JPH0789578B2 - 自己整合けい素化合物化mos工法による精密抵抗体の製造方法 - Google Patents

自己整合けい素化合物化mos工法による精密抵抗体の製造方法

Info

Publication number
JPH0789578B2
JPH0789578B2 JP3097102A JP9710291A JPH0789578B2 JP H0789578 B2 JPH0789578 B2 JP H0789578B2 JP 3097102 A JP3097102 A JP 3097102A JP 9710291 A JP9710291 A JP 9710291A JP H0789578 B2 JPH0789578 B2 JP H0789578B2
Authority
JP
Japan
Prior art keywords
region
resistor
transistor
oxide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3097102A
Other languages
English (en)
Japanese (ja)
Other versions
JPH04229647A (ja
Inventor
ケイ エイ ゼッターランド ビヨルン
Original Assignee
ディジタル イクイプメント コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディジタル イクイプメント コーポレイション filed Critical ディジタル イクイプメント コーポレイション
Publication of JPH04229647A publication Critical patent/JPH04229647A/ja
Publication of JPH0789578B2 publication Critical patent/JPH0789578B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66166Resistors with PN junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
JP3097102A 1990-04-27 1991-04-26 自己整合けい素化合物化mos工法による精密抵抗体の製造方法 Expired - Lifetime JPH0789578B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US515854 1990-04-27
US07/515,854 US5134088A (en) 1990-04-27 1990-04-27 Precision resistor in self-aligned silicided mos process

Publications (2)

Publication Number Publication Date
JPH04229647A JPH04229647A (ja) 1992-08-19
JPH0789578B2 true JPH0789578B2 (ja) 1995-09-27

Family

ID=24053043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097102A Expired - Lifetime JPH0789578B2 (ja) 1990-04-27 1991-04-26 自己整合けい素化合物化mos工法による精密抵抗体の製造方法

Country Status (8)

Country Link
US (1) US5134088A (US20020128544A1-20020912-P00008.png)
EP (1) EP0455376B1 (US20020128544A1-20020912-P00008.png)
JP (1) JPH0789578B2 (US20020128544A1-20020912-P00008.png)
KR (1) KR940002390B1 (US20020128544A1-20020912-P00008.png)
AU (1) AU640473B2 (US20020128544A1-20020912-P00008.png)
CA (1) CA2041362C (US20020128544A1-20020912-P00008.png)
DE (1) DE69127928T2 (US20020128544A1-20020912-P00008.png)
TW (1) TW240331B (US20020128544A1-20020912-P00008.png)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545363A1 (en) * 1991-12-06 1993-06-09 National Semiconductor Corporation Integrated circuit fabrication process and structure
US5439841A (en) * 1994-01-12 1995-08-08 Micrel, Inc. High value gate leakage resistor
JPH07226504A (ja) * 1994-02-09 1995-08-22 Nec Corp Mos型半導体装置及びその製造方法
JP2934738B2 (ja) * 1994-03-18 1999-08-16 セイコーインスツルメンツ株式会社 半導体装置およびその製造方法
JP3297784B2 (ja) * 1994-09-29 2002-07-02 ソニー株式会社 拡散層抵抗の形成方法
DE19507802C1 (de) * 1995-03-06 1996-05-30 Siemens Ag Verfahren zum Herstellen eines integrierten Widerstandes
JP3243151B2 (ja) * 1995-06-01 2002-01-07 東芝マイクロエレクトロニクス株式会社 半導体装置の製造方法
US5712173A (en) * 1996-01-24 1998-01-27 Advanced Micro Devices, Inc. Method of making semiconductor device with self-aligned insulator
US5679593A (en) * 1996-02-01 1997-10-21 Micron Technology, Inc. Method of fabricating a high resistance integrated circuit resistor
KR100233557B1 (ko) * 1996-06-29 1999-12-01 김영환 아날로그용 반도체 소자의 폴리레지스터 및 그의 제조방법
US5728612A (en) * 1996-07-19 1998-03-17 Lsi Logic Corporation Method for forming minimum area structures for sub-micron CMOS ESD protection in integrated circuit structures without extra implant and mask steps, and articles formed thereby
JP3572850B2 (ja) * 1997-02-12 2004-10-06 ヤマハ株式会社 半導体装置の製法
DE69737947D1 (de) * 1997-05-20 2007-09-06 St Microelectronics Srl Herstellungsverfahren für integrierten Schaltkreis mit MOS-Transistoren von hoher Durchbruchspannung und mit Präzisionswiderständen
US6143613A (en) * 1997-06-30 2000-11-07 Vlsi Technology, Inc. Selective exclusion of silicide formation to make polysilicon resistors
JPH11330385A (ja) * 1998-05-20 1999-11-30 Mitsumi Electric Co Ltd Cmosデバイス
DE69832162D1 (de) 1998-07-22 2005-12-08 St Microelectronics Srl Herstellungsverfahren für ein elektronisches Bauelement, das MOS Transistoren mit salizidierten Übergängen und nicht salizidierten Widerständen enthält
JP2005183827A (ja) * 2003-12-22 2005-07-07 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2005191228A (ja) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd 半導体装置の製造方法
US7052925B2 (en) * 2004-04-08 2006-05-30 International Business Machines Corporation Method for manufacturing self-compensating resistors within an integrated circuit
US7084483B2 (en) * 2004-05-25 2006-08-01 International Business Machines Corporation Trench type buried on-chip precision programmable resistor
EP1879229A1 (en) * 2006-07-13 2008-01-16 STMicroelectronics S.r.l. Improved ESD protection circuit
US20100148262A1 (en) * 2008-12-17 2010-06-17 Knut Stahrenberg Resistors and Methods of Manufacture Thereof
JP2011091188A (ja) * 2009-10-22 2011-05-06 Sanyo Electric Co Ltd 半導体装置の製造方法
US10326028B1 (en) 2018-01-08 2019-06-18 Qualcomm Incorporated Complementary metal-oxide-semiconductor (CMOS) voltage-controlled resistor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416049A (en) * 1970-05-30 1983-11-22 Texas Instruments Incorporated Semiconductor integrated circuit with vertical implanted polycrystalline silicon resistor
US3865649A (en) * 1972-10-16 1975-02-11 Harris Intertype Corp Fabrication of MOS devices and complementary bipolar transistor devices in a monolithic substrate
US4057894A (en) * 1976-02-09 1977-11-15 Rca Corporation Controllably valued resistor
US4246692A (en) * 1976-05-28 1981-01-27 Texas Instruments Incorporated MOS Integrated circuits with implanted resistor elements
US4212083A (en) * 1976-05-28 1980-07-08 Texas Instruments Incorporated MOS Integrated with implanted resistor elements
US4110776A (en) * 1976-09-27 1978-08-29 Texas Instruments Incorporated Semiconductor integrated circuit with implanted resistor element in polycrystalline silicon layer
US4208781A (en) * 1976-09-27 1980-06-24 Texas Instruments Incorporated Semiconductor integrated circuit with implanted resistor element in polycrystalline silicon layer
US4455737A (en) * 1978-05-26 1984-06-26 Rockwell International Corporation Process for and structure of high density VLSI circuits, having self-aligned gates and contacts for FET devices and conducting lines
US4408385A (en) * 1978-06-15 1983-10-11 Texas Instruments Incorporated Semiconductor integrated circuit with implanted resistor element in polycrystalline silicon layer
US4225877A (en) * 1978-09-05 1980-09-30 Sprague Electric Company Integrated circuit with C-Mos logic, and a bipolar driver with polysilicon resistors
US4370798A (en) * 1979-06-15 1983-02-01 Texas Instruments Incorporated Interlevel insulator for integrated circuit with implanted resistor element in second-level polycrystalline silicon
US4291328A (en) * 1979-06-15 1981-09-22 Texas Instruments Incorporated Interlevel insulator for integrated circuit with implanted resistor element in second-level polycrystalline silicon
JPS5632762A (en) * 1979-08-27 1981-04-02 Fujitsu Ltd Semiconductor device
US4367580A (en) * 1980-03-21 1983-01-11 Texas Instruments Incorporated Process for making polysilicon resistors
JPS60198853A (ja) * 1984-03-23 1985-10-08 Nec Corp 高耐圧抵抗素子
US4599789A (en) * 1984-06-15 1986-07-15 Harris Corporation Process of making twin well VLSI CMOS
JPS6143464A (ja) * 1984-08-08 1986-03-03 Hitachi Ltd 半導体装置
US4830976A (en) * 1984-10-01 1989-05-16 American Telephone And Telegraph Company, At&T Bell Laboratories Integrated circuit resistor
JPS61183967A (ja) * 1985-02-08 1986-08-16 Toshiba Corp 半導体装置の製造方法
JPS61216356A (ja) * 1985-03-20 1986-09-26 Nec Corp 半導体抵抗
EP0272433B1 (de) * 1986-11-18 1993-03-31 Siemens Aktiengesellschaft Integrierte Halbleiterschaltung mit als Dünnschichtstege auf den die aktiven Transistorbereiche trennenden Feldoxidbereichen angeordneten Lastwiderstände und Verfahren zu ihrer Herstellung
EP0287195A1 (en) * 1987-02-17 1988-10-19 SILICONIX Incorporated Power MOS transistor with integrated resistor
US4734382A (en) * 1987-02-20 1988-03-29 Fairchild Semiconductor Corporation BiCMOS process having narrow bipolar emitter and implanted aluminum isolation
JPH029162A (ja) * 1988-06-28 1990-01-12 Toshiba Corp バイポーラ・cmos混載半導体装置及びその製造方法

Also Published As

Publication number Publication date
KR910019244A (ko) 1991-11-30
AU7426291A (en) 1991-11-14
EP0455376B1 (en) 1997-10-15
AU640473B2 (en) 1993-08-26
EP0455376A3 (US20020128544A1-20020912-P00008.png) 1995-03-15
KR940002390B1 (ko) 1994-03-24
CA2041362A1 (en) 1991-10-28
CA2041362C (en) 1995-09-12
JPH04229647A (ja) 1992-08-19
DE69127928T2 (de) 1998-05-07
EP0455376A2 (en) 1991-11-06
DE69127928D1 (de) 1997-11-20
US5134088A (en) 1992-07-28
TW240331B (US20020128544A1-20020912-P00008.png) 1995-02-11

Similar Documents

Publication Publication Date Title
US5134088A (en) Precision resistor in self-aligned silicided mos process
KR100220441B1 (ko) 반도체 구조에 스페이서를 형성하는 방법
US5956617A (en) Method of manufacturing a semiconductor device employing salicide technology
US5668024A (en) CMOS device structure with reduced risk of salicide bridging and reduced resistance via use of a ultra shallow, junction extension, ion implantation process
US4276688A (en) Method for forming buried contact complementary MOS devices
US4988632A (en) Bipolar process using selective silicon deposition
US5223456A (en) High density local interconnect in an integrated circit using metal silicide
EP0396357A1 (en) Process for forming CMOS field effect transistors
JPH03178135A (ja) 絶縁ゲート電界効果トランジスタ製造方法
EP0135243B1 (en) A method of producing a semiconductor structure on a substrate and a semiconductor device manufactured thereby
US5913114A (en) Method of manufacturing a semiconductor device
JPH0855924A (ja) 表面チャネルPMOSトランジスタを有するBiCMOS処理工程
US5001081A (en) Method of manufacturing a polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
US5306667A (en) Process for forming a novel buried interconnect structure for semiconductor devices
JP2587444B2 (ja) Cmos技術を用いたバイポーラ・トランジスタとその製造方法
US5348896A (en) Method for fabricating a BiCMOS device
EP0325181B1 (en) A method of manufacturing a polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
US5179031A (en) Method of manufacturing a polysilicon emitter and a polysilicon gate using the same etch of polysilicon on a thin gate oxide
US5449627A (en) Lateral bipolar transistor and FET compatible process for making it
JP2730535B2 (ja) 半導体装置の製造方法
US6300181B1 (en) Process for manufacturing an electronic device including MOS transistors with salicided junctions and non-salicided resistors
JPH07176639A (ja) 半導体集積回路装置及びその製造方法
JP3097095B2 (ja) 半導体装置の製造方法
JP2853444B2 (ja) 半導体装置の製造方法
US5254874A (en) High density local interconnect in a semiconductor circuit using metal silicide