JPH07119411B2 - 球形の二酸化ケイ素を付着した蛍光体の製造方法 - Google Patents

球形の二酸化ケイ素を付着した蛍光体の製造方法

Info

Publication number
JPH07119411B2
JPH07119411B2 JP5545289A JP5545289A JPH07119411B2 JP H07119411 B2 JPH07119411 B2 JP H07119411B2 JP 5545289 A JP5545289 A JP 5545289A JP 5545289 A JP5545289 A JP 5545289A JP H07119411 B2 JPH07119411 B2 JP H07119411B2
Authority
JP
Japan
Prior art keywords
phosphor
silicon dioxide
weight
colloidal silica
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5545289A
Other languages
English (en)
Other versions
JPH02233794A (ja
Inventor
正一 坂東
俊文 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP5545289A priority Critical patent/JPH07119411B2/ja
Publication of JPH02233794A publication Critical patent/JPH02233794A/ja
Publication of JPH07119411B2 publication Critical patent/JPH07119411B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【産業上の利用分野】
この発明は、カラー受像管、およびその他の陰極線管の
蛍光面に好適に使用される蛍光体に関する。
【従来の技術並びにその課題】
近年、ブラウン管には、特に鮮明な画像が要求されるよ
うになっている。鮮明な画像は、下記の特性を満足して
実現できる。 解像度を高くするために、最小ストライプ幅を小さ
くすること、 奇麗な色を表現するために、蛍光体のクロスコンタ
ミネーションを少なくすること、 明るい画面とするために、発光輝度を高くするこ
と、 これ等の特性を満足するために、カラー受像管に使用さ
れる蛍光体は、種々の表面処理が施されて、塗布特性を
改善している。 蛍光体の表面に付着させる物質として、ケイ酸塩化合
物、アルミン酸塩化合物、燐酸塩化合物、および、金属
酸化物などが使用されている。 特に、ケイ酸塩化合物は、その処理が容易であることか
ら、汎用されている。ケイ酸塩化合物として、二酸化ケ
イ素が知られている。さらに、二酸化ケイ素には、粒子
の大きさや状態、あるいは、その性質によっていくつか
の種類がある。 比較的粒子の大きい二酸化ケイ素として、粒状シリカが
ある。また、比較的粒子の小さい二酸化ケイ素として、
コロイダルシリカがある。水に溶けた二酸化ケイ素とし
てケイ酸カリウムがある。 液体に二酸化ケイ素が分散されたコロイダルシリカを使
用して、蛍光体の表面に二酸化ケイ素を付着すると、蛍
光体の表面に、均一に二酸化ケイ素を付着できる。コロ
イダルシリカを使用して、蛍光体の表面に二酸化ケイ素
を付着する技術は開発されている(特公昭61−46512号
公報)。 この公報に開示される製法は、蛍光体の表面に付着する
二酸化ケイ素の粒子径を特定して、最小ストライプ幅と
ガラス面カブリとを改善している。すなわち、平均粒子
径が、60〜300mμと極めて広く分布する二酸化ケイ素の
付着量を、70重量%以上に特定している。 このように、微小粒子から大きな粒子に分布する二酸化
ケイ素を蛍光体の表面に付着させると、最小ストライプ
幅とガラス面カブリとを改善できる。しかしながら、こ
の方法で製造された蛍光体は、微細な粒子と、大粒子の
粒状シリカとを蛍光体の表面に付着させるので、二酸化
ケイ素の付着量が多くなる欠点がある。 蛍光体表面に付着される多量の二酸化ケイ素は、蛍光体
の相対輝度を低下させる。それは、二酸化ケイ素が、蛍
光体の発光を吸収し、あるいは、散乱させることが理由
である。 また、100mμ以上の大粒子の二酸化ケイ素を蛍光体の表
面に付着すると、二酸化ケイ素が凝集し易い。凝集した
二酸化ケイ素は、蛍光体表面を均一にコーティング出来
ない。したがって、凝集粒子を含む二酸化ケイ素で蛍光
体をコーティングすると、付着量を多くしない限り、コ
ーティングの効果が少ない。また、凝集粒子は、表面に
凹凸があって光を散乱させ、蛍光体の実質的な発光輝度
を低下させる。 平均粒子径が数百mμである多粒の粒状シリカを表面に
付着させた蛍光体は、最小ストライプ幅が広くなる。こ
れに対して、平均粒子径が数十mμの微小粒子のシリカ
を付着した蛍光体は、ガラス面カブリが悪くなる欠点が
ある。すなわち、幅ストライプ幅とガラス面カブリと
は、粒子径の大小をパラメータとして相反する特性であ
って、両特性を同時に満足することは極めて難しいとさ
れていた。
【発明の目的】
この発明は、この難問題を解決することを目的に開発さ
れたもので、この発明の重要な目的は、コロイダルシリ
カを使用して、最小ストライプ幅と、ガラス面カブリ
と、相対輝度との3特性を同時に満足する蛍光体の製造
方法を提供するにある。
【従来の課題を解決する為の手段】
本発明者等は、互いに相反する特性であるにも拘らず、
現在の蛍光体に切望されている極めて大切な特性、すな
わち、 最小ストライプ幅、 ガラス面カブリ、 相対輝度 特性を同時に改善する蛍光体を開発することを目的に、
膨大な実験を繰り返し、あらゆる方法から徹底して原因
を究明した結果、コロイダルシリカに独得のものを使用
することによって、極めて特異な現象を開発した。 すなわち、蛍光体の表面に、同じ平均粒子径の二酸化ケ
イ素を付着するにも拘らず、凝集粒子の少ない1次粒子
のシリカを表面に付着することによって、前記の特性を
改善することに成功した。 すなわち、この発明にかかる蛍光体の製造方法は、コロ
イダルシリカを使用して、二酸化ケイ素を表面に付着す
るものであるが、蛍光体に付着されるコロイダルシリカ
を独得のものに特定することによって、相対輝度を著し
く改善することに成功したものである。コロイダルシリ
カには下記のものを使用している。 (a) コロイダルシリカに含まれる二酸化ケイ素に
は、球形のものを使用している。この二酸化ケイ素に
は、最大粒子径をDL、最小粒子径をDSとするとき、全
体粒子の70重量%以上が、 1≧DS/DL≧0.7を満足する。さらに好ましくは、1≧
DS/DL≧0.8を満足する。 (b) コロイダルシリカに含まれる二酸化ケイ素に
は、平均粒子径が50mμ以上で400mμ以下のものを使用
する。 (c) コロイダルシリカに含まれる二酸化ケイ素に
は、平均粒子径をDavとするとき、 Dav±0.4Davの粒径の粒子が全体の60重量%以上、好ま
しくは65重量%以上、さらに好ましくは70重量%以上に
特定して、粒度分布の極めてシャープなものに特定して
いる。 (d) コロイダルシリカは、1次粒子の凝集した粒子
の含有量が少ないものを使用している。すなわち、コロ
イダルシリカは、シリカの含有率1重量%、液体のpHを
10として、48時間静置して、沈澱物が3重量%以下のも
のを使用する。 さらに、この発明で製造される蛍光体は、二酸化ケイ素
の付着量を、蛍光体100重量部に対して、0.01〜3重量
部の範囲に調整すると好ましい特性を示す。 また、表面処理物質を蛍光体粒子の表面に付着させる接
着剤には、例えば、亜鉛化合物、アルミニウム化合物、
燐酸塩化合物、Mg,Ca,Sr等のアルカリ土類金属化合物、
およびホウ酸塩化合物のうち少なくとも1種が使用でき
る。 亜鉛化合物には、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛等の水
溶性の亜鉛塩を使用する。 アルミニウム化合物には、硝酸アルミニウム、硫酸アル
ミニウム等の水溶性のアルミニウム塩が使用できる。 また、燐酸化合物は、ピロ燐酸ナトリウム等の水溶性塩
を使用する。 アルカリ土類化合物には、硝酸マグネシウム、硝酸カル
シウム、硝酸ストロンチウムが使用できる。 ホウ酸化合物には、ホウ酸またはホウ酸ナトリウム等が
使用できる。 この発明の方法で製造された蛍光体は、カラー受像管に
使用して優れた特性を示すものであるから、カラー受像
管は言うにおよばず、モノクローム受像管にも使用でき
るのは言うまでもない。 蛍光体には、例えば、 硫化亜鉛系蛍光体、硫化亜鉛カドミウム蛍光体等の
硫化物系蛍光体、 ユーロピウム付活酸化イットリウム蛍光体、マンガ
ン付活燐酸亜鉛蛍光体、マンガン付活ケイ酸亜鉛蛍光体
などの酸化物系の蛍光体、 ユーロピウム付活酸硫化イットリウム蛍光体、テル
ビウム付活酸硫化イットリウム蛍光体などの酸硫化物系
の蛍光体を使用することができる。 この発明の蛍光体は、下記の工程で製造される。 蛍光体を水に懸濁させる。 蛍光体懸濁液をよく撹拌しながら、特定のコロイダ
ルシリカと接着剤水溶液とを加える。 コロイダルシリカと接着剤水溶液とが添加された液
体を、さらに撹拌しながら、酸またはアルカリ水溶液を
添加して、pHを5〜8に調整する。アルカリ水溶液には
アンモニア水、水酸化カリウム、水酸化ナトリウム等が
使用でき、酸性水溶液には酢酸が使用できる。 一定時間静置した後、上澄み液をデカンテーション
により除去し、沈澱物を脱水して、乾燥し、フルイ分け
をする。 本発明の蛍光体の製造方法は、表面処理物質として、球
形の二酸化ケイ素を使用している。蛍光体の最小ストラ
イプ幅と、ガラス面カブリと、相対輝度とは、平均粒子
径によって変化する。 第3図a、b、cは、二酸化ケイ素の平均粒子径に対す
る特性を示している。第3図a、b、cにおいて、曲線
Aは、この発明の方法で製造された蛍光体の特性を示
し、曲線Bは、従来の方法で製造された蛍光体の特性を
示す。 第3図aは、球形の二酸化ケイ素の平均粒径に対する最
小ストライプ幅を示すグラフである。 第3図bは、球形二酸化ケイ素の平均粒径に対するガラ
ス面カブリとを示すものである。この第3図bから明ら
かなように本発明の蛍光体は、その表面処理物質粒径の
平均粒径が小さすぎでも大きすぎてもガラス面カブリが
多くなることが判明した。 さらに第3図cは表面処理物質粒径の平均粒子径と輝度
の関係を示す。この図から明らかなように、表面処理物
質の平均粒子径が一定の範囲で高い輝度が得られ、蛍光
体の発光が効率的にガラス面を通ることがわかる。 但し、第3図a〜cの測定において、この発明の方法
は、下記の二酸化ケイ素を含むコロイダルシリカを使用
して蛍光体を表面処理した。 コロイダルシリカに含まれる微小粒子の二酸化ケイ
素は、80重量%以上の粒子がDS/DL=0.9として、球形
に近いものを使用した。 さらに、コロイダルシリカの二酸化ケイ素は、Dav
±0.4Davの粒径の粒子が全体の80重量%以上で、粒度分
布がシャープなものを使用した。 コロイダルシリカは、凝集粒子含有率の少ないもの
を使用した。従って、コロイダルシリカは、シリカ含有
率1重量%、液体のpHを10として、48時間静置して、沈
澱物が1重量%以下のものを使用した。1次粒子が凝集
した粒状シリカは、前記の条件で底に沈澱物を生じる
が、凝集していない1次粒子のシリカは、沈澱しない。 従来の方法で製造した蛍光体は、下記のコロイダルシリ
カを使用して蛍光体を表面処理した。 コロイダルシリカに含まれる二酸化ケイ素は、80重
量%以上の粒子がDS/DL=0.6である。 さらに、コロイダルシリカの二酸化ケイ素は、Dav
±0.4Davの粒径の粒子が全体の50重量%のものを使用し
た。 コロイダルシリカは、シリカ含有率1重量%、液体
のpHを10として、48時間静置して、底に10重量%の二酸
化ケイ素の沈澱物ができるものを使用した。 さらに、二酸化ケイ素の付着量は、曲線A、Bとも、蛍
光体100に対して、0.98重量%としている。 第3図a〜cの測定結果から、この発明は、蛍光体に付
着する二酸化ケイ素の平均粒子径を50mμ以上で400mμ
以下の範囲に特定している。 また、この発明の蛍光体の製造方法は、表面に付着させ
る二酸化ケイ素の最小粒子径DSと最大粒子径DLとの比
率を特定している。すなわち、二酸化ケイ素は、全粒子
の70重量%以上の粒子の長径と短径との比率を、1≧D
S/DL≧0.7に特定している。DS/DLが0.7以下の二酸化ケ
イ素は、球形から楕円形ないしは細長い形状となる。 完全に球形の二酸化ケイ素は、蛍光体の表面に付着する
姿勢によって形態が変わらない。しかしながら、楕円形
ないしは細長い二酸化ケイ素は、長径が半径方向を向く
か、接線方向を向くかで、蛍光体表面に付着した姿勢が
変化する。 さらにまた、この発明の蛍光体の製法は、蛍光体の表面
に付着する二酸化ケイ素の平均粒子径Davを特性してい
る。すなわち、Dav±0.4Dav、と言い代えると、平均粒
子径のわずか±40%の範囲に、全体の60重量%以上の粒
子が含まれるように、粒度分布を著しくシャープに特定
している。 二酸化ケイ素のDS/DLと、Davとを特定するのは、蛍光
体の表面全体に、実質的に等しい厚さの二酸化ケイ素コ
ーティング層を設け、しかも、より多くの二酸化ケイ素
がこの厚さのコーティング層を作るために寄与するよう
にするためである。 さらにこの発明は、蛍光体の表面に付着させるシリカに
凝集粒子の少ないものを使用している。1次粒子が凝集
したシリカは、蛍光体の実質的な発光輝度、言い代えれ
ば、蛍光膜とした状態における発光輝度を低下させる。
それは、凝集粒子は1次粒子に比較して表面の凹凸が多
く、この凹凸表面が光を散乱させることが理由である。 50mμ以下の微小粒の二酸化ケイ素は、凝集粒子の含有
率が少ないが、50mμ以上の大粒のシリカは、凝集粒子
の含有率が多くなる。それは、50mμ以上の大粒のシリ
カは、微小粒子のシリカが凝集した粒径であるからであ
る。すなわち、平均粒子径が50mμ以上のシリカは、数
十mμのシリカが凝集して数百mμの粒状シリカとなる
ので、粒度別に選別しても、凝集粒子の含有率が高くな
り易い。このため、50mμ以上のシリカは、凝集粒子の
含有率を少なくすることが極めて大切である。 凝集粒子と1次粒子とは、コロイダルシリカをpH調整液
に静置することによって識別できる。シリカの凝集粒子
は、特定のpH値において底に沈澱する。pHが低いほど凝
集粒子は沈澱し易く、またシリカ濃度によっても沈澱の
状態が変化する。 この発明に使用するコロイダルシリカは、シリカ濃度が
1重量%で、pH10において、沈澱物の量が3重量%以下
のものを使用している。コロイダルシリカに含まれるシ
リカであって、凝集粒子を含まない50〜400mμのシリカ
は、この条件でほとんど沈澱物を生じない。 この発明は、凝集粒子を含まないコロイダルシリカを使
用することを大切な要件としている。凝集粒子の有無を
識別するために、一定の条件でコロイダルシリカを静置
させている。特定の条件で静置されて沈澱物が出来ない
コロイダルシリカは、凝集粒子を含まないか、あるい
は、凝集粒子の含有率が極めて低いものである。凝集粒
子を含むコロイダルシリカを、前記の条件で静置する
と、シリカの凝集粒子が底に沈澱する。言い代えると、
凝集粒子は底に沈澱して選別される。 従って、底に沈澱した凝集粒子を除去し、沈澱しないコ
ロイダルシリカの上澄み液を使用して蛍光体に付着する
なら、凝集粒子のない、あるいは、極めて少ないシリカ
で表面処理できる。すなわち、凝集粒子を識別する工程
で、凝集粒子を除去したコロイダルシリカを得ることが
できる。このコロイダルシリカを使用して、凝集粒子の
ないシリカで蛍光体を表面処理することができる。 本発明者等は、球形の二酸化ケイ素を表面処理物質とし
て設けた蛍光体において、蛍光体重量部に対する表面処
理物質の付着量を変化させたときの最小ストライプ幅、
ガラス面カブリおよび輝度について検討を重ねた結果、
ある特定の範囲において最適値があることを確認した。 二酸化ケイ素の付着量は、多すぎると輝度が低下し、反
対に、少なすぎると、表面処理効果が低下する。 最小ストライプ幅とガラス面カブリと輝度は、二酸化ケ
イ素の付着量が、蛍光体100重量部に対して0.2〜1.5重
量部の近傍で最も優れた特性を示す。二酸化ケイ素の付
着量は、最小ストライプ幅や輝度等の特性を考慮して、
通常0.01重量部〜3重量部の範囲に調整される。 本発明の蛍光体は、蛍光体そのものの輝度は同じであっ
ても、蛍光膜としたガラス面の発光が、従来の表面処理
物質を設けた蛍光体よりも明るくなることが判明した。
【作用効果】
本発明の蛍光体の製造方法は、従来から切望されていた
が、同時に改善することが極めて困難とされていた。最
小ストライプ幅、ガラス面カブリ、相対輝度の3特性を
一緒に改善することに成功している。 この発明の方法で製造された蛍光体が、いかに優れた特
性を示すかは、第3図a、b、cに示されている。 第3図aは、この発明の方法と、従来の方法とで製造さ
れた蛍光体の、平均粒子径に対する最小ストライプ幅を
示している。この図から明かなように、この発明の方法
で製造された蛍光体は、曲線Aで示されるように、従来
の製法で製造された蛍光体の特性を示す曲線Bに比較し
て、最小ストライプ幅が改善されている。 第3図bは、平均粒子径に対するガラス面カブリを示し
ている。本発明の方法で製造された蛍光体は、従来の方
法で得られたものに比較して、この特性が飛躍的に改善
されている。微小粒子のコロイダルシリカを使用した蛍
光体の表面処理方法は、この特性が悪いことが最大の原
因で、最小ストライプ幅とガラス面カブリと相対輝度の
3特性を同時に満足出来なかった。ところが、この発明
の方法は、コロイダルシリカを使用するにもかかわら
ず、この特性を著しく改善することに成功している。 例えば、従来の方法で製造された蛍光体のガラス面カブ
リを1.0とすると、この発明の方法で得られた蛍光体
は、二酸化ケイ素の平均粒子径が50mμ以上で、0.5〜0.
2と飛躍的に優れた特性を実現している。 さらに、第3図cは、平均粒子径に対する相対輝度を示
している。この図は、蛍光体の表面に、それ自体が発光
しない二酸化ケイ素を付着するにもかかわらず、塗膜と
した蛍光体の相対輝度を、不思議なことに、100%以上
に改善することに成功している。光を発光しないコーテ
ィング層によって、蛍光体の相対輝度を改善できるの
は、蛍光体の発光が効率よく外部に照射され、また、蛍
光体が効率よく電子線で刺激されることが理由である。 この発明が、蛍光体の最小ストライプ幅と、ガラス面カ
ブリと、そして、相対輝度との全ての特性を改善できる
のは、コロイダルシリカに含まれる二酸化ケイ素を独得
の形態に特性したことが理由である。すなわち、蛍光体
の表面に付着された全ての二酸化ケイ素が有効にコーテ
ィング層として作用し、また、蛍光体表面の二酸化ケイ
素による光の散乱が防止されたことが理由である。 従来の方法で製造された蛍光体は、1次粒子が凝集した
100mμ以上の大粒子シリカの間に、微小粒子のシリカが
付着された状態となる。この状態で蛍光体の表面に付着
された二酸化ケイ素は、凝集した大粒の粒状シリカでコ
ーティング膜の実質的な厚さが決定される。大粒の粒状
シリカの間に分布する微小粒子の二酸化ケイ素は、大粒
の二酸化ケイ素にマスキングされて粒状シリカの間に隠
れた状態となって、蛍光体表面に、一定の厚さのコーテ
ィング層を形成する作用がない。 このために、凝集粒子である粒状シリカとコロイダルシ
リカとを一緒に付着させた蛍光体は、多量の二酸化ケイ
素を付着しないと、ガラス面カブリと最小ストライプ幅
とを改善できない。 第4図a、b、cに、二酸化ケイ素の付着量に対する最
小ストライプ幅と、ガラス面カブリと相対輝度とを示し
ている。これ等の図から明白なように、この発明の方法
で製造された蛍光体は、二酸化ケイ素の付着量が少ない
領域で、最小ストライプ幅とガラス面カブリと相対輝度
とを改善している。 これ等の図において、曲線Aは、この発明の方法で製造
された蛍光体の特性を示し、曲線Bは、従来の方法で製
造された蛍光体の特性を示している。 この測定において、この発明の方法は、下記の二酸化ケ
イ素を含むコロイダルシリカを使用して蛍光体を表面処
理した。 コロイダルシリカに含まれる二酸化ケイ素は、80重
量%以上の粒子がDS/DL=0.9で、極めて球形に近い。 コロイダルシリカに含まれる二酸化ケイ素の平均粒
子径を130mμとした。 コロイダルシリカに含まれる二酸化ケイ素は、Dav
±0.4Davの粒径の粒子が全体の80重量%以上のものを使
用した。 さらに、コロイダルシリカは、シリカの含有率1重
量%、液体のpHを10として、48時間静置して、沈澱物が
1重量%以下のものを使用した。 従来の方法で製造した蛍光体は、下記のコロイダルシリ
カを使用して蛍光体を表面処理した。 コロイダルシリカに含まれる二酸化ケイ素の80重量
%以上の粒子が、 DS/DL=0.5である。 シリカ含有量が0.3重量%のコロイダルシリカ(平
均粒子径60mμ)に、0.3重量%の粒状シリカ(平均粒子
径400mμ)を添加し、この液体で、蛍光体の表面に二酸
化ケイ素を付着した。 コロイダルシリカは、シリカの含有率1重量%、液
体のpHを10として、48時間静置して、底に10重量%の二
酸化ケイ素の沈澱物ができるものを使用した。 第4図aは、この発明の方法と、従来の方法とで製造さ
れた蛍光体の、付着量に対する最小ストライプ幅を示し
ている。 第4図bは、付着量に対するガラス面カブリを示してい
る。 さらに、第4図cは、付着量に対する相対輝度を示して
いる。 第4図aとbの曲線Aが示すように、この発明の方法で
製造された蛍光体は、従来の方法で製造されたものに比
較して、少量の二酸化ケイ素を付着して、最小ストライ
プ幅とガラス面カブリとを著しく改善できる。 特に、ガラス面カブリを飛躍的に改善できる。コロイダ
ルシリカを使用した蛍光体の表面処理方法は、この特性
が悪いことが最大の原因で、最小ストライプ幅とガラス
面カブリと相対輝度の3特性を同時に満足出来なかっ
た。ところが、この発明の方法は、コロイダルシリカを
使用するにもかかわらず、この特性を著しく改善するこ
とに成功している。 第4図bにおいて、この発明の方法で得られた蛍光体
は、二酸化ケイ素の付着量を0.1以上として、ガラス面
カブリを0.5〜0.2と飛躍的に改善できる。 さらに、第4図cは、付着量に対する相対輝度を示して
いる。この図は、蛍光体の表面に、二酸化ケイ素を付着
することによって、相対輝度を約10%も向上させること
を明示している。すなわち、この発明は、それ自体が発
光しない二酸化ケイ素を付着するにもかかわらず、塗膜
とした蛍光体の相対輝度を、不思議なことに、改善する
ことに成功している。 このように、本発明の蛍光体が、従来品に比較して、著
しい効果を発揮するのは、蛍光体が理想に近い状態で蛍
光膜を形成することが理由である。すなわち、この発明
の蛍光体は、凝集粒子のない特定の二酸化ケイ素を表面
処理物質として使用しているので、全ての表面処理物質
が、蛍光体粒子の表面処理に有効に作用するものであ
る。 従来の方法で製造された蛍光体は、微小粒子が大粒のシ
リカにマスキングされることに加えて、表面には、微小
粒子のシリカと、1次粒子が凝集した数百mμの大粒の
シリカが付着されているので、蛍光体の表面が不均一な
厚さのコーティング層で覆われた状態となり、蛍光体ど
うしが凝集し易くなって分散性が低下することも、特性
を低下させる理由である。 これに対して、この発明の蛍光体は、蛍光体の表面に均
一に二酸化ケイ素を付着できるので、蛍光体の分散性が
良くなる。この蛍光体は、分散性が向上することに加え
て、これをガラス面に塗布して蛍光膜とすると、二酸化
ケイ素により蛍光体粒子間に均一な隙間ができる。 蛍光体間にできる隙間は、蛍光体をガラス面に塗布し、
露光してPVAを硬化させる際に、蛍光体膜の内部への紫
外線の通りを良くする。紫外線が蛍光体膜の内部まで十
分透過して照射されれば、蛍光体のガラス面への接着は
良好になり、その結果、最少ストライプ巾が小さくな
る。 また、二酸化ケイ素による光の散乱が少なくなること
も、蛍光体粒子を強く接着力できる理由のひとつであ
る。凝集粒子を含まない球形の二酸化ケイ素は、1次粒
子が凝集した粒状シリカに比較して、光の散乱が少な
い。光の散乱が少ない二酸化ケイ素は、効率良く紫外線
を蛍光体膜の内部に侵入させる。この状態において、蛍
光体粒子は、充分に硬化したPVAで強固に接着される。 ガラス面に電子線を照射する際には、上記のふたつの理
由、すなわち、 蛍光体間に均一な隙間が出来ること、 散乱が少ないこと、 が相乗して、電子線が蛍光体膜に効率良く侵入する。こ
のことは、電子線が、蛍光膜の照射側の面だけでなく、
照射側の蛍光体の内部に位置するガラス面近くの蛍光体
まで効率よく励起し、発光が効率よく行われる。 さらにこのことに加えて、励起された蛍光体からの発光
は、コーティング層を効率よく透過する。これは、コー
ティング層を形成する二酸化ケイ素による光の散乱が減
少されることが理由である。 従って、発光する蛍光体がガラス面から遠い位置にあっ
ても、効率よくガラス面方向へ透過する。その結果、輝
度が従来より高くなる。 さらにまた、蛍光体層の表面に施されるメタルバックを
均一にできることも、輝度向上に効果がある。それは、
この発明の蛍光体は、均一に分散して分布する塗布膜に
できるので、蛍光膜のうしろ側の面(電子銃側の面)を
より滑らかにできることが、メタルバックを均一にでき
る理由である。 また、ガラス面カブリにも、本発明の二酸化ケイ素の形
状が関与していると考えられる。ブラウン管の製造工程
において、未露光部分の蛍光体を洗い流すときに、一定
の粒子径で球形の二酸化ケイ素が付着した蛍光体は、先
に形成されたストライプやドットやガラス面に付着し難
く、充分に洗い流され易い。これは、二酸化ケイ素があ
たかも、コロのような役目となって働くと考えると、洗
われやすくカブリも少なくなる理由がより理解され易い
であろう。
【好ましい実施例】
以下、この発明の実施例を説明する。 (実施例1) 下記の工程で二酸化ケイ素を表面処理材料として付着し
た蛍光体を製造する。 緑色発光蛍光体(ZnS:Au,Cu,Al)1kgに、純水3
を加え、よく撹拌する。 蛍光体懸濁液をよく撹拌しながら、コロイダルシリ
カと10%硫酸亜鉛水溶液とを加える。 コロイダルシリカの添加量を30mlとし、シリカ含有量
を、蛍光体100重量部に対して0.6重量部とする。 このコロイダルシリカには、平均粒子径が130mμの二酸
化ケイ素を含有しているものを使用する。また、コロイ
ダルシリカに含有される二酸化ケイ素の粒度分布を第5
図に示す。このコロイダルシリカは、Dav±0.4Dav、す
なわち、130±52mμとなる78〜182mμの範囲に、60重量
%の粒径が含まれている。 硫酸亜鉛水溶液の添加量を3mlとし、蛍光体100重量部に
対する亜鉛含有量を0.03重量部とする。 コロイダルシリカと硫酸亜鉛水溶液とが添加された
液体をさらに撹拌しながら、アルカリ水溶液を添加し
て、pHを7.4に調整する。アルカリ水溶液には、アンモ
ニア水が使用できる。 一定時間静置した後、上澄み液をデカンテーション
により除去し、沈澱物を脱水して、110℃〜120℃で、8
〜15時間乾燥し、フルイ分けをする。 このようにして得られた蛍光体は、表面に球形の二酸化
ケイ素が付着されていた。この工程で得られた蛍光体の
表面状態を第1図aに示す。 参考に、第2図に従来の方法で製造された蛍光体の電子
顕微鏡写真を示す。 得られた蛍光体は、蛍光体重量部100に対し、0.59重量
部の二酸化ケイ素が付着されていた。また、この蛍光体
を電子顕微鏡で観察したところ、表面に、二酸化ケイ素
が均一に分散して付着されていた。付着されている二酸
化ケイ素は、80重量%以上の粒子のDS/DLが0.9以上
と、極めて球形に近い形状をしていた。 この蛍光体について最小ストライプ幅、ガラス面カブ
リ、輝度を測定したところ、 最小ストライプ幅が144μm、 ガラス面カブリが0.25、 相対輝度が109%となり、 従来品に比べて最小ストライプ幅が36μm細く、ガラス
面カブリは75%減少し、輝度は9%も明るくなった。 (実施例2) 下記の工程で二酸化ケイ素を表面処理材料として付着し
た蛍光体を製造する。 緑色発光蛍光体(ZnS:Cu,Al)1kgに、純水3を加
え、よく撹拌しする。 蛍光体懸濁液をよく撹拌しながら、コロイダルシリ
カと、10%硫酸亜鉛水溶液と、2%硝酸アルミニウム水
溶液とを加える。 このコロイダルシリカには、平均粒子径が60mμの二酸
化ケイ素を含有しているものを使用する。また、コロイ
ダルシリカに含有される二酸化ケイ素の粒度分布を第6
図に示す。このコロイダルシリカは、Dav±0.4Dav、す
なわち、60±24mμとなる36〜84mμの範囲に、80重量%
以上の粒径が含まれている。 コロイダルシリカの添加量は40mlとし、シリカの含有量
を、蛍光体100重量部に対して0.8重量部とする。 硫酸亜鉛水溶液の添加量を2mlとし、蛍光体100重量部に
対する亜鉛含有量を0.02重量部とする。 硝酸アルミニウム水溶液の添加量を5mlとし、蛍光体100
重量部に対するアルミニウム含有量を0.01重量%とす
る。 コロイダルシリカと硫酸亜鉛水溶液とが添加された
液体をさらに撹拌しながら、アルカリ水溶液を添加し
て、pHを7.4に調整する。アルカリ水溶液には、アンモ
ニア水が使用できる。 一定時間静置したのち、上澄み液をデカンテーショ
ンにより除去し、沈澱物を脱水して、110℃〜120℃で、
8〜15時間乾燥し、フルイ分けをする。 このようにして得られた蛍光体は、表面に二酸化ケイ素
が付着されていた。この工程で得られた蛍光体の表面状
態を第1図bに示す。 得られた蛍光体は、蛍光体重量部100に対し、0.78重量
部の球形二酸化ケイ素が付着されていた。また、この蛍
光体を電子顕微鏡で観察したところ、表面に均一に分散
して二酸化ケイ素が付着されていた。表面の二酸化ケイ
素は、80重量%以上の粒子のDS/DLが0.9以上と、極め
て球形に近い形状をしていた。 この蛍光体について最小ストライプ幅、ガラス面カブ
リ、輝度を測定したところ、 最小ストライプ幅が142μm、 ガラス面カブリが0.2、 相対輝度が110%となり、 従来品に比べて最小ストライプ幅が38μm細く、ガラス
面カブリは80%減少し、輝度は10%明るくなった。 (実施例3) 下記の工程で二酸化ケイ素を表面処理材料として付着し
た蛍光体を製造する。 緑色発光蛍光体(ZnS:Ag,Cl)1kgに、純水3を加
え、よく撹拌しする。 蛍光体懸濁液をよく撹拌しながら、コロイダルシリ
カと、10%硫酸亜鉛水溶液とを加える。 コロイダルシリカの添加量は50mlとし、シリカの含有量
を、蛍光体100重量部に対して1重量部とする。 硫酸亜鉛水溶液の添加量は、3mlとし、蛍光体100重量部
に対する亜鉛含有量を0.03重量部とする。 このコロイダルシリカには、平均粒子径が240mμの二酸
化ケイ素を含有しているものを使用する。このコロイダ
ルシリカは、Dav±0.4Dav、すなわち、240±96mμとな
る144〜336mμの範囲に、約60重量%の粒径が含まれて
いる。 コロイダルシリカと硫酸亜鉛水溶液とが添加された
液体をさらに撹拌しながら、アルカリ水溶液を添加し
て、pHを7.4に調整する。アルカリ水溶液には、アンモ
ニア水が使用できる。 静置したのち、上澄み液をデカンテーションにより
除去し、沈澱物を脱水して、110℃〜120℃で、8〜15時
間乾燥し、フルイ分けをする。 このようにして得られた蛍光体は、表面に二酸化ケイ素
が付着されていた。 得られた蛍光体は、蛍光体重量部100に対し、0.98重量
部の球形二酸化ケイ素が付着されていた。この蛍光体の
表面に付着されている二酸化ケイ素は、80重量%以上の
粒子のDS/DLが0.9以上と、極めて球形に近い形状をし
ていた。 この蛍光体について最小ストライプ幅、ガラス面カブ
リ、輝度を測定したところ、 最小ストライプ幅が145μm、 ガラス面カブリが0.4、 相対輝度が108%となり、 従来品に比べて最小ストライプ幅が35μm細く、ガラス
面カブリは60%減少し、輝度は8%明るくなった。 (実施例4) 下記の工程で二酸化ケイ素を表面処理材料として付着し
た蛍光体を製造する。 赤色発光蛍光体(Y2O2S:Eu)1kgに、純水3を加
え、よく撹拌しする。 蛍光体懸濁液をよく撹拌しながら、コロイダルシリ
カと、10%硫酸亜鉛水溶液と、2%硝酸アルミニウム水
溶液とを加える。 コロイダルシリカの添加量は50mlとし、シリカの含有量
を、蛍光体100重量部に対して1重量部とする。 このコロイダルシリカには、平均粒子径が400mμの二酸
化ケイ素を含有しているものを使用する。このコロイダ
ルシリカは、Dav±0.4Dav、すなわち、400±160mμとな
る240〜560mμの範囲に、約75重量%の粒径が含まれて
いる。 硫酸亜鉛水溶液の添加量を2mlとし、蛍光体100重量部に
対する亜鉛含有量を0.02重量部とする。 硝酸アルミニウム水溶液の添加量を5mlとし、蛍光体100
重量部に対するアルミニウム含有量を0.01重量%とす
る。 コロイダルシリカと硫酸亜鉛水溶液とが添加された
液体をさらに撹拌しながら、アルカリ水溶液を添加し
て、pHを7.4に調整する。アルカリ水溶液には、アンモ
ニア水が使用できる。 静置したのち、上澄み液をデカンテーションにより
除去し、沈澱物を脱水して、110℃〜120℃で、8〜15時
間乾燥し、フルイ分けをする。 このようにして得られた蛍光体は、表面に二酸化ケイ素
が付着されていた。この蛍光体の表面に付着されている
二酸化ケイ素は、80重量%以上近い形状をしていた。 得られた蛍光体は、蛍光体重量部100に対し、0.98重量
部の球形二酸化ケイ素が付着されていた。 この蛍光体について最小ストライプ幅、ガラス面カブ
リ、輝度を測定したところ、 最小ストライプ幅が155μm、 ガラス面カブリが0.5、 相対輝度が108%となり、 従来品に比べて最小ストライプ幅が25μm細く、ガラス
面カブリは50%減少し、輝度は8%明るくなった。
【図面の簡単な説明】
第1図aないし第1図bは、実施例1ないし実施例2で
得られた蛍光体の粒子構造を示す3300倍電子顕微鏡写
真、 第2図は従来の極微小、偏平粒子の二酸化ケイ素を付着
した蛍光体の粒子構造を示す3300倍電子顕微鏡写真、 第3図a〜cは、二酸化ケイ素の粒子径に対する蛍光体
の最小ストライプ幅、ガラス面カブリ、る蛍光体の最小
ストライプ幅、ガラス面カブリ、相対輝度を示すグラ
フ、 第4図a〜cは、二酸化ケイの付着量に対する蛍光体の
最小ストライプ幅、ガラス面カブリ、相対輝度を示すグ
ラフ、 第5図は実施例1に使用したコロイダルシリカの粒度分
布を示すグラフ、 第6図は実施例2に使用したコロイダルシリカの粒度分
布を示すグラフである。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】コロイダルシリカを使用して、これを接着
    剤で蛍光体の表面に付着する二酸化ケイ素が付着された
    蛍光体の製造方法において、蛍光体の表面に付着する二
    酸化ケイ素に、下記の条件を満足するものを使用するこ
    とを特徴とする蛍光体の製造方法。 (a) 蛍光体表面に二酸化ケイ素を付着させるコロイ
    ダルシリカは、球形の二酸化ケイ素を含んでいる。球形
    の二酸化ケイ素は、最大粒子径をDL、最小粒子径をDS
    とするとき、全体粒子の70重量%以上が、 1≧DS/DL≧0.7を満足している。 (b) コロイダルシリカに含まれる微小粒子の二酸化
    ケイ素に、平均粒子径が50mμ以上で400mμ以下のもの
    を使用する。 (c) コロイダルシリカに含まれる微小粒子の二酸化
    ケイ素に、粒子の平均粒子径をDavとするとき、Dav±0.
    4Davの粒径の粒子が全体の60重量%以上であるものを使
    用する。 (d) コロイダルシリカは、シリカの含有率1重量
    %、液体のpHを10として、48時間静置して、沈澱物がシ
    リカ全重量の3重量%以下のものを使用する。
JP5545289A 1989-03-08 1989-03-08 球形の二酸化ケイ素を付着した蛍光体の製造方法 Expired - Fee Related JPH07119411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5545289A JPH07119411B2 (ja) 1989-03-08 1989-03-08 球形の二酸化ケイ素を付着した蛍光体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5545289A JPH07119411B2 (ja) 1989-03-08 1989-03-08 球形の二酸化ケイ素を付着した蛍光体の製造方法

Publications (2)

Publication Number Publication Date
JPH02233794A JPH02233794A (ja) 1990-09-17
JPH07119411B2 true JPH07119411B2 (ja) 1995-12-20

Family

ID=12998995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5545289A Expired - Fee Related JPH07119411B2 (ja) 1989-03-08 1989-03-08 球形の二酸化ケイ素を付着した蛍光体の製造方法

Country Status (1)

Country Link
JP (1) JPH07119411B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626219A1 (de) * 1996-06-29 1998-01-02 Philips Patentverwaltung Leuchtstoffzubereitung mit SiO¶2¶-Partikel-Beschichtung
CN101379164B (zh) 2006-02-10 2012-11-21 三菱化学株式会社 荧光体及其制造方法、含荧光体的组合物、发光装置、图像显示装置和照明装置
JP5493258B2 (ja) 2006-09-15 2014-05-14 三菱化学株式会社 蛍光体及びその製造方法、並びに、発光装置
WO2008133077A1 (ja) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 無機化合物の製造方法、蛍光体、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
KR101260101B1 (ko) 2007-04-18 2013-05-02 미쓰비시 가가꾸 가부시키가이샤 형광체 및 그 제조 방법, 형광체 함유 조성물, 발광 장치, 조명 장치, 화상 표시 장치, 그리고 질소 함유 화합물
EP2175007A4 (en) 2007-06-29 2011-10-19 Mitsubishi Chem Corp LUMINOPHORE, METHOD FOR PRODUCING LUMINOPHORE, COMPOSITION CONTAINING LUMINOPHORE, AND LIGHT EMITTING DEVICE
WO2009017206A1 (ja) 2007-08-01 2009-02-05 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、結晶性窒化珪素及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
CN102361956B (zh) 2009-03-31 2014-10-29 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
US10113111B2 (en) 2015-02-06 2018-10-30 Dow Silicones Corporation Treated fillers and uses thereof

Also Published As

Publication number Publication date
JPH02233794A (ja) 1990-09-17

Similar Documents

Publication Publication Date Title
KR860001882B1 (ko) 형광체
JPH07119411B2 (ja) 球形の二酸化ケイ素を付着した蛍光体の製造方法
JP2770629B2 (ja) 陰極線管用蛍光体及びその表面処理方法
JPH07119410B2 (ja) 極小球形の二酸化ケイ素を付着した蛍光体の製造方法
EP0529098B1 (en) Color cathode-ray tube
JP2862916B2 (ja) 蛍光体、蛍光体の表面処理方法及び蛍光膜の製造方法
JP2514423B2 (ja) 二酸化ケイ素でコ―ティングされた蛍光体の製造方法
JPH04236294A (ja) 蛍光体の表面処理方法
JPH09255951A (ja) 青色発光蛍光体
JP2000053959A (ja) アミド基含有又はウレタン基含有有機バインダ―を含む蛍光体組成物
JPH0559357A (ja) 窒化ホウ素で表面処理された蛍光体
JPH02199187A (ja) 球状ケイ酸塩化合物で表面処理された蛍光体の製造方法
JP3491448B2 (ja) 陰極線管用蛍光体および蛍光体スラリー
JPS63308088A (ja) 蛍光体
JP3379973B2 (ja) 赤色発光組成物
JP2956822B2 (ja) 陰極線管用蛍光体
KR910004678B1 (ko) 청색 안료 부착 형광체와 그 제조방법
JPH0815041B2 (ja) 蛍光体の表面処理方法
JPH0652807A (ja) カラーブラウン管
JPH01292092A (ja) 蛍光体及びその製造方法
JPH02240188A (ja) 球状のケイ酸塩化合物で表面を被覆した蛍光体
JPH09291273A (ja) 蛍光体
JPH1077468A (ja) 蛍光体
JP2002371272A (ja) 陰極線管用蛍光体とそれを用いたカラー陰極線管
JP2000063822A (ja) 陰極線管用赤色発光蛍光体および陰極線管

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees