ
ータパルス内(波形を図の上部に表示)で1〜12の1
2点をサンプリングしている。なお実施例2のセンサの
温度特性は実施例1のセンサと同様である。実施例1,
2の差異はZn含有量の差であるが、センサ特性への影
響は検出できなかった。異常高抵抗化を示したセンサと
実施例1のセンサは温度特性が異なり、結果は明らかに
2つの群に別れた。そして異常高抵抗化が生じると、4
ポイント目付近のセンサ抵抗の極小値が消失した。なお
比較例1,2でも製造直後には、CO中で4ポイント目
の付近に抵抗値の谷が生じた。
【0029】図11は比較例1のセンサの特性(センサ
数15個)で、ヒータパルスは9m秒幅でパルス加熱の
開始から2m秒目の特性を測定し、センサは製造後約1
週間通電したもので、異常高抵抗化を経験していない。
図12は実施例1のセンサの特性(センサ数15個)
で、測定条件は図11と同様で、通電開始1週間程度後
の特性である。CO100ppm中での抵抗値の平均は
図11で18.4KΩ,図12で2.5KΩで、MgO含
有の絶縁ガラス12を用いると、センサ抵抗が増加しH
2感度も増加する。
【0030】比較例1のセンサについて、異常高抵抗化
したもの(不良品)としなかったもの(良品)に対し、
感ガス膜16をX線局所分析を用い、波長分散スペクト
ロスコピー(WDS)により元素分析した。Sn,Pt
等の当然に存在すべき元素以外の不純物はMgとZn
で、CaやBaの混入は検出できず、MgやZnは何れ
も絶縁ガラス12から混入したものであった。検出電極
18,20の間の領域での分析結果を表2に示すが、良
品と不良品との間に有意差は見られなかった。次に検出
電極18,20の周囲での感ガス膜を元素分析した。M
gイオンの分布について結果を表3に示す。なおZnイ
オンは均一に分布し偏析が見られなかったので、表示を
省略する。
【0031】
【表2】 * 結果はカウント値を示す.
【0032】
【表3】 電極付近でのMg分布 センサ 陽極 陰極 新品 132 130 通電,ただし異常高抵抗化せず 98 181 異常高抵抗化 85 250 異常高抵抗化 188 246 * 結果はカウント値を示す,センサは比較例1.
【0033】表2,表3から明らかなように、製造直後
のセンサでもMgが感ガス膜16に拡散しており、劣化
に伴いMgが陰極側に偏析する。表2の結果では、異常
高抵抗化が生じても電極間領域ではMg濃度の増加が見
られず、異常高抵抗化と相関があるのは陰極へのMgの
偏析である。図8,図9はヒータパルスを加えないとセ
ンサの劣化が進行することを示し、図6,図7は湿潤期
に劣化が著しいことを示している。そこで検出電圧をヒ
ータパルスと同期させ同じ幅で同じタイミングで加える
ようにしたもの(VC同期)とVCを常時加えるものと2
つの条件を用意し、高温高湿中雰囲気でエージングし
た。エージング後のCO100ppm中でのセンサ抵抗
の平均値(センサ数7個)を表4に示す。
【0034】
【表4】 VC,VHの影響 センサ抵抗(KΩ) 初期値 試験後 エージング条件 50℃×相対湿度100%24時間 パルス幅 9m秒 VC常時 27 290 VC同期 19 17 パルス幅 16m秒 VC常時 42 1400 VC同期 48 42エージング条件 60℃×相対湿度90%1時間 パルス幅 9m秒 VC常時 32 34 VC常時かつVHオフ 27 175
【0035】VCを常時加えると劣化が著しく、特にVC
を常時加え、VHをオフすると劣化が極端に進行する。
このモードでは、エージング時間1時間で抵抗値は約6
倍に増加する。これらのことから予想されるセンサ30
の劣化機構は、絶縁ガラス12中のMg成分が感ガス膜
16に拡散し、検出電圧により移動して陰極側に偏析す
るというものである。VHがオフで劣化が著しいことか
ら、劣化は冷間で進行し、付着した吸着水等にMgイオ
ンが溶出して、検出電圧で移動することが推定される。
比較例1のセンサについて、50℃×相対湿度100%
で1時間のエージング(VCは連続,VHはオフ)でのM
gイオンの偏析状況を表5に示す。エージングによりM
g濃度は増加し、特に陰極側でのMg濃度の増加が著し
い。このことは上記の劣化機構と合致し、かつヒータパ
ルスの印加に伴う熱的な劣化が小さいことを示してい
る。即ちパルス加熱により吸着水が急激に沸騰し、これ
に伴って絶縁膜12の風化が進行することが考えられる
が、得られたデータとは一致しない。従って劣化の機構
は冷間での吸着水へのMgの溶出と、検出電圧による陰
極への偏析である。
【0036】
【表5】 Mgの分布 センサロット 試験前 試験後 陽極 陰極 陽極 陰極 1 136 135 182 227 2 90 87 150 228 3 85 90 113 162 * 結果はMgのカウント値を示し,1〜3は製造ロットが異なる. * 50℃×相対湿度100%×1時間,VC連続,VHオフ.
【0037】実施例1〜3のセンサと比較例1,2のセ
ンサを、50℃相対湿度100%の雰囲気で24時間エ
ージングし、その間VHはパルス的に加え(9m秒/
秒)VCは連続して加えた。試験後のCO100ppm
中での抵抗値(図10の3ポイント目,KΩ単位)を表
6に示す。実施例1はガラス中に20wt%のZnOを
含むがセンサ特性への影響はなく、1wt%のMgOを
含む実施例3は実施例1,2と類似の特性を示す。表6
から明らかなように1wt%のMgOを含有するガラス
は実用化可能で、このことからMgOの含有量の上限を
2wt%,より好ましくは1.5wt%,最も好ましく
は0.1wt%とする。また仮にMgO含有量が2wt
%近いガラスがセンサの劣化を引き起こしたとしても、
表4に示すようにVCをVHに同期させれば、劣化を抑制
することができる。そして絶縁ガラス12,特に上層1
4中のMgOを除くことにより、センサの抵抗値は減少
して扱い易くなり、耐久性が著しく増加する。発明者は
この種のセンサの耐久性がパルス駆動という駆動方法自
体により定まるものと考えてきたが、絶縁ガラスからの
不純物の拡散を除くことで耐久性は劇的に向上した。さ
らにMg含有ガラス(比較例1)とMgフリーガラス
(実施例1)について、ロット間の抵抗値の変化と抵抗
値分布の範囲(標準偏差をSとして±3Sの範囲)を図
13に示す。Mgを含有しないガラスを用いることによ
り、抵抗値のばらつきも減少する。
【0038】
【表6】 * センサ数は各3個で,結果は平均値で,CO100
ppm中の抵抗値(サンプリング点は3番目)を示す,
VH:パルス,VC連続.
【0039】
【絶縁強度】図14に、ヒータパルスの印加に伴うセン
サ出力の波形を示す。発明者はオッシログラフにより図
14の1)〜4)の波形を確認した。1)は正常波形で,2)は
強い絶縁破壊のため図4の駆動回路で検出電流はスイッ
チ36へ逃げ、ヒータパルスと同期して検出出力が減少
する。3)は弱い絶縁破壊を示し、スイッチ36のオンで
検出電流の一部がスイッチ36へ逃げて出力が減少し、
スイッチ36のオフに同期してスイッチ36へのリーク
が止まり出力が増加する。4)は不安定な絶縁破壊を示
し、スパイク状の放電が生じていることを示す。絶縁破
壊の頻度は実施例1,2の方が比較例1,2よりも著し
く、これはMgフリーのガラスは成膜時の泡抜きが難し
いことを示唆している。即ちガラスの成膜に用いた有機
溶媒やバインダーの残渣,ヒータ膜6との間の気泡が逃
げるのが遅く、連続気孔が絶縁膜12に生じて絶縁破壊
が生じるものと推定した。
【0040】発明者は、絶縁ガラス12を上層14と下
層13の2層にすることにより、連続気孔を除き絶縁破
壊を防止できることを見い出した。また絶縁ガラス12
の膜厚は20μm以下が好ましく、膜厚を20μm以上
に増すと、パルス駆動時の感ガス膜の最高加熱温度が低
下することを見い出した。表7に結果を示す。絶縁膜1
2を2層にすれば、5μm以上の膜厚で絶縁破壊を防止
できることは明らかで、1層では5μm付近の膜厚で約
20%の絶縁破壊頻度が残っている。また2層にした場
合、上層14中のMg含有量を制御すれば良いことは明
らかである。実施例では、感ガス膜にSnO2膜を用い
たが他の膜でも良いことは明らかで、また固体電解質膜
を用いる場合、検出電圧を外部から加えないものの、固
体電解質自体の起電力で同様のMgの偏析が生じ得る。
従ってこの発明は金属酸化物半導体膜以外の感ガス膜に
も用い得る。
【0041】
【表7】 絶縁破壊頻度 /400個 合計膜厚(μm) 層数 破壊頻度/400個 4.6 1 82 3.3 2 26 5.1 2 0 7.9 2 0 * 絶縁破壊には図14の2)〜4)の各波形を含め、不安定な絶縁破壊も含めた. 層数2は下層と上層をほぼ同じ膜厚で設けたものを示す.
【図面の簡単な説明】
【図1】 実施例のガスセンサの断面図
【図2】 実施例のガスセンサの平面図
【図3】 実施例のガスセンサの要部拡大断面図
【図4】 実施例のガスセンサの駆動回路を示す図
【図5】 実施例のガスセンサの動作波形を示す特性
【図6】 乾燥期での従来例のガスセンサの抵抗値ド
リフトを示す特性図
【図7】 湿潤期での従来例のガスセンサの抵抗値ド
リフトを示す特性図
【図8】 制御回路暴走時の従来例のガスセンサの抵
抗値ドリフトを示す特性図
【図9】 制御回路暴走時の従来例のガスセンサの抵
抗値ドリフトを示す特性図
【図10】 感ガス膜へのMgイオンの拡散に伴うCO
100ppm中の抵抗値の変化を示す特性図
【図11】 従来例のガスセンサでのMg汚染後のガス
濃度特性を示す特性図
【図12】 実施例のガスセンサでのガス濃度特性を示
す特性図
【図13】 ロット毎のガスセンサの抵抗値の変化を示
す特性図
【図14】 絶縁破壊に伴うガスセンサの出力波形を示
す特性図
【符号の説明】
2 基板 22〜28 電
極パッド 4 断熱ガラス 30 ガ
スセンサ 6 ヒータ膜 32 電
源 8,10 ヒータ電極 34
マイクロコントローラ 12 絶縁膜 36
スイッチ 13 下層 14 上層 16 感ガス膜 18,20 検出電極
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木虎 真紀 川西市寺畑1丁目12番9号

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 基板上にヒータ膜と、ガラス成分を含む
    絶縁膜と感ガス膜とを積層したガスセンサにおいて、 前記絶縁膜中の感ガス膜側でのガラス成分のMg含有量
    を、MgO換算で2wt%以下としたことを特徴とす
    る、ガスセンサ。
  2. 【請求項2】 前記ガラス成分が、少なくともSiO2
    とAl2O3とROとを含み、(ここにRはCa,Sr,
    Baからなる群の少なくとも一員を現す)、かつ感ガス
    膜側でのガラス成分のMg含有量をMgO換算で2wt
    %以下としたことを特徴とする、請求項1のガスセン
    サ。
  3. 【請求項3】 前記ガラス成分のSiO2とAl2O3と
    ROの合計含有量を40−100wt%とし、ガラス成
    分の残余成分が、遷移金属,ランタニド,B,Ga,I
    n,Tl,Ge,Sn,Pbからなる群の少なくとも一
    員の元素と、酸素及びハロゲンからなる群の少なくとも
    一員の元素、及び5wt%以下の不純物成分からなり、
    かつ絶縁膜の感ガス膜側でのガラス成分のMgO含有量
    を1000wtppm以下としたことを特徴とする、請
    求項2のガスセンサ。
  4. 【請求項4】 前記絶縁膜がヒータ膜側の下層と感ガス
    膜の上層との少なくとも2層からなり、下層及び上層で
    のガラス成分中のMg含有量をMgO換算で何れも2w
    t%以下としたことを特徴とする、請求項1のガスセン
    サ。
  5. 【請求項5】 前記絶縁膜がヒータ膜側の下層と感ガス
    膜の上層との少なくとも2層からなり、上層でのガラス
    成分のMg含有量をMgO換算で2wt%以下としたこ
    とを特徴とする、請求項1のガスセンサ。
JP32107995A 1995-11-06 1995-11-14 ガスセンサ Expired - Fee Related JP3570644B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP32107995A JP3570644B2 (ja) 1995-11-14 1995-11-14 ガスセンサ
KR1019960052127A KR970028546A (ko) 1995-11-06 1996-11-05 수질 감시 장치
KR1019960052926A KR100408599B1 (ko) 1995-11-14 1996-11-08 가스센서
US08/747,287 US5759367A (en) 1995-11-14 1996-11-12 Gas sensor
CN96120562A CN1093635C (zh) 1995-11-14 1996-11-13 气体传感器
CA002190232A CA2190232C (en) 1995-11-14 1996-11-13 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32107995A JP3570644B2 (ja) 1995-11-14 1995-11-14 ガスセンサ

Publications (2)

Publication Number Publication Date
JPH09138208A true JPH09138208A (ja) 1997-05-27
JP3570644B2 JP3570644B2 (ja) 2004-09-29

Family

ID=18128581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32107995A Expired - Fee Related JP3570644B2 (ja) 1995-11-06 1995-11-14 ガスセンサ

Country Status (5)

Country Link
US (1) US5759367A (ja)
JP (1) JP3570644B2 (ja)
KR (1) KR100408599B1 (ja)
CN (1) CN1093635C (ja)
CA (1) CA2190232C (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039983A (ja) * 2000-07-21 2002-02-06 Denso Corp 湿度センサ
WO2002046734A1 (fr) * 2000-12-07 2002-06-13 Matsushita Electric Industrial Co., Ltd. Capteur de gaz et procede et dispositif de detection de la concentration de gaz
US6571575B1 (en) 1997-12-16 2003-06-03 Matsushita Electric Industrial Co., Ltd. Air conditioner using inflammable refrigerant
JP2009540560A (ja) * 2006-06-09 2009-11-19 エンシルテック株式会社 ジュール加熱による急速熱処理時にアーク発生を防止する方法(methodofpreventinggenerationofarcduringrapidannealingbyjouleheating)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826961B2 (ja) * 1996-03-25 2006-09-27 ローム株式会社 加熱体およびその製造方法
US6319473B1 (en) * 1998-06-16 2001-11-20 Figaro Engineering, Inc. Co sensor and its fabrication
EP1026501B1 (en) * 1999-02-03 2010-10-06 Denso Corporation Gas concentration measuring apparatus compensating for error component of output signal
KR20010037655A (ko) 1999-10-19 2001-05-15 이진경 마이크로머시닝 기술에 의해 제조되는 저전력형 세라믹 가스센서 및 그 제조방법
US6468682B1 (en) 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
DE10213805A1 (de) * 2001-03-28 2002-11-07 Denso Corp Gassensor und Verfahren zum Herstellen eines Gassensors
US20020168772A1 (en) * 2001-05-11 2002-11-14 Lloyd Greg A. Method of detecting poisoning of a MOS gas sensor
US6532792B2 (en) 2001-07-26 2003-03-18 Avista Laboratories, Inc. Method of compensating a MOS gas sensor, method of manufacturing a MOS gas sensor, MOS gas sensor, and fuel cell system
US20040084308A1 (en) * 2002-11-01 2004-05-06 Cole Barrett E. Gas sensor
ITTO20030318A1 (it) * 2003-04-24 2004-10-25 Sacmi Dispositivo sensore di gas a film sottile semiconduttore.
KR100773025B1 (ko) 2004-02-27 2007-11-05 이엠씨마이크로시스템 주식회사 반도체식 가스센서, 그 구동방법 및 제조방법
US8024958B2 (en) * 2007-05-18 2011-09-27 Life Safety Distribution Ag Gas sensors with thermally insulating ceramic substrates
TWI453400B (zh) * 2010-09-29 2014-09-21 Univ Nat Taipei Technology 電流式氧氣感測器
JP5748211B2 (ja) * 2011-05-26 2015-07-15 フィガロ技研株式会社 ガス検出装置とガス検出方法
DE102012204899A1 (de) * 2012-03-27 2013-10-02 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Betreiben eines beheizbaren Abgassensors
US10429329B2 (en) * 2016-01-29 2019-10-01 Ams Sensors Uk Limited Environmental sensor test methodology
DE102016117215A1 (de) * 2016-09-13 2018-03-15 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie, Dieses Vertreten Durch Den Präsidenten Der Physikalisch-Technischen Bundesanstalt Verfahren zum Bestimmen einer Zusammensetzung eines gasförmigen Fluids und Gas-Zusammensetzungssensor
TWI648528B (zh) 2017-11-23 2019-01-21 財團法人工業技術研究院 電阻式氣體感測器與其氣體感測方法
IT201800004622A1 (it) 2018-04-17 2019-10-17 Fotorilevatore includente un fotodiodo a valanga operante in modalita' geiger e un resistore integrato e relativo metodo di fabbricazione
IT201800004620A1 (it) 2018-04-17 2019-10-17 Dispositivo a semiconduttore ad elevata sensibilita' per la rilevazione di specie chimiche fluide e relativo metodo di fabbricazione
IT201800004621A1 (it) 2018-04-17 2019-10-17 Dispositivo optoelettronico ad elevata sensibilita' per la rilevazione di specie chimiche e relativo metodo di fabbricazione

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294668A (en) * 1978-09-13 1981-10-13 Bendix Autolite Corporation Method of measuring oxygen and process for pretreating a solid electrolyte oxygen gas sensing element
JPH01313751A (ja) * 1988-06-13 1989-12-19 Figaro Eng Inc ガスセンサ
JP2708915B2 (ja) * 1989-11-25 1998-02-04 日本特殊陶業株式会社 ガス検出センサ
JP3201881B2 (ja) * 1993-06-04 2001-08-27 株式会社トクヤマ ガスセンサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571575B1 (en) 1997-12-16 2003-06-03 Matsushita Electric Industrial Co., Ltd. Air conditioner using inflammable refrigerant
JP2002039983A (ja) * 2000-07-21 2002-02-06 Denso Corp 湿度センサ
WO2002046734A1 (fr) * 2000-12-07 2002-06-13 Matsushita Electric Industrial Co., Ltd. Capteur de gaz et procede et dispositif de detection de la concentration de gaz
JP2009540560A (ja) * 2006-06-09 2009-11-19 エンシルテック株式会社 ジュール加熱による急速熱処理時にアーク発生を防止する方法(methodofpreventinggenerationofarcduringrapidannealingbyjouleheating)

Also Published As

Publication number Publication date
US5759367A (en) 1998-06-02
CA2190232A1 (en) 1997-05-15
KR100408599B1 (ko) 2004-03-26
KR970028539A (ko) 1997-06-24
CN1093635C (zh) 2002-10-30
JP3570644B2 (ja) 2004-09-29
CN1158996A (zh) 1997-09-10
CA2190232C (en) 2004-06-22

Similar Documents

Publication Publication Date Title
JPH09138208A (ja) ガスセンサ
JPH0764588B2 (ja) 被覆用ガラス組成物
JPS58104042A (ja) 金属基体に使用されるガラスセラミツクとその製造方法
US4282507A (en) Measurement of temperature
JPS5958348A (ja) 水素ガス検知素子
JPH0648766A (ja) ガラスフリット組成物
EP0119838A1 (en) High voltage porcelain insulators
JPH09138209A (ja) ガス検出方法及びガス検出装置
JP2001196201A (ja) 厚膜抵抗体
US5763339A (en) Insulating glass composition
JPH1045423A (ja) プラズマディスプレイ装置
US4232185A (en) Electrical insulator with semiconductive glaze
KR950000630B1 (ko) 전기화학적으로 안정한 산화 알루미늄으로 구성된 세라믹
JPH0421329B2 (ja)
JP2988016B2 (ja) オゾンセンサ
WO2006006493A1 (ja) ガス検知素子及びその製造方法
JP3003374B2 (ja) 酸化亜鉛バリスタおよびその製造方法および被覆用結晶化ガラス組成物
JP2001194337A (ja) ガス濃度の測定方法
RU2064700C1 (ru) Способ изготовления терморезистора
JP3147202B2 (ja) 高温電界下で電気化学的安定性に優れるアルミナセラミックス
RU2552631C1 (ru) Способ изготовления толстопленочных резисторов
JPS6139503A (ja) 感湿素子
JPS6324254B2 (ja)
JP2008103372A (ja) 厚膜抵抗体の比抵抗調整方法
JPH0534186A (ja) オイルレベルセンサ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees