JPH08204209A - 半導体複合センサ - Google Patents

半導体複合センサ

Info

Publication number
JPH08204209A
JPH08204209A JP7012299A JP1229995A JPH08204209A JP H08204209 A JPH08204209 A JP H08204209A JP 7012299 A JP7012299 A JP 7012299A JP 1229995 A JP1229995 A JP 1229995A JP H08204209 A JPH08204209 A JP H08204209A
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor region
piezoresistors
semiconductor
composite sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7012299A
Other languages
English (en)
Other versions
JP3344138B2 (ja
Inventor
Susumu Murakami
進 村上
Satoshi Shimada
嶋田  智
Seiichi Ukai
征一 鵜飼
Yukio Takahashi
幸夫 高橋
Shuichi Shimizu
修一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01229995A priority Critical patent/JP3344138B2/ja
Priority to DE19602442A priority patent/DE19602442C2/de
Priority to CN96102588A priority patent/CN1090823C/zh
Publication of JPH08204209A publication Critical patent/JPH08204209A/ja
Priority to US09/417,235 priority patent/US6211772B1/en
Application granted granted Critical
Publication of JP3344138B2 publication Critical patent/JP3344138B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

(57)【要約】 【目的】ピエゾゲージ抵抗を用い、高精度化及び高信頼
化された半導体複合センサを提供する。 【構成】複数の半導体ピエゾゲージ抵抗を直列に接続し
て使用する半導体複合センサにおいて、等しい抵抗値を
有する一方の抵抗の高電位端子と他方の抵抗の基板とを
等電位接続すべく抵抗素子を分離し、それぞれの抵抗素
子となる半導体領域とその基板電位との電位差を等しく
する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は化学プラント,製鉄所,
発電所などで流量や圧力を検出するセンサに係り、特に
長期間使用しても高精度が維持される高信頼の半導体複
合センサに関する。
【0002】
【従来の技術】シリコンのピエゾ抵抗効果を使用した圧
力センサとして従来から種々の技術が提案されている。
【0003】例えば、PROCEEDINGS OF THE 3RD SENSOR
SYMPOSIUM(1983)におけるSusumu Sugiyama等による“Mi
niature Piezoresistive Strain and Pressure Sensors
with On-Chip Circuitry”と題する文献に示されるよう
に、2つのピエゾ抵抗素子をpn分離された同一のn型
半導体領域に形成されているものが知られている。
【0004】また他の従来例として、実開平3−76139号
公報においても同様の構造が開示されている。
【0005】
【発明が解決しようとする課題】しかしながら、これら
の技術は同一の電位を有するn型の基板中に2つのピエ
ゾ抵抗素子が直列に接続されているため、抵抗領域と基
板との電位差が2つのピエゾ抵抗素子毎に異なってお
り、基板の電位が抵抗領域に与える影響の違いにより同
一の抵抗値を実現するのは困難であった。
【0006】本発明は、高精度化,高信頼化を図ること
ができる半導体複合センサを提供すること目的とする。
【0007】
【課題を解決するための手段】少なくとも2つのピエゾ
抵抗を接続して使用する半導体複合センサであって、前
記2つのピエゾ抵抗は同一の形状を有すると共に、各々
独自の電位を有する半導体領域に包囲され、且つ前記2
つのピエゾ抵抗と前記半導体領域間の電位差を夫々一定
とすることを特徴としている。
【0008】また2つの半導体領域に夫々独自の電位を
持たせるために、両半導体領域間に電気的な干渉が無い
ように両半導体領域を配置し、両半導体領域に対し違う
供給源から電圧を供与している。
【0009】また上記のようなピエゾ抵抗素子を持って
ブリッジ回路を形成する際に、少なくとも直列に接続さ
れる2つのピエゾ抵抗を同じものとし、このピエゾ抵抗
を包囲する半導体領域の中でも、電圧供給源側に位置す
るピエゾ抵抗を包囲する半導体領域に対しては電圧供給
源の電圧を印加し、もう一方のピエゾ抵抗を包囲する半
導体領域に対しては、電圧供給源側のピエゾ抵抗の電圧
降下分を差し引いた電圧供給源の電圧を印加している。
【0010】そして少なくとも2つの同一のピエゾ抵抗
が、直列に接続される際、両ピエゾ抵抗の負側、或いは
正側の電極でピエゾ抵抗を覆うように配置している。ま
たこの時片方のピエゾ抵抗が負側の電極によって覆われ
た場合にはもう片方のピエゾ抵抗も負側の電極を持って
配置している。これは正側の場合であっても同様として
いる。
【0011】
【作用】本発明によれば2以上のピエゾ抵抗を包囲する
半導体領域をピエゾ抵抗毎に設け、且つ各半導体領域同
士を電気的な干渉が無いように配置したため、各半導体
領域が独自の電位を持つことができる。また独自の電位
を持つことができるから各ピエゾ抵抗が如何なる電位を
持っていても、それを包囲する各半導体領域との電位差
を一定とすることによって、ピエゾ抵抗と半導体領域と
の逆バイアス電圧を等しくできるからピエゾ抵抗と半導
体領域の間に出現する空乏層の幅を同一のものとするこ
とができる。即ちピエゾ抵抗に干渉する空乏層の幅も一
定のものとできるから、特に同じ抵抗を用いた場合空乏
層の影響による抵抗の変化を一定のものできる。
【0012】次に本発明によれば、直列に接続された2
つの同一のピエゾ抵抗を覆うようにしてピエゾ抵抗の入
力或いは出力端子電極を配置するようにしたので、電極
とピエゾ抵抗間に蓄積層を形成せしめ、且つ2つのピエ
ゾ抵抗の電圧降下分と電極がピエゾ抵抗に与える影響を
一定のものとでき、出現する蓄積層の幅を一定のものと
できるから半導体層の表面からの電気的影響に対して電
極がシールドの役を成すと共に蓄積層の影響によるピエ
ゾ抵抗の変化を一定のものとできる。
【0013】また本発明によれば4つのピエゾ抵抗を持
ってブリッジ回路を形成した場合、ブリッジ回路の少な
くとも直列に接続される2つのピエゾ抵抗を同一のもの
とし、2つのピエゾ抵抗を包囲する半導体領域との電位
差を同じくするために2つの半導体領域の内、電気的に
正側に位置するピエゾ抵抗を包囲する半導体領域には、
正側のピエゾ抵抗に与えられる電圧と同一のものを印加
して電位を有し、負側のピエゾ抵抗を包囲する半導体領
域には正側に与えられた電圧より正側ピエゾ抵抗の電圧
降下分を差し引いたものを与えて電位を有することによ
って達成している。
【0014】以上により高精度化のみならず出力ドリフ
トが低減された高信頼の半導体複合センサが得られる。
さらにブリッジを形成する際、全てのピエゾ抵抗、それ
を包囲する半導体領域及びピエゾ抵抗上に配置される電
極を同じものとし、電圧的に同一条件とすることによっ
ていかなる使用条件及び使用環境においても、全ての抵
抗を等しくできるので出力補正回路が不要となり、高精
度,高信頼の半導体複合センサが得られる。
【0015】
【実施例】以下、本発明の一実施例を図を用いて説明す
る。
【0016】図1は本発明の半導体複合センサの第1実
施例を示す概略断面図である。図において11〜15は
n型半導体領域であり、p型半導体領域31〜33上に
形成されている。51,52はゲージ抵抗体となるp型
半導体領域であり、それぞれのゲージ抵抗体の両端には
高不純物濃度のp+ 型半導体領域41a及び41b,4
2a及び42bが隣接して形成されている。またp型半
導体領域51,p+ 型半導体領域41a及び41bの外
側を取り囲むようにn型半導体領域11を介して高不純
物濃度のn+ 型半導体領域21が形成され、p型半導体
領域52,p+型半導体領域42a及び42bの外側を
取り囲むようにn型半導体領域12を介して高不純物濃
度のn+ 型半導体領域22が形成されている。さらに本
発明の特徴とする高不純物濃度のp+ 型半導体領域61
がn+ 型半導体領域21の外側を取り囲むようにn型半
導体領域11を介し、p型半導体領域31及び32と連
結するよう形成され、また高不純物濃度のp+ 型半導体
領域62がn+ 型半導体領域22の外側を取り囲むよう
にn型半導体領域12を介し、p型半導体領域32及び
33と連結するよう形成されている。81〜88は半導
体表面に形成された二酸化珪素あるいは二酸化珪素とリ
ンガラス等の複合膜からなる絶縁膜である。これらの絶
縁膜には開口部が設けられ、高不純物濃度のp+ 型半導
体領域41a及び41bにはそれぞれ電極71a,71
bがオーミック接触して形成され、n+ 型半導体領域2
1には電極71cがオーミック接触して形成され、高不
純物濃度のp+ 型半導体領域42a及び42bにはそれ
ぞれ電極72a,72bがオーミック接触して形成さ
れ、n+ 型半導体領域22には電極72cがオーミック
接触して形成されている。さらに、p+ 型半導体領域6
1には電極70がオーミック接触して形成されている。
91は高不純物濃度のp+ 型半導体領域41a,41b
とn型半導体領域11からなるpn接合を跨ぎ、高不純
物濃度のn+ 型半導体領域21とn型半導体領域11か
らなるn+ n接合を跨ぎ、p+ 型半導体領域41aある
いは41bと高不純物濃度のn+ 型半導体領域21に挟
まれたn型半導体領域11の表面とp型半導体領域51
の表面を覆い、さらに電極71aと電気的に接続された
導電体である。また92は高不純物濃度のp+ 型半導体
領域42a,42bとn型半導体領域12からなるpn
接合を跨ぎ、高不純物濃度のn+ 型半導体領域22とn
型半導体領域12からなるn+ n接合を跨ぎ、p+ 型半
導体領域42aあるいは42bと高不純物濃度のn+ 型
半導体領域22に挟まれたn型半導体領域12の表面と
p型半導体領域52の表面を覆い、さらに電極72aと
電気的に接続された導電体である。また、電極71aか
ら電極端子101が取り出され、電極71b,71c及び
72aは電気的に接続され電極端子103が取り出され、
電極72b及び72cは電気的に接続され電極端子10
2が取り出されている。このように、ゲージ抵抗体とな
るp型半導体領域である51,52は電極端子101と
102間では直列に接続された構成となっており、p型
半導体領域である51と52が等しい抵抗値を有する場
合、電極端子103の電位は電極端子101と電極端子
102に印加された電圧の半分の電位に保つことができ
る。
【0017】図2は本発明の抵抗ブリッジが構成される
半導体複合センサの第2実施例を示す概略断面図であ
る。図2において11〜18はn型半導体領域であり、
p型半導体領域31〜35上に形成されている。50〜
53はゲージ抵抗体となるp型半導体領域であり、それ
ぞれのゲージ抵抗体の両端には高不純物濃度のp+ 型半
導体領域40a及び40b,41a及び41b,42a
及び42b,43a及び43bが隣接して形成されてい
る。またp型半導体領域50,p+ 型半導体領域40a
及び40bの外側を取り囲むようにn型半導体領域16
を介して高不純物濃度のn+ 型半導体領域20が形成さ
れ、p型半導体領域51,p+ 型半導体領域41a及び
41bの外側を取り囲むようにn型半導体領域11を介
して高不純物濃度のn+ 型半導体領域21が形成され、
p型半導体領域52,p+ 型半導体領域42a及び42
bの外側を取り囲むようにn型半導体領域12を介して
高不純物濃度のn+ 型半導体領域22が形成され、p型
半導体領域53,p+ 型半導体領域43a及び43bの
外側を取り囲むようにn型半導体領域17を介して高不
純物濃度のn+ 型半導体領域23が形成されている。さ
らに本発明の特徴とする高不純物濃度のp+ 型半導体領
域60がn+ 型半導体領域20の外側を取り囲むように
n型半導体領域16を介し、p型半導体領域31及び3
4と連結するよう形成され、高不純物濃度のp+ 型半導
体領域61がn+ 型半導体領域21の外側を取り囲むよ
うにn型半導体領域11を介し、p型半導体領域31及
び32と連結するよう形成され、高不純物濃度のp+ 型
半導体領域62がn+ 型半導体領域22の外側を取り囲
むようにn型半導体領域12を介し、p型半導体領域3
2及び33と連結するよう形成され、高不純物濃度のp
+ 型半導体領域63がn+型半導体領域23の外側を取
り囲むようにn型半導体領域17を介し、p型半導体領
域33及び35と連結するよう形成されている。なお図
2では説明を簡単にするため図1で説明した半導体表面
に形成された絶縁膜や電極さらに導電体は省略してい
る。
【0018】また、高不純物濃度の各半導体領域には図
示はしていないが電極が形成されており、それらの電極
を介して、p+ 型半導体領域40aと41aは電気的に
接続され電極端子101が取り出され、p+ 型半導体領
域40bとn+ 型半導体領域20さらにp+ 型半導体領
域43aは電気的に接続され電極端子104が取り出さ
れ、p+ 型半導体領域41bとn+ 型半導体領域21さ
らにp+ 型半導体領域42aは電気的に接続され電極端
子103が取り出され、p+ 型半導体領域42bとn+ 型
半導体領域22とp+ 型半導体領域43bさらにn+ 型
半導体領域23は電気的に接続され電極端子102が取
り出されている。
【0019】以上述べた電極端子101〜104が抵抗
ブリッジ回路の端子となる。
【0020】図3は図1及び図2に示した本発明による
ゲージ抵抗を半導体複合センサに適用した回路図であ
る。この図で、RgL1,RgL2,RgT1及びRg
T2は差圧センサのゲージ抵抗であり、図2に示したゲ
ージ抵抗体となるp型半導体領域52はRgL1に含ま
れ、p型半導体領域53はRgT1に含まれ、p型半導
体領域50はRgL2に含まれ、p型半導体領域51は
RgT2に含まれている。
【0021】ここで、電極端子101を基準電位のアー
スに接続し、電極端子102に正電圧を印加した状態で
差圧に比例したブリッジ出力ΔEdが電極端子103と
104間に得られる。
【0022】このような回路構成に本発明によるゲージ
抵抗を適用することにより、高精度で高信頼の半導体圧
力センサを得ることができる。以下に、図面を参照しそ
の動作について説明する。
【0023】図4は本発明の基本構成である図1に示し
た直列に接続された抵抗体の両端に電圧を印加した場合
の断面模式図である。電極端子101をアース電位と
し、電極端子102に3V印加した場合、ゲージ抵抗5
1と52の値が同じであれば、電極端子103の電位は
1.5V となる。この場合、p+ 型半導体領域41a,
41b及びゲージ抵抗51からなるp型半導体とn型半
導体領域11からなるpn接合の両側に空乏層201が
広がるが、p+ 型半導体領域42a,42b及びゲージ
抵抗52からなるp型半導体とn型半導体領域12から
なるpn接合の両側に広がる空乏層202とは同一形状
をしているところに特徴があり、基本的にゲージ抵抗5
1と52の値は所定の値に揃えることができる。さら
に、電極70を一定の電位のアースに接続しておくと、
p+ 型半導体領域61,p型半導体領域31,32のそ
れぞれとn型半導体領域11からなるpn接合の両側に
は1.5V の逆バイアス電圧による空乏層211が広が
っている。一方、図4の左に示したゲージに関しては、
n型半導体領域12の電位が3Vになっているため、p
+ 型半導体領域62,p型半導体領域32,33のそれ
ぞれとn型半導体領域12からなるpn接合の両側には
3Vの逆バイアス電圧による空乏層212が広がってい
るが、ブリッジを構成する抵抗値には無関係となり、高
精度化や高信頼化に対して悪影響を与えない。
【0024】図5〜図7は本発明が高精度化や高信頼化
に対して効果のあることを説明するための詳細な図であ
る。図5において、71aがアース電位、71bおよび
71cは1.5V の電位になっている場合について記載し
ている。まず、半導体内部について説明する。n型半導
体領域11は1.5V の電位であり、p+ 型半導体領域
41aがアース電位であるから、n型半導体領域11と
p+ 型半導体領域41aの間には1.5V の逆バイアス電
圧が印加されるが、n型半導体領域11とp+型半導体
領域41bとは同電位であるから、空乏層201はp+
型半導体領域41a側で大きく広がり、p型半導体領域
51とn型半導体領域11からなるpn接合の両側に広
がる空乏層幅はp+ 型半導体領域41bに近づくにつれ
狭くなり、p+ 型半導体領域41b側では熱平衡状態で
存在する空乏層幅になる。このような空乏層のうち、n
型半導体領域に広がる空乏層は抵抗値に無関係である
が、ゲージ抵抗となるp型半導体領域52に広がる空乏
層は電流が流れる通路を狭めるので、抵抗値を高める。
また図5において、括弧内の符号は図4における左側の
ゲージ抵抗について記載したものであり、半導体内部の
空乏層202の広がり方は201と全く同一である。そ
の理由は、p+型半導体領域42aが1.5Vの電位であ
りn型半導体領域12が3Vの電位であるから、n型半
導体領域12とp+ 型半導体領域42aの間には1.5
V の逆バイアス電圧が印加される。さらに、n型半導
体領域12とp+ 型半導体領域42bとは同電位である
から、空乏層202はp+ 型半導体領域42a側で大き
く広がり、p型半導体領域52とn型半導体領域12か
らなるpn接合の両側に広がる空乏層幅はp+ 型半導体
領域42bに近づくにつれ狭くなり、p+ 型半導体領域
42b側では熱平衡状態で存在する空乏層幅になる。
【0025】続いて、半導体表面について述べる。ま
ず、p型半導体領域51上について説明する。電極71
a及びこれに接触している導電体91がアース電位であ
り、電極71bが1.5V の電位を有していると、p型
半導体領域51の右端がアース電位、左端が1.5V の
電位となる電位分布を有する。この結果、p型半導体領
域51の右端の表面と導電体91との間には電界効果作
用が働かなく、左端の表面に対して導電体91が負の
1.5V の電界効果作用が働くので、図6に示したよう
にp型半導体領域上には正孔が蓄積した蓄積層301が
形成される。この蓄積層301はp型半導体領域51の
左側になるほど顕著である。なお、図6において、VG
はp型半導体領域51に対して実効的に負の電位を有す
る導電体91の電位を示す。
【0026】ゲージ抵抗となるp型半導体領域51に広
がる空乏層は電流が流れる通路を狭めるので抵抗値を高
めるが、p型半導体領域51上に形成される蓄積層は抵
抗値を下げる効果があるので、全体としては抵抗値の変
動を相殺する。
【0027】次に、n型半導体領域11上について説明
する。導電体91がアース電位であり、電極71cが
1.5V の電位を有していると、n型半導体領域11も
同様に1.5V の電位を有する。この結果、n型半導体
領域11の表面と導電体91との間には電界効果作用が
働くので、図7に示したようにn型半導体領域11上に
は電子が欠乏した空乏層201が形成される。なお、図
7において、VG はn型半導体領域11に対して実効的
に負の電位を有する導電体91の電位を示す。この空乏
層201は電流の通路にないので、ブリッジを構成する
抵抗値には無関係となり、高精度化や高信頼化に対して
悪影響を与えない。
【0028】以上述べた半導体表面に関する動作につい
ても、図6及び図7に示した括弧内外符号に対して図5
で説明したのと同様の作用があることから、全く同一で
ありここでは説明を省略する。
【0029】図8は本発明の動作の説明に用いた図4に
示した高不純物濃度のp+ 型半導体領域61及び62が
無い場合の動作説明図であり、直列に接続された抵抗体
の両端に電圧を印加した場合の断面模式図である。電極
端子101をアース電位とし、電極端子102に3V印
加した場合、ゲージ抵抗51と52の値が同じであれ
ば、電極端子103の電位は1.5V となる。この場
合、p+ 型半導体領域41a,41b及びゲージ抵抗51
からなるp型半導体とn型半導体領域10からなるpn
接合の両側に空乏層201が広がるが、p+ 型半導体領
域42a,42b及びゲージ抵抗52からなるp型半導
体とn型半導体領域10からなるpn接合の両側に広が
る空乏層202とは異なった形状をしており、基本的に
ゲージ抵抗51と52の値は所定の値に揃えることがで
きない。
【0030】図9及び図10はその理由について説明す
るための詳細な図である。図9において、71aがアー
ス電位、71bおよび71cは電極端子102と同じ3
Vの電位になっている場合について記載している。ま
ず、半導体内部について説明する。n型半導体領域10
は3Vの電位であり、p+ 型半導体領域41aがアース
電位であるから、n型半導体領域10とp+ 型半導体領
域41aの間には3Vの逆バイアス電圧が印加される
が、n型半導体領域10が3V、p+ 型半導体領域41
bが1.5V になっているから、空乏層201はp+ 型
半導体領域41a側で大きく広がり、p型半導体領域5
1とn型半導体領域10からなるpn接合の両側に広が
る空乏層幅はp+ 型半導体領域41bに近づくにつれ狭
くなり、p+型半導体領域41b側では1.5V の逆バ
イアス電圧で広がる空乏層幅になる。このような空乏層
のうち、n型半導体領域に広がる空乏層は抵抗値に無関
係であるが、ゲージ抵抗となるp型半導体領域51に広
がる空乏層は電流が流れる通路を狭めるので、抵抗値を
高める。また図10に示した72aが1.5V の電位、
72bおよび72cは電極端子102と同じ3Vの電位
になっている場合について記載している。n型半導体領
域10は3Vの電位であり、p+ 型半導体領域42aが
1.5V の電位であるから、n型半導体領域10とp+
型半導体領域42aの間には1.5V の逆バイアス電圧
が印加されるが、n型半導体領域10が3V,p+ 型半
導体領域42bが3Vになっているから、空乏層202
はp+型半導体領域42a側で大きく広がり、p型半導
体領域51とn型半導体領域10からなるpn接合の両
側に広がる空乏層幅はp+ 型半導体領域42bに近づく
につれ狭くなり、p+ 型半導体領域42b側では熱平衡
状態で広がる空乏層幅になる。
【0031】以上述べたように空乏層201と202の
幅は大きく異なり、特にゲージ抵抗となるp型半導体領
域51に広がる空乏層幅はp型半導体領域52に広がる
ものより広く、結果的に同一の拡散形状を有する抵抗を
形成しても、p型半導体領域51の実質的な抵抗値はp
型半導体領域52の抵抗値より高くなる。このため、圧
力がかかっていなくても、図3に示した抵抗ブリッジ回
路のバランスが崩れ、高精度な圧力センサが得られな
い。
【0032】続いて、半導体表面について述べる。ま
ず、p型半導体領域51及び52上については図5及び
図6で説明したのとほぼ同様であり、ここでは省略す
る。n型半導体領域10上について説明する。導電体9
1がアース電位であり、電極71cが3Vの電位を有して
いると、n型半導体領域10も同様に3Vの電位を有す
る。この結果、n型半導体領域10の表面と導電体91
との間には3Vの電界効果作用が働くので、図9に示し
たように導電体91の直下のn型半導体領域110上に
は電子が欠乏した空乏層201が形成される。しかし、
図10に示したように、導電体92の電位が1.5V 、
n型半導体領域10の電位が3Vであるから、n型半導
体領域10の表面と導電体92との間には1.5V の電
界効果作用が働くのでn型半導体領域10表面の空乏層
202の幅は201より狭くなる。この結果、例えばリ
ーク電流は空乏層内の体積に比例するので、p型半導体
領域51を含む抵抗のリーク電流はp型半導体領域52
を含む抵抗のリーク電流より多くなり、ブリッジを構成
する抵抗のリーク電流にアンバランスが生じ高精度化や
高信頼化に対して悪影響を与える。
【0033】次に、本発明による半導体複合センサの製
造方法について説明する。図11(a),(b),(c),
(d),(e),(f),(g),(h),(i),(j)はそれぞ
れ図1に示した本発明による半導体複合センサの製造方
法を順次工程ごとに示したものである。図11(a)に
示すように、まずp型半導体領域30上にエピタキシャ
ル成長によって形成されたn型半導体領域10を有する
Siウェハを熱酸化し表面に二酸化珪素膜80,裏面に
二酸化珪素膜89aを形成する。次に、図11(b)に
示すように通常のホトエッチング技術により表面の二酸
化珪素膜80の一部を開口し、開口部611にボロン等
の不純物をイオン打ち込み法あるいは熱拡散法によって
ドープし、高不純物濃度のp+ 型半導体領域61をp型
半導体領域30と連結するように形成する。次に、図1
1(c)に示すように、通常のホトエッチング技術により
表面の二酸化珪素膜80の一部を開口し、開口部411
a及び411bにボロン等の不純物をイオン打ち込み法
あるいは熱拡散法によってドープし、高不純物濃度のp
+ 型半導体領域41a及び41bを形成する。次に、図
11(d)に示すように、通常のホトエッチング技術に
より表面の二酸化珪素膜80の一部を開口し、開口部2
10にリン等の不純物をイオン打ち込み法あるいは熱拡
散法によってドープし、高不純物濃度のn+ 型半導体領
域21を形成する。次に、図11(e)に示すように、
通常のホトエッチング技術により表面の二酸化珪素膜8
0の一部を開口し、開口部511にボロン等の不純物を
イオン打ち込み法あるいは熱拡散法によってドープし、
ゲージ抵抗となるp型半導体領域51を形成する。次
に、図11(f)に示すように、表面の二酸化珪素膜8
0上に例えば多結晶シリコン膜あるいはリンやボロン等
の不純物を含むいわゆるドープト多結晶シリコン膜等の
導電膜90をモノシランを主原料としたCVD法,プラ
ズマCVD法、あるいはマイクロ波を利用したプラズマ
CVD法により形成する。また、裏面にはプラズマCV
D法により、窒化珪素膜89bを形成する。次に、図1
1(g)に示すように、表面に形成された導電膜90を通
常のホトエッチング技術により加工し、所定の大きさの
導電膜91を形成する。さらに、半導体表面に形成され
た二酸化珪素膜のうち高不純物濃度の半導体領域61,
41a,41b,21上の一部を開口し、開口部61
0,410a,410b,210を設ける。次に、図1
1(h)に示すように、上記の開口部の高不純物濃度の
半導体領域上に通常のスパッタ法により、アルミニウム
等の金属を蒸着し、ホトエッチングにより所定の形状に
なるよう電極70,71a,71b,71cを形成す
る。次に、図11(i)に示すように、少なくともゲー
ジ抵抗51の直下にある裏面の窒化珪素膜89b及び二
酸化珪素膜89aの一部を通常のホトリソグラフィやド
ライエッチングにより加工し、p型半導体領域30に開
口部300を設ける。最後に、図11(j)に示すよう
に、開口部300をアルカリエッチングやドライエッチ
ングによりp型半導体領域30をエッチングして、半導
体複合センサを製造する。
【0034】図12及び図13は図3に示したゲージ抵
抗の表面からみた平面パターンであり、図12は図3の
RgL1,RgL2、図13は図3のRgT1,RgT
2に対応する。なお、図12及び図13に記載した符号
のうち図1及び図2に記載したものと同一のものは説明
を省略する。図1に記載したp型半導体領域のゲージ抵
抗51は図12において、51a,51b,51cと3
つに分解している。さらに、これら51aと51b,5
1bと51cとを連結するため、新たに高不純物濃度の
p+ 型半導体領域451aと451bを付加している。
この図が示すように、高不純物濃度のn+ 型半導体領域
21はn型半導体領域11を介して、p型半導体領域5
1a,51b,51c及びp+ 型半導体領域41a,4
1b,451a,451bを取り囲むよう形成してい
る。このような配置にすることにより、仮にn型半導体
領域11の表面がp型に反転しても、ゲージ抵抗51
a,51b,51cがつながって抵抗値を大幅に下げる
という問題を無くすことができる。さらに、導電体91
は電極71aと接続され、電極71bと電極71cとは
隔離されているので、導電体91と電極71aは同電位
となっている。この導電体91は表面から見てゲージ抵
抗51a,51b,51c及びn型半導体領域11の表
面を覆っているので、外部雰囲気例えば水分や他の汚染
が有する電荷をシールドでき、高信頼化を達成できる。
【0035】なお、図1に記載したp型半導体領域のゲ
ージ抵抗52は図13において、52a,52b,52
c,52dと4つに分解している。さらに、これら52
aと52b,52bと52c,52cと52dとを連結
するため、新たに高不純物濃度のp+ 型半導体領域45
2a,452b,452cを付加している。その他の動
作については図12に説明したのと同様であり省略す
る。
【0036】図14〜図16は本発明の第2,第3及び
第4実施例を示す断面図である。これらの図において図
1と同じ符号のものについては説明を省略する。本発明
の図1及び図4を用いて本発明の特徴及び動作について
詳述したが、本発明による図1に示した高不純物濃度の
p+ 型半導体領域61や62の代わりに図14に示した
絶縁物611や621を用いても構わない。すなわち、
絶縁物を用いても電極端子101をアース電位とし、電
極端子102に3Vの電圧を印加した場合、n型半導体
領域11と高不純物濃度のp+ 型半導体領域41aとの
電位差は1.5Vとなり、n型半導体領域12と高不純
物濃度のp+ 型半導体領域42aとの電位差は1.5V
となり等しくなり、高精度,高信頼の半導体複合センサ
を得ることができる。
【0037】図15は本発明の第1実施例である図1で
はシールド作用を有する導電体91として例えば電極7
1aや電極72aの下部に形成していたが、図15に示
すように導電体911及び921は電極71aや電極7
2aの上部に形成しても本発明の効果は達成でき、電極
71a及び72aを設置してから導電体を配置できるの
で半導体構成上工程の簡略化を計ることができる。
【0038】図16は図14に示した絶縁物611及び
621、さらに電極71aや電極72aの上部に形成し
た導電体911及び921を使用した実施例を示すもの
であり、いずれも本発明の特徴とする高精度,高信頼の
半導体複合センサを得ることができる。
【0039】図17はゲージ抵抗のコンタクト部の第1
実施例を示す平面図、図18は図17のA−A′部にお
ける断面図である。図17及び図18のコンタクト部は
図1における等電位に接続された電極71b及び電極7
1cを共通の電極71としたものである。図17に示す
ように、電極71は導電体91とは隔離され、図18に
示すように高不純物濃度のn+ 型半導体領域21及びp
+ 型半導体領域41bとは接続されている。こうするこ
とによって、電極取り出しが容易となる利点がある。
【0040】図19はゲージ抵抗のコンタクト部の第2
実施例を示す平面図、図20は図19のB−B′部にお
ける断面図である。図19及び図20のコンタクト部も
図1における等電位に接続された電極71b及び電極7
1cを共通の電極71としたものである。図19に示す
ように、電極71は導電体91とは隔離され、図20に
示すように、n+ 型半導体領域21をp+ 型半導体領域
41bより浅く形成しておき、高不純物濃度のn+ 型半
導体領域21及びp+ 型半導体領域41bとは接続され
ている。こうすることによって、電極取り出しが容易と
なる利点があるだけでなく、高不純物濃度領域のうち電
極で覆われていない導電型をn型のみにすることができ
一層の高信頼化を達成することができる。この理由は、
一般に不純物濃度に関してはn型の方がp型より高不純
物濃度にすることができることと、例えば絶縁膜中には
ナトリウムイオンのような正電荷を有する有害な物質が
存在するが、高不純物濃度のn+ 型半導体領域の表面で
は、電子が基板より多く溜るいわゆる蓄積層が形成され
るので、リーク電流増大や抵抗ブリッジ回路のアンバラ
ンスを生ずる危険性は全く無くなる利点を有する。
【0041】図21は本発明の第5実施例を示す動作の
説明図である。この図において図1と同じ符号のものに
ついては説明を省略する。本発明による第1実施例を示
す図1ではシールド層となる導電体91は電極71a及
び電極72aすなわち直列に接続された2つのゲージ抵
抗の低電位側の電極に接続されていたが、図25では高
電位側に接続したところに特徴がある。図5で説明した
ように、低電位側に接続した場合は、n型半導体表面に
空乏層が形成されるが、高電位側に接続した場合は、空
乏層201,211,202,212の半導体内部での
広がりには変わりが無いが、n型半導体表面に蓄積層が
形成されるところが異なる。この詳細を図22〜図24
を用いて説明する。図22において、71aがアース電
位,71bおよび71cは1.5V の電位になっている場
合について記載している。半導体内部については図5で
説明したのと同様であり、ここでは説明を省略する。
【0042】従って、図5と異なる半導体表面について
述べる。まず、p型半導体領域51上について説明す
る。電極71b及びこれに接触している導電体91が
1.5Vの電位であり、電極71aがアース電位を有し
ていると、p型半導体領域51の右端がアース電位、左
端が1.5V の電位となる電位分布を有する。この結
果、p型半導体領域51の左端の表面と導電体91との
間には電界効果作用が働かなく、右端の表面に対して導
電体91が正の1.5V の電界効果作用が働くので、図
23に示したようにp型半導体領域上には正孔が欠乏し
た空乏層221が形成される。この空乏層221はp型
半導体領域51の右側になるほど顕著である。なお、図
23において、VGはp型半導体領域51に対して実効
的に正の電位を有する導電体91の電位を示す。
【0043】次に、n型半導体領域11上について説明
する。導電体91,電極71b及び電極71cが1.5
V の電位であると、n型半導体領域11も同様に1.5
V の電位を有する。この結果、n型半導体領域11の
表面と導電体91との間には電界効果作用が働かない
が、空乏層201の表面の電位はアース電位と1.5V
の間の電位にあり、この空乏層201の表面と導電体9
1の間では、図24に示したように、あたかもn型半導
体領域11上には電子が蓄積した蓄積層311が形成さ
れるように考えることができる。すなわち、導電体91
はn型半導体表面の空乏層の広がりを抑制する作用を有
する。なお、図24において、VG はn型半導体領域1
1に対して実効的に正の電位を有する導電体91の電位
を示す。この見掛け上の蓄積層311はn型半導体領域
表面のp反転を防止する作用があるので、ゲージ抵抗と
なる複数のp型半導体領域が連結して抵抗値が下がるこ
とは無く、高精度化や高信頼化に対して有効である。
【0044】なお、図22〜図24の括弧内外符号に対
しては同様の作用があることから、全く同一でありここ
では説明を省略する。
【0045】図25は本発明の第6実施例を示す動作の
説明図である。この図において図4と同じ符号のものに
ついては説明を省略する。本発明による第1実施例の動
作の説明図である図4ではゲージ抵抗51及び52上に
は絶縁膜83及び86が形成されていたが、図25では
ゲージ抵抗上に新たに高不純物濃度のn+ 型半導体領域
210,220を設けたところに特徴がある。差圧を検
知する抵抗はこの高不純物濃度のn+ 型半導体領域21
0,220の直下に存在するので、外部雰囲気やシール
ド用の導電体91,92の電位によって変動を抑えるこ
とができ、しかも、図4で詳述したように、ブリッジ回
路を構成するすべての半導体内部の空乏層の広がり方を
同一形状とすることが可能となり、高精度,高信頼の半
導体複合センサを得ることができる。
【0046】図26は本発明の第6実施例を示す動作の
説明に用いた図25に示した高不純物濃度のp+ 型半導
体領域61及び62が無い場合の動作説明図であり、直
列に接続されたゲージ抵抗の両端にすなわち、電極端子
101をアース電位とし、電極端子102に3Vの電圧
を印加した場合の断面模式図である。詳細な動作の説明
は図8で述べたものと同様であり、ここでは要点のみ述
べる。高不純物濃度のn+ 型半導体領域22が3Vの電
位を有しているので、n型半導体領域10も同様に3V
の電位になる。また、高不純物濃度のp+ 型半導体領域
41aはアース電位、p+ 型半導体領域42aは1.5
V の電位となるので、空乏層201の方が空乏層20
2より広くなり、p型半導体領域51に広がる空乏層は
p型半導体領域52に広がる空乏層より広くなる。その
結果、同一の拡散形状及び不純物濃度分布を有するゲー
ジ抵抗を形成しても、動作状態ではゲージ抵抗51の方
がゲージ抵抗52より抵抗値が高くなり、ブリッジ回路
の抵抗にアンバランスが生じ高精度化を図るのが困難で
ある。
【0047】図27は本発明の半導体複合センサを備え
た差圧伝送器の例を示す。この図で700は本発明の差
圧センサ、さらに本発明を適用した静圧センサ,温度セ
ンサを集積した複合センサ基板、701は高圧側と低圧
側を隔てるセンサダイヤフラム、702a,702bは
外部環境と伝送器内部の圧力伝達媒体(シリコンオイル
など)を隔てて外部の圧力を受けるシールダイヤフラ
ム、703はSUS等からなる複合伝送器本体、704
a,704bは圧力導入部、705はセンサの出力を増
幅し、補正演算を行う信号処理回路部である。このイン
テリジェント複合伝送器に本発明の半導体複合センサを
用いることによって、差圧に影響されない正確な静圧値
を検出できる。また、差圧センサの出力も100気圧以
上に及ぶ大きな静圧によって影響を受けるが、正確な静
圧値を知ることができるので、高精度の補正が実現で
き、差圧検出の精度を向上できる。
【0048】
【発明の効果】本発明によれば、ピエゾゲージ抵抗を利
用した差圧センサ,静圧センサ,温度センサ等を複合し
た半導体複合センサにおいて、少なくとも2つのピエゾ
抵抗素子を接続に適用するに際し、ピエゾ抵抗上に同一
の蓄積層もしくは空乏層を形成できるので、ピエゾ抵抗
上に受ける電気的な影響を回避でき、その際に形成した
蓄積層もしくは空乏層も両ピエゾ抵抗共に同じ形状とす
ることができるので、蓄積層もしくは空乏層による抵抗
値の変化を一定のものとできる。また両ピエゾ抵抗にか
かる空乏層を同じ形状とできるので空乏層による抵抗値
の変化を一定のものとできる。
【0049】本発明によれば特にピエゾ抵抗を持ってブ
リッジ回路を形成する場合、ピエゾ抵抗の抵抗値を高精
度に揃えることができ、それは如何なる使用状況,使用
環境においても可能であるので、出力補正などの手段を
考える必要が無く、高精度,高信頼の半導体複合センサ
をセンサの構成の工夫のみで提供することが可能とな
る。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す断面図。
【図2】本発明の第1実施例の適用例を示す断面図。
【図3】本発明の第1実施例の適用例を示す回路図。
【図4】本発明の第1実施例の動作の説明図。
【図5】本発明の第1実施例の動作の詳細な説明図。
【図6】本発明の第1実施例のp層表面のエネルギバン
ド図。
【図7】本発明の第1実施例のn層表面のエネルギバン
ド図。
【図8】本発明の第1実施例を適用しなかった場合の動
作の説明図。
【図9】図8で逆バイアス電圧が高い場合の動作の詳細
な説明図。
【図10】図8で逆バイアス電圧が低い場合の動作の詳
細な説明図。
【図11】本発明の第1実施例の製造工程を示す断面
図。
【図12】本発明に用いた第1抵抗素子の平面図。
【図13】本発明に用いた第2抵抗素子の平面図。
【図14】本発明の第2実施例を示す断面図。
【図15】本発明の第3実施例を示す断面図。
【図16】本発明の第4実施例を示す断面図。
【図17】本発明による抵抗素子のコンタクト部の第1
実施例を示す平面図。
【図18】本発明による抵抗素子のコンタクト部の第1
実施例を示す断面図。
【図19】本発明による抵抗素子のコンタクト部の第2
実施例を示す平面図。
【図20】本発明による抵抗素子のコンタクト部の第2
実施例を示す断面図。
【図21】本発明の第5実施例の動作の説明図。
【図22】本発明の第5実施例の動作の詳細な説明図。
【図23】本発明の第5実施例のp層表面のエネルギバ
ンド図。
【図24】本発明の第5実施例のn層表面のエネルギバ
ンド図。
【図25】本発明の第6実施例の動作の説明図。
【図26】図25に第1実施例或いは第2実施例を適用
しなかった場合の動作の説明図。
【図27】本発明の半導体複合センサを備えた差圧伝送
器。
【符号の説明】
11〜18…n型半導体領域、20〜23,210,2
20…n+ 型半導体領域、31〜35,51〜54,5
1a,51b,51c,52a,52b,52c,52d
…p型半導体領域、40a,40b,41a,41b,
42a,42b,43a,43b,451a,451
b,452a,452b,452c,60〜63…p+
型半導体領域、70,71…電極、71a,72a,7
3a…第1電極、71b,72b,73b…第2電極、
71c,72c,73c…第3電極、80,81,8
2,83,84,85,86,87,88,89a,6
11,621…絶縁膜、89b…窒化珪素膜、91,9
2,911,921…導電体、101,102,10
3,103a,103b,104,104a,104b
…電極端子、201,202,211,212,22
1,222…空乏層、301,302,311,312
…蓄積層、700…複合センサ基板、701…センサダ
イヤフラム、702a,702b…シールダイヤフラ
ム、703…複合伝送器本体、704a,704b…圧
力導入部、705…信号処理部。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 幸夫 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器事業部内 (72)発明者 清水 修一 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所半導体事業部内

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】少なくとも2つのピエゾ抵抗を接続して使
    用する半導体複合センサにおいて、前記2つのピエゾ抵
    抗は同じ形状を有すると共に、各々独自の電位を有する
    半導体領域に包囲され、且つ前記2つのピエゾ抵抗と前
    記半導体領域間の電位差を、夫々一定とすることを特徴
    とする半導体複合センサ。
  2. 【請求項2】前記2つのピエゾ抵抗は直列に接続される
    ことを特徴とする請求項1に記載の半導体複合センサ。
  3. 【請求項3】少なくとも2つのピエゾ抵抗を接続して使
    用する半導体複合センサにおいて、前記2つのピエゾ抵
    抗は同一ダイヤフラム上に配置されると共に、同じ性質
    の半導体で構成された半導体領域に個々に包囲され、該
    個々の半導体領域は互いに電気的な干渉が無いように配
    置すると共に夫々電圧供給端子を備えたことを特徴とす
    る半導体複合センサ。
  4. 【請求項4】前記2つのピエゾ抵抗を直列に接続して使
    用する場合、前記電圧供給端子は異なる供給源より供与
    されることを特徴とする請求項3に記載の半導体複合セ
    ンサ。
  5. 【請求項5】前記ピエゾ抵抗素子は4つであって、該4
    つのピエゾ抵抗をもってブリッジ回路を形成すると共
    に、前記4つのピエゾ抵抗のうちの2つのピエゾ抵抗が
    有する前記電圧供給端子は同一の電圧供給源より電圧を
    供与されることを特徴とする請求項3に記載の半導体複
    合センサ。
  6. 【請求項6】4つのピエゾ抵抗を接続して使用する半導
    体複合センサにおいて、前記4つのピエゾ抵抗をもって
    ブリッジ回路を形成すると共に該ピエゾ抵抗のうち少な
    くとも直列に接続される2つは同じ形状を有すると共
    に、該2つのピエゾ抵抗は各々独自の電位を有する半導
    体領域に包囲され、且つ前記2つのピエゾ抵抗と前記半
    導体領域間の電位差が、夫々一定となることを特徴とす
    る半導体複合センサ。
  7. 【請求項7】前記半導体領域であって、電圧供給源から
    見て正側のピエゾ抵抗を包囲する半導体領域には該抵抗
    に与えられる電圧と同じ電圧を与え、負側の抵抗を包囲
    する半導体領域には前記正側のピエゾ抵抗素子に与えら
    れる電圧より正側のピエゾ抵抗素子の電圧降下分を差し
    引いた電圧を与えることを特徴とする請求項6に記載の
    半導体複合センサ。
  8. 【請求項8】4つのピエゾ抵抗を接続して使用する半導
    体複合センサにおいて、前記4つのピエゾ抵抗は同一ダ
    イヤフラム上に配置されると共にブリッジ回路を形成
    し、前記4つのピエゾ抵抗は同じ形状を有すると共に同
    じ性質の半導体で構成された半導体領域に個々に包囲さ
    れ、該個々の半導体領域は互いに電気的な干渉が無いよ
    うに配置されると共に夫々電圧供給端子を備え前記ブリ
    ッジ回路を形成する4つのピエゾ抵抗のうちブリッジ回
    路の入力端子側の2つのピエゾ抵抗を包囲する半導体領
    域に対しては同一の供給源から、出力端子側の2つのピ
    エゾ抵抗素子を包囲する半導体領域に対しては、夫々入
    力側のピエゾ抵抗素子の電圧降下分を差し引いた前記供
    給源からの電圧が供与されることを特徴とする半導体複
    合センサ。
  9. 【請求項9】半導体製のダイヤフラム上に少なくとも2
    つの同一のピエゾ抵抗を直列に接続して配置する半導体
    複合センサにおいて、該ピエゾ抵抗を覆うように前記2
    つのピエゾ抵抗の各出力端子電極、或いは該電極に導通
    する導体を配置することを特徴とする半導体複合セン
    サ。
  10. 【請求項10】半導体製のダイヤフラム上に少なくとも
    2つの同一のピエゾ抵抗を直列に接続して配置する半導
    体複合センサにおいて、該ピエゾ抵抗を覆うように前記
    2つのピエゾ抵抗の各入力端子電極、或いは該電極に導
    通する導体を配置することを特徴とする半導体複合セン
    サ。
  11. 【請求項11】半導体製のダイヤフラム上に少なくとも
    2つの同一のピエゾ抵抗を直列に接続して配置する半導
    体複合センサにおいて、前記ピエゾ抵抗を覆うように、
    該ピエゾ抵抗より高不純物濃度の半導体領域を配置する
    ことを特徴とする半導体複合センサ。
JP01229995A 1995-01-30 1995-01-30 半導体複合センサ Expired - Fee Related JP3344138B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01229995A JP3344138B2 (ja) 1995-01-30 1995-01-30 半導体複合センサ
DE19602442A DE19602442C2 (de) 1995-01-30 1996-01-24 Halbleiter-Verbundsensor
CN96102588A CN1090823C (zh) 1995-01-30 1996-01-30 半导体混成传感器和差压发送器
US09/417,235 US6211772B1 (en) 1995-01-30 1997-09-05 Semiconductor composite sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01229995A JP3344138B2 (ja) 1995-01-30 1995-01-30 半導体複合センサ

Publications (2)

Publication Number Publication Date
JPH08204209A true JPH08204209A (ja) 1996-08-09
JP3344138B2 JP3344138B2 (ja) 2002-11-11

Family

ID=11801456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01229995A Expired - Fee Related JP3344138B2 (ja) 1995-01-30 1995-01-30 半導体複合センサ

Country Status (4)

Country Link
US (1) US6211772B1 (ja)
JP (1) JP3344138B2 (ja)
CN (1) CN1090823C (ja)
DE (1) DE19602442C2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324566A (ja) * 2006-05-01 2007-12-13 Tanita Corp 半導体歪みゲージ及びその製造方法
TWI416739B (zh) * 2006-05-01 2013-11-21 Tanita Seisakusho Kk 半導體型應變檢測器及其製造方法
WO2015107728A1 (ja) * 2014-01-16 2015-07-23 株式会社村田製作所 ピエゾ抵抗素子およびその製造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003274A1 (en) * 1998-08-27 2002-01-10 Janusz Bryzek Piezoresistive sensor with epi-pocket isolation
CN1322591C (zh) * 2003-04-25 2007-06-20 北京大学 一种加工制造微电子机械系统元器件的方法
JP4925306B2 (ja) * 2007-02-28 2012-04-25 株式会社山武 圧力センサ
JP2011013179A (ja) * 2009-07-06 2011-01-20 Yamatake Corp 圧力センサ及び圧力センサの製造方法
US10198097B2 (en) 2011-04-26 2019-02-05 Sentons Inc. Detecting touch input force
US9477350B2 (en) 2011-04-26 2016-10-25 Sentons Inc. Method and apparatus for active ultrasonic touch devices
US9639213B2 (en) 2011-04-26 2017-05-02 Sentons Inc. Using multiple signals to detect touch input
US11327599B2 (en) 2011-04-26 2022-05-10 Sentons Inc. Identifying a contact type
US9189109B2 (en) 2012-07-18 2015-11-17 Sentons Inc. Detection of type of object used to provide a touch contact input
KR101803261B1 (ko) 2011-11-18 2017-11-30 센톤스 아이엔씨. 터치 입력 힘 검출
CN104169847B (zh) 2011-11-18 2019-03-12 森顿斯公司 局部触觉反馈
JP2015011013A (ja) * 2013-07-02 2015-01-19 アルプス電気株式会社 物理量センサ
US9459715B1 (en) 2013-09-20 2016-10-04 Sentons Inc. Using spectral control in detecting touch input
US10908741B2 (en) 2016-11-10 2021-02-02 Sentons Inc. Touch input detection along device sidewall
US10296144B2 (en) 2016-12-12 2019-05-21 Sentons Inc. Touch input detection with shared receivers
US10126877B1 (en) 2017-02-01 2018-11-13 Sentons Inc. Update of reference data for touch input detection
US10585522B2 (en) 2017-02-27 2020-03-10 Sentons Inc. Detection of non-touch inputs using a signature
US10743241B1 (en) 2017-06-06 2020-08-11 Nocell Technologies, LLC System, method and apparatus for facilitating the restriction of the use of one or more network devices through automated policy enforcement
US11038801B2 (en) 2017-06-06 2021-06-15 Nocell Technologies, LLC System, method and apparatus for restricting use of a network device through automated policy enforcement
WO2019036334A1 (en) * 2017-08-14 2019-02-21 Sentons Inc. PIEZORESISTIVE SENSOR
US11580829B2 (en) 2017-08-14 2023-02-14 Sentons Inc. Dynamic feedback for haptics
US11009411B2 (en) 2017-08-14 2021-05-18 Sentons Inc. Increasing sensitivity of a sensor using an encoded signal
JP7298092B2 (ja) * 2019-01-30 2023-06-27 ミネベアミツミ株式会社 センサ装置
JP2021071305A (ja) * 2019-10-29 2021-05-06 ミネベアミツミ株式会社 力覚センサ装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175446A (ja) * 1984-02-21 1985-09-09 Sanyo Electric Co Ltd 半導体抵抗装置
JPS61251162A (ja) * 1985-04-30 1986-11-08 Fujitsu Ltd 半導体抵抗素子の構造
JPS62136064A (ja) * 1985-12-10 1987-06-19 Toshiba Corp 電圧分割回路
JPS63226956A (ja) * 1987-03-16 1988-09-21 Hitachi Ltd 半導体抵抗体
JPS63266325A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 力検出装置
WO1988008522A1 (en) * 1987-04-24 1988-11-03 Kabushiki Kaisha Nexy Kenkyusho Detector for force, acceleration and magnetism using resistor element
JPH02281752A (ja) * 1989-04-24 1990-11-19 Nec Corp 抵抗素子を有する半導体装置
JPH02304964A (ja) * 1989-05-19 1990-12-18 Nec Corp 半導体集積回路装置
JPH036054A (ja) * 1989-06-01 1991-01-11 Mitsubishi Electric Corp 半導体電圧検出回路
JPH0423355A (ja) * 1990-05-15 1992-01-27 Hitachi Ltd 半導体装置
JPH04249727A (ja) * 1990-12-31 1992-09-04 Wako:Kk 力および加速度の検出装置
JPH06204408A (ja) * 1993-01-07 1994-07-22 Fuji Electric Co Ltd 半導体装置用拡散抵抗

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US523130A (en) * 1894-07-17 Ejector for breakdown guns
US3265905A (en) * 1964-02-06 1966-08-09 Us Army Integrated semiconductor resistance element
US3457123A (en) * 1965-06-28 1969-07-22 Motorola Inc Methods for making semiconductor structures having glass insulated islands
US3430110A (en) * 1965-12-02 1969-02-25 Rca Corp Monolithic integrated circuits with a plurality of isolation zones
DE2644638A1 (de) 1975-10-06 1977-04-07 Honeywell Inc Verfahren zur herstellung eines halbleiter-druckfuehlers sowie nach diesem verfahren hergestellter druckfuehler
JPS55123157A (en) * 1979-03-16 1980-09-22 Oki Electric Ind Co Ltd High-stability ion-injected resistor
JPS60128673A (ja) * 1983-12-16 1985-07-09 Hitachi Ltd 半導体感圧装置
DE3543261A1 (de) * 1985-12-06 1987-06-11 Siemens Ag Drucksensor
JPS63244765A (ja) * 1987-03-31 1988-10-12 Toshiba Corp 拡散抵抗を有する集積回路
US4977101A (en) * 1988-05-02 1990-12-11 Delco Electronics Corporation Monolithic pressure sensitive integrated circuit
JPH0376139U (ja) 1989-11-29 1991-07-30
JP2918299B2 (ja) * 1990-06-25 1999-07-12 沖電気工業株式会社 半導体圧力センサおよびそれを有する半導体装置の製造方法
US5200733A (en) * 1991-10-01 1993-04-06 Harris Semiconductor Corporation Resistor structure and method of fabrication
US5231301A (en) * 1991-10-02 1993-07-27 Lucas Novasensor Semiconductor sensor with piezoresistors and improved electrostatic structures
JP3145455B2 (ja) * 1991-12-17 2001-03-12 ローム株式会社 半導体集積回路装置
FR2689316B1 (fr) * 1992-03-25 1994-06-17 Dolphin Integration Sa Pont diviseur auto-protege.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175446A (ja) * 1984-02-21 1985-09-09 Sanyo Electric Co Ltd 半導体抵抗装置
JPS61251162A (ja) * 1985-04-30 1986-11-08 Fujitsu Ltd 半導体抵抗素子の構造
JPS62136064A (ja) * 1985-12-10 1987-06-19 Toshiba Corp 電圧分割回路
JPS63226956A (ja) * 1987-03-16 1988-09-21 Hitachi Ltd 半導体抵抗体
JPS63266325A (ja) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk 力検出装置
WO1988008522A1 (en) * 1987-04-24 1988-11-03 Kabushiki Kaisha Nexy Kenkyusho Detector for force, acceleration and magnetism using resistor element
JPH02281752A (ja) * 1989-04-24 1990-11-19 Nec Corp 抵抗素子を有する半導体装置
JPH02304964A (ja) * 1989-05-19 1990-12-18 Nec Corp 半導体集積回路装置
JPH036054A (ja) * 1989-06-01 1991-01-11 Mitsubishi Electric Corp 半導体電圧検出回路
JPH0423355A (ja) * 1990-05-15 1992-01-27 Hitachi Ltd 半導体装置
JPH04249727A (ja) * 1990-12-31 1992-09-04 Wako:Kk 力および加速度の検出装置
JPH06204408A (ja) * 1993-01-07 1994-07-22 Fuji Electric Co Ltd 半導体装置用拡散抵抗

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324566A (ja) * 2006-05-01 2007-12-13 Tanita Corp 半導体歪みゲージ及びその製造方法
TWI416739B (zh) * 2006-05-01 2013-11-21 Tanita Seisakusho Kk 半導體型應變檢測器及其製造方法
WO2015107728A1 (ja) * 2014-01-16 2015-07-23 株式会社村田製作所 ピエゾ抵抗素子およびその製造方法

Also Published As

Publication number Publication date
DE19602442C2 (de) 2002-06-06
DE19602442A1 (de) 1996-08-01
CN1135039A (zh) 1996-11-06
CN1090823C (zh) 2002-09-11
JP3344138B2 (ja) 2002-11-11
US6211772B1 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3344138B2 (ja) 半導体複合センサ
US7448278B2 (en) Semiconductor piezoresistive sensor and operation method thereof
US4771639A (en) Semiconductor pressure sensor
KR930003148B1 (ko) 반도체 압력 감지장치
KR100502497B1 (ko) 다이어프램식 반도체 압력 센서
US9557237B2 (en) MEMS pressure sensor field shield layout for surface charge immunity in oil filled packaging
US20150008544A1 (en) Physical quantity sensor
EP2878940B1 (en) MEMS pressure sensor field shield layout for surface charge immunity in oil filled packaging
US5412993A (en) Pressure detection gage for semiconductor pressure sensor
US20020149069A1 (en) Piezoresistive sensor with epi-pocket isolation
US8171806B2 (en) Force detection element
JP4889425B2 (ja) 半導体歪測定装置、歪測定方法、圧力センサ及び加速度センサ
WO2003052369A1 (en) Sensor formed on silicon on insulator structure and having reduced power up drift
EP3964789A1 (en) Strain gauge and strain measurement assembly
JP2715738B2 (ja) 半導体応力検出装置
JPH0420131B2 (ja)
JP3170221B2 (ja) 半導体放射線検出素子
JPH02205077A (ja) 力覚センサ
US6901805B2 (en) Device for measuring the pressure of a fluid
JPH07162018A (ja) 半導体圧力センサ
JP3596935B2 (ja) 半導体圧力センサ
JP2669216B2 (ja) 半導体応力検出装置
JPH04262578A (ja) 半導体装置
JPH05126661A (ja) 半導体圧力センサ
JP2748077B2 (ja) 圧力センサ

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees