JPH0316403B2 - - Google Patents

Info

Publication number
JPH0316403B2
JPH0316403B2 JP57186097A JP18609782A JPH0316403B2 JP H0316403 B2 JPH0316403 B2 JP H0316403B2 JP 57186097 A JP57186097 A JP 57186097A JP 18609782 A JP18609782 A JP 18609782A JP H0316403 B2 JPH0316403 B2 JP H0316403B2
Authority
JP
Japan
Prior art keywords
pitch
precursor
fibers
fiber
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57186097A
Other languages
English (en)
Other versions
JPS5976925A (ja
Inventor
Seiichi Kamimura
Shunichi Yamamoto
Takao Hirose
Hiroaki Takashima
Osamu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP57186097A priority Critical patent/JPS5976925A/ja
Priority to GB08328250A priority patent/GB2131781B/en
Priority to DE19833338703 priority patent/DE3338703A1/de
Priority to KR1019830005044A priority patent/KR880002096B1/ko
Priority to FR8316969A priority patent/FR2534935B1/fr
Publication of JPS5976925A publication Critical patent/JPS5976925A/ja
Publication of JPH0316403B2 publication Critical patent/JPH0316403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments

Description

【発明の詳細な説明】
本発明は高性能ピツチ系炭素繊維の製造法に関
する。 近年、炭素質ピツチを原料として炭素繊維を製
造する方法が、多数発表されている。これらはす
べて炭素繊維の引張り弾性率、引張り強度および
それらの比で表わされる伸びに着眼した技術であ
る。しかるに炭素繊維に要求される特性としてこ
れらの他に、繊維軸に垂直な断面の構造の重要性
が認識されるようになつてきた。すなわち、炭素
繊維は、繊維軸方向に黒鉛層面が平行して発達し
た構造を基本としており、引張り弾性率および引
張り強度などの特性は、この構造の発達の度合い
に依存すると考えられているが、一方、繊維軸に
垂直な断面で見ると、黒鉛微結晶のC軸に平行な
面が主として現われることになる。この配列の仕
方は、炭素繊維の引張り弾性率とか引張り強度と
かには影響を及ぼさないが、繊維軸方向の割れや
すさに重大な影響を及ぼすことが明らかになつて
きた。ここで、図1に、繊維軸に垂直な断面の黒
鉛微結晶の配列の典型的な三種類を示す。図1a
のラジアル構造をとる炭素繊維は図2のような割
れを生じやすい欠点を有するが、ランダム構造ま
たはオニオン構造では図2のような割れを生ずる
ことはなく好ましい構造と言える。 しかし、これまで、どうすればラジアル構造を
避けて、ランダム構造またはオニオン構造の炭素
繊維を製造し得るかということに関しての技術は
全く発表されていない。もし、ラジアル構造を避
ける技術が確立されれば最も好ましい。本発明者
らは以上の点につき鋭意検討を重ねた結果、ラジ
アル構造を有しないすなわちランダム構造か又は
オニオン構造を有する炭素繊維を製造する方法を
確立したものである。 すなわち本発明者らは、特定のピツチを特定の
条件下で溶融紡糸し、ついで不融化、炭化さらに
必要なら黒鉛化することによつて、ランダムまた
はオニオン構造を有する、割れにくい炭素繊維を
製造する方法を見出したものである。以下に本発
明を詳述する。 本発明者らは炭素繊維の「繊維軸に垂直な断面
における黒鉛微結晶の配列の様式」(以下これを
断面構造と称する)が、前駆体ピツチの溶融紡糸
に始まり、不融化、炭化と続いて炭素繊維に至る
どの段階で決定されるかについて詳細な検討を行
なつた。その結果、溶融紡糸の段階ですでに炭素
繊維の断面構造が決定されることを確認すること
ができた。このことはすでに例えば文献Applied
Polymer Symposium No.29(1976)の167頁〜
169頁の記述が指摘していることでもある。そこ
で次の疑問は、何故、溶融紡糸の段階で、図1に
示すような三種の断面構造が決定づけられるのか
という点にある。この点に関しては、これまでに
開示された情報は全くない。そして、より重要な
ことは、前駆体ピツチの溶融紡糸における様々な
因子、たとえば前駆体ピツチの性状、溶融紡糸の
際の紡糸温度、紡糸ノズルの形状、前駆体ピツチ
のノズルからの押出速度、ダイスを出てからの繊
維状になつた前駆体ピツチの冷却条件、さらに冷
却されたピツチ繊維を巻き取りドラムに巻き取る
際の巻き取り速度等々の様々な因子のうちのどの
因子が、炭素繊維の断面構造にどのように影響を
及ぼすのかを明らかにすることである。それによ
つて、図2に示したような炭素繊維の割れを防ぐ
技術を確立することができるのである。もう一つ
見落とすことができないのは、溶融紡糸の段階で
すでに炭素繊維の断面構造が決定されるとすれ
ば、溶融紡糸されたピツチ繊維そのものが、黒鉛
微結晶ではなく、前駆体ピツチの主たる構成成分
と考えられる縮合多環芳香族平面分子(すなわち
黒鉛微結晶の前駆体)が繊維軸の垂直な断面で、
図1に示すような配列をとつていると考えられる
ことである。従つて、ラジアル構造をとる炭素繊
維の場合、その前段階のピツチ繊維の段階ですで
に図1のaに示すように、芳香族平面分子がラジ
アル状に配列(平面は繊維軸に平行に配列)して
いると考えられる。この場合は、図3に示すよう
に、ピツチ繊維の段階ですでに割れが生ずること
が多い。従つて、炭素繊維の割れやすさという問
題以前に、ピツチ繊維の段階での割れやすさ、さ
らにはそれに続く、不融化段階での割れやすさ、
炭化段階での割れやすさが深くかかわつている。
その結果、溶融紡糸以降炭素繊維に至るまでの全
行程において、ラジアル構造を排除する技術が確
立できれば、炭素繊維の性能面での割れにくいと
いう利点は勿論のこと、溶融紡糸に始まり炭素繊
維に至る炭素繊維の製造工程全体で、繊維が割れ
にくく、その結果、円滑に製造を進められるとい
う利点をも併せ持つことになる。 本発明者らの詳細な検討によれば、ピツチの性
状、特に、紡糸温度における連続相が光学的に等
方性であるか光学的に異方性であるかが、炭素繊
維の断面構造を決定するという結論に到達したの
である。 すなわち、紡糸温度における前駆体ピツチの連
続相が光学的異方性相(従つて非連続相が等方性
相)であると、ラジアル構造の炭素繊維となりや
すく、一方、連続相が光学的等方性相(従つて非
連続相が異方性相)であると、ランダム構造また
はオニオン構造の炭素繊維になることが判明し
た。ここで、紡糸温度というのは、ノズルを出る
以前の前駆体ピツチの温度を指す。室温における
前駆体ピツチの光学的性質の観察法に関しては例
えば“The Formation of Some Graphitizing
Carbon”(Chemistry and Physics of Carbon,
第4巻,243〜268頁)に述べられている。光学的
異方性を多く含む前駆体ピツチを溶融紡糸する炭
素繊維の製造方法は特公昭55−37611号等で知ら
れているが、これら従来例ではいずれも、室温に
おける光学的異方性相の含有率およびその
textureを扱つている。しかるに本発明者らの検
討の結果、ランダム構造又はオニオン構造を有す
る炭素繊維を製造するためには、紡糸温度におけ
る前駆体ピツチの光学的性質こそが重要なのであ
つて、従来技術に見られる室温における前駆体ピ
ツチの光学的性質は全く重要ではないことが判明
したのである。 さて、次に、室温における前駆体ピツチの光学
的性質と、紡糸温度における前駆体ピツチの光学
的性質との関係について述べる。先ず指摘されね
ばならないことは、前駆体ピツチの光学的異方性
相の割合は、前駆体ピツチの温度によつて変化
し、しかも、その変化の様子は前駆体ピツチの種
類によつて全く異るということである。すなわ
ち、ある前駆体ピツチでは、室温で80%の光学的
異方性相を含んでいたもの(即ち80%の異方性相
が連続相を形成し、20%の等方性相が非連続相を
形成している)が、400℃に昇温後直接に偏光顕
微鏡で観察すると光学的異方性相が20%に減少し
非連続相になつているのが観察されるが、また別
の前駆体ピツチでは室温で80%の光学的異方性相
を含んでいたものが、400℃に昇温後、直接に偏
光顕微鏡で観察すると光学的異方性相が70%に減
少しているのが観察される。もし、溶融紡糸温度
が400℃の場合、この両方の前駆体ピツチの差は
重大である。何故なら、前者では紡糸温度におけ
る連続相が光学的等方性であるのに後者では紡糸
温度における連続相が光学的異方性であり、すな
わち、前者ではランダム構造またはオニオン構造
の炭素繊維が得られるのに対し、後者ではラジア
ル構造の炭素繊維が得られることとなり、結局、
室温での光学的異方性相の含有率は、炭素繊維の
断面構造を決定する上では何等の意味も持ち得な
いことになるのである。光学的異方性相の含有率
と温度との関係に関しては例えば、文献Carbon,
Vol.16,p.503(1978)、および昭和57年度、炭素
材料学会セミナー予稿p.23を例示することができ
る。 上記から理解されるように、本発明は、炭素質
の前駆体ピツチを溶融紡糸してピツチ繊維とな
し、そのピツチ繊維を、不融化処理して不融化繊
維となし、その不融化繊維を炭化処理するかまた
は必要であればさらに黒鉛化処理することにより
炭素繊維を製造するにあたり、該前駆体ピツチの
連続相が光学的等方性であり、かつ光学的等方性
部分の反射率が8.5〜11.0%であつて、非連続相
が光学的異方性である温度条件下で溶融紡糸する
ことを特徴とするピツチ系炭素繊維の製造法にあ
る。 本発明方法によりピツチ繊維の繊維軸に垂直な
断面の構造がランダム構造またはオニオン構造で
あり、不融化繊維および炭素繊維の繊維軸に垂直
な断面の構造も、ランダム構造またはオニオン構
造である高性能炭素繊維を得ることができる。 尚、前駆体ピツチの反射率をその紡糸温度にお
いて直接測定することは測定手段の制約上困難で
あるため、前駆体ピツチの反射率は次のようにし
て測定される。 すなわち、紡糸温度に保持した前駆体ピツチを
急冷する。この急冷により紡糸温度での前駆体ピ
ツチの状態をほとんど保持したままで前駆体ピツ
チを冷却することが可能になる。このようにして
急冷して得た前駆体ピツチを樹脂中に包埋し、研
磨して反射率を測定する。 反射率の測定は反射率測定装置により空気中で
測定される。具体的には試料平面上の光学的等方
性部分の30以上の点を任意に選び、反射率を測定
し、その平均値をもつて、その前駆体ピツチの光
学的等方性部分の反射率とする。なお反射率の測
定は石炭試料に関して従来から広く採用されてお
り測定法も標準化されている(JIS M8816−
1979)。ピツチ類の反射率測定も原理的にはこれ
に準じて行う。 反射率が8.5%より小さいと、連続相である光
学的等方性部と、非連続相である光学的異方性部
の粘度が異なり過ぎるためか、円滑な紡糸が困難
になり、また反射率が11%より大きい光学的等方
性相は製造し難く効果的でない。 このような反射率に関する制限条件をみたすよ
うな前駆体ピツチであれば、その製造方法等には
特に制約はないが一例として本出願人が先に出願
した特願昭57−101377号に開示されている前駆体
ピツチを挙げることができる。 紡糸温度は使用する前駆体ピツチの連続相が等
方性を示す適宜の温度が選択される。前駆体ピツ
チがその温度で等方性を示しているかどうかはピ
ツチの種類によつて異なるが、偏光顕微鏡で観察
することにより容易に確認することができる。こ
こで任意を要することは紡糸温度の絶対値が余り
高過ぎると、たとえば400℃以上であると、前駆
体ピツチの熱分解によるガス発生を避けることが
できず、ピツチ繊維中に空洞を生じるなどの不利
益が発生することがある。それ故不必要な高温は
避けるべきである。 次に以下に実施例を示して本発明を説明する
が、これらは本発明の理解を助けるためのもので
あり、これらによつて本発明は何ら制約されるも
のではない。 実施例 1 アラビア系原油の減圧軽油(VGO)の水素化
処理油をシリカ・アルミナ系触媒を用いて500℃
にて接触分解して得られた沸点200℃以上の重質
油Aを得た。その性状を第1表に示す。 ナフサを830℃で水蒸気分解した際に副生した
沸点200℃以上の重質油Bを採取した。この重質
油Bの性状を第2表に示す。重質油Bを圧力15
Kg/cm2・G、温度400℃にて3時間熱処理した。
この熱処理油Cを250℃/1.0mmHgにて蒸留し、
沸点160〜400℃留分Dを採取した。その性状を第
3表に示す。この留分Dを、ニツケル−モリブデ
ン系触媒(NM−502)を用いて圧力35Kg/cm2
G、温度330℃、空間速度(LHSV)1.5で水素と
接触させ、部分核水素化を行わせ、水素化油Eを
得た。核水素化率は31%であつた。 この水素化油Eの性状を4表に示す。 重質油A60重量部、重質油B30重量部および水
素化油E10重量部を混合し、圧力20Kg/cm2・G、
温度430℃にて3時間熱処理した。この熱処理油
を250℃/1.0mmHgで蒸留して軽質分を留出させ
軟化点80℃のピツチ1を得た。
【表】
【表】
【表】
【表】
【表】 次にピツチ1を1mmHgの減圧下に345℃で15分
間フイルムエバポレータで処理を行つた後、常圧
下に370℃で20分間熱処理を行い軟化点261℃の前
駆体ピツチ2を得た。この前駆体ピツチは350℃
以上では連続相が等方性であつた。そこでこの前
駆体ピツチを360℃の紡糸温度にて、ダイス径0.3
mmΦ、L/D=2のダイスより溶融紡糸して、
12μmΦのピツチ繊維を調製した。なお前駆体ピ
ツチの光学的等方性部分の反射率は9.0%であつ
た。次いでこのピツチ繊維を、空気にて常法によ
り不融化処理し、得られた不融化繊維を不活性ガ
ス雰囲気で常法により1000℃で炭化処理し、最後
に不活性ガス雰囲気下で常法により2500℃で黒鉛
化処理して炭素繊維を得た。得られた炭素繊維の
糸径は10μmであり、断面構造を走査型電子顕微
鏡で観察したところ図1のbのような典型的なラ
ンダム構造であり、引張弾性率は40ton/mm2、引
張強度は300Kg/mm2であつた。 比較例 1 実施例1と同じ前駆体ピツチを紡糸温度325℃
で実施例1と同様に溶融紡糸して12μmΦの糸径
を有するピツチ繊維を得た。なお、325℃では、
この前駆体ピツチの連続相は光学的異方性相であ
つた。 このピツチ繊維を実施例1と同様の処理により
炭素繊維化したところ、得られた炭素繊維の直径
は10μmであり、断面構造は図1aに示したよう
な典型的ラジアル構造であり、一部図2のような
割れを示すものも見られた。 実施例 2 高温タール(性状を第2表に示す)からキノリ
ン不溶分を除去したもの(以下タールQS分と略)
150mlを内容積300mlの撹拌機付きオートクレーブ
中で水素初圧100Kg/cm2・Gで、昇温速度3℃/
分にて440℃まで加熱し、440℃で3時間保持し
た。しかる後、加熱を停止し、室温まで冷却し
た。得られた液状生成物を250℃/1mmHgで蒸留
して軽質分を留出させ原料ピツチ3を得た。この
ピツチの軟化点は70℃、キノリン不溶分は3%で
あり、収率は40wt%であつた。 ピツチ3を、1mmHgの減圧下に345℃で15分間
フイルムエバポレータで処理を行つた後、常圧下
に350℃で15分間熱処理を行い軟化点245℃の前駆
体ピツチ4を得た。
【表】
【表】 この前駆体ピツチ4は350℃以上では連続相が
光学的等方性であつた。この前駆体ピツチを360
℃で溶融紡糸して直径12μmΦのピツチ繊維を得
た。なおこの前駆体ピツチの光学的等方性相の反
射率は9.3%であつた。このピツチ繊維を実施例
1と同様の条件で炭素繊維とした。 得られた炭素繊維の直径は10μmであり、断面
構造は図1のbのような典型的なランダム構造で
あり、引張弾性率は39ton/mm2、引張強度は290
Kg/mm2であつた。 比較例 2 実施例2と同じ前駆体ピツチを340℃で溶融紡
糸した。この前駆体ピツチは340℃では連続相が
光学的異方性相であつた。得られた炭素繊維の断
面構造は図1aに示したような典型的ラジアル構
造であり、ピツチ繊維の段階で図3のように割れ
ているものがかなりあり、炭素繊維の中にも図2
のように割れているものがあつた。 比較例 3 DCO単味ピツチを400℃でN2を吹き込みながら
7hr熱処理しながら前駆体ピツチ化した。得られ
た前駆体ピツチは370℃以上では連続相が光学的
等方性相であつたが、その反射率が8.2%であり、
380℃で溶融紡糸を試みたが均一な糸径のピツチ
繊維を紡糸することができなかつた。
【図面の簡単な説明】
図1は炭素繊維の断面構造を成す模式図であ
り、aはラジアル構造、bはランダム構造、cは
オニオン構造を示す。図2はラジアル構造の炭素
繊維の糸割れ状態を示す模式図であり、図3はピ
ツチ繊維の糸割れ状態を示す模式図である。

Claims (1)

    【特許請求の範囲】
  1. 1 炭素質の前駆体ピツチを溶融紡糸してピツチ
    繊維となし、そのピツチ繊維を、不融化処理して
    不融化繊維となし、その不融化繊維を炭化処理す
    るかまたは必要であればさらに黒鉛化処理するこ
    とにより炭素繊維を製造するにあたり、該前駆体
    ピツチの連続相が光学的等方性であり、かつ光学
    的等方性部分の反射率が8.5〜11.0%であつて、
    非連続相が光学的異方性である温度条件下で溶融
    紡糸することを特徴とするピツチ系炭素繊維の製
    造法。
JP57186097A 1982-10-25 1982-10-25 ピツチ系炭素繊維の製造法 Granted JPS5976925A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57186097A JPS5976925A (ja) 1982-10-25 1982-10-25 ピツチ系炭素繊維の製造法
GB08328250A GB2131781B (en) 1982-10-25 1983-10-21 Process for producing carbon fibers using pitch
DE19833338703 DE3338703A1 (de) 1982-10-25 1983-10-25 Verfahren zur herstellung von kohlenstoffasern
KR1019830005044A KR880002096B1 (ko) 1982-10-25 1983-10-25 핏치를 사용하는 탄소섬유의 제조방법
FR8316969A FR2534935B1 (fr) 1982-10-25 1983-10-25 Procede pour la fabrication de fibres de carbone utilisant du brai

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186097A JPS5976925A (ja) 1982-10-25 1982-10-25 ピツチ系炭素繊維の製造法

Publications (2)

Publication Number Publication Date
JPS5976925A JPS5976925A (ja) 1984-05-02
JPH0316403B2 true JPH0316403B2 (ja) 1991-03-05

Family

ID=16182309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186097A Granted JPS5976925A (ja) 1982-10-25 1982-10-25 ピツチ系炭素繊維の製造法

Country Status (5)

Country Link
JP (1) JPS5976925A (ja)
KR (1) KR880002096B1 (ja)
DE (1) DE3338703A1 (ja)
FR (1) FR2534935B1 (ja)
GB (1) GB2131781B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084198B2 (ja) * 1988-02-26 1996-01-17 株式会社ペトカ 可撓性の電磁波反射材料
JPH0742615B2 (ja) * 1988-03-28 1995-05-10 東燃料株式会社 高強度、高弾性率のピッチ系炭素繊維
JPH0791698B2 (ja) * 1988-06-10 1995-10-04 帝人株式会社 ピッチ糸炭素繊維の製造法
US5145616A (en) * 1988-06-10 1992-09-08 Teijin Limited Process for the preparation of pitch-based carbon fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147823A (en) * 1977-05-25 1978-12-22 British Petroleum Co Method of producing carbon fiber
JPS53147822A (en) * 1977-05-25 1978-12-22 British Petroleum Co Method of producing carbon fiber
JPS56101916A (en) * 1979-12-26 1981-08-14 Union Carbide Corp Production of carbon fiber
JPS5876523A (ja) * 1981-10-29 1983-05-09 Nippon Oil Co Ltd ピツチ系炭素繊維の製造方法
JPS5930915A (ja) * 1982-08-13 1984-02-18 Nippon Oil Co Ltd 炭素繊維の製造方法
JPS5953717A (ja) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol 高強度,高モジュラスピッチ系炭素繊維の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1385213A (en) * 1972-03-29 1975-02-26 Secr Defence Method of manufacturing carbon fibre
US4376747A (en) * 1980-12-11 1983-03-15 Union Carbide Corporation Process for controlling the cross-sectional structure of mesophase pitch derived fibers
JPS57154416A (en) * 1981-03-12 1982-09-24 Kureha Chem Ind Co Ltd Preparation of carbon fiber having random mosaic cross-sectional structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147823A (en) * 1977-05-25 1978-12-22 British Petroleum Co Method of producing carbon fiber
JPS53147822A (en) * 1977-05-25 1978-12-22 British Petroleum Co Method of producing carbon fiber
JPS56101916A (en) * 1979-12-26 1981-08-14 Union Carbide Corp Production of carbon fiber
JPS5876523A (ja) * 1981-10-29 1983-05-09 Nippon Oil Co Ltd ピツチ系炭素繊維の製造方法
JPS5930915A (ja) * 1982-08-13 1984-02-18 Nippon Oil Co Ltd 炭素繊維の製造方法
JPS5953717A (ja) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol 高強度,高モジュラスピッチ系炭素繊維の製造方法

Also Published As

Publication number Publication date
DE3338703C2 (ja) 1992-04-23
KR880002096B1 (ko) 1988-10-15
FR2534935B1 (fr) 1986-06-20
DE3338703A1 (de) 1984-05-30
GB2131781A (en) 1984-06-27
JPS5976925A (ja) 1984-05-02
GB8328250D0 (en) 1983-11-23
FR2534935A1 (fr) 1984-04-27
GB2131781B (en) 1986-02-19
KR840006682A (ko) 1984-12-01

Similar Documents

Publication Publication Date Title
KR860001156B1 (ko) 피치계 탄소섬유의 제조방법
JPH0316403B2 (ja)
JPS59196390A (ja) 炭素繊維用ピツチの製造方法
JPH0791372B2 (ja) 炭素材料用原料ピッチの製造方法
JPS6327447B2 (ja)
JPS60194120A (ja) ピツチ系繊維の製造方法
JPH0133569B2 (ja)
JPH0545685B2 (ja)
JPH0781211B2 (ja) 炭素繊維の製造方法
JP2780231B2 (ja) 炭素繊維の製造方法
JP2849156B2 (ja) 中空炭素繊維の製造方法
JP2000319664A (ja) 炭素材料用メソフェーズピッチ及び炭素繊維の製造法
JPS6278220A (ja) リボン状炭素繊維の製造方法
JPH05272017A (ja) 炭素繊維及びその製造方法
JPH0633530B2 (ja) 炭素繊維及びその製造方法
JPH026620A (ja) ピッチ系炭素繊維およびその製造方法
JP2766530B2 (ja) ピッチ系炭素繊維の製造方法
JPS63175122A (ja) 炭素繊維トウの製造法
JPH0633528B2 (ja) 炭素繊維及びその製造方法
JPS62170527A (ja) ピツチ系炭素繊維の製造方法
JPH0841730A (ja) 高熱伝導率炭素繊維の製造方法
JPS60259631A (ja) ピツチ系炭素繊維の製造法
JP3055295B2 (ja) ピッチ系炭素繊維とその製造方法
JPH0314625A (ja) 炭素繊維用ピッチ及びそれを用いた炭素繊維の製造方法
JPS6197423A (ja) ピツチ系炭素繊維の製造方法